KR100727391B1 - Method for manufacturing bi-te based thermoelectric materials - Google Patents

Method for manufacturing bi-te based thermoelectric materials Download PDF

Info

Publication number
KR100727391B1
KR100727391B1 KR1020050125919A KR20050125919A KR100727391B1 KR 100727391 B1 KR100727391 B1 KR 100727391B1 KR 1020050125919 A KR1020050125919 A KR 1020050125919A KR 20050125919 A KR20050125919 A KR 20050125919A KR 100727391 B1 KR100727391 B1 KR 100727391B1
Authority
KR
South Korea
Prior art keywords
powder
thermoelectric material
type thermoelectric
ingot
manufacturing
Prior art date
Application number
KR1020050125919A
Other languages
Korean (ko)
Inventor
김경택
김용환
임철호
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to KR1020050125919A priority Critical patent/KR100727391B1/en
Application granted granted Critical
Publication of KR100727391B1 publication Critical patent/KR100727391B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Abstract

A method for producing Bi-Te based thermo electric material is provided to easily control densification of the thermo electric material construction and the size of crystal grains by mixing powder at a predetermined ratio and sintering it at a short time. Bi, Sb, and Te are filled in a quartz tube, and the tube is sealed in a vacuum state. The quartz tube is stirred in a stirring machine, and is cooled to make an ingot. After the ingot is crushed and milled to obtain powder, the powder is sorted into coarse powder of 200 to 300 mum and fine powder of 20 to 45 mum. Each of the power is filled in a pylex tube with hydrogen. The tube is heated to reduce the powder into hydrogen. The coarse powder and the fine powder are mixed and filled in an ample, and the mixed powder is sintered using a discharge plasma sintering apparatus.

Description

Bi­Te계 p형 열전재료의 제조방법{METHOD FOR MANUFACTURING Bi-Te BASED THERMOELECTRIC MATERIALS}METHOOD FOR MANUFACTURING Bi-Te BASED THERMOELECTRIC MATERIALS}

도 1 은 본 발명의 실시 예에 의해 제조된 p형 열전재료의 미세분말 혼합비의 변화에 따른 상대밀도 변화를 나타낸 그래프,1 is a graph showing the change in relative density according to the change of the fine powder mixing ratio of the p-type thermoelectric material prepared by the embodiment of the present invention,

도 2 는 본 발명의 실시 예에 의해 제도된 p형 열전재료의 (0 0 6)면의 극점도(pole figure),2 is a pole figure of the (0 0 6) plane of a p-type thermoelectric material drawn by an embodiment of the present invention,

도 3 은 본 발명의 실시 예에 의해 제조된 p형 열전재료의 미세분말 혼합비의 변화에 따른 굽힘강도의 변화를 나타낸 그래프,3 is a graph showing the change in bending strength according to the change of the fine powder mixing ratio of the p-type thermoelectric material prepared by the embodiment of the present invention,

도 4 는 본 발명의 실시 예에 의해 제조된 p형 열전재료의 미세분말 혼합비의 변화에 따른 열전능의 변화를 나타낸 그래프,4 is a graph showing a change in thermoelectric function according to the change of the fine powder mixing ratio of the p-type thermoelectric material prepared by the embodiment of the present invention,

도 5 는 본 발명의 실시 예에 의해 제조된 p형 열전재료의 미세분말 혼합비의 변화에 따른 홀계수의 측정을 통하여 환산된 캐리어 농도 및 이동도의 변화를 나타낸 그래프,5 is a graph showing a change in carrier concentration and mobility converted through measurement of the Hall coefficient according to the change of the fine powder mixing ratio of the p-type thermoelectric material prepared by the embodiment of the present invention,

도 6 은 본 발명의 실시 예에 의해 제조된 p형 열전재료의 미세분말 혼합비의 변화에 따른 전기비저항의 변화를 나타낸 그래프,6 is a graph showing a change in electrical resistivity according to the change of the fine powder mixing ratio of the p-type thermoelectric material prepared by the embodiment of the present invention,

도 7 은 본 발명의 실시 예에 의해 제조된 p형 열전재료의 미세분말 혼합비의 변화에 따른 열전도도의 변화를 나타낸 그래프,7 is a graph showing a change in thermal conductivity according to the change of the fine powder mixing ratio of the p-type thermoelectric material prepared by the embodiment of the present invention,

도 8 은 본 발명의 실시 예에 의해 제조된 p형 열전재료의 미세분말 혼합비의 변화에 따른 성능지수의 변화를 나타낸 그래프.8 is a graph showing a change in the performance index according to the change in the fine powder mixing ratio of the p-type thermoelectric material prepared by the embodiment of the present invention.

본 발명은 Bi-Te계 p형 열전재료의 제조방법에 관한 것으로, 특히 조대분말과 미세분말을 소정의 혼합비로 혼합하여 방전플라즈마 소결정정을 통해 소결함으로써 열전재료를 제조하는 Bi-Te계 p형 열전재료의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a Bi-Te p-type thermoelectric material, and in particular, to prepare a thermoelectric material by mixing coarse powder and fine powder at a predetermined mixing ratio and sintering through a discharge plasma small crystal crystal. It relates to a method for producing a thermoelectric material.

