JPS62264682A - Thermoelectric element and manufacture thereof - Google Patents

Thermoelectric element and manufacture thereof

Info

Publication number
JPS62264682A
JPS62264682A JP61108382A JP10838286A JPS62264682A JP S62264682 A JPS62264682 A JP S62264682A JP 61108382 A JP61108382 A JP 61108382A JP 10838286 A JP10838286 A JP 10838286A JP S62264682 A JPS62264682 A JP S62264682A
Authority
JP
Japan
Prior art keywords
powder
thermoelectric element
thermoelectric
crystals
mechanical strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61108382A
Other languages
Japanese (ja)
Other versions
JP2510158B2 (en
Inventor
Hisaaki Imaizumi
今泉 久朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP61108382A priority Critical patent/JP2510158B2/en
Publication of JPS62264682A publication Critical patent/JPS62264682A/en
Application granted granted Critical
Publication of JP2510158B2 publication Critical patent/JP2510158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a thermoelectric element having desirable characteristics as well as high mechanical strength, by grinding crystals so as to keep their cleavage properties for producing flake particles, pressurizing them uniaxially to produce an anisotropic sintered powder body and causing electric current to flow through the body vertically to the direction of pressurization. CONSTITUTION:Bi2Te3 and Bi2Se3 are sealed in a glass tube in a ratio of 95:5. They are melt and solidified unidirectionally, whereby single crystals having aligned crystal axes can be obtained. The crystals are ground and sorted to form flake powder having a particle diameter of 74-37mum. The powder is pressurized uniaxially under 350 kg/cm2 in the atmosphere of Ar at 500 deg.C for ten minutes. The pressed powder body is cut off and current is caused to flow through the body vertically to the direction of pressurization (k) to achieve an N-type thermoelectric element having improved mechanical strength and improved electric characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱電素子およびその製造方法に係り、特に、
その粉末焼結方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a thermoelectric element and a method for manufacturing the same, and in particular,
The present invention relates to a powder sintering method.

〔従来技術およびその問題点〕[Prior art and its problems]

n型半導体とn型半導体とを直接粉末成型接合すること
によって形成した熱電素子は、構造が簡単で、優れた耐
酸化性、耐熱性を呈し、安定な特性を維持できることか
ら、ベルチェ効果を利用し。
Thermoelectric elements formed by directly powder-molding bonding of n-type semiconductors and n-type semiconductors have a simple structure, exhibit excellent oxidation resistance and heat resistance, and can maintain stable characteristics, making use of the Bertier effect. death.

た電子冷却装置あるいはゼーベック効果を利用した、熱
電発電装置へと、広範囲にわたって利用が期待されてい
るデバイスである。
This device is expected to be used in a wide range of applications, such as electronic cooling devices and thermoelectric power generation devices that utilize the Seebeck effect.

室温付近で用いられる熱電半導体としては、ビスマステ
ルル化合物、アンチモンテルル化合物等の合金系が知ら
れている。
As thermoelectric semiconductors used near room temperature, alloy systems such as bismuth tellurium compounds and antimonterurium compounds are known.

これらの結晶は、へき開性が著しいため、結t1から素
子を切り出す際、あるいは素子をモジュー・ルとして実
装する際の不良の発生が避けることのできない問題とな
っていた。
Since these crystals have a remarkable cleavage property, there is an unavoidable problem of occurrence of defects when cutting out the device from the crystal t1 or when mounting the device as a module.

そこで、素子の機械的強度を上げ実用化をはかるべく、
上述の如き合金を粉末化してこれを焼結した粉末焼結素
子が提案されている。
Therefore, in order to increase the mechanical strength of the device and put it into practical use,
Powder sintered elements have been proposed in which the above-mentioned alloys are pulverized and sintered.

ところが、粉末焼結素子にすると微結晶の粒界でキャリ
アの散乱が起ったり、単結晶素子もしくは多結晶素子に
比較して性能が悪くなるという問題があった。
However, when a powder sintered element is used, there are problems such as scattering of carriers at grain boundaries of microcrystals and poor performance compared to a single crystal element or a polycrystalline element.

特に、ビスマステルル化合物の単結晶は著しい電気的異
方性を有しており、電気伝導度の良い方向に電流を流す
などの方策をとることができるのに対し、粉末焼結素子
では微結晶のランダム配向の集合体であるため性能は単
結晶に比してかなり劣るのが現状である。
In particular, single crystals of bismuth tellurium compounds have remarkable electrical anisotropy, and it is possible to take measures such as passing current in the direction of good electrical conductivity, whereas powder sintered elements have microcrystals. Because it is a randomly oriented aggregate of crystals, its performance is currently considerably inferior to that of a single crystal.

本発明は、前記実情に鑑みてなされたもので、素子特性
が良好でかつ機械的強度が高く信頼性の高い熱電素子を
提供することを目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a thermoelectric element having good element characteristics, high mechanical strength, and high reliability.

〔問題点を解決するための手段〕[Means for solving problems]

そこで本発明では、結晶をへき開性を保つように粉砕し
て、鱗片状粒子を形成し、これを−軸性加圧することに
より、異方性を有する粉末焼結体を形成し、この加圧方
向に対して垂直な方向に電流を流すように熱電半導体素
子を構成している。
Therefore, in the present invention, a crystal is crushed to maintain cleavability to form scaly particles, and this is axially pressed to form an anisotropic powder sintered body. The thermoelectric semiconductor element is configured to allow current to flow in a direction perpendicular to the direction.

〔作用〕[Effect]

すなわち、例えばビスマステルル化合物の結晶は六方晶
系であり、この0面がへき開面となるべ゛き開性を有し
ている。このビスマステルル化合物の多結晶インゴット
をディスクミルやロッドミル等で鱗片状の粉末を作り、
これに対して一軸性加圧を行なうと加圧方向に対して垂
直な方向に鱗片の長手方向(すなわち0面)が整列する
ように成型される。
That is, for example, the crystal of a bismuth tellurium compound has a hexagonal system, and has a cleavage property in which the 0-plane is a cleavage plane. This polycrystalline ingot of bismuth tellurium compound is made into scaly powder using a disc mill or rod mill, etc.
On the other hand, when uniaxial pressure is applied, the scales are formed so that the longitudinal direction (i.e., the zero plane) of the scales is aligned in a direction perpendicular to the direction of pressure.

このC面内の電気伝導度は、0面に垂直な方向の2倍か
ら3倍の値を呈する。
The electrical conductivity in the C-plane exhibits a value that is two to three times that in the direction perpendicular to the 0-plane.

従って、加圧方向に対して垂直な方向に電流を流すよう
にすることにより、結晶の電気的異方性を生かすことが
でき、素子特性が良好でかつ機械的強度の高い熱電半導
体素子を得ることが可能となる。
Therefore, by making the current flow in a direction perpendicular to the direction of pressure, it is possible to take advantage of the electrical anisotropy of the crystal and obtain a thermoelectric semiconductor device with good device characteristics and high mechanical strength. becomes possible.

〔実施例〕〔Example〕

以下、本発明の実施例について、図面を参照しつつ詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は、本発明実施例のn型熱電素子を模式%式% この素子1は、鱗片状粒子Pがへき開面が電流方向eと
平行となるように構成されており、例えばp型熱電素子
と1対として熱電変換素子を構成する。
FIG. 1 shows a schematic representation of an n-type thermoelectric element according to an embodiment of the present invention. This element 1 is constructed such that the cleavage plane of the scale-like particles P is parallel to the current direction e, and is, for example, a p-type thermoelectric element. A thermoelectric conversion element is configured as a pair with the element.

このn型熱電素子の製造に際しては、まず、テルル化ば
スマス(B 12Te3 )とセレン化ビス7ス(B 
12Se3 )を95:5の組成比となるようにガラス
管内に封入、溶解し、一方向性凝固させると結晶軸のそ
ろった単結晶ができる。
When manufacturing this n-type thermoelectric element, firstly, bismuth telluride (B12Te3) and bis7sselenide (B
12Se3) is sealed in a glass tube at a composition ratio of 95:5, melted, and unidirectionally solidified to form a single crystal with aligned crystal axes.

この単結晶をロッドミルで10〜12分粉砕し、分級し
て粉末粒径が74〜37uiの鱗片状粉末を形成する。
This single crystal is ground with a rod mill for 10-12 minutes and then classified to form a scaly powder with a powder particle size of 74-37 ui.

そして、この鱗片状粉末をアルゴン雰囲気中で第2図に
示す如く、ホットプレス法により500°C,350k
g/、c+i 10分間−軸性加圧ヲ行ない、これをか
断して電流方向が加圧方向にと垂直となるようなn型熱
電素子を形成する。
Then, this scaly powder was heated at 500°C and 350k by hot pressing in an argon atmosphere as shown in Figure 2.
g/, c+i - Axial pressure is applied for 10 minutes, and this is cut off to form an n-type thermoelectric element in which the current direction is perpendicular to the pressure direction.

このようにして形成されたn型熱電素子A、  BLつ
いて、加圧方向に対して垂直な方向、平行な方向での熱
起電力α工、α1および電気伝導度σ工、σ、を次表に
示す。
For the n-type thermoelectric elements A and BL formed in this way, the thermoelectromotive force α, α1 and electrical conductivity σ, σ in the direction perpendicular and parallel to the pressing direction are shown in the following table. Shown below.

表 垂直な方向での熱起電力および電気伝導度は平行な方向
に比べて、すぐれている。
The thermoelectromotive force and electrical conductivity in the direction perpendicular to the surface are superior to those in the parallel direction.

ところで、熱電半導体の性能は次式に示すような性能指
数Zというパラメータで評価される。
By the way, the performance of a thermoelectric semiconductor is evaluated by a parameter called a figure of merit Z as shown in the following equation.

Z−α2・σ/に ここで α:熱起電力 σ:電気伝導度 に:熱伝導度 この式からも加圧方向に垂直となるように電流を流すほ
うが平行に流すよりも(Kが同じとすれば)、大幅に性
能が優れていることがわかる。
Z-α2・σ/ where α: thermoelectromotive force σ: electrical conductivity: thermal conductivity From this equation, it is better to flow the current perpendicular to the pressure direction than to flow it in parallel (K is the same ), it can be seen that the performance is significantly superior.

なお、実施例では、テルル化ビスマスとセレン化ビスマ
スとの合金を材料としたn型熱電半導体について説明し
たが、これに限定されることなく、本発明はへき開性を
有する結晶を材料とする他の熱電半導体にも有効である
ことはいうまでもない。
In the examples, an n-type thermoelectric semiconductor made of an alloy of bismuth telluride and bismuth selenide was described, but the present invention is not limited to this, and the present invention can also be applied to other materials made of crystals having cleavability. Needless to say, it is also effective for thermoelectric semiconductors.

〔効果〕〔effect〕

以上説明してきたように、本発明によれば、へき開性を
有する結晶を粉砕して鱗片状粉末とし、これを−軸性加
圧することにより異方性を有する粉末焼結体を形成し、
電流方向がこの加圧方向に対して垂直となるように熱電
素子を形成しているため、機械的強度に優れ、電気的性
能にすぐれた熱電素子を得ることができる。
As explained above, according to the present invention, a cleavable crystal is crushed into a scaly powder, and this is axially pressed to form a powder sintered body having anisotropy,
Since the thermoelectric element is formed so that the current direction is perpendicular to the pressing direction, it is possible to obtain a thermoelectric element with excellent mechanical strength and excellent electrical performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明実施例の熱電素子を模式的に示す図、
第2図は第1図の熱電素子の製造工程の1部を示す図で
ある。 1・・・n型熱電素子、e・・・電流方向、P・・・鱗
片状粒子、k・・・加圧方向。
FIG. 1 is a diagram schematically showing a thermoelectric element according to an embodiment of the present invention;
FIG. 2 is a diagram showing a part of the manufacturing process of the thermoelectric element shown in FIG. 1. 1... N-type thermoelectric element, e... Current direction, P... Scale-like particles, k... Pressure direction.

Claims (4)

【特許請求の範囲】[Claims] (1)へき開性を有する熱電半導体結晶の粉末のへき開
面を一方向に整列せしめた粉末焼結体からなり、電流方
向が該へき開面に平行となるように構成したことを特徴
とする熱電素子。
(1) A thermoelectric element comprising a powder sintered body in which the cleavage planes of thermoelectric semiconductor crystal powder having cleavability are aligned in one direction, and configured such that the current direction is parallel to the cleavage plane. .
(2)前記熱電半導体結晶は、テルル化ビスマス(Bi
_2Te_3)、セレン化ビスマス(Bi_2Se_3
)又はその合金であることを特徴とする特許請求の範囲
第(1)項記載の熱電素子。
(2) The thermoelectric semiconductor crystal is bismuth telluride (Bi
_2Te_3), bismuth selenide (Bi_2Se_3)
) or an alloy thereof. The thermoelectric element according to claim (1).
(3)へき開性を有する熱電半導体結晶をへき開面を維
持した鱗片状粉末に粉砕する粉末化工程と、該鱗片状粉
末を一軸性加圧すると共に焼結し、加圧焼結体を形成す
る加圧焼結工程と、 を含むことを特徴とする熱電素子の製造方法。
(3) A pulverization step in which a thermoelectric semiconductor crystal having cleavability is pulverized into a scaly powder that maintains the cleavage plane, and a uniaxial pressurization and sintering of the scaly powder to form a pressed sintered body. A method for manufacturing a thermoelectric element, comprising: a pressure sintering step;
(4)前記加圧焼結工程は、加熱しつつ加圧するホット
プレス工程であることを特徴とする特許請求の範囲第(
3)項記載の熱電素子の製造方法。
(4) The pressure sintering process is a hot press process in which pressure is applied while heating.
3) The method for manufacturing the thermoelectric element described in section 3).
JP61108382A 1986-05-12 1986-05-12 Thermoelectric element and manufacturing method thereof Expired - Lifetime JP2510158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108382A JP2510158B2 (en) 1986-05-12 1986-05-12 Thermoelectric element and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108382A JP2510158B2 (en) 1986-05-12 1986-05-12 Thermoelectric element and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62264682A true JPS62264682A (en) 1987-11-17
JP2510158B2 JP2510158B2 (en) 1996-06-26

Family

ID=14483353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108382A Expired - Lifetime JP2510158B2 (en) 1986-05-12 1986-05-12 Thermoelectric element and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2510158B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106478A (en) * 1987-10-19 1989-04-24 Mitsui Mining & Smelting Co Ltd Manufacture of thermoelectric material
WO1998011612A1 (en) * 1996-09-13 1998-03-19 Komatsu Ltd. Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
US6316279B1 (en) 1999-02-25 2001-11-13 Aisin Seiki Kabushiki Kaisha Method of producing thermoelectric semiconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106478A (en) * 1987-10-19 1989-04-24 Mitsui Mining & Smelting Co Ltd Manufacture of thermoelectric material
WO1998011612A1 (en) * 1996-09-13 1998-03-19 Komatsu Ltd. Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
US6274802B1 (en) 1996-09-13 2001-08-14 Komatsu Ltd. Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
US6316279B1 (en) 1999-02-25 2001-11-13 Aisin Seiki Kabushiki Kaisha Method of producing thermoelectric semiconductor

Also Published As

Publication number Publication date
JP2510158B2 (en) 1996-06-26

Similar Documents

Publication Publication Date Title
Qiu et al. 3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance
Bhandari et al. Silicon–germanium alloys as high-temperature thermoelectric materials
CN104335327A (en) Nanoparticle compact materials for thermoelectric application
WO1990016086A1 (en) Thermoelectric semiconductor material and method of producing the same
JP2016526302A (en) High performance P-type thermoelectric material having reversible phase transition and method for producing the same
KR100341669B1 (en) Thermoelectric conversion element
US7067733B2 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
JP3245793B2 (en) Manufacturing method of thermoelectric conversion element
Birkholz et al. Polycrystalline iron disilicide as a thermoelectric generator material
Lee et al. Preparation and thermoelectric properties of iodine-doped Bi 2 Te 3-Bi 2 Se 3 solid solutions
JP3958857B2 (en) Thermoelectric semiconductor material manufacturing method
Ivanova et al. Melt-spun materials based on an n-type Bi 2 Te 2.7 Se 0.3 solid solution
JP2000106460A (en) Thermoelectric semiconductor material and manufacture thereof
JP2007013000A (en) Thermoelectric conversion material
JP2007165463A (en) Thermoelectric converting element and power generating module
US8986566B2 (en) Thermoelectric material, thermoelectric device using the same, and method of manufacturing thereof
JPS62264682A (en) Thermoelectric element and manufacture thereof
JPH06144825A (en) Production of thermoelectric element
US3762960A (en) Thermoelectric alloys
Lee et al. Preparation and Thermoelectric Properties of n-Type Bi 2 Te 2.7 Se 0.3: D m
US3898080A (en) Germanium-silicon Thermoelectric elements
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JP3979290B2 (en) Thermoelectric material and manufacturing method thereof
JP2000138399A (en) Thermoelectric semiconductor material, thermoelectric device, manufacture of them, and manufacturing apparatus of the thermoelectric semiconductor material
JP2510158C (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term