JPH01106478A - Manufacture of thermoelectric material - Google Patents

Manufacture of thermoelectric material

Info

Publication number
JPH01106478A
JPH01106478A JP62263390A JP26339087A JPH01106478A JP H01106478 A JPH01106478 A JP H01106478A JP 62263390 A JP62263390 A JP 62263390A JP 26339087 A JP26339087 A JP 26339087A JP H01106478 A JPH01106478 A JP H01106478A
Authority
JP
Japan
Prior art keywords
thermoelectric
metals
thermoelectric material
chemical compound
hot press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62263390A
Other languages
Japanese (ja)
Other versions
JP2847123B2 (en
Inventor
Akio Nakatsuka
中司 紀生
Junichi Machida
町田 順一
Kazuaki Takahashi
和明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17388827&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01106478(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP62263390A priority Critical patent/JP2847123B2/en
Publication of JPH01106478A publication Critical patent/JPH01106478A/en
Application granted granted Critical
Publication of JP2847123B2 publication Critical patent/JP2847123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To improve thermal electric performance index by putting three or four kinds of elements and additives out of bismuth, tellurium, selenium, and antimony into solution and by calcining alloy powder obtained by grinding it into a specific concentration ratio by hot press. CONSTITUTION:Prepare substance to obtain chemical compound Bi2Te3, Bi2Se3, Sb2Te3, and Sb2Se3 between metals of bismuth, tellurium selenium, and antimony. Then, the chemical compound among metals is put into solution while sealing into ampoule and performing steam pressure control. Then, after grinding the chemical compound among these metals, the required amount in accordance with the type of n-type and p-type semiconductors and specified additives are mixed. Then, it is put into solution again to obtain chemical compound among metals. The chemical compound among metals is calcined by hot press to obtain a calcining body whose concentration exceeds 97%. With the conditions of this hot press, it is desirable to set pressure to 180kg/cm<2> or more, temperature to 350-600 deg.C, and a time to 10 minutes or more. Under these conditions, the higher the pressure and temperature and the longer the time, the greater the concentration ration becomes.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ビスマス、テルル、セレン及びアンチモンか
ら選択される元素から成る熱電材料の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing a thermoelectric material comprising an element selected from bismuth, tellurium, selenium and antimony.

(従来技術とその問題点) ビスマス、テルル等の金属間化合物半導体である熱電材
料は、従来から熱電冷却や熱電発電の材料として広く使
用されているが、その製造にあたっては、結晶インゴッ
ト法、粉末焼結法及び膜状素子法等がある。
(Prior art and its problems) Thermoelectric materials, which are intermetallic compound semiconductors such as bismuth and tellurium, have been widely used as materials for thermoelectric cooling and thermoelectric power generation. There are sintering methods, film element methods, etc.

周知の通り熱電材料で得られる最適の効率は該材料の3
種の基本的特性により決定される。即ち該特性は熱電率
α(μV/K) 、比抵抗ρ(Ωcm)及び熱伝導率に
(W/cm−K)であり、任意の熱電材料の熱電性能指
数Z (1/K)は、これらの特性により下式の通り表
される。
As is well known, the optimum efficiency achieved with thermoelectric materials is
Determined by the basic characteristics of the species. That is, the characteristics are thermoelectric coefficient α (μV/K), specific resistance ρ (Ωcm), and thermal conductivity (W/cm-K), and the thermoelectric figure of merit Z (1/K) of any thermoelectric material is: These characteristics are expressed by the following formula.

Z;α2/ρに 一般に最適の熱電゛効率はその材料の熱電性能指数によ
って決まり、熱電性能指数が大きいほど熱電効率は大き
くなる。従って熱電材料は大きな熱電性能指数を有する
べきであり、該熱電性能指数は前記熱電材料を構成する
元素の種類や量及び該熱電材料の製造方法に左右される
Generally, the optimum thermoelectric efficiency for Z; α2/ρ is determined by the thermoelectric figure of merit of the material, and the larger the thermoelectric figure of merit, the greater the thermoelectric efficiency. Therefore, a thermoelectric material should have a large thermoelectric figure of merit, and the thermoelectric figure of merit depends on the type and amount of elements constituting the thermoelectric material and the method of manufacturing the thermoelectric material.

従来のビスマス−テルル系熱電材料の製造方法として、
結晶インゴット法、粉末焼結法及び膜状素子法等がある
が、いずれの方法を使用しても次に挙げるような欠点を
有している。
As a conventional method for manufacturing bismuth-tellurium thermoelectric materials,
There are crystal ingot methods, powder sintering methods, film element methods, etc., but any method used has the following drawbacks.

つまり結晶インゴット法ではノーマルフリージング法、
ゾーンメルティング法やチョコラルスキー法のいずれを
用いても熱的及び電気的物性が不均一であり、かつ大量
生産に適さないという欠点がある。
In other words, in the crystal ingot method, the normal freezing method,
Both the zone melting method and the Czochralski method have the drawbacks of non-uniform thermal and electrical properties and are not suitable for mass production.

膜状素子法では、得られる材料が膜状であるため、汎用
の熱電モジュールの作成に適さず、かつ熱電性能指数が
結晶インゴット法により得られるものより小さいという
欠点がある。
The membrane element method has the disadvantage that the obtained material is in the form of a membrane, so it is not suitable for producing general-purpose thermoelectric modules, and the thermoelectric figure of merit is smaller than that obtained by the crystal ingot method.

次に粉末焼結法のうち冷間法においては、熱電材料を製
造する場合特に最終製品である熱電材料を焼結する工程
では、該熱電材料を構成する元素の中にセレン又はテル
ルのような蒸気圧が高いものを含み、かつ加熱中の酸化
防止を必要とするため、焼結素材をアンプル封入して焼
結等の操作を行うようにしている(例えば特公昭43−
4082号参照)。しかしながらアンプル封入及びアン
プルからの取出作業は手間が掛かるとともに各作業ごと
にアンプル コスト高になるという欠点がある。
Next, in the cold method among powder sintering methods, when manufacturing thermoelectric materials, especially in the process of sintering the thermoelectric materials that are the final products, elements such as selenium or tellurium are added to the thermoelectric materials. Since the material contains materials with high vapor pressure and requires prevention of oxidation during heating, sintering materials are sealed in ampoules for sintering and other operations (for example,
4082). However, the ampule filling and removal operations are time-consuming and each operation increases the cost of the ampule.

つまり従来の熱電材料の製造方法においては、十分満足
すべき熱電性能指数を有する熱電材料を製造することが
できないか又は蒸気圧の高い元素の昇華を防止する必要
があるために作業性が低下するという欠点を回避するこ
とができないのが実情である。
In other words, with conventional methods for producing thermoelectric materials, it is not possible to produce thermoelectric materials with a sufficiently satisfactory thermoelectric figure of merit, or workability is reduced because it is necessary to prevent sublimation of elements with high vapor pressure. The reality is that this drawback cannot be avoided.

(発明の目的) 本発明は、上記した従来技術の欠点を解消し、比較的容
易に満足できる熱電性能指数を有する熱電材料を製造で
きる方法を提供することを目的とする。
(Objective of the Invention) An object of the present invention is to provide a method that eliminates the above-mentioned drawbacks of the prior art and can relatively easily produce a thermoelectric material having a satisfactory thermoelectric figure of merit.

(問題点を解決するための手段) 本発明は、ビスマス、テルル、セレン、アンチモンから
成る群から選択される3種又は4種の元素を主成分とし
、これらの元素に添加剤を添加して成る熱電材料の製造
方法において、前記元素及び添加剤を溶解し粉砕して得
られる合金粉末をホットプレスで密度比97%以上に焼
結することを特徴とする熱電材料の製造方法である。
(Means for Solving the Problems) The present invention has three or four elements selected from the group consisting of bismuth, tellurium, selenium, and antimony as main components, and additives are added to these elements. This method of manufacturing a thermoelectric material is characterized in that the alloy powder obtained by melting and pulverizing the above elements and additives is sintered with a hot press to a density ratio of 97% or more.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

焼結により得られる熱電材料において、密度比(圧粉体
の密度と圧粉体と同一組成の物質の真密度の比)と熱電
性能指数とは密接な関係にあり、優れた熱電材料を得る
ためには密度比を97%以上とすることが必要であり、
本発明ではホットプレス法を採用することにより、該密
度比値を得ることを特徴とする。
In thermoelectric materials obtained by sintering, there is a close relationship between the density ratio (the ratio of the density of the green compact to the true density of a substance with the same composition as the green compact) and the thermoelectric figure of merit, making it possible to obtain excellent thermoelectric materials. In order to achieve this, it is necessary to set the density ratio to 97% or more,
The present invention is characterized in that the density ratio value is obtained by employing a hot press method.

第1図は、本発明方法により得られる代表的な熱電材料
の熱電性能指数と密度比の関係を示すグラフであり、該
グラフから密度比を97%以上にすると、熱電性能指数
が良好になり、2X10−’以上の該指数が得られるこ
とが分かる。
FIG. 1 is a graph showing the relationship between the thermoelectric figure of merit and density ratio of a typical thermoelectric material obtained by the method of the present invention. From this graph, it can be seen that when the density ratio is 97% or more, the thermoelectric figure of merit becomes better. , 2X10-' or more can be obtained.

本発明方法に使用する熱電材料構成元素は、ビスマス、
テルル、セレン及びアンチモンのうちの3種又は4種の
元素であり、これらの元素に半導体がn型である場合に
は、添加剤としてハロゲンと金属の化合物例えば臭化銅
、ヨウ化アンチモン、ヨウ化砒素等をドープしたものが
、又半導体がp型である場合には、添加剤として例えば
銅、カドミウム、テルル及びセレン等を添加したものが
使用される。
The thermoelectric material constituent elements used in the method of the present invention are bismuth,
Three or four elements of tellurium, selenium, and antimony, and when these elements have n-type semiconductors, halogen and metal compounds such as copper bromide, antimony iodide, and iodine can be added as additives. Those doped with arsenic or the like, or when the semiconductor is p-type, those doped with additives such as copper, cadmium, tellurium, and selenium are used.

次に本発明の製造方法につき説明する。Next, the manufacturing method of the present invention will be explained.

まずホットプレスに使用する添加剤を添加した金属間化
合物の製造につき説明する。
First, the production of an intermetallic compound containing additives used in hot pressing will be explained.

ビスマス、テルル、セレン及びアンチモンの金属間化合
物BizTez、BizSe3、SbzTe3、Sbz
Se,、となるような化学量論通りに秤量する。その後
アンプル中に封入し蒸気圧制御を行いながら前記金属間
化合物を溶解する。次いでこれらの金属間化合物を粉砕
した後n型及びp型半導体の種類に応じた必要量と所定
の添加剤を調合する。次に再びアンプル中に封入し蒸気
圧制御を行いながら溶解し金属間化合物例えば(Biz
Te+) o、 so (Bi2Sez) (+、 2
11、(旧6. zssbo、 、s) gTe+、B
i2Se3−3bzSe3等を得る。
Intermetallic compounds of bismuth, tellurium, selenium and antimony BizTez, BizSe3, SbzTe3, Sbz
Weigh according to the stoichiometry such that Se, . Thereafter, it is sealed in an ampoule and the intermetallic compound is dissolved while controlling the vapor pressure. Next, after pulverizing these intermetallic compounds, necessary amounts and predetermined additives are prepared according to the types of n-type and p-type semiconductors. Next, it is sealed in the ampoule again and dissolved while controlling the vapor pressure to form an intermetallic compound such as (Biz
Te+) o, so (Bi2Sez) (+, 2
11, (formerly 6. zssbo, , s) gTe+, B
i2Se3-3bzSe3 etc. are obtained.

次いでこのようにして得られた金属間化合物を粉砕する
が、該粉砕は大気中で行っても良いが不活性ガス雰囲気
中で行うことが好ましい。粒径は好ましくは1mm以下
であり、更に好ましくは0. 6mm以下である。
The intermetallic compound thus obtained is then pulverized, and although the pulverization may be carried out in the air, it is preferably carried out in an inert gas atmosphere. The particle size is preferably 1 mm or less, more preferably 0. It is 6 mm or less.

上記した2回の溶解工程は、最終的に得られる金属間化
合物の組成比を確実に所定値にするために別個の工程と
して説明したが、当初がら最終的に得られる金属間化合
物の各元素比を詳細に規定することにより1回の溶解工
程とすることができる。
The two melting steps described above were explained as separate steps in order to ensure that the composition ratio of the intermetallic compound finally obtained was set to a predetermined value. By specifying the ratio in detail, one dissolution step can be performed.

続いて粉砕した金属間化合物をホットプレスにより焼結
して密度比97%以上の焼結体を得る。
Subsequently, the pulverized intermetallic compound is sintered by hot pressing to obtain a sintered body having a density ratio of 97% or more.

該ホットプレスの条件は、半導体の種類、使用・する元
素、所要の熱電性能指数の数値等によって異なるが、−
a的には圧力を180kg/cn(以上、温度を350
〜600℃、時間を10分以上とし、該条件下では圧力
及び温度を高くし、時間を長くするほど密度比の大きな
熱電材料を得ることができる。
The hot pressing conditions vary depending on the type of semiconductor, the elements used, the required thermoelectric figure of merit, etc., but -
In terms of a, the pressure is 180 kg/cn (or more, the temperature is 350 kg/cn)
~600° C. for 10 minutes or more. Under these conditions, the higher the pressure and temperature and the longer the time, the higher the density ratio of the thermoelectric material can be obtained.

但し圧力については使用する型の耐性による限界があり
、例えばカーボン製型を使用する場合には440kg/
−程度が限界になる。又温度ついては、加熱し過ぎると
溶解してしまうため、焼結すべき金属間化合物の融点を
超えてはならず、該融点の絶対温度に対し8割程度の絶
対温度まで加熱することが望ましい。
However, there is a limit to the pressure depending on the resistance of the mold used. For example, when using a carbon mold, the pressure is 440 kg/
-The degree is the limit. Regarding the temperature, since excessive heating will cause the intermetallic compound to melt, it should not exceed the melting point of the intermetallic compound to be sintered, and it is desirable to heat it to an absolute temperature of about 80% of the absolute temperature of the melting point.

又ホットプレスを行う雰囲気は大気中でも良いが非酸化
性雰囲気例えばアルゴン雰囲気であることが望ましく、
該雰囲気調整を行うことにより安定した品質を維持する
ことができる。該雰囲気調整を行わなくても熱電性能指
数を2X10−’以上とすることができ、該雰囲気調整
を行うことは本発明の必須要件ではないが、該雰囲気調
整を行うことにより熱電性能指数をより大きな値とする
ことが可能となる。
The atmosphere for hot pressing may be air, but it is preferable to use a non-oxidizing atmosphere, such as an argon atmosphere.
By adjusting the atmosphere, stable quality can be maintained. The thermoelectric figure of merit can be set to 2X10-' or more even without the atmosphere adjustment, and although it is not an essential requirement of the present invention to carry out the atmosphere adjustment, the thermoelectric figure of merit can be further improved by performing the atmosphere adjustment. It becomes possible to set it to a large value.

従来の冷間成形−焼結法では、焼結時に蒸気圧の高いセ
レン、テルル等の元素が昇華することを防ぐためにアン
プル封入等の飛散防止手段が必要であったが、ホットプ
レス法ではその必要がなくなる。この理由は必ずしも明
らかではないが、ホットプレス法では加熱と加圧を同時
に行うようにしているため、蒸気圧の高い元素が昇華し
ようとしてもホットプレス用の型から飛散することがで
きないためと考えられる。この時ホットプレス条件特に
圧力を制御することにより、得られる熱電材料の密度を
常に一定値以上にすることができる。
In the conventional cold forming-sintering method, scattering prevention measures such as enclosing ampules were required to prevent elements with high vapor pressure such as selenium and tellurium from sublimating during sintering, but the hot pressing method There will be no need. The reason for this is not necessarily clear, but it is thought that because heating and pressurization are performed at the same time in the hot press method, even if elements with high vapor pressure try to sublimate, they cannot scatter from the hot press mold. It will be done. At this time, by controlling the hot pressing conditions, particularly the pressure, the density of the thermoelectric material obtained can always be kept above a certain value.

このようにして製造された熱電材料は、97%以上の密
度比を有し、該熱電材料の性能を示す熱電性能指数が少
なくとも2X10−3以上となり、良好な熱電率を有し
ている。
The thermoelectric material thus manufactured has a density ratio of 97% or more, a thermoelectric figure of merit indicating the performance of the thermoelectric material is at least 2×10 −3 or more, and has a good thermoelectric coefficient.

(実施例) 以下に本発明方法の一実施例を記載するが、該実施例は
本発明を限定するものではない。
(Example) An example of the method of the present invention will be described below, but this example is not intended to limit the present invention.

大族斑 純度99.99%以上のビスマス、テルル、アンチモン
及びセレンの4元素と添加剤としてテルル及び臭化銅を
用意し、前記4元素中ビスマスとテルル、ビスマスとセ
レン、アンチモンとテルル、アンチモンとセレンを所定
の金属間化合物となるような化学量論通りに秤量し、ア
ルゴンガスを充填した石英アンプル中に100 tor
rの減圧上封入(p 型半4 体については、ビスマス
:テルル=2:3 (原子比)及びアンチモン:テルル
;2:3(原子比)としてそれぞれをアンプルに封入し
、n型半導体については、ビスマス:テルル−2:3(
原子比)、ビスマス:セレン=2:3(原子比)及びア
ンチモン:セレン=2:3(原子比)としてそれぞれを
アンプルに封入)した。
Four elements of the large group, bismuth, tellurium, antimony, and selenium, with a purity of 99.99% or more, and tellurium and copper bromide as additives are prepared. Selenium was weighed according to the stoichiometry to form a predetermined intermetallic compound, and placed in a quartz ampoule filled with argon gas at 100 torr.
(For p-type semiconductors, bismuth:tellurium = 2:3 (atomic ratio) and antimony:tellurium; 2:3 (atomic ratio) are sealed in ampules, and for n-type semiconductors, , bismuth:tellurium-2:3(
(atomic ratio), bismuth:selenium = 2:3 (atomic ratio), and antimony: selenium = 2:3 (atomic ratio), respectively, were sealed in ampoules).

封入した各アンプルを炉に入れ、750℃にて5時間保
持し、その後自然冷却して所定の金属間化合物(Biz
Te+、Bi2Se3、Sb2Te3.5bzSe、)
とした。
Each sealed ampoule was placed in a furnace, held at 750°C for 5 hours, and then naturally cooled to form a predetermined intermetallic compound (Biz
Te+, Bi2Se3, Sb2Te3.5bzSe,)
And so.

次いで該金属間化合物を大気中で粉砕し、p型及びn型
半導体用として表1の通りの組成になるよう秤量し更に
添加剤を加えた。
Next, the intermetallic compound was pulverized in the air, weighed so as to have the composition shown in Table 1 for use in p-type and n-type semiconductors, and additives were added.

表    1 上記各組成例の混合物を上記操作と同様にアンプルに封
入し750℃にて5時間保持して溶解し、その後自然冷
却した。
Table 1 The mixture of each of the above composition examples was sealed in an ampoule in the same manner as in the above operation, held at 750° C. for 5 hours to dissolve, and then naturally cooled.

該溶解物をアルゴンガス中又は大気中で粒径0.61以
下になるように粉砕し、該粉砕物を温度350〜450
℃で60分間440kg/−の圧力でホットプレスして
焼結し、熱電材料を得た。
The melt is pulverized in argon gas or air to a particle size of 0.61 or less, and the pulverized material is heated at a temperature of 350 to 450.
The thermoelectric material was obtained by hot pressing and sintering at a pressure of 440 kg/- for 60 minutes at °C.

実験例■ 密度比を変動させた場合の熱電性能指数Zへの影響を調
べるために次の条件下で実験を行い、表2に示す物性値
を有する熱電材料を得た。
Experimental Example ■ In order to examine the effect of varying the density ratio on the thermoelectric figure of merit Z, an experiment was conducted under the following conditions, and thermoelectric materials having the physical property values shown in Table 2 were obtained.

成分:組成例5 ホットプレス温度及び時間:350℃、60分圧カニ 
440kg/cffl ホットプレス雰囲気:アルゴンガス雰囲気粒径: 0.
 15〜0. 07mm 表    2 この結果を第1図に示す。第1図から密度比が高くなる
ほど熱電性能指数Zが大きくなり、密度比が97%以上
において熱電材料の性能を示す熱電性能指数の値が該熱
電材料の性能が極めて良好であることを示す2以上にな
ることが分かる。
Ingredients: Composition Example 5 Hot press temperature and time: 350°C, 60 partial pressure crab
440kg/cffl Hot press atmosphere: Argon gas atmosphere Particle size: 0.
15-0. 07mm Table 2 The results are shown in FIG. From Figure 1, the higher the density ratio, the larger the thermoelectric figure of merit Z becomes, and when the density ratio is 97% or higher, the value of the thermoelectric figure of merit, which indicates the performance of the thermoelectric material, indicates that the performance of the thermoelectric material is extremely good2. It turns out that the above is the case.

実験例■ 次に上記組成例1.4及び5の組成から成る熱電材料の
処理温度と粒径の各物性値に対する影客を調べ、表3、
表4及び表5の結果を得た。
Experimental Example■ Next, the influence of each physical property value of the processing temperature and particle size of the thermoelectric materials having the compositions of Composition Examples 1.4 and 5 above was investigated, and Table 3,
The results shown in Tables 4 and 5 were obtained.

表   3・(組成例1) (ホットプレス条件)アルゴン雰囲気中圧力440kg
/cdで60分ホットプレスを行った。
Table 3 (Composition Example 1) (Hot press conditions) Pressure 440 kg in argon atmosphere
/cd for 60 minutes.

表   4(組成例4) (以下余白) 表   5 (組成例5) これらの結果から、各実施例において熱電性能指数2X
10−’以上の熱電材料が得られたことが分かる。
Table 4 (Composition Example 4) (The following is a blank space) Table 5 (Composition Example 5) From these results, each example has a thermoelectric figure of merit of 2X.
It can be seen that a thermoelectric material of 10-' or more was obtained.

実験例■ 次の条件下で組成比を変化させた場合の熱電性能指数へ
の影響を調べ、表6の結果を得た。
Experimental Example ■ The influence on the thermoelectric performance index when changing the composition ratio was investigated under the following conditions, and the results shown in Table 6 were obtained.

ホットプレス温度及び時間:350℃、60分圧カニ 
440kg/cd ホットプレス雰囲気:アルゴンガス雰囲気粒径: 0.
 15〜0. 07mm 表   6 (実施例1) この結果から組成比を変動させても熱電性能指数が2X
10−”以上である熱電材料が得られたことが分かる。
Hot press temperature and time: 350℃, 60 partial pressure crab
440kg/cd Hot press atmosphere: Argon gas atmosphere Particle size: 0.
15-0. 07mm Table 6 (Example 1) From this result, even if the composition ratio is varied, the thermoelectric figure of merit is 2X.
It can be seen that a thermoelectric material with a temperature of 10-'' or more was obtained.

実験例■ 次の条件下で前記組成例1.4及び5の成分を、アルゴ
ン雰囲気中及び大気中においてホットプレス処理し、ア
ルゴン雰囲気調整を行った場合の熱電性能指数への影響
を調べ、表7の結果を得た。
Experimental Example ■ The components of Composition Examples 1.4 and 5 were hot-pressed in an argon atmosphere and in the air under the following conditions, and the effect on the thermoelectric performance index when the argon atmosphere was adjusted was investigated. 7 results were obtained.

ホットプレス温度及び時間;350℃、60分圧力? 
440kg/cd 粒径:o、is〜0.07IIII11表    7 この結果から、雰囲気をアルゴン雰囲気に調整すること
により、熱電性能指数が数%〜数数十上上昇たことが分
かる。
Hot press temperature and time: 350℃, 60 minutes pressure?
440 kg/cd Particle size: o, is ~ 0.07III11 Table 7 From these results, it can be seen that by adjusting the atmosphere to an argon atmosphere, the thermoelectric performance index increased by several percent to several tens of points.

なお、本実施例中の各物性値の測定は次の方法により行
った。
In addition, the measurement of each physical property value in this example was performed by the following method.

止延■ 四端子法によった。但し直流を通電し続けると熱電材料
自体に温度勾配が発生し熱起電力を生じて電位差に誤差
が生ずる。これを防止するため電流の方向を逐次反転さ
せて温度勾配の発生を回避しつつ電位差を測定した。
Delay ■ Using the four-terminal method. However, if direct current continues to be applied, a temperature gradient will occur in the thermoelectric material itself, generating a thermoelectromotive force and causing an error in the potential difference. To prevent this, the direction of the current was sequentially reversed to avoid temperature gradients while measuring the potential difference.

熱電率 熱電材料の両端に温度差を与え、これにより発生する熱
起電力を測定した。
A temperature difference was applied between both ends of the thermoelectric material, and the thermoelectromotive force generated thereby was measured.

熱伝導率 正確な熱伝導率が判っている物質を標準とし、該標準物
質と同形状に熱電材料を切り出し前記標準物質と熱電材
料を密着させた。次いで該標準物質と熱電材料に等密度
で一定量の熱流を流し、熱源と熱電材料、熱電材料と標
準物質、標準物質と吸熱部の界面の温度を測定し、これ
らの温度と標準物質の熱伝導率から熱電材料の熱伝導率
を測定した。
Thermal conductivity A substance with a known accurate thermal conductivity was used as a standard, and a thermoelectric material was cut out in the same shape as the standard substance, and the standard substance and thermoelectric material were brought into close contact with each other. Next, a constant amount of heat flow is passed through the standard material and the thermoelectric material at equal density, and the temperatures at the interfaces between the heat source and the thermoelectric material, the thermoelectric material and the standard material, and the standard material and the heat absorbing part are measured, and these temperatures and the heat of the standard material are measured. The thermal conductivity of the thermoelectric material was measured from the conductivity.

(発明の効果) 本発明は、ビスマス、テルル、セレン、アンチモンのう
ちの3種又は4種の元素を主成分とし、かつ添加剤を添
加して成る熱電材料を製造するに際して、前記元素及び
添加剤を溶解し粉砕して得られる合金粉末をホットプレ
スで密度比97%以上に焼結するようにしている。
(Effects of the Invention) The present invention provides a method for producing a thermoelectric material containing three or four elements of bismuth, tellurium, selenium, and antimony as main components and adding additives. The alloy powder obtained by melting and pulverizing the agent is sintered by hot pressing to a density ratio of 97% or more.

ホットプレス法による本発明方法は、第1に合金粉末の
焼結の加熱と加圧を同時に行うため、従来の冷間成形−
焼結法のように構成元素の蒸気の飛散つまり昇華を防止
するための手段を考慮する必要がなく、作業効率が向上
する。
The method of the present invention using the hot press method firstly performs heating and pressurization for sintering the alloy powder at the same time.
Unlike the sintering method, there is no need to consider means for preventing the vapors of the constituent elements from scattering, that is, sublimating, and work efficiency is improved.

第2に、ホットプレスの条件を適宜設定することにより
得られる熱電材料の性能に大きな影響を及ぼす熱電性能
指数を所定値以上とすることにより、常に一定した高性
能の熱電材料を得ることが可能になる。
Second, by setting the hot pressing conditions appropriately, the thermoelectric figure of merit, which has a large effect on the performance of the thermoelectric material obtained, is set to a predetermined value or higher, making it possible to always obtain a thermoelectric material with constant high performance. become.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法により製造した代表的な熱電材料
の熱電性能指数と密度比の関係を示すグラフである。 第  1   図 宝膚比
FIG. 1 is a graph showing the relationship between the thermoelectric figure of merit and density ratio of typical thermoelectric materials manufactured by the method of the present invention. Part 1 Hohada ratio

Claims (5)

【特許請求の範囲】[Claims] (1)ビスマス、テルル、セレン、アンチモンから成る
群から選択される3種又は4種の元素を主成分とし、こ
れらの元素に添加剤を添加して成る熱電材料の製造方法
において、前記元素及び添加剤を溶解し粉砕して得られ
る合金粉末をホットプレスで密度比97%以上に焼結す
ることを特徴とする熱電材料の製造方法。
(1) A method for producing a thermoelectric material comprising three or four elements selected from the group consisting of bismuth, tellurium, selenium, and antimony as main components, and adding additives to these elements. A method for producing a thermoelectric material, which comprises sintering an alloy powder obtained by melting and pulverizing additives to a density ratio of 97% or more using a hot press.
(2)熱電材料がn型半導体であり、添加剤が金属ハロ
ゲン化物である特許請求の範囲第1項に記載の方法。
(2) The method according to claim 1, wherein the thermoelectric material is an n-type semiconductor and the additive is a metal halide.
(3)熱電材料がp型半導体であり、添加剤が金属単体
である特許請求の範囲第1項に記載の方法。
(3) The method according to claim 1, wherein the thermoelectric material is a p-type semiconductor and the additive is an elemental metal.
(4)ホットプレスを、温度350〜600℃、圧力1
80kg/cm^2以上の条件で10分以上行うように
した特許請求の範囲第1項から第3項までのいずれかに
記載の方法。
(4) Hot press at a temperature of 350-600℃ and a pressure of 1
The method according to any one of claims 1 to 3, wherein the heating is carried out for 10 minutes or more under conditions of 80 kg/cm^2 or more.
(5)ホットプレスの際に、雰囲気を非酸化性雰囲気に
調整するようにした特許請求の範囲第1項から第4項ま
でのいずれかに記載の方法。
(5) The method according to any one of claims 1 to 4, wherein the atmosphere is adjusted to a non-oxidizing atmosphere during hot pressing.
JP62263390A 1987-10-19 1987-10-19 Manufacturing method of thermoelectric material Expired - Lifetime JP2847123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62263390A JP2847123B2 (en) 1987-10-19 1987-10-19 Manufacturing method of thermoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62263390A JP2847123B2 (en) 1987-10-19 1987-10-19 Manufacturing method of thermoelectric material

Publications (2)

Publication Number Publication Date
JPH01106478A true JPH01106478A (en) 1989-04-24
JP2847123B2 JP2847123B2 (en) 1999-01-13

Family

ID=17388827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62263390A Expired - Lifetime JP2847123B2 (en) 1987-10-19 1987-10-19 Manufacturing method of thermoelectric material

Country Status (1)

Country Link
JP (1) JP2847123B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02267239A (en) * 1989-04-06 1990-11-01 Komatsu Ltd Thermoelectric material for low temperature use and its manufacture
WO1990016086A1 (en) * 1989-06-14 1990-12-27 Kabushiki Kaisha Komatsu Seisakusho Thermoelectric semiconductor material and method of producing the same
JPH05335628A (en) * 1992-05-28 1993-12-17 Chubu Electric Power Co Inc Thermoelectric conversion element
JPH07263755A (en) * 1991-03-04 1995-10-13 Merukoa Japan Kk Electromagnetic circuit having conductive material junction element
WO1998011612A1 (en) * 1996-09-13 1998-03-19 Komatsu Ltd. Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
US5869892A (en) * 1990-09-18 1999-02-09 Melcor Japan Co., Ltd. Noise eliminating element and electrical circuit having the same
KR20010088621A (en) * 2001-08-13 2001-09-28 황우성 Method of producing ther moelectric transform materals by using the gas atomixation and the hot forming process
KR20020010768A (en) * 2000-07-31 2002-02-06 병 선 천 Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process
KR100382599B1 (en) * 2000-12-15 2003-05-09 한국전기연구원 Manufacturing method of thermoelectric nanopowder
JP4666841B2 (en) * 2001-08-22 2011-04-06 京セラ株式会社 Method for manufacturing thermoelectric material
US8035026B2 (en) 2003-08-26 2011-10-11 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and methods for manufacturing the same
US8241834B2 (en) * 2008-05-01 2012-08-14 Sony Corporation Optical recording medium and production method therefor, and sputtering target and production method therefor
CN111435698A (en) * 2019-01-14 2020-07-21 中国科学院宁波材料技术与工程研究所 Bismuth telluride-based thermoelectric material and preparation method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165487A (en) * 1984-09-07 1986-04-04 Tohoku Metal Ind Ltd Manufacture of thermoelectric conversion element
JPS62264682A (en) * 1986-05-12 1987-11-17 Komatsu Ltd Thermoelectric element and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6165487A (en) * 1984-09-07 1986-04-04 Tohoku Metal Ind Ltd Manufacture of thermoelectric conversion element
JPS62264682A (en) * 1986-05-12 1987-11-17 Komatsu Ltd Thermoelectric element and manufacture thereof

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007387A1 (en) * 1989-04-06 1992-04-30 Kabushiki Kaisha Komatsu Seisakusho Thermoelectric material for low-temperature use and production thereof
JPH02267239A (en) * 1989-04-06 1990-11-01 Komatsu Ltd Thermoelectric material for low temperature use and its manufacture
JP2729964B2 (en) * 1989-04-06 1998-03-18 株式会社小松製作所 Thermoelectric material for low temperature
WO1990016086A1 (en) * 1989-06-14 1990-12-27 Kabushiki Kaisha Komatsu Seisakusho Thermoelectric semiconductor material and method of producing the same
JPH0316281A (en) * 1989-06-14 1991-01-24 Komatsu Ltd Thermoelectric semiconductor material and manufacture thereof
US5869892A (en) * 1990-09-18 1999-02-09 Melcor Japan Co., Ltd. Noise eliminating element and electrical circuit having the same
JPH07263755A (en) * 1991-03-04 1995-10-13 Merukoa Japan Kk Electromagnetic circuit having conductive material junction element
JPH05335628A (en) * 1992-05-28 1993-12-17 Chubu Electric Power Co Inc Thermoelectric conversion element
WO1998011612A1 (en) * 1996-09-13 1998-03-19 Komatsu Ltd. Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
US6274802B1 (en) 1996-09-13 2001-08-14 Komatsu Ltd. Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
KR20020010768A (en) * 2000-07-31 2002-02-06 병 선 천 Method of producing thermoelectric transform materials by using the twin rolling and the hot forming process
KR100382599B1 (en) * 2000-12-15 2003-05-09 한국전기연구원 Manufacturing method of thermoelectric nanopowder
KR20010088621A (en) * 2001-08-13 2001-09-28 황우성 Method of producing ther moelectric transform materals by using the gas atomixation and the hot forming process
JP4666841B2 (en) * 2001-08-22 2011-04-06 京セラ株式会社 Method for manufacturing thermoelectric material
US8035026B2 (en) 2003-08-26 2011-10-11 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and methods for manufacturing the same
US8519256B2 (en) 2003-08-26 2013-08-27 Kyocera Corporation Thermoelectric material, thermoelectric element, thermoelectric module and method for manufacturing the same
US8241834B2 (en) * 2008-05-01 2012-08-14 Sony Corporation Optical recording medium and production method therefor, and sputtering target and production method therefor
CN111435698A (en) * 2019-01-14 2020-07-21 中国科学院宁波材料技术与工程研究所 Bismuth telluride-based thermoelectric material and preparation method thereof

Also Published As

Publication number Publication date
JP2847123B2 (en) 1999-01-13

Similar Documents

Publication Publication Date Title
KR101172802B1 (en) fabrication method for Te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials thereby
US6222242B1 (en) Thermoelectric semiconductor material and method of manufacturing same
CN111477736B (en) Bismuth telluride-based thermoelectric material and preparation method thereof
JPH01106478A (en) Manufacture of thermoelectric material
JP2005072391A (en) N-type thermoelectric material, its manufacturing method and n-type thermoelectric element
JPH0316281A (en) Thermoelectric semiconductor material and manufacture thereof
US3017446A (en) Preparation of material for thermocouples
Li et al. Thermoelectric properties of p-type (Bi2Te3) x (Sb2Te3) 1− x prepared by spark plasma sintering
US3527622A (en) Thermoelectric composition and leg formed of lead,sulfur,and tellurium
KR101417968B1 (en) PbTe thermoelectric material doped with Na and Ag and manufacturing method thereby
Hu et al. Synthesis of Al-doped Mg2Si1− xSnx compound using magnesium alloy for thermoelectric application
CN114506823A (en) N-type PbSe-based thermoelectric material and preparation method and application thereof
JPH07273374A (en) Bi2 te3 group thermoelectric material composition having p-ntransition-preventive property
US3211656A (en) Mixed-crystal thermoelectric composition
US2995613A (en) Semiconductive materials exhibiting thermoelectric properties
US4717789A (en) Thermoelectric elements
KR20200027754A (en) SnSe2 BASED THERMOELECTRIC MATERIAL AND PRODUCING METHOD OF THE SAME
JPH0374885A (en) P-type fe silicide thermoelectric conversion material
JPH0832588B2 (en) Thermoelectric semiconductor material and manufacturing method thereof
US4061505A (en) Rare-earth-metal-based thermoelectric compositions
JP2020516055A (en) Chalcogen compound, method for producing the same, and thermoelectric device including the same
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JP2018059160A (en) Mg2Si(1-x)Snx-BASED POLYCRYSTALLINE BODY, SINTERED BODY THEREOF AND MANUFACTURING METHOD THEREOF
US3197410A (en) Thermoelectric compositions of ta w-se
KR102121434B1 (en) Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term