일반적으로 Bi-Te계 열전재료는 상온 근방에서의 우수한 열전성능으로 인하여 고집적 소자 및 각종 센서 등의 방열문제를 해결하기 위한 수단으로써 사용되고 있으며, 주로 일방향응고법이나 단결정성장법에 의해 제조되고 있다. 그러나 일방향응고법 또는 단결정성장법 등 주조법에 의한 열전소자는 우수한 열전성능에도 불구하고 단위정이 능면체로써 Te-Te 결합이 원자결합 중에서 결합력이 가장 약한 Van der waals 결합으로 이루어져 있기 때문에 그 기저면이 벽개면으로 가공 및 모듈의 제조시 회수율감소에 의한 제조단가의 상승으로 인하여 고비용이 드는 단점을 갖고 있다. 아울러 이러한 성질은 Bi2Te3계 열전재료에 있어서 기계적, 전기적 특성에 강한 이방성을 갖게 하여 전기전도도의 경우 a축과 c축간의 값 차이가 약 3배까 지 나타나게 된다. 또한 이방성에 기인하여 에너지 변환효율을 향상시키기 위해서는 a축 방향에서 사용해야 하지만 단결정의 경우 재료가 벽개면을 따라 쉽게 쪼개지기 때문에 가공상의 난점이 있으며, 재료의 적지 않는 손실이 수반된다.In general, Bi-Te-based thermoelectric materials are used as a means for solving the heat dissipation problems of high-integration devices and various sensors due to their excellent thermoelectric performance in the vicinity of room temperature, and are mainly manufactured by unidirectional solidification or single crystal growth. However, the thermoelectric element by casting method such as unidirectional solidification method or single crystal growth method is a unit crystal rhombohedron despite its excellent thermoelectric performance.Te-Te bond is composed of Van der waals bond with the weakest bonding force among atomic bonds. Due to the increase in manufacturing cost due to the reduced recovery rate during processing and manufacturing of the module has a disadvantage of high cost. In addition, this property has a strong anisotropy in the mechanical and electrical properties of Bi 2 Te 3 system thermoelectric material, and the electrical conductivity is about three times the difference between the a-axis and c-axis. In addition, due to the anisotropy, in order to improve the energy conversion efficiency, it should be used in the a-axis direction, but in the case of single crystal, since the material is easily broken along the cleaved surface, there is a difficulty in processing, and there is a considerable loss of material.

상기와 같은 단결정의 문제점을 극복하기 위하여 기계적 강도가 우수하며, 성능 및 제조단가면에서 유리할 것으로 기대되는 분말야금공정에 대한 연구가 활발히 진행되고 있으나, 통상적인 장시간의 소결방법으로는 조직의 치밀화, 결정립의 크기 및 결정학적 이방성 등의 조직제어와 이에 따른 열전성의 제어가 곤란한 문제점이 발생되었다.In order to overcome the problems of the single crystal as described above, the research on powder metallurgy, which has excellent mechanical strength and is expected to be advantageous in terms of performance and manufacturing cost, is being actively conducted. Tissue control such as grain size and crystallographic anisotropy, and thus thermoelectric control, are difficult.

본 발명은 상기와 같은 문제점을 고려하여 이루어진 것으로, 본 발명의 목적은 조대분말과 미세분말을 소정의 혼합비로 혼합한 뒤, 수분내의 짧은 시간에 소결이 가능한 방전플라즈마 소결공정을 통해 소결하여 결정학적 배향성을 향상시키고, 조직의 치밀화 및 제어를 용이하게 함으로써 기계적 강도가 우수하고, 성능 및 제조단가 면에서 유리한 Bi-Te계 p형 열전재료의 제조방법을 제공함에 있다.The present invention has been made in consideration of the above problems, and an object of the present invention is to crystallize by mixing coarse powder and fine powder in a predetermined mixing ratio, and then sintering through a discharge plasma sintering process capable of sintering in a short time in water. The present invention provides a method for producing a Bi-Te-based p-type thermoelectric material which is excellent in mechanical strength and advantageous in terms of performance and manufacturing cost by improving orientation and facilitating densification and control of tissues.

상기한 바와 같은 목적을 달성하고 종래의 결점을 제거하기 위한 과제를 수행하는 본 발명의 Bi-Te계 p형 열전재료의 제조방법은 Bi, Sb, Te의 원소를 p형 조성에 맞도록 칭량하여 석영관에 장입한 후 진공봉입하는 진공봉입단계(S1);Bi-Te-based p-type thermoelectric material production method of the present invention to achieve the object as described above and to perform the problem to eliminate the conventional defects by weighing the elements of Bi, Sb, Te to match the p-type composition A vacuum sealing step (S1) of charging the vacuum tube and then charging the vacuum tube;

상기 봉입단계(S1)를 거쳐 봉입된 석영관을 교반로에 투입하여 교반한 후, 노냉하여 잉고트를 제조하는 잉고트 제조단계(S2);An ingot manufacturing step (S2) of adding a quartz tube encapsulated through the encapsulation step (S1) into a stirring furnace and stirring the furnace to produce an ingot;

상기 잉고트 제조단계(S2)를 단계를 거쳐 제조된 잉고트를 파쇄하는 파쇄단계(S3);A shredding step (S3) of shredding the ingot manufactured through the step of manufacturing the ingot (S2);

상기 파쇄단계(S3)를 거쳐 파쇄된 분말을 분쇄하는 분쇄단계(S4);Grinding step (S4) for grinding the crushed powder through the crushing step (S3);

상기 분쇄단계를 거쳐 분쇄된 분말을 입경 200~300㎛의 조대분말과, 입경 20~45㎛ 이하의 미세분말로 분리하는 분급단계(S5);A classification step (S5) of separating the powder ground through the grinding step into a coarse powder having a particle diameter of 200 to 300 µm and a fine powder having a particle diameter of 20 to 45 µm or less;

상기 분급단계(S5)를 거쳐 분급된 분말을 파이렉스 튜브에 장입하고, 수소를 채워 봉입한 다음, 소정의 온도로 가열 및 유지하여 분말의 수소를 환원시키는 수소환원단계(S6);A hydrogen reduction step (S6) of charging the powder classified through the classification step (S5) into a Pyrex tube, filling and encapsulating hydrogen, and then heating and maintaining at a predetermined temperature to reduce hydrogen of the powder;

상기 수소환원단계(S6)를 거친 조대분말과 미세분말을 혼합하여 앰플에 장입하고, 진공봉입한 후, 3차원 혼합기를 이용하여 혼합하는 혼합단계(S7);Mixing the coarse powder and the fine powder, which have undergone the hydrogen reduction step (S6), charged to an ampoule, vacuum-sealed, and then mixing using a three-dimensional mixer (S7);

상기 혼합단계(S7)를 거쳐 혼합된 분말을 방전플라즈마 소결장비를 이용해 소결하는 소결단계(S8);로 이루어진다.It consists of a sintering step (S8) for sintering the powder mixed through the mixing step (S7) using the discharge plasma sintering equipment.

상기 진공봉입단계(S1)는 잉고트를 제조하기 위한 준비단계로써, 순도 99.999%의 Bi, Sb, Te 등의 원소를 열전재료의 p형 조성에 맞도록 칭량하여 석영관에 장입한 후, 용해시 성분원소의 산화 억제를 위해 10-4 torr 이하로 진공봉입하게 된다. 한편, 상기 p형 조성으로는 특정한 조성비에 구애받지 아니하며 Bi-Te계 열전재료의 모든 조성이 그 대상으로 될 수 있으나, 바람직하게는 Bi0.5Sb1.5Te3로 이루 어진다.The vacuum encapsulation step (S1) is a preparatory step for manufacturing an ingot, and weighs elements such as Bi, Sb, Te with a purity of 99.999% to fit the p-type composition of the thermoelectric material, loads them into a quartz tube, and then dissolves them. In order to suppress the oxidation of the components, vacuum sealing is carried out at 10 -4 torr or less. On the other hand, the p-type composition is not limited to a specific composition ratio and all the composition of the Bi-Te-based thermoelectric material may be the object, but preferably made of Bi 0.5 Sb 1.5 Te 3 .

상기 잉고트 제조단계(S2)는 준비된 재료를 이용하여 잉고트를 제조하는 단계로써, 상기 원소들이 장입되어 봉입된 석영관을 교반로에 투입하여 잉코트를 제조하게 된다. 이러한 잉고트 제조단계(S2)는 700~750℃에서 10회/분의 속도로 2시간 동안 교반한 후, 노냉하는 것으로 진행된다. Bi0 .5Sb1 .5Te3의 용융온도는 609℃이며 이의 제조온도는 일반적으로 용융온도 범위보다 100~150℃ 높은 온도에서 이루어진다. 그 보다 높은 온도에서는 성분원소의 휘발이 증가되는 문제점이 발생되며, 용융 시간은 길수록 유리하나 대략 2시간정도면 충분한 것으로 나타났다.The ingot manufacturing step (S2) is a step of manufacturing an ingot using a prepared material, and the ingot is manufactured by injecting a quartz tube filled with the elements into a stirring furnace. This ingot manufacturing step (S2) is stirred for 2 hours at a rate of 10 times / min at 700 ~ 750 ℃, then proceeds to the furnace cooling. Bi 0 .5 Sb 1 .5 melting temperature is 609 ℃ and the preparation temperature Te 3 is generally made at 100 ~ 150 ℃ a temperature above the melting temperature range. At higher temperatures, the volatilization of the element is increased, and the longer the melting time is, the more favorable it is.

상기 파쇄단계(S3)는 고형화된 잉고트를 파쇄하는 단계로써, 분말의 산화를 최대한 방지하기 위해하여 질소(불활성) 분위기하의 그로브박스내에서 알루미나 유발을 이용하여 파쇄가 이루어지게 된다.The crushing step (S3) is a step of crushing the solidified ingots, the crushing is made by using alumina induction in the grove box in a nitrogen (inert) atmosphere to prevent the oxidation of the powder to the maximum.

상기 분쇄단계(S4)는 파쇄된 잉고트를 아르곤 분위기에서 볼밀을 이용하여 분쇄하게 되며, 이때 분쇄되는 분말이 300㎛ 이하의 입경을 갖도록 분쇄하게 된다.The grinding step (S4) is to crush the crushed ingot using a ball mill in an argon atmosphere, wherein the powder to be pulverized to have a particle size of 300㎛ or less.

상기 분급단계(S5)는 분쇄된 분말을 조대분말과 미세분말로 분리하는 단계로써, 입경 200~300㎛의 조대분말과, 입경 20~45㎛의 미세분말로 분급하게 된다. 이때 조대분말은 결정학적 배향성을 증가시키기 위한 것으로, 분말의 형태가 얇은 판상형태를 유지한 채로 200~300㎛의 입경을 갖는 분말들로 이루어지는 것이 바람직하며, 미세분말은 조직의 치밀화와 밀도향상 및 기계적강도의 증가를 위한 것으로 45㎛ 이하의 것이 바람직하나, 입경이 너무 미세하면 산화영향에 의해 열전소자의 성능이 저하되므로 20~45㎛의 입경을 갖는 분말들로 이루어지게 된다.The classification step (S5) is a step of separating the pulverized powder into coarse powder and fine powder, it is classified into a coarse powder having a particle diameter of 200 ~ 300㎛, and a fine powder having a particle diameter of 20 ~ 45㎛. At this time, the coarse powder is to increase the crystallographic orientation, it is preferable that the powder is made of powder having a particle size of 200 ~ 300㎛ while maintaining a thin plate-like form, the fine powder is densified and improved density of the tissue and The increase in the mechanical strength is preferably 45㎛ or less, but if the particle diameter is too fine, since the performance of the thermoelectric element is degraded by the oxidation effect is made of powder having a particle diameter of 20 ~ 45㎛.

상기 수소환원단계(S6)는 분급된 분말을 파이렉스 튜브(pyrex tube)에 장입하고, 99.999% 이상의 수소를 300~500torr 정도로 채워 봉입한 후, 340~380℃에서 10~15시간동안 진행함으로써 분말내의 수소를 환원시키게 된다. 여기서 수소량이 부족하면 충분한 환원 반응이 이루어질 수 없고, 수소량이 과다하면 고온에서 팽창하여 폭발할 위험이 있다. 또한 340℃ 미만의 온도에서는 반응에 필요한 활성화 에너지가 작아 매우 장시간의 수소환원이 요구되고, 380℃를 초과하면 수소환원 중 성분원소의 휘발 위험이 있다. 수소환원 공정 시간은 온도에 의존하며, 340~380℃의 온도 영역에서는 10~15 시간이 바람직하다.The hydrogen reduction step (S6) is charged to the classified powder in a pyrex tube, filled with more than 99.999% of hydrogen 300 ~ 500torr and sealed, and proceeds for 10 to 15 hours at 340 ~ 380 ℃ within the powder Hydrogen is reduced. In this case, if the amount of hydrogen is insufficient, a sufficient reduction reaction cannot be made, and if the amount of hydrogen is excessive, there is a risk of expansion and explosion at high temperatures. In addition, at temperatures below 340 ° C., the activation energy required for the reaction is small and hydrogen reduction is required for a very long time. If the temperature exceeds 380 ° C., there is a risk of volatilization of components in hydrogen reduction. The hydrogen reduction process time depends on temperature, and 10-15 hours are preferable in the temperature range of 340-380 degreeC.

상기 혼합단계(S7)는 분급된 조대분말과 미세분말을 소정의 비율로 혼합하여 앰플에 장입하고, 10-4 torr 이하로 진공봉입한 후 3차원 혼합기를 이용하여 90 rpm에서 2~3시간동안 혼합시키게 된다. 여기서 조대분말의 혼합비율이 증가하면 배향성 증가에 의해 전기적 특성이 좋아지는 반면 재료내부에 결함이 증가하여 열전도 특성이 나빠지게 된다. 한편 미세분말의 혼합비율이 과도하게 증가하면 배향성 감소 및 산화 증가에 의해 전기적 특성이 급격히 감소하므로 60~80wt.%의 조대분말과 20~40wt.%의 미세분말이 혼합됨이 바람직하다. 또한 혼합시간이 짧으면 분말의 혼합이 균일하지 못하며, 혼합시간이 너무 길면 분말들 간의 마찰 및 충돌에 의해 분말이 분쇄되어 입도가 감소되므로 2~3시간이 바람직하며, 혼합속도는 용량에 의존하므로 조건에 따라 달라질 수 있다.The mixing step (S7) is to mix the coarse powder and the fine powder in a predetermined ratio to charge in an ampoule, and vacuum-packed to 10 -4 torr or less, and then using a three-dimensional mixer for 2 to 3 hours at 90 rpm It is mixed. In this case, when the mixing ratio of the coarse powder is increased, the electrical properties are improved by the increase of the orientation, while the defects increase in the material, resulting in poor thermal conductivity. On the other hand, if the mixing ratio of the fine powder is excessively increased, the electrical properties are drastically reduced due to the decrease in the orientation and the increase of oxidation, so that the coarse powder of 60 to 80 wt.% And the fine powder of 20 to 40 wt.% Are preferably mixed. In addition, if the mixing time is short, the mixing of the powder is not uniform. If the mixing time is too long, the powder is pulverized due to friction and collision between the powders, so the particle size is reduced. It may vary.

상기 소결단계(S8)는 10-3 torr 이하의 진공중에서 340~420℃의 온도 및 20~40MPa의 압력으로 방전플라스마 소결공정을 진행함으로써 열전재료를 제조하게 된다. 소결압력은 높을수록 유리하지만, 본 실시 예에서는 소결몰드로써 카본몰드를 사용하였으며 카본몰드의 최대압축강도는 40MPa이기 때문에 40MPa로 제한하였다. 소결몰드를 압축강도가 높은 steel 금형 또는 텅스텐 금형 등으로 교체하면 이들 금형의 최대압축강도까지 가압할 수도 있게 된다.The sintering step (S8) is to produce a thermoelectric material by performing a discharge plasma sintering process at a temperature of 340 ~ 420 ℃ and a pressure of 20 ~ 40MPa in a vacuum of 10 -3 torr or less. Higher sintering pressure is advantageous, but in this embodiment, carbon mold was used as the sintering mold, and the maximum compressive strength of the carbon mold was 40 MPa, so it was limited to 40 MPa. If the sintered mold is replaced with a steel mold or tungsten mold with high compressive strength, it may be possible to pressurize to the maximum compressive strength of these molds.

실시예Example

순도 99.999%의 Bi, Sb, Te를 Bi0.5Te1.5Se3 + 3wt.% Te의 조성을 갖도록 하여 p형 열전재료의 기본 재료를 구성한다. 상기 기본 재료를 석영관에 장입한 후, 2×10-5 torr 로 진공봉입한다. 상기 석영관을 교반로에 투입하여 750℃에서 10회/분의 속도로 2시간 동안 교반한 후, 노냉함으로써 잉고트를 제조한다. 이처럼 제조된 잉고트를 질소분위기하의 그로브박스내에서 알루미나 유발을 이용하여 파쇄한다. 파쇄된 잉고트를 아르곤 분위기에서 볼밀을 이용하여 10시간 동안 분쇄한다. 분쇄된 분말을 입경 200~300㎛의 조대분말과, 입경 20~45㎛의 미세분말로 분급한다. 분급된 분말을 파이렉스 튜브(pyrex tube)에 장입하고, 99.999%의 수소를 380 torr로 채워 봉입한 후, 380℃에서 10시간동안 진행함으로써 분말내의 수소를 환원시킨다. 분급된 조대분말에 미세분말을 10%씩 증가시켜 앰프에 장입하고, 2×10-5 torr로 진공봉입한 후 3차원 혼합기를 이용하여 90 rpm에서 3시간동안 혼합시킨다. 혼합된 분말을 1×10-3 torr의 진공중에서 380℃의 온도 및 40MPa의 압력으로 방전플라스마 소결공정을 진행함으로써 Φ20×8 ㎣의 Bi-Te계 p형 열전재료를 제조한다.Bi, Sb, Te having a purity of 99.999% has a composition of Bi 0.5 Te 1.5 Se 3 + 3wt.% Te to constitute a base material of the p-type thermoelectric material. The base material was charged into a quartz tube and then vacuum sealed at 2 × 10 −5 torr. The quartz tube was put in a stirring furnace, stirred at a rate of 10 times / minute at 750 ° C. for 2 hours, and then cooled to prepare an ingot. The ingot prepared as described above is crushed using alumina induction in a grove box under a nitrogen atmosphere. The crushed ingots are ground for 10 hours using a ball mill in an argon atmosphere. The pulverized powder is classified into a coarse powder having a particle diameter of 200 to 300 µm and a fine powder having a particle diameter of 20 to 45 µm. The classified powder is charged into a pyrex tube, filled with 380 torr of 99.999% hydrogen, and then charged at 380 ° C. for 10 hours to reduce the hydrogen in the powder. The fine powder is added to the coarse powder in 10% increments, charged in an amplifier, vacuum-sealed at 2 × 10 -5 torr, and mixed at 90 rpm for 3 hours using a three-dimensional mixer. The mixed powder was subjected to a discharge plasma sintering process at a temperature of 380 ° C. and a pressure of 40 MPa in a vacuum of 1 × 10 −3 torr to produce a Φ20 × 8 kPa Bi-Te p-type thermoelectric material.

도 1 은 미세분말의 혼합비에 따른 상대밀도의 변화를 나타낸 것으로, 도 1을 참조하면, 20wt.%의 미세분말이 혼합된 경우 97% 이상의 상대밀도를 보였으며, 이러한 결과는 조대분말들의 사이에 발생하는 간극들에 미세분말이 채워지게 됨으로써 소결성이 향상되었기 때문이다.Figure 1 shows the change in relative density according to the mixing ratio of the fine powder, referring to Figure 1, when 20wt.% Of the fine powder is mixed showed a relative density of more than 97%, these results are found between the coarse powder This is because the sinterability is improved by filling the gaps with fine powder.

도 2는 p형 열전재료의 (0 0 6)면의 극점도(pole figure)를 나타내고 있다. 조대분말로만 소결한 (a)와 미세분말이 20wt.% 혼합된 (b)는 미세분말로만 소결한 (c)에 비해 높은 배향성을 나타내었다.FIG. 2 shows a pole figure of the (0 0 6) plane of the p-type thermoelectric material. (A) sintered only with coarse powder and (b) with 20wt.% Of fine powder showed higher orientation than (c) sintered only with fine powder.

도 3은 미세분말의 혼합비에 따른 굽힙강도의 변화를 나타낸 것으로, 굽힘강도는 미세분말의 혼합비가 증가함에 따라 거의 직선적으로 증가하는 경향을 나타내었으며 미세분말로만 소결한 소결체에서 76.5MPa의 최대값을 나타내었다. 미세분말이 20wt.% 혼합된 경우에도 굽힘강도는 54.1MPa을 나타내어 주조재에 비하여 3배 이상의 향상을 보였다. 여기서 상기 주조재는 약 18MPa의 굽힘강도를 보인다.Figure 3 shows the change in bending strength according to the mixing ratio of the fine powder, the bending strength showed a tendency to increase almost linearly with increasing the mixing ratio of the fine powder and the maximum value of 76.5MPa in the sintered body sintered only with fine powder Indicated. Even when the fine powder was mixed 20wt.%, The bending strength was 54.1MPa, which was more than 3 times improvement compared to the cast material. The cast material here exhibits a bending strength of about 18 MPa.

도 4는 미세분말의 혼합비에 따른 열전능의 변화를 나타낸 것으로, 열전능은 미세분말의 혼합비에 따른 큰 변화를 확인할 수 없었으며, 홀계수의 측정을 통하여 환산한 캐리어농도의 변화에서도 큰 변화가 없는 것을 확인할 수 있다(도 5 참조).Figure 4 shows the change in the thermal power according to the mixing ratio of the fine powder, the thermal power was not able to confirm a large change according to the mixing ratio of the fine powder, a large change in the change in the carrier concentration converted through the measurement of the hole coefficient It can be confirmed that there is no (see Fig. 5).

도 6은 미세분말의 혼합비에 따른 전기비저항의 변화를 나타낸 것으로, 전기 비저항의 변화는 20wt.%의 미세분말이 혼합될 때가지 감소한 후 이후 다시 증가하는 경향을 보였다. 이는 미세분말이 추가됨에 따라 초기에는 소결성 향상 등으로 인하여 캐리어 이동도를 향상시키나 미세분말이 계속 증가함에 따라 분말의 입계 증가 및 결정학적 배향성의 감소로 인하여 캐리어 이동도가 감소하기 때문이며, 변화는 도 5에서 확인할 수 있다.Figure 6 shows the change in the electrical resistivity according to the mixing ratio of the fine powder, the change in the electrical resistivity tended to increase again after decreasing until 20wt.% Of the fine powder is mixed. This is because, as the fine powder is added, the carrier mobility is initially improved due to the improvement of the sinterability, but as the fine powder continues to increase, the carrier mobility decreases due to the increase of grain boundary and the decrease of crystallographic orientation. See 5.

도 7은 미세분말의 혼합비에 따른 열전도도의 변화를 나타낸 것으로, 미세분말의 혼합비가 증가함에 따라 미소하게 증가하였다. 열전도도는 캐리어에 의한 기여분과 격자진동에 의한 기여분의 합으로 나타내어지며, 캐리어에 의한 기여분은 Wiedemann-Franz 법칙에 의해 전기비저항에 반비례한다. 한편, 격자진동에 의한 기여분은 캐리어농도에 상관없이 일정하므로 전체 열전도도는 캐리어에 의한 기여분에 의존한다. 따라서 열전도도는 전기비저항에 반비례하는 경향을 나타내었고 이는 도 5의 캐리어농도 및 이동도의 변화 양상으로 알 수 있다.Figure 7 shows the change in thermal conductivity according to the mixing ratio of the fine powder, slightly increased as the mixing ratio of the fine powder. Thermal conductivity is expressed as the sum of the contributions by the carrier and the lattice vibration, and the contributions by the carrier are inversely proportional to the electrical resistivity by the Wiedemann-Franz law. On the other hand, since the contribution by lattice vibration is constant regardless of the carrier concentration, the overall thermal conductivity depends on the contribution by the carrier. Therefore, the thermal conductivity was inversely proportional to the electrical resistivity, which can be seen as a change in carrier concentration and mobility of FIG. 5.

도 8은 미세분말의 혼합비에 따른 성능지수의 변화를 나타낸 것으로, 20wt.%의 미세분말이 혼합된 경우, 2.90×10-3/K로서 최대의 성능지수를 보였고, 이는 조대분말에 의한 배향성 증가 및 미세분말에 의한 소결성 향상이 캐리어 이동도를 증가시켰기 때문이다.8 shows the change in the performance index according to the mixing ratio of the fine powder, when 20wt.% Of the fine powder is mixed, showed the maximum performance index as 2.90 × 10 -3 / K, which increases the orientation by the coarse powder And the sinterability improvement by the fine powder increased the carrier mobility.

본 발명은 상술한 특정의 바람직한 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.

본 발명은 상술한 바와 같이 결정학적 배향성이 큰 조대분말과 상대적으로 배향성이 적은 미세분말을 소정의 혼합비로 혼합한 뒤 수분내의 짧은 시간에 소결이 가능한 방전플라즈마 소결공정을 이용하여 소결함으로써 열전재료를 제조하도록 구성되어 열전재료 조직의 치밀화와 결정립의 크기 및 열전성능의 제어가 용이하게 되었다. 더욱이 열전재료의 우수한 기계적 강도의 구현이 가능해지며, 성능 및 제조단가면에서도 더욱 유리하게 되었다.The present invention mixes coarse powder with high crystallographic orientation and fine powder with relatively low orientation at a predetermined mixing ratio as described above, and then sinters using a discharge plasma sintering process capable of sintering in a short period of time. It is configured to make it easier to densify the thermoelectric material structure and control the grain size and thermoelectric performance. In addition, it is possible to realize the excellent mechanical strength of the thermoelectric material, it is more advantageous in terms of performance and manufacturing cost.

Claims (7)

Bi, Sb, Te의 원소를 p형 조성에 맞도록 칭량하여 석영관에 장입한 후 진공봉입하는 진공봉입단계(S1);A vacuum sealing step (S1) in which elements of Bi, Sb, and Te are weighed to fit the p-type composition, charged into a quartz tube, and then vacuum-sealed; 상기 봉입단계(S1)를 거쳐 봉입된 석영관을 교반로에 투입하여 교반한 후, 노냉하여 잉고트를 제조하는 잉고트 제조단계(S2);An ingot manufacturing step (S2) of adding a quartz tube encapsulated through the encapsulation step (S1) into a stirring furnace and stirring the furnace to produce an ingot; 상기 잉고트 제조단계(S2)를 단계를 거쳐 제조된 잉고트를 파쇄하는 파쇄단계(S3);A shredding step (S3) of shredding the ingot manufactured through the step of manufacturing the ingot (S2); 상기 파쇄단계(S3)를 거쳐 파쇄된 분말을 분쇄하는 분쇄단계(S4);Grinding step (S4) for grinding the crushed powder through the crushing step (S3); 상기 분쇄단계를 거쳐 분쇄된 분말을 입경 200~300㎛의 조대분말과, 입경 20~45㎛의 미세분말로 분리하는 분급단계(S5);A classification step (S5) of separating the powder ground through the grinding step into a coarse powder having a particle diameter of 200 to 300 µm and a fine powder having a particle diameter of 20 to 45 µm; 상기 분급단계(S5)를 거쳐 분급된 분말을 파이렉스 튜브에 장입하고, 수소를 채워 봉입한 다음, 소정의 온도로 가열 및 유지하여 분말의 수소를 환원시키는 수소환원단계(S6);A hydrogen reduction step (S6) of charging the powder classified through the classification step (S5) into a Pyrex tube, filling and encapsulating hydrogen, and then heating and maintaining at a predetermined temperature to reduce hydrogen of the powder; 상기 수소환원단계(S6)를 거친 조대분말과 미세분말을 혼합하여 앰플에 장입하고, 진공봉입한 후, 3차원 혼합기를 이용하여 혼합하는 혼합단계(S7);Mixing the coarse powder and the fine powder, which have undergone the hydrogen reduction step (S6), charged to an ampoule, vacuum-sealed, and then mixing using a three-dimensional mixer (S7); 상기 혼합단계(S7)를 거쳐 혼합된 분말을 방전플라즈마 소결장비를 이용해 소결하는 소결단계(S8);로 이루어진 것을 특징으로 하는 Bi-Te계 p형 열전재료의 제조방법.Sintering step (S8) of sintering the powder mixed through the mixing step (S7) using the discharge plasma sintering equipment (S8); manufacturing method of Bi-Te-based p-type thermoelectric material, characterized in that consisting of. 제 1 항에 있어서,The method of claim 1, 상기 혼합단계(S7)는, 60~80wt.%의 조대분말과 20~40wt.%의 미세분말을 혼합하는 것을 특징으로 하는 Bi-Te계 p형 열전재료의 제조방법.The mixing step (S7), Bi-Te-based p-type thermoelectric material manufacturing method characterized in that the coarse powder of 60 ~ 80wt.% And fine powder of 20 ~ 40wt.%. 제 1 항에 있어서,The method of claim 1, 상기 파쇄단계(S3)는, 질소분위기하의 그로브박스내에서 알루미나 유발을 이용하여 파쇄하는 것을 특징으로 하는 Bi-Te계 p형 열전재료의 제조방법.The crushing step (S3), Bi-Te-based p-type thermoelectric material, characterized in that the crushing using alumina induced in the glove box under a nitrogen atmosphere. 제 1 항에 있어서,The method of claim 1, 상기 분쇄단계(S4)는, 아르곤 분위기하에서 볼밀을 이용하여 분쇄하는 것을 특징으로 하는 Bi-Te계 p형 열전재료의 제조방법.The grinding step (S4), Bi-Te-based p-type thermoelectric material, characterized in that the grinding using a ball mill in an argon atmosphere. 제 1 항에 있어서,The method of claim 1, 상기 소결단계(S8)는, 10-3 torr 이하의 진공중에서, 340~420℃의 온도 및 20~40MPa의 압력으로 진행하는 것을 특징으로 하는 Bi-Te계 p형 열전재료의 제조방 법.The sintering step (S8), Bi-Te-based p-type thermoelectric material, characterized in that proceeds at a temperature of 340 ~ 420 ℃ and a pressure of 20 ~ 40MPa in a vacuum of 10 -3 torr or less. 제 1 항에 있어서,The method of claim 1, 상기 잉고트 제조단계(S2)는, 700~750℃에서 10회/분의 속도로 2시간 동안 교반한 후, 노냉하는 것을 특징으로 하는 Bi-Te계 p형 열전재료의 제조방법.The ingot manufacturing step (S2), after stirring for 2 hours at a rate of 10 times / min at 700 ~ 750 ° C, Bi-Te-based p-type thermoelectric material manufacturing method characterized in that the furnace. 제 1 항에 있어서,The method of claim 1, 상기 수소환원단계(S6)는, 분급된 분말이 장입된 상기 파이렉스 튜브에 수소를 300~500 torr로 채워 봉입하고, 340~380℃에서 10~15시간동안 유지하는 것을 특징으로 하는 Bi-Te계 p형 열전재료의 제조방법.The hydrogen reduction step (S6), Bi-Te-based system characterized in that the Pyrex tube filled with the classified powder is filled with 300 ~ 500 torr of hydrogen, and maintained for 10 to 15 hours at 340 ~ 380 ℃ Method for producing p-type thermoelectric material.
KR1020050125919A 2005-12-20 2005-12-20 Method for manufacturing bi-te based thermoelectric materials KR100727391B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050125919A KR100727391B1 (en) 2005-12-20 2005-12-20 Method for manufacturing bi-te based thermoelectric materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050125919A KR100727391B1 (en) 2005-12-20 2005-12-20 Method for manufacturing bi-te based thermoelectric materials

Publications (1)

Publication Number Publication Date
KR100727391B1 true KR100727391B1 (en) 2007-06-12

Family

ID=38359127

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050125919A KR100727391B1 (en) 2005-12-20 2005-12-20 Method for manufacturing bi-te based thermoelectric materials

Country Status (1)

Country Link
KR (1) KR100727391B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993217B1 (en) 2008-06-01 2010-11-10 홍익대학교 산학협력단 Fabrication Methods of Antimony-Telluride Thermoelectric Thin Film Devices
KR101051010B1 (en) * 2008-11-12 2011-07-26 세종대학교산학협력단 Method of manufacturing p-type Bi-Sb-Te thermoelectric material
KR101189473B1 (en) 2010-11-02 2012-10-15 한국세라믹기술원 Manufacturing method of mayenite electride
KR101198304B1 (en) 2010-10-19 2012-11-07 한국전기연구원 fabrication method for Zn4Sb3 thermoelectric materials and thermoelectric materials thereby
KR101215562B1 (en) 2011-03-31 2012-12-26 한국전기연구원 GeTe thermoelectric material doped Sb and manufacturing method thereby
KR101300141B1 (en) * 2011-08-11 2013-08-26 재단법인대구경북과학기술원 Method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and the thermoelectric nanocompound thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020010768A (en) * 2000-07-31 2002-02-06 병 선 천 Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process
KR20020096491A (en) * 2001-06-20 2002-12-31 병 선 천 METHOD OF PRODUCING THERMOELECTIRCALLY TRANSFORMED MATERIALS Bi2Te3 SERIES USING RAPID COOLING AND HOT FORGING PROCESS

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020010768A (en) * 2000-07-31 2002-02-06 병 선 천 Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process
KR20020096491A (en) * 2001-06-20 2002-12-31 병 선 천 METHOD OF PRODUCING THERMOELECTIRCALLY TRANSFORMED MATERIALS Bi2Te3 SERIES USING RAPID COOLING AND HOT FORGING PROCESS

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100993217B1 (en) 2008-06-01 2010-11-10 홍익대학교 산학협력단 Fabrication Methods of Antimony-Telluride Thermoelectric Thin Film Devices
KR101051010B1 (en) * 2008-11-12 2011-07-26 세종대학교산학협력단 Method of manufacturing p-type Bi-Sb-Te thermoelectric material
KR101198304B1 (en) 2010-10-19 2012-11-07 한국전기연구원 fabrication method for Zn4Sb3 thermoelectric materials and thermoelectric materials thereby
KR101189473B1 (en) 2010-11-02 2012-10-15 한국세라믹기술원 Manufacturing method of mayenite electride
KR101215562B1 (en) 2011-03-31 2012-12-26 한국전기연구원 GeTe thermoelectric material doped Sb and manufacturing method thereby
KR101300141B1 (en) * 2011-08-11 2013-08-26 재단법인대구경북과학기술원 Method for synthesizing a BixSb2-xTe3 thermoelectric nanocompound and the thermoelectric nanocompound thereof

Similar Documents

Publication Publication Date Title
KR100786633B1 (en) METHOD FOR MANUFACTURING Bi-Te BASED THERMOELECTRIC MATERIALS
KR101365251B1 (en) Aluminum/magnesium/ silicon composite material and method for producing same, thermoelectric conversion member utilizing said composite material, thermoelectric conversion element, and thermoelectric conversion module
KR100924054B1 (en) Thermoelectric material and method for producing same
KR100727391B1 (en) Method for manufacturing bi-te based thermoelectric materials
KR102165812B1 (en) Method for preparing famatinite-based thermoelectric materials
JP2007042963A (en) Thermoelectric material and its manufacturing method
Chen et al. Thermoelectric properties of cold-pressed higher manganese silicides for waste heat recovery
Kim et al. Preparation of tetrahedrite Cu 12 Sb 4 S 13 by mechanical alloying and hot pressing
KR101051010B1 (en) Method of manufacturing p-type Bi-Sb-Te thermoelectric material
KR100795194B1 (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
JP2013219095A (en) Thermoelectric material and process of manufacturing the same
CN107123729A (en) A kind of nanometer silicon carbide/P-type silicon germanium alloy base thermoelectrical composite material and preparation method thereof
KR102579525B1 (en) Semiconductor sintered body, electrical/electronic components, and semiconductor sintered body manufacturing method
CN105525122B (en) The preparation method of the compound Mg Si Sn base thermoelectricity materials of nano SiC
CN102383023B (en) Preparation method for ferro-silico-manganese alloy thermoelectric material
CN111304492B (en) Low-temperature n-type thermoelectric material and preparation method thereof
JP5974821B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
JP6879435B2 (en) A thermoelectric conversion material, a thermoelectric conversion module using the thermoelectric conversion material, and a method for manufacturing the thermoelectric conversion material.
JP4123388B2 (en) Zinc antimony compound sintered compact
JP4467584B2 (en) Thermoelectric material manufacturing method
JPH11284237A (en) Manufacture of p-type thermoelectric conversion material
KR101322779B1 (en) Bismuth doped Magnesium Silicide composition for thermoelectric material and the manufacturing method of the same
JP4273692B2 (en) Method for producing thermoelectric conversion material
JP3704556B2 (en) Method for producing zinc antimony compound
JP3564541B2 (en) Sintered zinc antimony compound and method for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131021

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140605

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee