JPH1041554A - Preparation of thermo-electric refrigerating material - Google Patents

Preparation of thermo-electric refrigerating material

Info

Publication number
JPH1041554A
JPH1041554A JP8190955A JP19095596A JPH1041554A JP H1041554 A JPH1041554 A JP H1041554A JP 8190955 A JP8190955 A JP 8190955A JP 19095596 A JP19095596 A JP 19095596A JP H1041554 A JPH1041554 A JP H1041554A
Authority
JP
Japan
Prior art keywords
powder
sintering
temperature
group
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8190955A
Other languages
Japanese (ja)
Other versions
JP3572814B2 (en
Inventor
Hiroyuki Yamashita
博之 山下
Yuuma Horio
裕磨 堀尾
Toshiharu Hoshi
星  俊治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP19095596A priority Critical patent/JP3572814B2/en
Publication of JPH1041554A publication Critical patent/JPH1041554A/en
Application granted granted Critical
Publication of JP3572814B2 publication Critical patent/JP3572814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for preparing thermo-electric refrigerating material which can improve a performance index Z. SOLUTION: Material containing one or two selected from the group of Bi and Sb and one or two selected from the group of Te and Se is liquid- quenched into a thin film or powder, which is further ground into powder 1. The powder 1 is solidified and molded by sintering the powder through discharged plasma under such a condition that grains in the powder 1 will not be made too large. The powder 1 can be solidified and molded when the powder is subjected to the electrical discharge plasma sintering process under conditions of 150<=T<=300 and -(9×(T-150)/500)+3<=P or under conditions of 300<T<=450 and 0.3<=P (where T denotes temperature ( deg.C) and P denotes pressure (tonf/cm<2> ).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は熱電変換による熱電
冷却等に応用される熱電冷却用材料の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thermoelectric cooling material applied to thermoelectric cooling by thermoelectric conversion.

【0002】[0002]

【従来の技術】種類が異なる2物質を接合させ、2箇所
の接合部を有する回路を構成し、一方の接合部を高温に
加熱し、他方の接合部を低温に冷却すると、接合部の温
度差に基づく起電力が発生する。この現象をゼーベック
効果という。
2. Description of the Related Art When two materials of different types are joined to form a circuit having two joints, one of the joints is heated to a high temperature, and the other is cooled to a low temperature. An electromotive force is generated based on the difference. This phenomenon is called the Seebeck effect.

【0003】また、同様に接合させた2物質に直流電流
を流すと、一方の接合部で熱を吸収し、他方の接合部で
熱を発生する。この現象をペルチェ効果という。
[0003] When a direct current is applied to two materials that are similarly joined, heat is absorbed at one joint and heat is generated at the other joint. This phenomenon is called the Peltier effect.

【0004】更に、均質な物質に温度勾配を設け、この
温度勾配がある方向に電流を流すと、この物質内で熱の
吸収又は発生がある。この現象をトムソン効果という。
Further, when a temperature gradient is provided in a homogeneous substance and an electric current flows in a direction in which the temperature gradient is present, heat is absorbed or generated in the substance. This phenomenon is called the Thomson effect.

【0005】これらのゼーベック効果、ペルチェ効果及
びトムソン効果は熱電効果といわれる可逆反応であり、
ジュール効果及び熱伝導等の非可逆現象と対比される。
これらの可逆過程及び非可逆過程を組み合わせて、電子
冷熱に利用されている。
[0005] These Seebeck effect, Peltier effect and Thomson effect are reversible reactions called thermoelectric effects.
Contrast with irreversible phenomena such as Joule effect and heat conduction.
A combination of these reversible and irreversible processes is used for electronic cooling and heating.

【0006】このような熱電冷却用材料又は熱電変換素
子において、素子の性能は下記数式1にて表される性能
指数で評価される。
In such a thermoelectric cooling material or thermoelectric conversion element, the performance of the element is evaluated by a performance index represented by the following equation 1.

【0007】[0007]

【数1】 Z=α2σ/κ 但し、αは熱電能(ゼーベック係数) σは電気伝導度 κは熱伝導率 である。即ち、性能指数Zが大きい方が熱電材料として
の性能が優れている。
Z = α 2 σ / κ where α is thermoelectric power (Seebeck coefficient) σ is electric conductivity κ is thermal conductivity That is, the larger the figure of merit Z, the better the performance as a thermoelectric material.

【0008】ところで、従来の熱電冷却用材料として
は、Bi及びSbからなる群から選択された1種又は2
種と、Te及びSeからなる群から選択された1種又は
2種とからなる合金があり、主にBi又はSbの原子数
と、Te又はSeの原子数との比が2:3となる組成
{以下、(Bi,Sb)2(Te,Se)3と記す}で用
いられている。
[0008] By the way, as a conventional thermoelectric cooling material, one or two selected from the group consisting of Bi and Sb is used.
There is an alloy consisting of a species and one or two selected from the group consisting of Te and Se, and the ratio of the number of atoms of Bi or Sb to the number of atoms of Te or Se is 2: 3. The composition is hereinafter used as (Bi, Sb) 2 (Te, Se) 3 .

【0009】なお、(Bi,Sb)2(Te,Se)3
組成には、Bi−Te系、Bi−Se系、Sb−Te
系、Sb−Se系、Bi−Sb−Te系、Bi−Sb−
Se系、Bi−Te−Se系、Sb−Te−Se系及び
Bi−Sb−Te−Se系の9種類がある。
The composition of (Bi, Sb) 2 (Te, Se) 3 includes Bi-Te, Bi-Se, Sb-Te
System, Sb-Se system, Bi-Sb-Te system, Bi-Sb-
There are nine types: Se-based, Bi-Te-Se-based, Sb-Te-Se-based, and Bi-Sb-Te-Se-based.

【0010】この熱電冷却用材料は、従来、以下のよう
にして製造されている。先ず、原料粉末を所定の組成に
秤量した後、溶解し、冷却条件を適宜制御しながら凝固
させることによって結晶性が制御(一方向凝固した多結
晶、又は単結晶)された鋳塊を得る。
This thermoelectric cooling material has been conventionally manufactured as follows. First, a raw material powder is weighed to a predetermined composition, then melted and solidified while appropriately controlling cooling conditions to obtain an ingot with controlled crystallinity (unidirectionally solidified polycrystal or single crystal).

【0011】しかし、この方法では、熱伝導率κが高い
ため、性能指数Zが小さかった。これを解決するため、
従来種々の方法が提案されており、例えば、特開平1−
276678号公報に記載のように、熱電材料を急冷凝
固させてアモルファス相又は微細結晶相とする方法が公
知である。
However, in this method, since the thermal conductivity κ is high, the figure of merit Z is small. To solve this,
Conventionally, various methods have been proposed.
As described in 276678, a method of rapidly solidifying a thermoelectric material to form an amorphous phase or a fine crystalline phase is known.

【0012】熱伝導率は、κ=−(1/3)CvL(d
t/dx)で表される。但し、Cは比熱、vは平均粒子
速度、Lはフォノンの平均自由行程である。アモルファ
スの場合は、フォノンの平均自由行程Lが小さいために
熱伝導率が小さくなるので、微細結晶の場合と同様に、
性能係数Zを大きくすることができる。
The thermal conductivity is κ = − (1/3) CvL (d
t / dx). Here, C is the specific heat, v is the average particle velocity, and L is the mean free path of phonons. In the case of amorphous, the thermal conductivity decreases because the mean free path L of phonons is small.
The performance coefficient Z can be increased.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、上記の
従来方法では、劈開による強度低下の問題がある。ま
た、その対策として、得られた鋳塊を粉砕し、粉末とし
た後、これを焼結して固化成形する方法があるが、この
場合は性能指数Zが低下してしまう。従って、液体急冷
法を適用したときには、焼結等の工程で結晶粒が粗大化
しない条件で焼結することが必要である。ところが、こ
の焼結時のエネルギが高すぎると、結晶の再結晶化は更
に進み、液体急冷法によって得た微細結晶は粗大化し
て、性能指数Zが低下する。
However, in the above-mentioned conventional method, there is a problem that the strength is reduced by cleavage. As a countermeasure, there is a method in which the obtained ingot is pulverized, turned into powder, and then sintered and solidified. However, in this case, the figure of merit Z decreases. Therefore, when the liquid quenching method is applied, it is necessary to perform sintering under the condition that crystal grains are not coarsened in a process such as sintering. However, if the energy at the time of sintering is too high, recrystallization of the crystal proceeds further, and the fine crystal obtained by the liquid quenching method becomes coarse, and the figure of merit Z decreases.

【0014】従って、この従来の(Bi,Sb)2(T
e,Se)3の組成を有する熱電冷却用材料は、性能指
数Zが3.3×10-3/K以下であり、それ以上の性能
指数を得ることができなかった。また、焼結エネルギが
低すぎると、材料が固化しないことがあった。
Therefore, the conventional (Bi, Sb) 2 (T
The thermoelectric cooling material having the composition of (e, Se) 3 had a figure of merit Z of 3.3 × 10 −3 / K or less, and could not obtain a figure of merit higher than that. If the sintering energy is too low, the material may not be solidified.

【0015】本発明はかかる問題点に鑑みてなされたも
のであって、性能指数Zを向上させることができる熱電
冷却材料の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a method of manufacturing a thermoelectric cooling material that can improve the figure of merit Z.

【0016】[0016]

【課題を解決するための手段】本発明に係る熱電冷却材
料の製造方法は、Bi及びSbからなる群から選択され
た1種又は2種と、Te又はSeからなる群から選択さ
れた1種又は2種とを含有する原料を液体急冷法により
薄膜又は粉末状とし、これを更に粉砕し、これによって
得られた粉末を結晶粒が粗大化しない条件で放電プラズ
マ焼結することにより固化成形することを特徴とする。
According to the present invention, there is provided a method for producing a thermoelectric cooling material comprising one or two members selected from the group consisting of Bi and Sb and one member selected from the group consisting of Te or Se. Alternatively, the raw material containing the two types is formed into a thin film or powder by a liquid quenching method, which is further pulverized, and the resulting powder is solidified and formed by discharge plasma sintering under the condition that the crystal grains are not coarsened. It is characterized by the following.

【0017】本発明に係る他の熱電冷却用材料の製造方
法は、Bi及びSbからなる群から選択された1種又は
2種と、Te又はSeからなる群から選択された1種又
は2種とを含有する原料を液体急冷法により薄膜又は粉
末状とし、これを更に粉砕し、これによって得られた粉
末を、温度をT(℃)、圧力をP(tonf/cm2)とした場
合に、150≦T≦300のときに−(9×(T−15
0)/500)+3≦Pの条件で、また300<T≦4
50のときに0.3≦Pの条件で放電プラズマ焼結する
ことにより固化成形することを特徴とする。
Another method for producing a thermoelectric cooling material according to the present invention comprises one or two selected from the group consisting of Bi and Sb and one or two selected from the group consisting of Te or Se. The raw material containing is converted into a thin film or powder by a liquid quenching method, which is further pulverized, and the resulting powder is obtained by setting the temperature to T (° C.) and the pressure to P (tonf / cm 2 ). , 150 ≦ T ≦ 300 when − (9 × (T−15)
0) / 500) + 3 ≦ P, and 300 <T ≦ 4
In the case of 50, solidification molding is performed by spark plasma sintering under the condition of 0.3 ≦ P.

【0018】[0018]

【発明の実施の形態】本発明においては、液体急冷法に
より、結晶粒の微細な材料、アモルファス材料又は非平
衡相のような構造的歪みが導入された材料を得ているの
で、従来の材料と異なり、再結晶時に僅かなエネルギー
で結晶が粗大化することはない。また、これを粉砕して
粉末粒径を小さくしているので、強度も向上し、結晶粒
成長を抑制することができる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, a material having a structural distortion such as a fine crystal grain material, an amorphous material, or a non-equilibrium phase is obtained by a liquid quenching method. Unlike recrystallization, the crystal does not become coarse with little energy during recrystallization. In addition, since the powder is pulverized to reduce the particle diameter of the powder, the strength is improved and the growth of crystal grains can be suppressed.

【0019】また、本発明においては、前記粉末材料を
更に粗大化が生じない条件で放電プラズマ焼結して固化
成形する。図1は原料粉末周辺のプラズマの状態を示す
模式図である。原料粉末1の焼結時においては、放電に
よるイオン衝撃によって原料粉末1の表面の絶縁膜2が
破壊される。このとき、原料粉末1が加熱されると共に
加圧されているので、プラズマ放電によって原料粉末1
が焼結される。その結果、焼結時に原料粉末1に与える
エネルギー量は従来の焼結方法よりも少なくすることが
できる。即ち、低温及び短時間で焼結することができる
ので、急冷時の微細な組織又は歪みを保持した成形体を
得ることができ、成形体の結晶粒が小さくなる。従っ
て、固化成形された熱電冷却用材料の熱伝導率κを小さ
くすることができ、性能指数Zを向上させることができ
る。
In the present invention, the powder material is solidified and formed by spark plasma sintering under the condition that no further coarsening occurs. FIG. 1 is a schematic diagram showing a state of plasma around a raw material powder. During sintering of the raw material powder 1, the insulating film 2 on the surface of the raw material powder 1 is destroyed by ion bombardment due to electric discharge. At this time, since the raw material powder 1 is heated and pressurized, the raw material powder 1 is
Is sintered. As a result, the amount of energy given to the raw material powder 1 at the time of sintering can be reduced as compared with the conventional sintering method. That is, since sintering can be performed at a low temperature and in a short time, a compact having a fine structure or strain during quenching can be obtained, and the crystal grains of the compact can be reduced. Therefore, the thermal conductivity κ of the solidified thermoelectric cooling material can be reduced, and the figure of merit Z can be improved.

【0020】図2は放電プラズマ焼結装置の一例を示す
模式的断面図である。一方の面に凸部5aを有する1組
のカーボンパンチ5が、その凸部5aを対向させて上下
に配置されており、上部及び下部のカーボンパンチ5の
夫々上方及び下方には、1組のカーボンスペーサ6が配
置されている。また、カーボンパンチ5の凸部5aは角
筒状のカーボンダイ8内に侵入しており、これらの凸部
5a及びカーボンダイ8に囲まれた空間内に、原料粉末
7が挿入されている。なお、カーボンダイ8には、その
厚さの中央部に至る熱電対用穴9が設けられており、こ
の熱電対用穴9に温度センサ10が挿入されている。
FIG. 2 is a schematic sectional view showing an example of a spark plasma sintering apparatus. A pair of carbon punches 5 having a convex portion 5a on one surface are vertically arranged with the convex portions 5a facing each other, and a pair of carbon punches 5 are provided above and below the upper and lower carbon punches 5, respectively. The carbon spacer 6 is arranged. The convex portion 5a of the carbon punch 5 penetrates into the rectangular cylindrical carbon die 8, and the raw material powder 7 is inserted into the space surrounded by the convex portion 5a and the carbon die 8. The carbon die 8 is provided with a thermocouple hole 9 reaching the center of its thickness, and a temperature sensor 10 is inserted into the thermocouple hole 9.

【0021】このように構成された焼結装置において
は、プラズマ発生器(図示せず)等によって原料粉末7
間で放電プラズマを発生させることによって、所望の温
度に加熱すると共に、上下のカーボンパンチ5を相互に
接近移動させ、原料粉末7に圧力を印加する。このよう
に、プラズマ放電を利用することにより、加熱中の加圧
力によって低温及び短時間で原料粉末7を焼結すること
ができる。
In the sintering apparatus constructed as described above, the raw material powder 7 is formed by a plasma generator (not shown) or the like.
By generating discharge plasma between them, the material is heated to a desired temperature, and the upper and lower carbon punches 5 are moved closer to each other to apply pressure to the raw material powder 7. As described above, by utilizing the plasma discharge, the raw material powder 7 can be sintered at a low temperature and in a short time by the pressing force during heating.

【0022】以下、本発明に係る熱電冷却用材料の製造
方法について、更に詳細に説明する。 原料粉末(Bi,Sb,Te,Se)の秤量工程 先ず、原料粉末のBi,Sb,Te又はSeを所定の
(Bi,Sb)2(Te,Se)3の組成になるように秤
量する。 液体急冷法による固化工程 秤量した原料粉末を混合した後、溶解する。そして、こ
れを液体急冷法により固化する。即ち、溶湯を単ロール
法、双ロール法又はArガスを使用するガスアトマイズ
法等で、104乃至106K/秒の速度で急冷し、液体急
冷薄片を作成する。 粉砕工程 上述の如く、液体急冷法により固化した原料を平均粒径
300μm以下の粉体に粉砕する。望ましくは、平均粒
径が5.3μm以下となるように粉砕する。 成形工程 得られた粉末を放電プラズマ焼結法により固化成形す
る。このとき、加圧時間は、例えば、5分とする。ま
た、温度T(℃)及び圧力P(tonf/cm2)は、以下の数
式2及び3を満足するものとする。
Hereinafter, the method for producing a thermoelectric cooling material according to the present invention will be described in more detail. Step of weighing raw material powder (Bi, Sb, Te, Se) First, Bi, Sb, Te or Se of the raw material powder is weighed so as to have a predetermined (Bi, Sb) 2 (Te, Se) 3 composition. Solidification process by liquid quenching method After the weighed raw material powders are mixed, they are dissolved. Then, this is solidified by a liquid quenching method. That is, the molten metal is quenched at a rate of 10 4 to 10 6 K / sec by a single roll method, a twin roll method, a gas atomization method using Ar gas, or the like to produce a liquid quenched flake. Pulverization Step As described above, the raw material solidified by the liquid quenching method is pulverized into powder having an average particle diameter of 300 μm or less. Desirably, pulverization is performed so that the average particle size is 5.3 μm or less. Forming Step The obtained powder is solidified and formed by spark plasma sintering. At this time, the pressurization time is, for example, 5 minutes. Further, the temperature T (° C.) and the pressure P (tonf / cm 2 ) satisfy the following Expressions 2 and 3.

【0023】[0023]

【数2】−(9×(T−150)/500)+3≦P 但し、150≦T≦300の場合である。-(9 × (T−150) / 500) + 3 ≦ P where 150 ≦ T ≦ 300.

【0024】[0024]

【数3】0.3≦P 但し、300<T≦450の場合である。## EQU3 ## 0.3 ≦ P where 300 <T ≦ 450.

【0025】図3は縦軸に放電プラズマ焼結の到達密度
をとり、横軸に焼結温度をとって、種々の焼結圧力にお
ける到達密度と温度との関係を示すグラフ図である。但
し、図3においては、焼結圧力を0.3乃至9(tonf/c
m2)、焼結温度を100乃至500(℃)の範囲で変化
させ、焼結時間は5分としている。図3に示すように、
十分な到達密度を得ることができる放電プラズマ焼結条
件は、限られていることがわかる。即ち、焼結温度を低
くすると、固化成形が不可能であるため到達密度が低く
なる。また、焼結温度を高くすると、固化成形するが、
成分元素が脱離するので、密度が低下する。
FIG. 3 is a graph showing the relationship between the ultimate density and the temperature at various sintering pressures, with the vertical axis representing the ultimate density of spark plasma sintering and the horizontal axis representing the sintering temperature. However, in FIG. 3, the sintering pressure is 0.3 to 9 (tonf / c
m 2 ), the sintering temperature is changed in the range of 100 to 500 (° C.), and the sintering time is 5 minutes. As shown in FIG.
It can be seen that the spark plasma sintering conditions under which a sufficient ultimate density can be obtained are limited. That is, when the sintering temperature is lowered, solidification molding is impossible, so that the ultimate density is reduced. Also, when the sintering temperature is increased, solidification molding is performed.
Since the component elements are eliminated, the density decreases.

【0026】なお、150℃乃至400℃の焼結温度範
囲内では、焼結圧力を上昇させても、到達密度は上昇し
ないが、焼結温度が400℃を超える場合、焼結圧力が
8(tonf/cm2)を超えると、到達密度が低下してしま
う。これは、高温、高圧下の条件では、オーバーシンタ
リング(焼結過剰)となり、成分元素の脱離が促進され
るためであると考えられる。従って、本発明において
は、焼結圧力を8(tonf/cm2)以下とすることが好まし
い。
In the sintering temperature range of 150 ° C. to 400 ° C., the ultimate density does not increase even if the sintering pressure is increased, but when the sintering temperature exceeds 400 ° C., the sintering pressure becomes 8 ( If it exceeds tonf / cm 2 ), the ultimate density will decrease. It is considered that this is because under the conditions of high temperature and high pressure, oversintering (excessive sintering) occurs and the desorption of the component elements is promoted. Therefore, in the present invention, the sintering pressure is preferably 8 (tonf / cm 2 ) or less.

