JPH06144825A - Production of thermoelectric element - Google Patents

Production of thermoelectric element

Info

Publication number
JPH06144825A
JPH06144825A JP4342702A JP34270292A JPH06144825A JP H06144825 A JPH06144825 A JP H06144825A JP 4342702 A JP4342702 A JP 4342702A JP 34270292 A JP34270292 A JP 34270292A JP H06144825 A JPH06144825 A JP H06144825A
Authority
JP
Japan
Prior art keywords
fesi
phase
powder
sintering
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4342702A
Other languages
Japanese (ja)
Inventor
Yuichiro Hara
裕一郎 原
Toshikazu Takeda
敏和 竹田
Shigeo Takita
茂生 瀧田
Yutaka Matsumi
裕 松見
Masayuki Kato
雅之 加藤
Eiji Okumura
英二 奥村
Hideo Ishiyama
日出夫 石山
Makoto Ogawa
誠 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP4342702A priority Critical patent/JPH06144825A/en
Publication of JPH06144825A publication Critical patent/JPH06144825A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a process for producing a new thermoelectric element in improved production efficiency and facilitating the formation of quasi-stable alpha-FeSi2 and the integration with other material. CONSTITUTION:Raw material powder composed of Fe and Si is mixed with an additive such as transition element and melted to form an alloy liquid. Fine crystalline powder of alpha-FeSi2 (metallic phase) is formed from the alloy liquid by gas atomizing process and the produced powder is sintered and solidified to a prescribed form by plasma sintering process and, at the same time, converted to beta-FeSi2 (semiconductor phase) by phase transition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は熱電対などに用いられる
熱発電素子の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric generator used for a thermocouple or the like.

【0002】[0002]

【従来の技術】熱発電素子は周知の通り、熱電効果を利
用して熱エネルギーから電気エネルギーに、あるいはそ
の反対に変換する素子であり、代表的なものとして熱電
対、電子冷凍素子(ペルチェ素子)が挙げられる。この
熱電対は二種の金属線を接続して閉回路を作り、二つの
接点を異なる温度に保つと、この接点間に熱起電力が生
ずるというゼーベック効果を利用したもので、両端の電
圧を測定して温度を測るものであり、他方、電子冷凍素
子は異種の導体や半導体の接触面を通して電流が流れる
とき、その接触面でジュール熱以外の熱の発生、吸収が
起こるペルチェ効果を利用したもので、マイナス20℃
〜プラス70℃程度の範囲で精密に温度制御が必要な場
合等によく使われる。
2. Description of the Related Art As is well known, a thermoelectric generator is an element for converting thermal energy into electric energy by utilizing thermoelectric effect or vice versa. Typical examples are thermocouples and electronic refrigeration elements (Peltier elements). ) Is mentioned. This thermocouple uses the Seebeck effect in which two types of metal wires are connected to form a closed circuit, and when two contacts are kept at different temperatures, a thermoelectromotive force is generated between these contacts. On the other hand, the electronic refrigeration element utilizes the Peltier effect in which heat other than Joule heat is generated and absorbed at the contact surface when a current flows through the contact surface between different conductors and semiconductors. -20 ° C
It is often used when precise temperature control is required within the range of plus 70 ° C.

【0003】また、この熱発電素子は幾つかの標準的な
組み合わせがJIS規格等で決まっており、その一つと
して起電力の高い、p型鉄珪化物とn型鉄珪化物との組
み合わせからなるFeSi熱発電素子がある。
In addition, some standard combinations of this thermoelectric generator are determined by the JIS standard and the like. One of them is a combination of a p-type iron silicide and an n-type iron silicide having a high electromotive force. There is a FeSi thermoelectric generator.

【0004】図6は、このFeSi熱発電素子の従来の
製造方法を示したものである。これを順を追って簡単に
説明すると、先ず、FeとSiにそれぞれ添加元素であ
るMn及びCoを添加してこれらを別個に溶解冷却して
準安定なα−FeSi2 を得るべく二種類のインゴット
を製作した後、これらのインゴットをスタンプミル等を
用いてそれぞれ別個に粉砕し、p型原料粉末とn型原料
粉末を製作する。そして、これらをp型原料粉末とn型
原料粉末を所定形状に集合させて冷間プレス及び焼結固
化して一体化させた後、α−FeSi2 (金属層)から
β−FeSi2 (半導体層)に相転移させるべく大気中
で熱処理を加え、その後、その端部にリード線や電極を
ろう付け、或いはハンダ付けして完成することになる。
FIG. 6 shows a conventional manufacturing method of this FeSi thermoelectric generator. This will be briefly described step by step. First, two kinds of ingots were prepared in order to obtain metastable α-FeSi 2 by adding Mn and Co, which are additional elements, respectively to Fe and Si, and melting and cooling them separately. After manufacturing, the ingots are separately crushed using a stamp mill or the like to manufacture p-type raw material powder and n-type raw material powder. Then, after the p-type raw material powder and the n-type raw material powder are gathered in a predetermined shape, cold pressed and sintered and solidified to be integrated, the α-FeSi 2 (metal layer) to the β-FeSi 2 (semiconductor) (Layer) is subjected to heat treatment in the atmosphere to cause a phase transition, and then a lead wire or an electrode is brazed or soldered to the end of the layer to complete.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来の
製造方法では、α−FeSi2 は高温相のため、従来の
ように溶解したものをインゴットにするという冷却過程
では準安定な状態のα相を得ることが困難であった。ま
た、溶解したものを再粉砕して粉末にする必要があり、
α→βの相転移に要する熱処理時間が長かったり、素子
完成までの工程が多かったため、製造効率が良くなかっ
た。また、熱処理温度は1063[K]で処理時間は
1.8×105 [s]であるため、この熱処理温度より
も低い融点をもつ材料との複合化は困難であった。
However, in the conventional manufacturing method, since α-FeSi 2 is a high-temperature phase, the α-phase in a metastable state is formed in the cooling process of forming a melted ingot as in the conventional case. It was difficult to get. In addition, it is necessary to re-pulverize the melted material into powder,
The manufacturing efficiency was not good because the heat treatment time required for the α → β phase transition was long and there were many steps until the element was completed. Further, since the heat treatment temperature is 1063 [K] and the treatment time is 1.8 × 10 5 [s], it is difficult to form a composite with a material having a melting point lower than this heat treatment temperature.

【0006】そこで、本発明はこれらの欠点を有効に解
決するために案出されたものであり、その主な目的は準
安定のα−FeSi2 を容易に得ることができると共
に、材料との複合化が容易で、さらには製造効率を向上
させた新規な熱発電素子の製造方法を提供するものであ
る。
Therefore, the present invention has been devised in order to effectively solve these drawbacks, and its main purpose is to easily obtain metastable α-FeSi 2 and to combine it with a material. It is intended to provide a novel method for producing a thermoelectric power generation element, which can be easily made into a composite structure and which has improved production efficiency.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に第一の発明はFeとSiとからなる原料粉末中に、遷
移元素等の添加物を混入して溶融させた合金溶液を形成
すると共に、該合金溶液からガスアトマイズ法によって
α−FeSi2 (金属相)の微結晶粉末を形成した後、
該微結晶粉末を、プラズマ焼結法またはホットプレス法
によって所定形状に焼結固化すると共にβ−FeSi2
(半導体相)に相転移させてなる熱発電素子の製造方法
である。
In order to solve the above problems, the first invention is to form a melted alloy solution by mixing additives such as transition elements into a raw material powder composed of Fe and Si. Together with forming a fine crystal powder of α-FeSi 2 (metal phase) from the alloy solution by a gas atomizing method,
The microcrystalline powder is sintered and solidified into a predetermined shape by a plasma sintering method or a hot pressing method, and β-FeSi 2
It is a method of manufacturing a thermoelectric power generation element in which a (semiconductor phase) phase transition is performed.

【0008】また、第二の発明はFeとSiとを所定の
比率で混合してなる合金溶液を形成し、該合金溶液から
ガスアトマイズ法によってα−FeSi2 (金属相)の
微結晶粉末を形成した後、該α−FeSi2 微結晶粉末
を、不活性ガス中で熱処理してβ−FeSi2 (半導体
相)の微結晶粉末に相転移し、その後該β−FeSi2
微結晶粉末中に遷移元素等を添加すると共に、これをプ
ラズマ焼結法またはホットプレス法によって所定の形状
に焼結固化してなる熱発電素子の製造方法である。
In the second invention, an alloy solution is prepared by mixing Fe and Si in a predetermined ratio, and α-FeSi 2 (metal phase) fine crystal powder is formed from the alloy solution by a gas atomizing method. After that, the α-FeSi 2 microcrystalline powder is heat-treated in an inert gas to undergo a phase transition into β-FeSi 2 (semiconductor phase) microcrystalline powder, and then the β-FeSi 2
In this method, a transition element or the like is added to the microcrystalline powder, and this is sintered and solidified into a predetermined shape by a plasma sintering method or a hot pressing method.

【0009】さらに、第三の発明は上記焼結固化が、プ
ラズマ焼結法に代えてホットプレス法によりなされる熱
発電素子の製造方法である。
A third aspect of the present invention is a method of manufacturing a thermoelectric generator, wherein the sintering and solidification is performed by a hot pressing method instead of the plasma sintering method.

【0010】以下、本発明についての補足説明をする。
まず、鉄とシリコンの金属間化合物であるFeSi2
は、金属相α−FeSi2 (α相)と半導体相β−Fe
Si2 (β相)の2相が存在している。このうち熱電材
料として有望なものはβ相の方である。また、α相は高
温相とも呼ばれ、その存在範囲は937℃〜1220℃
であるとされているが、通常融解して得たFeSi2
α相である。これはα相の組成範囲が53.0〜57.
5wt%Siに比べてβ相は51wt%Siと組成範囲
が狭いこと、また、β相は固相反応で生成されるため大
変な時間が必要であることによる。従って、従来はα相
を700〜980℃の範囲で長時間(30〜100時
間)熱処理してα→β相転移を行っていた。しかし、α
相には準安定な状態が存在しており、これは急冷するこ
とで得ることができる。この準安定な状態は急冷という
熱力学的に非平衡な過程を経て作られるので、その内部
エネルギーは高く、結晶状態は熱的に不安定である。よ
って従来よりも低い温度500℃〜で原子の拡散が始ま
り、極短い時間(数秒)でα→βへの格子の組み替えが
行われる。尚、相転移温度を500℃〜としたのは焼結
の際の諸条件(雰囲気、加圧力、温度、係留時間、モー
ルド、さらには添加物等)により変化があるためであ
る。
A supplementary explanation of the present invention will be given below.
First, FeSi 2 which is an intermetallic compound of iron and silicon has a metal phase α-FeSi 2 (α phase) and a semiconductor phase β-Fe.
There are two phases, Si 2 (β phase). Of these, the β phase is the most promising thermoelectric material. The α phase is also called a high temperature phase, and its existence range is 937 ° C to 1220 ° C.
However, FeSi 2 obtained by melting is usually in the α phase. This is because the composition range of the α phase is 53.0 to 57.
This is because the β phase has a narrow composition range of 51 wt% Si as compared with 5 wt% Si, and it takes a lot of time because the β phase is generated by a solid phase reaction. Therefore, conventionally, the α phase was heat-treated in the range of 700 to 980 ° C. for a long time (30 to 100 hours) to perform the α → β phase transition. But α
There is a metastable state in the phase, which can be obtained by quenching. Since this metastable state is created through a thermodynamically nonequilibrium process called quenching, its internal energy is high and its crystalline state is thermally unstable. Therefore, the diffusion of atoms starts at a temperature of 500 ° C. or lower, which is lower than the conventional temperature, and the lattice is changed from α to β in an extremely short time (several seconds). The reason why the phase transition temperature is set to 500 ° C. or more is that there is a change depending on various conditions during sintering (atmosphere, pressure, temperature, mooring time, mold, additives, etc.).

【0011】また、準安定α相は、急冷により作られた
微結晶状態のα−FeSi2 と同じである。微結晶の度
合いは冷却速度に依存し、ある冷却速度を越えるとアモ
ルファス状態となる。微結晶にしてもアモルファスにし
ても熱的には不安定である。この準安定α相の結晶構造
は正方晶で単位格子中に1個のFeSi2 を含む。ただ
し、実際にはその組成はFe(1-X) Si2 が正しく便宜
上のα−FeSi2 と簡略して表現される。これに対
し、β−FeSi2 は斜方晶で単位格子に16個のFe
Si2 を含む、組成は空格子点の無いFeSi2 であ
る。そして、α−FeSi2 がβ−FeSi2 に転移す
るには、その結晶構造を変え、さらにFeを補うか、余
剰Siを放出する必要がある。通常、α−FeSi2
FeSi2 との共晶状態なので共晶反応によりβ−Fe
Si2 とする。
The metastable α phase is the same as that of microcrystalline α-FeSi 2 produced by quenching. The degree of fine crystals depends on the cooling rate, and if it exceeds a certain cooling rate, the state becomes amorphous. Thermally unstable whether it is microcrystalline or amorphous. The crystal structure of this metastable α phase is tetragonal and contains one FeSi 2 in the unit cell. However, in reality, the composition of Fe (1-X) Si 2 is correct and is simply expressed as α-FeSi 2 for convenience. On the other hand, β-FeSi 2 is orthorhombic and has 16 Fe in the unit cell.
The composition including Si 2 is FeSi 2 without vacancy. Then, in order to transform α-FeSi 2 into β-FeSi 2 , it is necessary to change its crystal structure and supplement Fe or release excess Si. Normally, α-FeSi 2 is in a eutectic state with FeSi 2 , so β-FeSi 2 is formed by a eutectic reaction.
It is set to Si 2 .

【0012】すなわち、本発明者らは微結晶α−FeS
2 (準安定α−FeSi2 )は通常の融解法で製造し
たα−FeSi2 に比べて、低温度、短時間で容易にβ
−FeSi2 に転移することを見出だし、本発明に至っ
たのである。
That is, the present inventors have found that microcrystalline α-FeS
i 2 (meta-stable α-FeSi 2 ) can be easily β at low temperature and in a short time as compared with α-FeSi 2 produced by a usual melting method.
The present invention was found out by the fact that it was transformed to —FeSi 2 .

【0013】尚、急冷させる方法としては上記ガスアト
マイズ法の他に高周波プラズマ法やロール法もあるが、
1回に製造できる量が多いのと、希望のサイズの粉末が
入手できる点でガスアトマイズ法が優れている。また、
焼結はプラズマ焼結法(PAS)以外にホットプレス
法、冷間プレス法でも製作可能であるが、短時間で作る
にはプラズマ焼結法が最も優れている。また、上述した
性質をもつ微結晶α−FeSi2 を焼結するには、プラ
ズマ焼結法が望ましい。プラズマ焼結によれば、プラズ
マ放電により粉体の表面が活性化させられ、低温度、短
時間で焼結が完了するため、結晶粒の成長を抑制でき、
粒界による熱伝導を低下させられるので、その結果熱電
特性も向上する。
In addition to the above gas atomizing method, there are a high frequency plasma method and a roll method as the method of quenching.
The gas atomization method is excellent in that a large amount can be produced at one time and that a powder having a desired size can be obtained. Also,
Sintering can be performed by a hot pressing method or a cold pressing method other than the plasma sintering method (PAS), but the plasma sintering method is the most excellent for producing in a short time. Further, the plasma sintering method is desirable for sintering the microcrystalline α-FeSi 2 having the above-mentioned properties. According to plasma sintering, the surface of the powder is activated by plasma discharge, and the sintering is completed at a low temperature in a short time, so that the growth of crystal grains can be suppressed,
Since the heat conduction by the grain boundaries can be reduced, the thermoelectric properties are also improved as a result.

【0014】[0014]

【数1】 [Equation 1]

【0015】[0015]

【作用】上述したように本発明はガスアトマイズ法とプ
ラズマ焼結技術を用いることにより、焼結と熱処理が同
時に(約17分程度)終了してしまうので素子全体の製
造時間が従来の1/500といった極めて短い時間に短
縮化される。すなわち、本製造方法で得られたα−Fe
Si2 微結晶粉末は低温(500〜940℃)で相転移
α→βを起こすので、これをプラズマ焼結技術を組み合
わせる事により任意形状の素子を容易に製作することが
でき、さらに焼結の際の熱で容易にβ化することにな
る。従って、従来必要であった100時間程度の熱処理
という工程が不要となるか、あるいは極めて短時間に達
成され、また、従来24時間程度必要であった焼結時間
も極めて短い時間に短縮化される。
As described above, according to the present invention, by using the gas atomizing method and the plasma sintering technique, the sintering and the heat treatment are completed at the same time (about 17 minutes), so that the manufacturing time of the entire device is 1/500 of the conventional one. It is shortened to an extremely short time. That is, α-Fe obtained by this manufacturing method
Since the Si 2 microcrystalline powder undergoes a phase transition α → β at a low temperature (500 to 940 ° C.), it is possible to easily fabricate an element having an arbitrary shape by combining this with plasma sintering technology. It will be easily converted into β by the heat at the time. Therefore, the step of heat treatment for about 100 hours, which was conventionally required, is not necessary or is achieved in an extremely short time, and the sintering time, which was conventionally required for about 24 hours, is shortened to an extremely short time. .

【0016】[0016]

【実施例】以下、本発明の実施例を詳述する。EXAMPLES Examples of the present invention will be described in detail below.

【0017】(実施例1)図1に示すように、先ず、F
eとSiの原料粉末500g(Si51wt%)中に、
微量のMnを添加し、これをルツボに入れて高周波の熱
により溶融させてp型合金溶液と、同じく微量のCoを
混入して溶融させたp型合金溶液を形成した。尚、この
時混合するSiの量は50.15wt%が最も好ましい
がある程度のバラツキは許される。また、本実施例の溶
融温度は1300℃であるが粘性等の問題から1300
℃から1600℃の範囲が好ましい。
(Embodiment 1) As shown in FIG. 1, first, F
In 500 g (Si51 wt%) of raw material powder of e and Si,
A small amount of Mn was added, and this was put in a crucible and melted by high-frequency heat to form a p-type alloy solution and a p-type alloy solution in which a small amount of Co was mixed and melted. The amount of Si mixed at this time is most preferably 50.15 wt%, but some variation is allowed. Further, the melting temperature of this example is 1300 ° C.
The range from 0 ° C to 1600 ° C is preferred.

【0018】次に、これらp型及びn型合金溶液をそれ
ぞれ図2に示すようなガスアトマイズ装置を用いてα−
FeSi2 のp型及びn型の微結晶粉末を形成した。
尚、このガスアトマイズ条件は以下の表1に示す通りで
ある。
Next, the p-type and n-type alloy solutions are respectively subjected to α-using a gas atomizing apparatus as shown in FIG.
FeSi 2 p-type and n-type microcrystalline powders were formed.
The gas atomizing conditions are as shown in Table 1 below.

【0019】[0019]

【表1】 [Table 1]

【0020】次に、これらα−FeSi2 アトマイズ粉
末をそれぞれ所定形状に集合させた後、次頁の表2に示
すような条件でプラズマ焼結したところ、約17分で焼
結が完了し、また、焼結温度は620℃といった低い温
度で焼結できた。また、この焼結体をX線回折してみた
ところ、表3に示すように、はっきりとβ相が確認され
た。
Next, when these α-FeSi 2 atomized powders were aggregated into a predetermined shape and plasma-sintered under the conditions shown in Table 2 on the next page, the sintering was completed in about 17 minutes. Further, the sintering temperature could be as low as 620 ° C. Further, when this sintered body was subjected to X-ray diffraction, as shown in Table 3, a β phase was clearly confirmed.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【表3】 [Table 3]

【0023】(実施例2)図3に示すように、上述した
ようなガスアトマイズ法によって得られたα−FeSi
2 アトマイズ粉末をAr等の不活性ガス雰囲気中700
℃で180秒間熱処理したところ、容易にβ−FeSi
2 に相転移させることができた。次に、このβ−FeS
2 粉末を上述したようなプラズマ装置を用いて焼結し
たところ、面圧3[t/cm2 ]、温度650℃、時間
30[s]で固形化し、密度比90%以上の固化体が得
られた。
Example 2 As shown in FIG. 3, α-FeSi obtained by the gas atomizing method as described above.
2 700 atomized powder in an inert gas atmosphere such as Ar
When heat-treated at ℃ for 180 seconds, β-FeSi
It was possible to make a phase transition to 2 . Next, this β-FeS
When the i 2 powder was sintered using the plasma device as described above, it solidified at a surface pressure of 3 [t / cm 2 ], a temperature of 650 ° C., and a time of 30 [s], and a solidified body having a density ratio of 90% or more was obtained. Was obtained.

【0024】(応用例)本発明では上述したように素子
成形後の長時間熱処理が不要となったので、図4に示す
ように、この固化体と低融点材料と組み合わせ、素子全
体のエネルギ変換効率を上げることもできる。すなわ
ち、図示するような、素子を設計した場合、高温側は高
温度で使用可能な鉄シリコン熱電材料、低温側は低温度
で他界変換効率を持つPbTe、ZnSbを用いること
で素子としての最も効率の良い温度域で作動させること
ができる。また、このような素子の場合、素子自体が一
体成形なのでヒートロスが少ないといった特長も有する
ことになる。尚、本例では2つの材料の複合であるが、
同様に3つの材料の複合化も考えられる。
(Application example) In the present invention, as described above, the long-time heat treatment after forming the element is not necessary. Therefore, as shown in FIG. 4, the solidified body and the low melting point material are combined to convert the energy of the entire element. You can also increase efficiency. That is, in the case of designing the device as shown in the figure, by using iron silicon thermoelectric material that can be used at high temperature on the high temperature side and PbTe and ZnSb having low field conversion efficiency at the low temperature side, the efficiency of the device is maximized. It can be operated in a good temperature range. Further, in the case of such an element, since the element itself is integrally molded, it has a feature that heat loss is small. In addition, in this example, although it is a composite of two materials,
Similarly, a composite of three materials can be considered.

【0025】(実施例3)前述のように、従来は、α−
FeSi2 を溶解しインゴットにしたものを再粉砕し、
α→βの相転移を起こさせるため熱処理を施していた。
これについては、特公昭52−47677号公報に報告
されている。また、粉砕時に粉末粒子の粒径を1μm以
下にすることにより、焼結時にα→βの相転移が起こ
り、上記熱処理が不要になり、工程が簡略化されること
が、特公平3−196581号公報に報告されている。
しかし、図5に示すように、アトマイズ法により得られ
た粉末自体の粒径は30〜50μmとかなり大きいが、
この粉末内に存在する結晶粒径は0.5μm以下と小さ
く、実際にこのようなアトマイズ粉末をホットプレス法
により焼結固化すると、焼結体はβ−FeSi2 であっ
た。即ち、アトマイズ粉末の粒径が30〜50μmと大
きくても、該粉末内に存在する結晶粒径が0.5μm以
下と小ければ、熱処理を施さずとも、焼結時にα→βの
相転移を引き起こすことができた。
(Third Embodiment) As described above, conventionally, α-
FeSi 2 was melted and made into an ingot, which was crushed again,
Heat treatment was performed to cause the α → β phase transition.
This is reported in Japanese Examined Patent Publication No. 52-47677. Further, by setting the particle size of the powder particles to 1 μm or less at the time of pulverization, the α → β phase transition occurs at the time of sintering, the above heat treatment becomes unnecessary, and the process is simplified. No.
However, as shown in FIG. 5, although the particle size of the powder itself obtained by the atomization method is as large as 30 to 50 μm,
The crystal grain size present in this powder was as small as 0.5 μm or less, and when such atomized powder was actually sintered and solidified by the hot pressing method, the sintered body was β-FeSi 2 . That is, even if the particle size of the atomized powder is as large as 30 to 50 μm, if the crystal particle size present in the powder is as small as 0.5 μm or less, the phase transition of α → β during sintering is performed without heat treatment. Could be caused.

【0026】また、結晶粒径が1μmの半分以下の大き
さであるため、ホットプレス成形時の温度がかなり低温
であっても焼結固化が可能であり、焼結時にα→βの相
転移を起こすことができる。具体的には、表1に示した
ガスアトマイズ条件により作製したアトマイズ粉末を以
下の表4及び表5に示す条件でホットプレス法により焼
結固化した。
Further, since the crystal grain size is half the size of 1 μm or less, it is possible to sinter and solidify even when the temperature during hot press molding is quite low, and the phase transition from α to β during sintering. Can cause Specifically, the atomized powder produced under the gas atomizing conditions shown in Table 1 was sintered and solidified by the hot pressing method under the conditions shown in Tables 4 and 5 below.

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】表4及び表5に示したいずれの条件におい
ても、β−FeSi2 の焼結体を得ることができ、圧力
を増加すれば焼結温度がさらに下がると考えられる。
Under any of the conditions shown in Tables 4 and 5, a β-FeSi 2 sintered body can be obtained, and it is considered that the sintering temperature is further lowered by increasing the pressure.

【0030】さらに、表4と表5との条件を比較して、
表4の条件の長所について述べる。先ず、表5の温度で
のFeSi2 の硬度は、ビッカース硬度で約300H.
Vと高い。一方、表4の温度でのFeSi2 の硬度は、
ビッカース硬度で約50H.Vと低い。従って、表5の
温度における焼結体の常温における内部応力は、表4の
温度における焼結体よりも、かなり多く残留していると
考えられる。このため、クラック等の欠陥の発生原因で
ある残留応力は低い方が好ましく、この点で表4の条件
の方が優れている。
Further, comparing the conditions of Table 4 and Table 5,
The advantages of the conditions in Table 4 will be described. First, the hardness of FeSi 2 at the temperature shown in Table 5 is about 300 H.V.
V and high. On the other hand, the hardness of FeSi 2 at the temperature shown in Table 4 is
Vickers hardness is about 50H. V and low. Therefore, it is considered that the internal stress of the sintered body at the temperature of Table 5 at room temperature is considerably higher than that of the sintered body at the temperature of Table 4. Therefore, it is preferable that the residual stress that causes the occurrence of defects such as cracks is low, and in this respect, the conditions in Table 4 are superior.

【0031】また、FeSi2 を母粒子としCu化合物
を子粒子としてカプセル化して焼結する場合、表4の温
度ではCu化合物は融点に近く、表5の温度より軟化し
ていると考えられる。このため、子粒子が略均一に母粒
子間に入り込み、クラックやポア等の欠陥を塞ぎ、又、
均一な材料となるため熱電効率も向上することになり、
この点で表4の条件の方が優れている。
When FeSi 2 is used as a mother particle and a Cu compound is used as a child particle for encapsulation and sintering, the Cu compound is close to the melting point at the temperature of Table 4, and it is considered that the Cu compound is softer than the temperature of Table 5. For this reason, the child particles substantially uniformly enter between the mother particles, plug defects such as cracks and pores,
Since it is a uniform material, the thermoelectric efficiency is also improved,
In this respect, the conditions in Table 4 are superior.

【0032】さらに、表5の温度で成形するには、高圧
力に耐え得るWC−Co等の高価な成形型が必要である
が、表4の温度の場合にはカーボン等の低価格の成形型
を使用することができる。そして、高圧力で成形したも
の程、離型し難く、表5の圧力では離型時に成形型が破
損する虞れがあるが、表4の圧力ではその虞れが全くな
く、この点で表4の条件の方が優れている。
Further, in order to mold at the temperature shown in Table 5, an expensive mold such as WC-Co capable of withstanding high pressure is required, but at the temperature shown in Table 4, molding at low cost such as carbon is made. Molds can be used. Further, the higher the pressure is, the more difficult it is to release the mold, and the pressure of Table 5 may damage the mold at the time of release, but the pressure of Table 4 has no such fear. The condition of 4 is superior.

【0033】[0033]

【発明の効果】以上要するに本発明によれば、ガスアト
マイズ法とプラズマ焼結法を組み合わせることによっ
て、準安定のα−FeSi2 を容易に得ることができる
と共に、従来時間が掛かっていた熱処理時間及び焼結時
間が極めて短くなるため、製造効率が大巾に向上し、さ
らには他の材料との複合化が容易に達成できる等といっ
た優れた効果を有する。
In summary, according to the present invention, by combining the gas atomizing method and the plasma sintering method, metastable α-FeSi 2 can be easily obtained, and the heat treatment time and the heat treatment time, which have conventionally been required, can be obtained. Since the sintering time is extremely short, the manufacturing efficiency is greatly improved, and further, it has an excellent effect that the compounding with other materials can be easily achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】第一の発明の一実施例を示すチャート図であ
る。
FIG. 1 is a chart showing an embodiment of the first invention.

【図2】ガスアトマイズ装置の一実施例を示す断面図で
ある。
FIG. 2 is a sectional view showing an embodiment of a gas atomizing device.

【図3】第二の発明の一実施例を示すチャート図であ
る。
FIG. 3 is a chart showing an embodiment of the second invention.

【図4】第二の発明の応用例を示す概略図である。FIG. 4 is a schematic diagram showing an application example of the second invention.

【図5】第三の発明の一実施例を示す概略図である。FIG. 5 is a schematic view showing an embodiment of the third invention.

【図6】従来の熱発電素子の製造方法を示すチャート図
である。
FIG. 6 is a chart showing a conventional method for manufacturing a thermoelectric generator.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松見 裕 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 加藤 雅之 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 奥村 英二 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 石山 日出夫 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 小川 誠 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Matsumi 8 Tsutana, Fujisawa City Kanagawa Prefecture Isuzu Central Research Institute Co., Ltd. (72) Inventor Masayuki Kato 8th Shelf shelf Fujisawa City Kanagawa Prefecture Isuzu Central Research Co., Ltd. In-house (72) Eiji Okumura Eight Osatan, Fujisawa-shi, Kanagawa 8 Isuzu Central Research Institute Co., Ltd. (72) Inventor Hideo Ishiyama Eight-soil shelf, Fujisawa-shi, Kanagawa Isuzu Central Research Co., Ltd. (72) Inventor Makoto Ogawa 8 Tsutana, Fujisawa City, Kanagawa Prefecture, Isuzu Central Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 FeとSiとからなる原料粉末中に、遷
移元素等の添加物を混入して溶融させた合金溶液を形成
すると共に、該合金溶液からガスアトマイズ法によって
α−FeSi2 (金属相)の微結晶粉末を形成した後、
該微結晶粉末を、プラズマ焼結法により所定形状に焼結
固化すると共にβ−FeSi2 (半導体相)に相転移さ
せてなることを特徴とする熱発電素子の製造方法。
1. A raw material powder composed of Fe and Si is mixed with an additive such as a transition element to be melted to form an alloy solution, and α-FeSi 2 (metal phase is formed from the alloy solution by a gas atomizing method. ) After forming the microcrystalline powder of
A method for producing a thermoelectric generator, characterized in that the microcrystalline powder is sintered and solidified into a predetermined shape by a plasma sintering method, and is transformed into β-FeSi 2 (semiconductor phase).
【請求項2】 FeとSiとを所定の比率で混合してな
る合金溶液を形成し、該合金溶液からガスアトマイズ法
によってα−FeSi2 (金属相)の微結晶粉末を形成
した後、該α−FeSi2 微結晶粉末を、不活性ガス中
で熱処理してβ−FeSi2 (半導体相)の微結晶粉末
に相転移し、その後該β−FeSi2微結晶粉末中に遷
移元素等を添加すると共に、これをプラズマ焼結法によ
り所定の形状に焼結固化してなることを特徴とする熱発
電素子の製造方法。
2. An alloy solution formed by mixing Fe and Si in a predetermined ratio is formed, and fine crystal powder of α-FeSi 2 (metal phase) is formed from the alloy solution by a gas atomizing method, and then the α is formed. -FeSi 2 microcrystalline powder is heat-treated in an inert gas to undergo a phase transition to β-FeSi 2 (semiconductor phase) microcrystalline powder, and then a transition element or the like is added to the β-FeSi 2 microcrystalline powder. At the same time, a method for producing a thermoelectric power generating element, characterized by comprising sintering and solidifying this into a predetermined shape by a plasma sintering method.
【請求項3】 上記焼結固化が、プラズマ焼結法に代え
てホットプレス法によりなされる請求項1または請求項
2に記載の熱発電素子の製造方法。
3. The method for manufacturing a thermoelectric generator according to claim 1, wherein the sintering and solidification is performed by a hot pressing method instead of the plasma sintering method.
JP4342702A 1992-09-21 1992-12-22 Production of thermoelectric element Pending JPH06144825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4342702A JPH06144825A (en) 1992-09-21 1992-12-22 Production of thermoelectric element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-251699 1992-09-21
JP25169992 1992-09-21
JP4342702A JPH06144825A (en) 1992-09-21 1992-12-22 Production of thermoelectric element

Publications (1)

Publication Number Publication Date
JPH06144825A true JPH06144825A (en) 1994-05-24

Family

ID=26540321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4342702A Pending JPH06144825A (en) 1992-09-21 1992-12-22 Production of thermoelectric element

Country Status (1)

Country Link
JP (1) JPH06144825A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041554A (en) * 1996-07-19 1998-02-13 Yamaha Corp Preparation of thermo-electric refrigerating material
JP2007324500A (en) * 2006-06-05 2007-12-13 Sps Syntex Inc Fesi2 system thermoelectric conversion material and its manufacturing method
JP2010206024A (en) * 2009-03-04 2010-09-16 Yanmar Co Ltd Thermoelectric module, and manufacturing method of thermoelectric module
WO2012036265A1 (en) * 2010-09-17 2012-03-22 古河電気工業株式会社 Porous silicon particles and complex porous silicon particles, and method for producing both
JP2013038172A (en) * 2011-08-05 2013-02-21 Furukawa Co Ltd Manufacturing method of thermoelectric conversion material, thermoelectric conversion material, and thermoelectric conversion module
WO2013141230A1 (en) * 2012-03-21 2013-09-26 古河電気工業株式会社 Porous silicon particles and porous silicon-composite particles
US8980428B2 (en) 2010-09-17 2015-03-17 Furukawa Electric Co., Ltd. Porous silicon particles and complex porous silicon particles, and method for producing both
JP2017017068A (en) * 2015-06-26 2017-01-19 国立研究開発法人産業技術総合研究所 Silicon microcrystal composite film, thermoelectric material and manufacturing method thereof
CN114105647A (en) * 2021-10-26 2022-03-01 广州大学 Rapid preparation of multi-scale nano composite structure beta-FeSi by atomization and rapid freezing crystallization method2Method for producing thermoelectric material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041554A (en) * 1996-07-19 1998-02-13 Yamaha Corp Preparation of thermo-electric refrigerating material
JP2007324500A (en) * 2006-06-05 2007-12-13 Sps Syntex Inc Fesi2 system thermoelectric conversion material and its manufacturing method
JP2010206024A (en) * 2009-03-04 2010-09-16 Yanmar Co Ltd Thermoelectric module, and manufacturing method of thermoelectric module
WO2012036265A1 (en) * 2010-09-17 2012-03-22 古河電気工業株式会社 Porous silicon particles and complex porous silicon particles, and method for producing both
US8980428B2 (en) 2010-09-17 2015-03-17 Furukawa Electric Co., Ltd. Porous silicon particles and complex porous silicon particles, and method for producing both
JP2013038172A (en) * 2011-08-05 2013-02-21 Furukawa Co Ltd Manufacturing method of thermoelectric conversion material, thermoelectric conversion material, and thermoelectric conversion module
WO2013141230A1 (en) * 2012-03-21 2013-09-26 古河電気工業株式会社 Porous silicon particles and porous silicon-composite particles
JP2013193933A (en) * 2012-03-21 2013-09-30 Furukawa Electric Co Ltd:The Porous silicon particle, porous silicon composite particle, and methods for producing these particles
JP2017017068A (en) * 2015-06-26 2017-01-19 国立研究開発法人産業技術総合研究所 Silicon microcrystal composite film, thermoelectric material and manufacturing method thereof
CN114105647A (en) * 2021-10-26 2022-03-01 广州大学 Rapid preparation of multi-scale nano composite structure beta-FeSi by atomization and rapid freezing crystallization method2Method for producing thermoelectric material

Similar Documents

Publication Publication Date Title
US5929351A (en) Co-Sb based thermoelectric material and a method of producing the same
JP2006203186A (en) Method of producing thermoelectric semiconductor alloy, thermoelectric conversion module, and thermoelectric power generation device
JP3949848B2 (en) Method for producing scutteldite thermoelectric material
JP2002064227A (en) Thermoelectric conversion material and its manufacturing method
JP2009277735A (en) Method of manufacturing thermoelectric material
CN104263980A (en) Method for rapidly preparing high-performance ZrNiSn block thermoelectric material
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JPH06144825A (en) Production of thermoelectric element
JP4504523B2 (en) Thermoelectric material and manufacturing method thereof
JP5352860B2 (en) Thermoelectric material and manufacturing method thereof
CN105702847A (en) Method for increasing performance of BiTeSe-based N-type semiconductor thermoelectric material
JP5281308B2 (en) Thermoelectric material and manufacturing method thereof
JP2006086512A (en) Thermoelectric conversion system using filled skutterudite alloy
JP4459400B2 (en) Thermoelectric material and manufacturing method thereof
JP2008007825A (en) Yb-Fe-Co-Sb THERMOELECTRIC CONVERSION MATERIAL
JPH08186294A (en) Thermoelectric material
JP2000261044A (en) Thermoelectric conversion material and its manufacture
JP2001135865A (en) Thermoelectric conversion material and manufacturing method for it
Ohta et al. PIES method of preparing Bismuth Alloys
JPH09260728A (en) High-temperature thermoelectric material and manufacture thereof
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JPH07211944A (en) Manufacture of thermoelectric element
JP2000261043A (en) Thermoelectric conversion material and its manufacture
JP3404804B2 (en) Manufacturing method of thermoelectric material
JPH0645661A (en) Manufacture of thermal electric generation material