【0027】図4は縦軸に圧力Pをとり、横軸に温度T
をとって、放電プラズマ焼結条件を示すグラフ図であ
る。図4に示すように、本発明においては、斜線の領域
内の条件で放電プラズマ焼結する。
FIG. 4 shows the pressure P on the vertical axis and the temperature T on the horizontal axis.
FIG. 2 is a graph showing the conditions of spark plasma sintering. As shown in FIG. 4, in the present invention, discharge plasma sintering is performed under conditions within the hatched region.

【0028】[0028]

【実施例】以下、本発明に係る製造方法により製造した
熱電冷却用材料の実施例についてその比較例と比較して
具体的に説明する。
EXAMPLES Examples of thermoelectric cooling materials manufactured by the manufacturing method according to the present invention will be specifically described below in comparison with comparative examples.

【0029】先ず、種々の組成を有する熱電冷却用材料
を製造し、これらの実施例及び比較例のサンプルについ
て、平均結晶粒径及び室温における熱伝導率κを測定す
ると共に、性能指数Zを算出した。熱電冷却用材料の組
成を下記表1に示し、焼結方法及びその条件を下記表2
に、測定結果を下記表3に示す。
First, thermoelectric cooling materials having various compositions were manufactured, and the average crystal grain size and the thermal conductivity κ at room temperature were measured for the samples of Examples and Comparative Examples, and the figure of merit Z was calculated. did. The composition of the thermoelectric cooling material is shown in Table 1 below, and the sintering method and conditions are shown in Table 2 below.
Table 3 below shows the measurement results.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】[0032]

【表3】 [Table 3]

【0033】上記表1乃至3に示すように、実施例N
o.1乃至12は、熱伝導率が低くなるので、性能指数
Zは3.5×10-3/K以上と高くなった。例えば、ペ
ルチェモジュール(熱電素子)を得る場合、この素子性
能は主として最大温度差(ΔTmax)と最大吸熱量で
表すことができる。性能指数が3.5×10-3/Kであ
れば、最大温度差は70K以上、最大吸熱量は8W/c
2以上の能力となり、これは室温から10Kの温度差
を付ける場合、現在のモジュールの消費電力を30%削
減することができる。これにより、本発明を各種デバイ
スの冷却温度調節に応用することができる。
As shown in Tables 1 to 3 above, Example N
o. In Nos. 1 to 12, since the thermal conductivity was low, the figure of merit Z was as high as 3.5 × 10 −3 / K or more. For example, when obtaining a Peltier module (thermoelectric element), the element performance can be represented mainly by the maximum temperature difference (ΔTmax) and the maximum heat absorption. If the figure of merit is 3.5 × 10 −3 / K, the maximum temperature difference is 70 K or more and the maximum heat absorption is 8 W / c.
m 2 or more, which can reduce the power consumption of the current module by 30% when a temperature difference of 10 K from room temperature is applied. Thereby, the present invention can be applied to cooling temperature control of various devices.

【0034】一方、比較例No.13は焼結温度が本発
明範囲の下限未満であり、比較例No.15は焼結圧力
が本発明範囲の下限未満であるので、いずれも、固化成
形することができなかった。また、比較例No.14
は、実施例と比較して平均結晶粒径が大きいと共に、焼
結温度が本発明範囲の上限を超えているので、性能指数
Zが低い値となった。
On the other hand, in Comparative Example No. In Comparative Example No. 13, the sintering temperature was lower than the lower limit of the range of the present invention. In No. 15, no sintering pressure was less than the lower limit of the range of the present invention, and none of them could be solidified. Also, in Comparative Example No. 14
Has a large average crystal grain size compared to the examples, and the sintering temperature exceeds the upper limit of the range of the present invention, so that the figure of merit Z is a low value.

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
液体急冷法で得た微細な材料、アモルファス材料又は非
平衡相の材料を、粉砕して粉末粒径を小さくし、これを
更に粗大化が生じないような条件で放電プラズマ焼結し
て固化成形するので、微細な結晶組織を有し、熱伝導率
が低く、性能指数が高い熱電冷却材料を得ることができ
る。
As described above, according to the present invention,
Fine material, amorphous material or non-equilibrium phase material obtained by the liquid quenching method is pulverized to reduce the powder particle size, and solidified by discharge plasma sintering under such conditions that no further coarsening occurs. Therefore, a thermoelectric cooling material having a fine crystal structure, a low thermal conductivity, and a high figure of merit can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 原料粉末周辺のプラズマの状態を示す模式図
である。
FIG. 1 is a schematic diagram showing a state of plasma around a raw material powder.

【図2】 放電プラズマ焼結装置の一例を示す模式的断
面図である。
FIG. 2 is a schematic sectional view showing an example of a spark plasma sintering apparatus.

【図3】 縦軸に放電プラズマ焼結の到達密度をとり、
横軸に焼結温度をとって、種々の焼結圧力における到達
密度と温度との関係を示すグラフ図である。
FIG. 3 shows the ultimate density of spark plasma sintering on the vertical axis,
FIG. 5 is a graph showing the relationship between the ultimate density and the temperature at various sintering pressures, with the sintering temperature taken on the horizontal axis.

【図4】 縦軸に圧力Pをとり、横軸に温度Tをとっ
て、放電プラズマ焼結条件を示すグラフ図である。
FIG. 4 is a graph showing discharge plasma sintering conditions, with the pressure P on the vertical axis and the temperature T on the horizontal axis.

【符号の説明】[Explanation of symbols]

1,7;原料粉末、 2;絶縁膜、 5;カーボンパン
チ、 6;カーボンスペーサ、 8;カーボンダイ、
9;熱電対用穴、 10;温度センサ
1, 7: raw material powder, 2: insulating film, 5: carbon punch, 6: carbon spacer, 8: carbon die,
9; thermocouple hole; 10; temperature sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Bi及びSbからなる群から選択された
1種又は2種と、Te又はSeからなる群から選択され
た1種又は2種とを含有する原料を液体急冷法により薄
膜又は粉末状とし、これを更に粉砕し、これによって得
られた粉末を結晶粒が粗大化しない条件で放電プラズマ
焼結することにより固化成形することを特徴とする熱電
冷却用材料の製造方法。
1. A thin film or powder of a raw material containing one or two selected from the group consisting of Bi and Sb and one or two selected from the group consisting of Te or Se by a liquid quenching method. A method for producing a thermoelectric cooling material, wherein the powder is further pulverized, and the resulting powder is solidified and formed by discharge plasma sintering under conditions where crystal grains are not coarsened.
【請求項2】 Bi及びSbからなる群から選択された
1種又は2種と、Te又はSeからなる群から選択され
た1種又は2種とを含有する原料を液体急冷法により薄
膜又は粉末状とし、これを更に粉砕し、これによって得
られた粉末を、温度をT(℃)、圧力をP(tonf/cm2
とした場合に、150≦T≦300のときに−(9×
(T−150)/500)+3≦Pの条件で、また30
0<T≦450のときに0.3≦Pの条件で放電プラズ
マ焼結することにより固化成形することを特徴とする熱
電冷却用材料の製造方法。
2. A thin film or powder of a raw material containing one or two selected from the group consisting of Bi and Sb and one or two selected from the group consisting of Te or Se by a liquid quenching method. And further pulverized, and the resulting powder was subjected to a temperature of T (° C.) and a pressure of P (tonf / cm 2 ).
, When 150 ≦ T ≦ 300, − (9 ×
(T-150) / 500) + 3 ≦ P, and 30
A method for producing a thermoelectric cooling material, comprising solidifying and forming by spark plasma sintering under the condition of 0.3 ≦ P when 0 <T ≦ 450.
JP19095596A 1996-07-19 1996-07-19 Manufacturing method of thermoelectric cooling material Expired - Fee Related JP3572814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19095596A JP3572814B2 (en) 1996-07-19 1996-07-19 Manufacturing method of thermoelectric cooling material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19095596A JP3572814B2 (en) 1996-07-19 1996-07-19 Manufacturing method of thermoelectric cooling material

Publications (2)

Publication Number Publication Date
JPH1041554A true JPH1041554A (en) 1998-02-13
JP3572814B2 JP3572814B2 (en) 2004-10-06

Family

ID=16266463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19095596A Expired - Fee Related JP3572814B2 (en) 1996-07-19 1996-07-19 Manufacturing method of thermoelectric cooling material

Country Status (1)

Country Link
JP (1) JP3572814B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666841B2 (en) * 2001-08-22 2011-04-06 京セラ株式会社 Method for manufacturing thermoelectric material
WO2014030264A1 (en) 2012-08-21 2014-02-27 Mabuchi Mahito Thermoelectric conversion element including in thermoelectric material space or space in which connection is made such that heat transfer amounts are reduced and working substance flow is equal to or greater than that for original thermoelectric material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555640A (en) * 1991-01-11 1993-03-05 Saamobonitsuku:Kk Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same
JPH05335628A (en) * 1992-05-28 1993-12-17 Chubu Electric Power Co Inc Thermoelectric conversion element
JPH06144825A (en) * 1992-09-21 1994-05-24 Isuzu Motors Ltd Production of thermoelectric element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0555640A (en) * 1991-01-11 1993-03-05 Saamobonitsuku:Kk Manufacture of thermoelectric converter and thermoelectric converter manufactured by the same
JPH05335628A (en) * 1992-05-28 1993-12-17 Chubu Electric Power Co Inc Thermoelectric conversion element
JPH06144825A (en) * 1992-09-21 1994-05-24 Isuzu Motors Ltd Production of thermoelectric element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4666841B2 (en) * 2001-08-22 2011-04-06 京セラ株式会社 Method for manufacturing thermoelectric material
WO2014030264A1 (en) 2012-08-21 2014-02-27 Mabuchi Mahito Thermoelectric conversion element including in thermoelectric material space or space in which connection is made such that heat transfer amounts are reduced and working substance flow is equal to or greater than that for original thermoelectric material

Also Published As

Publication number Publication date
JP3572814B2 (en) 2004-10-06

Similar Documents

Publication Publication Date Title
US20060118161A1 (en) Thermoelectric material having crystal grains well oriented in certain direction and process for producing the same
US5763293A (en) Process of fabricating a thermoelectric module formed of V-VI group compound semiconductor including the steps of rapid cooling and hot pressing
JPH08111546A (en) Thermoelectric material and thermoelectric transducer
JP2002232026A (en) Thermoelectric material, its manufacturing method and peltier module
JP4211318B2 (en) Filled skutterudite-based alloy, method for producing the same, and thermoelectric conversion element
US20020062853A1 (en) Method of manufacturing a thermoelectric element and a thermoelectric module
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
KR20070117270A (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
EP0996174A1 (en) Thermoelectric materials and thermoelectric conversion element
US5981863A (en) Process of manufacturing thermoelectric refrigerator alloy having large figure of merit
US5057161A (en) P-type fe silicide thermoelectric conversion material
JP3572814B2 (en) Manufacturing method of thermoelectric cooling material
JP3572791B2 (en) Manufacturing method of thermoelectric cooling material
JPH06144825A (en) Production of thermoelectric element
JPH10209508A (en) Thermoelectric transducer and its manufacture
JP2004235278A (en) Thermoelectric material and its manufacturing method
JP3979290B2 (en) Thermoelectric material and manufacturing method thereof
JPH10102160A (en) Production of cobalt triantimonide type composite material
JP2003243733A (en) METHOD FOR MANUFACTURING p-TYPE THERMOELECTRIC CONVERSION MATERIAL
JP2000049392A (en) Manufacture of thermoelectric semiconductor material
JP2000036627A (en) Thermoelectric material and thermoelectric transfer element
JP3575332B2 (en) Thermoelectric material and method for manufacturing the same
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
JPH0341780A (en) Manufacture of thermoelectric material
JP2533356B2 (en) Thermoelectric element and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100709

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110709

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120709

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees