KR101172802B1 - fabrication method for Te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials thereby - Google Patents

fabrication method for Te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials thereby Download PDF

Info

Publication number
KR101172802B1
KR101172802B1 KR1020100099418A KR20100099418A KR101172802B1 KR 101172802 B1 KR101172802 B1 KR 101172802B1 KR 1020100099418 A KR1020100099418 A KR 1020100099418A KR 20100099418 A KR20100099418 A KR 20100099418A KR 101172802 B1 KR101172802 B1 KR 101172802B1
Authority
KR
South Korea
Prior art keywords
thermoelectric material
dopant
based thermoelectric
twins
manufacturing
Prior art date
Application number
KR1020100099418A
Other languages
Korean (ko)
Other versions
KR20110079490A (en
Inventor
박수동
오민욱
김봉서
민복기
이희웅
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of KR20110079490A publication Critical patent/KR20110079490A/en
Application granted granted Critical
Publication of KR101172802B1 publication Critical patent/KR101172802B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Powder Metallurgy (AREA)

Abstract

본 발명은 Te계 열전재료의 제조방법에 관한 것으로서, Te계 열전재료 및 이에 첨가되는 도핑재 원료를 조성비에 맞게 각각 칭량하여 진공상태의 앰플에 장입하여 로(furnace)에 넣고 용융시키는 제1단계와; 상기 용융된 원료를 온도만 낮추어 열처리한 후 급냉시켜 잉곳을 제조하는 제2단계와; 상기 잉곳을 파쇄하여 열간 프레스 공정 후 와이어 컷팅하는 제3단계;를 포함하여 이루어지되, 상기 도핑재의 이온반경이 56~143pm인 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법 및 그 열전재료를 기술적 요지로 한다. 이에 의해 Te계 열전재료에 도핑재에 의한 쌍정을 형성하여 큰 제벡계수, 높은 전기전도도, 높은 출력인자, 낮은 열전도도를 가지게 되어 무차원성능지수를 향상시켜 우수한 열전재료가 될 수 있으며, 이는 열전발전 및 열전냉각 분야에서 열전재료로써 널리 사용 될 수 있는 이점이 있다.The present invention relates to a method of manufacturing a Te-based thermoelectric material, the first step of weighing each of the Te-based thermoelectric material and the dopant material added thereto according to the composition ratio, charged into a vacuum ampoule and put into a furnace (furnace) to melt Wow; A second step of manufacturing the ingot by quenching the molten raw material by only lowering the temperature and heat treatment; A third step of cutting the ingot and then cutting the wire after a hot pressing process, wherein the ion radius of the dopant is 56 to 143pm, wherein twins are formed by adding the dopant. The method and its thermoelectric material are the technical points. As a result, a twin dopant is formed on the Te-based thermoelectric material to have a large Seebeck coefficient, high electrical conductivity, high output factor, and low thermal conductivity, thereby improving the dimensionless performance index, thereby making it an excellent thermoelectric material. There is an advantage that can be widely used as a thermoelectric material in the field of power generation and thermoelectric cooling.

Description

도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법 및 그 열전재료{fabrication method for Te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials thereby}Fabrication method for Te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials by

본 발명은 Te계 열전재료의 제조방법에 관한 것으로서, 특히 Te계 열전재료에 도핑재를 첨가하여 일정한 열처리 및 급냉 과정을 거침으로써 Te계 열전재료에 도핑재에 의한 쌍정을 균일하게 형성하여 열전특성을 향상시키기 위한 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법 및 그 열전재료에 관한 것이다.The present invention relates to a method of manufacturing a Te-based thermoelectric material, and in particular, by adding a doping material to the Te-based thermoelectric material and undergoing a constant heat treatment and quenching process, the thermoelectric properties are uniformly formed by the doping material in the Te-based thermoelectric material. The present invention relates to a method of manufacturing a Te-based thermoelectric material in which twins are formed by the addition of a dopant for improving the temperature and a thermoelectric material thereof.

일반적으로, 열전발전 및 열전냉각을 위해 재료로 사용되는 열전재료는 열전특성이 증가할수록 열전소자의 성능이 향상된다. 그 열전성능을 결정하는 것은, 열기전력(V), 제벡 계수(α), 펠티어 계수(π), 톰슨 계수(τ), 네른스트 계수(Q), 에팅스하우젠 계수(P), 전기 전도율(σ), 출력 인자(PF), 성능 지수(Z), 무차원성능지수(ZT=α 2 σT/κ(여기에서, T는 절대온도이다)), 열전도율(κ), 로렌츠수(L), 전기 저항율(ρ) 등의 물성이다.In general, thermoelectric materials used as materials for thermoelectric power generation and thermoelectric cooling have improved performance of thermoelectric devices as thermoelectric properties increase. The thermoelectric performance is determined by the thermoelectric power (V), Seebeck coefficient (α), Peltier coefficient (π), Thomson coefficient (τ), Nernst coefficient (Q), Ettingshausen coefficient (P), and electrical conductivity (σ). ), Output factor (PF), figure of merit (Z), dimensionless performance index (ZT = α 2 σT / κ (where T is absolute temperature)), thermal conductivity (κ), Lorentz number (L), electricity Physical properties such as resistivity (ρ).

특히, 무차원성능지수(ZT)는 열전 변환 에너지 효율을 결정하는 중요한 요소로써, 성능 지수(Z=α 2 σ/κ)의 값이 큰 열전 재료를 사용하여 열전 소자를 제조함으로써, 냉각 및 발전의 효율을 높일 수 있게 된다.In particular, the dimensionless performance index (ZT) is an important factor in determining the thermoelectric conversion energy efficiency, cooling and power generation by manufacturing a thermoelectric element using a thermoelectric material having a large value of the performance index (Z = α 2 σ / κ) It is possible to increase the efficiency of.

현재 상용화된 열전재료는 ZT~1 정도 수준이며, 그 중 AgPbmSbTem+2 합금은 도 1과 같은 결정구조를 가지며, ZT=1.7(at 700K)로 알려져 있어 열전특성이 매우 우수한 편이다. AgPbmSbTem+2 합금은 입방체 결정구조로 납(Pb)과 텔레늄(Te)이 교차하여 배치되고, 은(Ag)과 안티몬(Sb)은 납(Pb)를 치환하여 위치되어 있다.Currently commercialized thermoelectric material is ZT ~ 1 level, of which AgPb m SbTe m + 2 alloy has a crystal structure as shown in Figure 1, ZT = 1.7 (at 700K) is very excellent thermoelectric properties. AgPb m SbTe m + 2 alloy is a cubic crystal structure in which lead (Pb) and telenium (Te) are intersected and silver (Ag) and antimony (Sb) are positioned to replace lead (Pb).

그러나 이와 같이 종래의 열전재료는 열전성능이 그다지 뛰어나지 않아 고정밀을 요하는 분야에서는 그 적용에 한계가 있는 문제점이 있다.However, the conventional thermoelectric material has a problem in that its application is limited in the field requiring high precision because the thermoelectric performance is not so excellent.

본 발명은 상기 문제점을 해결하기 위한 것으로, Te계 열전재료에 도핑재를 첨가하여 일정한 열처리 및 급냉 과정을 거침으로써 Te계 열전재료에 도핑재에 의한 쌍정을 형성하여 열전특성을 향상시키기 위한 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법 및 그 열전재료의 제공을 그 목적으로 한다.The present invention is to solve the above problems, by adding a doping material to the Te-based thermoelectric material through a constant heat treatment and quenching process to form a twin by the doping material in the Te-based thermoelectric material to improve the thermoelectric properties It is an object of the present invention to provide a method for producing a Te-based thermoelectric material in which twins are formed by addition and to provide the thermoelectric material.

상기 목적 달성을 위해 본 발명은, Te계 열전재료 및 이에 첨가되는 도핑재 원료를 조성비에 맞게 각각 칭량하여 진공상태의 앰플에 장입하여 로(furnace)에 넣고 용융시키는 제1단계와; 상기 용융된 원료를 온도만 낮추어 열처리한 후 급냉시켜 잉곳을 제조하는 제2단계와; 상기 잉곳을 파쇄하여 열간 프레스 공정 후 와이어 컷팅하는 제3단계;를 포함하여 이루어지되, 상기 도핑재의 이온반경이 56~143pm인 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법 및 그 열전재료를 기술적 요지로 한다.In order to achieve the above object, the present invention includes a first step of weighing each of the Te-based thermoelectric material and the dopant material added thereto in accordance with the composition ratio, charged in a vacuum ampoule and put into a furnace (furnace); A second step of manufacturing the ingot by quenching the molten raw material by only lowering the temperature and heat treatment; A third step of cutting the ingot and then cutting the wire after a hot pressing process, wherein the ion radius of the dopant is 56 to 143pm, wherein twins are formed by adding the dopant. The method and its thermoelectric material are the technical points.

또한, 상기 Te계 열전재료는, Bi0.5Sb1.5Te3, Bi2Te3, Sb2Te3, Bi2Se3, PbTe, GeTe 및 SnTe 중 어느 하나를 기본조성으로 하는 물질, 또는 이들을 둘 이상 혼합한 혼합물을 사용하는 것이 바람직하다.In addition, the Te-based thermoelectric material, a material based on any one of Bi 0.5 Sb 1.5 Te 3 , Bi 2 Te 3 , Sb 2 Te 3 , Bi 2 Se 3 , PbTe, GeTe, and SnTe, or two or more thereof It is preferable to use the mixed mixture.

또한, 상기 도핑재는, Na, Ca, Cd, La, Ce, Mg, Cr, Co, Ag, Ge, Nb, Mo, Ru, Sn, In, Sr, Eu, Pb 중 어느 하나, 또는 이들을 둘 이상 혼합한 혼합물을 사용하는 것이 바람직하며, 상기 도핑재는 상기 Te계 열전재료에 대해 0.03~1.2 중량부로 첨가되는 것이 바람직하다.In addition, the dopant may be any one of Na, Ca, Cd, La, Ce, Mg, Cr, Co, Ag, Ge, Nb, Mo, Ru, Sn, In, Sr, Eu, Pb, or two or more thereof. It is preferable to use one mixture, and the doping material is preferably added in an amount of 0.03 to 1.2 parts by weight based on the Te-based thermoelectric material.

또한, 상기 제1단계의 용융과정은 900℃ 이상 1000℃ 이하의 온도에서 9시간~12시간 동안 이루어지는 것이 바람직하다.In addition, the melting process of the first step is preferably carried out for 9 hours to 12 hours at a temperature of 900 ℃ or more and 1000 ℃ or less.

또한, 상기 제2단계의 열처리과정은 400℃ 이상 600℃ 이하의 온도에서 0.1시간~500시간 동안 이루어지는 것이 바람직하며, 상기 급냉과정은 냉각속도 0.1℃/초 이상 1000℃/초 이하로 이루어지는 것이 바람직하다.In addition, the heat treatment process of the second step is preferably performed for 0.1 hours to 500 hours at a temperature of 400 ℃ or more and 600 ℃ or less, the quenching process is preferably made of a cooling rate 0.1 ℃ / second or more 1000 ℃ / second or less. Do.

또한, 상기 제3단계의 열간 프레스 과정은 300℃ 이상 500℃ 이하의 온도에서 20분~40분 동안 180~220MPa에서 이루어지는 것이 바람직하다.In addition, the hot pressing process of the third step is preferably performed at 180 ~ 220MPa for 20 to 40 minutes at a temperature of 300 ℃ or more and 500 ℃ or less.

상기 과제 해결 수단에 의해 본 발명은, Te계 열전재료에 도핑재를 첨가하여 쌍정을 형성하여, 큰 제벡계수, 높은 전기전도도, 높은 출력인자, 낮은 열전도도를 가지게 되어 무차원성능지수를 향상시키고, 열전도도가 고온에서도 낮은 열전도도를 나타냄으로서 고온에서의 열전성능이 안정화되어 우수한 열전재료가 될 수 있으며, 이에 의해 열전발전 및 열전냉각 분야에서 열전재료로써 널리 사용 될 수 있는 효과가 있다.According to the above problem solving means, the present invention, by adding a doping material to the Te-based thermoelectric material to form a twin, to have a large Seebeck coefficient, high electrical conductivity, high output factor, low thermal conductivity to improve the dimensionless performance index In addition, since the thermal conductivity shows low thermal conductivity even at high temperature, the thermoelectric performance at high temperature can be stabilized, thereby making it an excellent thermoelectric material, which can be widely used as a thermoelectric material in thermoelectric power generation and thermoelectric cooling.

도 1 - 본 발명의 일실시예에 따라 제조된 Ag doped-Bi0.5Sb1.5Te3 열전재료의 투과전자현미경 사진을 나타낸 도((a)Bi0.5Sb1.5Te3, (b)Ag의 첨가량이 0.2wt%, (c)0.5wt%, (d)1wt%).
도 2 - 본 발명의 일실시예에 따라 제조된 Ag doped-Bi0.5Sb1.5Te3 열전재료의 쌍정에 대한 투과전자현미경 사진을 나타낸 도(Ag의 첨가량이 1wt%인 경우).
도 3 - 본 발명의 일실시예에 따라 제조된 Ag doped-Bi0.5Sb1.5Te3 열전재료의 온도에 따른 제벡계수를 나타낸 도.
도 4 - 본 발명의 일실시예에 따라 제조된 Ag doped-Bi0.5Sb1.5Te3 열전재료의 온도에 따른 전기전도도를 나타낸 도.
도 5 - 본 발명의 일실시예에 따라 제조된 Ag doped-Bi0.5Sb1.5Te3 열전재료의 온도에 따른 출력인자를 나타낸 도.
도 6 - 본 발명의 일실시예에 따라 제조된 Ag doped-Bi0.5Sb1.5Te3 열전재료의 온도에 따른 열전도도를 나타낸 도.
Figure 1-Figure (a) Bi 0.5 Sb 1.5 Te 3 , (b) Ag addition amount showing the transmission electron micrograph of the Ag doped-Bi 0.5 Sb 1.5 Te 3 thermoelectric material prepared according to an embodiment of the present invention 0.2 wt%, (c) 0.5 wt%, (d) 1 wt%).
Figure 2-a diagram showing a transmission electron micrograph of the twin of the Ag doped-Bi 0.5 Sb 1.5 Te 3 thermoelectric material prepared according to an embodiment of the present invention (when the amount of Ag is 1wt%).
Figure 3 shows the Seebeck coefficient with temperature of Ag doped-Bi 0.5 Sb 1.5 Te 3 thermoelectric material prepared according to an embodiment of the present invention.
4-shows the electrical conductivity according to the temperature of the Ag doped-Bi 0.5 Sb 1.5 Te 3 thermoelectric material prepared according to an embodiment of the present invention.
5 is a view showing the output factor according to the temperature of the Ag doped-Bi 0.5 Sb 1.5 Te 3 thermoelectric material prepared according to an embodiment of the present invention.
6 is a diagram showing thermal conductivity according to temperature of Ag doped-Bi 0.5 Sb 1.5 Te 3 thermoelectric material prepared according to an embodiment of the present invention.

본 발명은 열전재료의 열전특성을 향상시키기 위한 제조방법 및 그 열전재료에 관한 것으로서, 열전재료 중에 열전특성이 우수한 것으로 알려진 Te계 열전재료에 불순물로 도핑재를 첨가하여 Te계 열전재료 내부에 불순물에 의한 쌍정을 형성하여 열전특성을 향상시키기 위한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing method for improving the thermoelectric properties of a thermoelectric material and a thermoelectric material thereof, wherein a dopant is added as an impurity to a Te-based thermoelectric material, which is known to have excellent thermoelectric properties. It is to improve the thermoelectric properties by forming twins by.

먼저, 제1단계로 순수한(99.999%) Te계 열전재료 및 도핑재를 각 칭량하여 세척하고, 상기 각 원료들을 조성비에 따라 정밀 저울을 이용하여 칭량하여 준비한다. 그리고, 상기 칭량된 원료들을 석영관 앰플에 장입하고, 앰플 내부 압력을 일정 압력 이하의 진공상태로 만든 후, 아르곤(Ar) 가스를 채워 밀봉시키고, 앰플을 전기로에 넣어 900℃ 이상 1000℃ 이하에서 9시간~12시간 동안 용융시킨다.First, in the first step, pure (99.999%) Te-based thermoelectric materials and doping materials are weighed and washed, and the raw materials are weighed and prepared using a precision balance according to the composition ratio. Then, the weighed raw materials are charged into a quartz tube ampoule, and the internal pressure of the ampoule is vacuumed below a predetermined pressure, and then filled with argon (Ar) gas to be sealed, and the ampoule is placed in an electric furnace at 900 ° C or more and 1000 ° C or less. Melt for 9-12 hours.

여기에서, 상기 Te계 열전재료는, Bi0.5Sb1.5Te3, Bi2Te3, Sb2Te3, Bi2Se3, PbTe, GeTe 및 SnTe의 이들 중 어느 하나, 또는 이들 중 어느 하나를 기본조성으로 하는 물질, 또는 이들을 둘 이상 혼합한 혼합물을 사용하며, 상기 도핑재는 이온화되었을때 이온반경이 56~143pm인 물질을 사용하며, 특히 Na, Ca, Cd, La, Ce, Mg, Cr, Co, Ag, Ge, Nb, Mo, Ru, Sn, In, Sr, Eu, Pb 중 어느 하나, 또는 이들을 둘 이상 혼합한 혼합물을 사용한다. 상기 도핑재는, 상기 Te계 열전재료에 대해 불순물 수준으로 0.03~1.2wt% 첨가되는 것이 바람직하다.Here, the Te-based thermoelectric material is based on any one of these, or any one of Bi 0.5 Sb 1.5 Te 3 , Bi 2 Te 3 , Sb 2 Te 3 , Bi 2 Se 3 , PbTe, GeTe and SnTe A material having a composition, or a mixture of two or more thereof is used, and the doping material uses a material having an ion radius of 56 to 143 pm when ionized, in particular, Na, Ca, Cd, La, Ce, Mg, Cr, Co , Ag, Ge, Nb, Mo, Ru, Sn, In, Sr, Eu, Pb, or a mixture of two or more thereof is used. The doping material is preferably added in an amount of 0.03 ~ 1.2wt% impurity level with respect to the Te-based thermoelectric material.

그리고, 제2단계로 일정 시간 및 온도에서 용융된 원료를 전기로 내부에서 온도만 서서히 낮추어 400℃ 이상 600℃ 이하의 온도에서 0.1시간 내지 500시간 동안 열처리한 후, 급냉시켜 잉곳을 제조한다. 여기에서, 급냉과정은 냉각속도 0.1℃/초 이상 1000℃/초 이하의 속도로 이루어지게 된다.Then, in the second step, only the temperature of the raw material melted at a predetermined time and temperature is gradually lowered in the electric furnace, and heat-treated at a temperature of 400 ° C. or higher and 600 ° C. or lower for 0.1 hour to 500 hours, followed by quenching to prepare an ingot. Here, the quenching process is made at a cooling rate of 0.1 ℃ / second or more 1000 ℃ / second or less.

상기 급냉과정은 용융된 상태의 Te계 물질과 도핑재를 응고하기 직전까지의 온도(Tc)까지 서냉시킨 후, 응고를 시작하는 온도(Tc)에 이르면 Tc에서 상온까지 0.1℃/초 이상 1000℃/초 이하의 속도로 급속 냉각과정을 수행하는 것이다. 상기 급속 냉각과정은 가열된 샘플을 물에 담가 급속하게 냉각시키는 수냉(水冷)법이나 오일, 액체금속(갈륨 등) 또는 가스(헬륨 등) 등을 이용하여 냉각시킨다.The quenching process is slowly cooled to a temperature (Tc) until the solidification of the Te-based material and the dopant in a molten state, and then reaches a temperature (Tc) at which the solidification starts, from 0.1 ° C / sec to 1000 ° C from Tc to room temperature. The rapid cooling process is performed at a speed of less than / second. In the rapid cooling process, the heated sample is cooled by using a water cooling method in which water is rapidly cooled by dipping in water, oil, a liquid metal (gallium, etc.), or a gas (helium, etc.).

여기에서, 상기 제2단계의 열처리 온도에서 서서히 쌍정이 형성되게 되며, 균일한 쌍정이 형성된 Te계 열전재료의 제작을 위해 Tc온도 이상에서 이상에서 열처리 공정이 이루어지게 되며, 그 외의 온도에서는 균일하지 않은 쌍정이 형성된 Te계 열전재료가 제작되게 된다. 이렇게 형성된 Te계 열전재료 내 쌍정은 급냉 과정에서 서로 뭉치거나 또는 특정 위치에서 석출될 수 있는 시간이 부족하므로 균일하게 형성되는 것이다.Here, twins are gradually formed at the heat treatment temperature of the second step, the heat treatment process is performed above the Tc temperature for the production of the Te-based thermoelectric material having a uniform twin is formed, it is not uniform at other temperatures Te-based thermoelectric material is formed without a twin. The twin twins in the Te-based thermoelectric material thus formed are uniformly formed because they lack time to agglomerate or precipitate at a specific location in the quenching process.

그리고, 제3단계로 상기 잉곳을 파쇄하여 열간 프레스 공정 후 와이어 컷팅하여 소정 크기의 열전재료를 제조하게 된다. 상기 열간 프레스 공정은 300℃ 이상 500℃ 이하의 온도에서 20분 내지 40분 동안 180~220MPa에서 이루어지게 된다.In the third step, the ingot is crushed to produce a thermoelectric material having a predetermined size by wire cutting after the hot pressing process. The hot press process is made at 180 ~ 220MPa for 20 to 40 minutes at a temperature of 300 ° C or more and 500 ° C or less.

이와 같이 본 발명은 Te계 열전재료에 도핑재를 첨가하여 열처리 및 냉각과정을 거쳐 Te계 열전재료에 도핑재에 의한 쌍정을 형성하여 열전특성을 향상시키고자 하는 것이다.As described above, the present invention is to improve the thermoelectric properties by adding a dopant to the Te-based thermoelectric material to form twins by the dopant in the Te-based thermoelectric material through heat treatment and cooling process.

여기에서 상기 도핑재는 상술한 바와 같이 이온반경이 56~143pm인 물질을 사용하며, 이러한 물질로써 Ca, Cd, La, Ce, Mg, Cr, Co, Ag, Ge, Nb, Mo, Ru, Sn, In, Sr, Eu, Pb 중 어느 하나, 또는 이들을 둘 이상 혼합한 혼합물을 사용한다. 이러한 물질은 원자의 이온화 정도에 따라 이온 반경의 차이가 매우 큰 특징을 가지고 있고, 이러한 물질이 Te계 열전재료에 첨가될 때 이온 반경의 큰 차이로 인에 생기는 응력을 해소하기 위해 쌍정이 쉽게 형성되게 된다.Herein, the doping material uses a material having an ion radius of 56 to 143 pm as described above, and as such a material, Ca, Cd, La, Ce, Mg, Cr, Co, Ag, Ge, Nb, Mo, Ru, Sn, In, Sr, Eu, Pb, or a mixture of two or more thereof is used. These materials have a very large difference in ion radius according to the degree of ionization of atoms, and twins are easily formed to solve stress caused by phosphorus due to large difference in ion radius when these materials are added to Te-based thermoelectric materials. Will be.

여기에서 쌍정이라 함은 열전재료 내에 생기는 결함의 한 종류로서 쌍정 경계면을 중심으로 양쪽의 미세조직 및 결정구조가 선대칭을 형성하고 있는 것을 말하며, 이와 같이 열전재료 내에 쌍정이 형성되게 되면, 쌍정 경계 면에서 산란이 발생하여 열전도도가 감소하게 되는 이유로 열전특성이 향상되게 된다.Here, twin is a kind of defect occurring in the thermoelectric material, which means that both microstructures and crystal structures form linear symmetry around the twin interface, and when twins are formed in the thermoelectric material, the twin boundary surface is formed. The scattering occurs in the thermal conductivity is reduced because of the thermal conductivity is improved.

다음 표 1은 Te계 열전재료 중 Bi0.5Sb1.5Te3를 이루는 물질 및 도핑재로 사용되는 물질에 대한 이온화 반경을 나타낸 것이다.Table 1 below shows ionization radii for materials forming Bi 0.5 Sb 1.5 Te 3 and materials used as doping materials among Te-based thermoelectric materials.

Bi3+ Bi 3+ 103pm103pm Na+ Na + 102pm102pm Mg2+ Mg 2+ 72pm72pm Sr2+ Sr 2+ 118pm118pm Sb3+ Sb 3+ 76pm76pm Ca2+ Ca 2+ 100pm100pm Cr2+ Cr 2+ 73pm73pm Cd1+ Cd 1+ 115pm115pm Te2- Te 2- 221pm221pm Cd2+ Cd 2+ 95pm95pm Co2+ Co 2+ 74.5pm74.5pm Sn2+ Sn 2+ 112pm112pm La3+ La 3+ 103.2pm103.2pm Ge2+ Ge 2+ 73pm73pm Eu2+ Eu 2+ 117pm117pm Ce3+ Ce 3+ 102pm102pm Nb3+ Nb 3+ 72pm72pm Pb2+ Pb 2+ 119pm119pm Mo3+ Mo 3+ 69pm69pm Ag+ Ag + 115pm115pm Ru3+ Ru 3+ 68pm68pm Sn4+ Sn 4+ 69pm69pm In3+ In 3+ 80pm80pm Ag3+ Ag 3+ 75pm75pm

상기 도핑재 중에 Ag를 예로 들어 설명하면, Ag가 열전재료 Bi0.5Sb1.5Te3에 도핑재로 첨가되게 되면, 첫번째, Ag3+가 Bi3+와 치환하여 Te2+ 위치에 존재함으로서 전하인 홀 농도를 증가시키고, 이온반경 차(Ag3+는 이온반경이 75pm, Bi3+는 이온반경이 103pm)에 의한 결정변형을 유도하여 쌍정을 형성시키게 되거나, 두번째, 첨가된 Ag가 Te로 결합하여 재료 내부에 Te 농도를 낮추고 이것으로 인해 기본 결정에서 Te 원자의 위치에 Bi3+ 이온이 치환하여 존재하는 Antisite 결함 농도를 증가시킴으로써 쌍정을 형성시키게 된다.When Ag is described as an example of the dopant, when Ag is added to the thermoelectric material Bi 0.5 Sb 1.5 Te 3 as a dopant, first, Ag 3+ is substituted with Bi 3+ and is present in the Te 2+ position, which is a charge. Increasing the hole concentration and inducing the crystal deformation by the ion radius difference (Ag 3+ is 75pm, Bi 3+ is 103pm), or twins are formed to form twins This results in twin formation by lowering the concentration of Te in the material and increasing the concentration of Antisite defects by replacing Bi 3+ ions at the Te atoms in the base crystal.

상기 표 1에서 ②칸은 위의 첫번째 이유로 쌍정을 형성시킬 수 있는 물질로써, Bi3+와 이온반경 차가 큰 물질이면서, Sb3+의 이온반경과 유사한 물질을 나타낸 것이고, ① 및 ③ 칸은 위의 두번째 이유로 쌍정을 형성시킬 수 있는 물질로써, Te와 결합하여 Te 농도를 낮추고 Te 원자의 위치에 Bi3+ 이온이 치환되어 쌍정이 형성되므로, Bi3+ 이온과 이온반경이 유사한 물질을 나타낸 것이다. 이는 Ag를 기준으로 하여 Ag가 이온화에 따라 변동될 수 있는 이온반경 크기인 75~115pm을 기준으로 하여 이들의 25% 내외를 치환가능 물질로 볼 때 56~143pm의 이온반경을 갖는 물질을 사용하면, 앞서의 이온반경 차 또는 Antisite 결함 농도에 의해 쌍정이 형성될 수 있는 것이다. 즉, 56~143pm의 이온반경을 갖는 물질을 도핑재로 사용하는 경우 쌍정이 형성시키게 된다.② in Table 1 is a material capable of forming twins for the first reason, Bi 3 + and a large difference in the ionic radius, and shows a material similar to the ionic radius of Sb 3 + , ① and ③ are shown above. As a second reason for the formation of twins, the combination of Te lowers the concentration of Te and Bi 3+ ions are replaced by the substitution of Bi 3+ ions in the position of the twin, forming a material similar to the Bi 3+ ions, indicating a material similar to the ion radius . This is based on 75-115pm, which is an ion radius size in which Ag can vary with ionization, based on Ag, and a material having an ion radius of 56 to 143pm is considered as a substitutable material. Twins can be formed by the difference in the ion radius or the concentration of the antisite defect. That is, twinning is formed when a material having an ion radius of 56 to 143 pm is used as the doping material.

따라서, 본 발명에 따른 Te계 열전재료에 도핑재를 첨가하여 일정 온도 및 시간에서 열처리 및 급냉과정을 거침으로써, Te계 열전재료에 도핑재에 의한 쌍정을 형성시킴으로써 전체적으로 열전재료의 무차원성능지수를 향상시켜 열전특성 또한 향상시키게 되는 것이다.
Therefore, by adding a dopant to the Te-based thermoelectric material according to the present invention undergoes a heat treatment and quenching process at a predetermined temperature and time, forming a twin by the dopant in the Te-based thermoelectric material as a whole, the dimensionless performance index of the thermoelectric material as a whole By improving the thermoelectric properties will also be improved.

이하에서는 본 발명의 바람직한 실시예를 설명하고자 한다.Hereinafter, preferred embodiments of the present invention will be described.

99.999% 이상의 고순도 Te계 열전재료로 Bi0.5Sb1.5Te3, 도핑재로 Ag를 염산, 질산, 아세톤, 에탄올 등을 이용하여 세척한 후, 조성에 맞게 정밀 저울을 이용하여 각 원료들을 칭량하여 준비한다. 여기에서 도핑재로 Ag는 Te계 열전재료 Bi0.5Sb1.5Te3에 대해 0.05wt%, 0.1wt%, 0.2wt%, 0.5wt%, 1.0wt%로 각각 첨가하여 Ag를 첨가하지 않은 Bi0.5Sb1.5Te3와 비교 실험을 하고자 한다.High purity Te-based thermoelectric material of 99.999% or more, Bi 0.5 Sb 1.5 Te 3 , Ag with dopant, washed with hydrochloric acid, nitric acid, acetone, ethanol, etc., and then weighing each raw material using a precision balance according to the composition do. Here, a dopant material is Ag Te based thermoelectric material Bi 0.5 Sb 1.5 Te 3 to 0.05wt%, 0.1wt%, 0.2wt% , 0.5wt%, was not added to the Ag were added to 1.0wt% Bi 0.5 Sb for 1.5 Te 3 will be compared.

그리고, 상기 칭량된 원료들을 석영관 앰플에 장입하고, 앰플 내부 압력이 10-5Torr 수준이 되도록 한다. 10-5Torr의 진공상태가 되며, 아르곤(Ar) 가스를 채워 밀봉한다. 밀봉된 앰플을 로(furnace)에 넣고 960℃ 정도에서 10시간 동안 용융시킨 후, 용융된 상태의 로 내에서 서서히 냉각하여 온도를 550℃까지 낮추고, 이 온도에서 열처리를 10시간 동안 수행한다. 이 과정에서 Te계 열전재료에 상기 Ag 도핑재에 의한 쌍정이 형성되게 된다. 그 후, 상온까지 100℃/초로 수냉으로 급속 냉각을 수행하여, 균일한 쌍정 외에 다른 상이 생성되지 않도록 한다.Then, the weighed raw material is charged into a quartz tube ampoule, and the pressure inside the ampoule is 10 -5 Torr. It becomes a vacuum state of 10 -5 Torr and is filled with argon (Ar) gas. The sealed ampoule was put into a furnace and melted at about 960 ° C. for 10 hours, and then cooled slowly in the molten furnace to lower the temperature to 550 ° C., and heat treatment was performed at this temperature for 10 hours. In this process, twins are formed by the Ag dopant in the Te-based thermoelectric material. Thereafter, rapid cooling is performed by water cooling at 100 ° C./sec to room temperature, so that no other phase is produced except for a uniform twin.

그리고, 상기 급속 냉각을 통해 형성된 잉곳을 파쇄하여 400℃의 온도에서 30분 동안 200MPa의 압력으로 열간 프레스 공정 후 와이어 컷팅하여 소정 크기의 열전재료를 제조하게 된다.Then, the ingot formed through the rapid cooling is crushed to produce a thermoelectric material having a predetermined size by wire cutting after a hot press process at a pressure of 200 MPa for 30 minutes at a temperature of 400 ° C.

이와 같이 Ag 도핑재에 의한 쌍정이 형성된 Bi0.5Sb1.5Te3 열전재료를 투과전자현미경(TEM)으로 관찰하면 도 1 및 도 2와 같이 나노구조의 쌍정이 형성된 것을 확인할 수 있었다. 도 2에 도시된 바와 같이, 쌍정 경계면을 중심으로 양쪽의 미세조직 및 결정구조가 선대칭을 형성하고 있는 것을 관찰할 수 있었다. 이와 같이 열전재료 내에 쌍정이 형성되게 되면, 쌍정 경계면에서 산란이 발생하여 열전도도가 감소하게 되는 이유로 열전특성이 향상되게 된다.As described above, when the Bi 0.5 Sb 1.5 Te 3 thermoelectric material having twins formed by Ag doping material was observed with a transmission electron microscope (TEM), twins of nanostructures were formed as shown in FIGS. 1 and 2. As shown in FIG. 2, it was observed that both microstructures and crystal structures form line symmetry around the twin interface. When twins are formed in the thermoelectric material as described above, the thermoelectric properties are improved because scattering occurs at the twin interface and thermal conductivity is reduced.

도 3은 이와 같이 제조된 쌍정이 형성된 Bi0.5Sb1.5Te3 열전재료의 온도에 따른 제벡계수를 나타낸 것이고, 도 4는 전기전도도, 도 5는 출력인자, 도 6은 열전도도를 나타낸 것이다. 도시된 바와 같이 도핑재로 Ag를 첨가한 경우가 Ag를 첨가하지 않은 것에 비해 모든 열전 특성이 우수함을 확인할 수 있었다. 즉, 제벡계수, 전기전도도, 출력인자의 증가, 열전도도의 전반적인 감소 경향에 의해 무차원성능지수(ZT=α 2 σT/κ)가 Ag를 첨가한 경우가 높게 나타났다. 특히 열전도도는 측정온도가 보다 높아짐에도 낮은 열전도도를 그대로 유지하여 열전성능이 고온에서도 안정함으로 나타낸다3 shows the Seebeck coefficient according to the temperature of the Bi 0.5 Sb 1.5 Te 3 thermoelectric material prepared as described above, FIG. 4 is an electrical conductivity, FIG. 5 is an output factor, and FIG. 6 is a thermal conductivity. As shown, when the Ag was added as the dopant, it was confirmed that all the thermoelectric properties were superior to the Ag was not added. That is, the ZD = α 2 σ T / κ Ag added due to the tendency of Seebeck coefficient, electrical conductivity, output factor increase, the overall decrease in thermal conductivity. In particular, the thermal conductivity shows that the thermal performance is stable even at high temperature by maintaining the low thermal conductivity even though the measured temperature is higher.

이와 같이, 본 발명에 따라 Te계 열전재료에 도핑재를 첨가하고, 일정한 열처리 및 급냉 과정을 거침으로써 Te계 열전재료에 도핑재에 의한 쌍정의 균일한 형성에 의해 무차원성능지수(ZT=α 2 σT/κ)가 향상되며 열전도도가 고온에서도 낮은 열전도도를 나타냄으로서 고온에서의 열전성능을 안정화시키는 효과를 유발시킴으로서 본 소재가 열전발전 및 열전냉각 분야에서 열전재료로써 널리 활용될 것으로 기대된다.Thus, by adding a dopant to the Te-based thermoelectric material according to the present invention and undergoing a constant heat treatment and quenching process, the dimensionless performance index (ZT = α) by uniform formation of twins by the dopant in the Te-based thermoelectric material 2 σT / κ) is improved and the thermal conductivity is low, even at high temperature, which induces the effect of stabilizing the thermoelectric performance at high temperature. Therefore, this material is expected to be widely used as a thermoelectric material in the field of thermoelectric power generation and thermoelectric cooling. .

Claims (11)

Te계 열전재료 및 이에 첨가되는 도핑재 원료를 조성비에 맞게 각각 칭량하여 진공상태의 앰플에 장입하여 로(furnace)에 넣고 용융시키는 제1단계와; 상기 용융된 원료를 온도만 낮추어 열처리한 후 급냉시켜 잉곳을 제조하는 제2단계와; 상기 잉곳을 파쇄하여 열간 프레스 공정 후 와이어 컷팅하는 제3단계;를 포함하여 이루어지되,
상기 도핑재의 이온반경이 56~143pm인 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법.
A first step of weighing each of the Te-based thermoelectric material and the dopant material added thereto according to the composition ratio, charging the Te-based thermoelectric material and the dopant raw material into a vacuum ampoule and placing the same in a furnace; A second step of manufacturing the ingot by quenching the molten raw material by only lowering the temperature and heat treatment; And a third step of cutting the ingot and cutting the wire after a hot pressing process.
A method of manufacturing a TE-based thermoelectric material having twins formed by adding a dopant, characterized in that the ion radius of the dopant is 56 to 143pm.
제 1항에 있어서, 상기 Te계 열전재료는,
Bi0.5Sb1.5Te3, Bi2Te3, Sb2Te3, Bi2Se3, PbTe, GeTe 및 SnTe 중 어느 하나를 기본조성으로 하는 물질, 또는 이들을 둘 이상 혼합한 혼합물을 사용하는 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법.
The method of claim 1, wherein the Te-based thermoelectric material,
Bi 0.5 Sb 1.5 Te 3 , Bi 2 Te 3 , Sb 2 Te 3 , Bi 2 Se 3 , PbTe, GeTe and SnTe base material, or a mixture of two or more thereof A method of manufacturing a TE-based thermoelectric material in which twins are formed by addition of a doping material.
제 1항 또는 제 2항에 있어서, 상기 도핑재는,
Na, Ca, Cd, La, Ce, Mg, Cr, Co, Ag, Ge, Nb, Mo, Ru, Sn, In, Sr, Eu, Pb 중 어느 하나, 또는 이들을 둘 이상 혼합한 혼합물을 사용하는 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법.
The method of claim 1 or 2, wherein the doping material,
Using any one of Na, Ca, Cd, La, Ce, Mg, Cr, Co, Ag, Ge, Nb, Mo, Ru, Sn, In, Sr, Eu, Pb, or a mixture of two or more thereof A method of manufacturing a TE-based thermoelectric material in which twins are formed by adding a dopant.
제 3항에 있어서, 상기 도핑재는,
상기 Te계 열전재료에 대해 0.03~1.2 중량부로 첨가되는 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법.
The method of claim 3, wherein the doping material,
Method of manufacturing a TE-based thermoelectric material having twins formed by the addition of the dopant, characterized in that added to the Te-based thermoelectric material 0.03 ~ 1.2 parts by weight.
제 1항 또는 제 2항에 있어서, 제1단계의 용융과정은 900℃ 이상 1000℃ 이하의 온도에서 9시간~12시간 동안 이루어지는 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법.The method of claim 1 or 2, wherein the melting process of the first step of the TE-type thermoelectric material with twins formed by the doping material, characterized in that for 9 hours to 12 hours at a temperature of 900 ℃ or more than 1000 ℃. Manufacturing method. 제 1항 또는 제 2항에 있어서, 상기 제2단계의 열처리과정은 400℃ 이상 600℃ 이하의 온도에서 0.1시간~500시간 동안 이루어지는 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법.3. The TE-based thermoelectric material of claim 1 or 2, wherein the heat treatment of the second step is performed for 0.1 hours to 500 hours at a temperature of 400 ° C or more and 600 ° C or less. Manufacturing method. 제 1항 또는 제 2항에 있어서, 상기 제2단계의 급냉과정은 냉각속도 0.1℃/초 이상 1000℃/초 이하로 이루어지는 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법.According to claim 1 or claim 2, wherein the quenching process of the second step of the twin-type thermoelectric material is prepared by the doping material added, characterized in that the cooling rate is 0.1 ℃ / second or more to 1000 ℃ / second or less Way. 제 1항 또는 제 2항에 있어서, 상기 제3단계의 열간 프레스 과정은 300℃ 이상 500℃ 이하의 온도에서 20분~40분 동안 180~220MPa에서 이루어지는 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법.According to claim 1 or claim 2, wherein the hot pressing process of the third step is twinned by the addition of the doping material, characterized in that it is carried out at 180 ~ 220MPa for 20 to 40 minutes at a temperature of 300 ℃ to 500 ℃ Method of manufacturing the formed TE-based thermoelectric material. Te계 열전재료에 이온반경이 56~143pm인 도핑재를 첨가하여 제조된 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료.TE-type thermoelectric material having twins formed by adding a dopant, characterized in that the Te-based thermoelectric material is prepared by adding a dopant having an ion radius of 56 ~ 143pm. 제 9항에 있어서, 상기 Te계 열전재료는,
Bi0.5Sb1.5Te3, Bi2Te3, Sb2Te3, Bi2Se3, PbTe, GeTe 및 SnTe 중 어느 하나를 기본조성으로 하는 물질, 또는 이들을 둘 이상 혼합한 혼합물을 사용하는 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료.
10. The method of claim 9, wherein the Te-based thermoelectric material,
Bi 0.5 Sb 1.5 Te 3 , Bi 2 Te 3 , Sb 2 Te 3 , Bi 2 Se 3 , PbTe, GeTe and SnTe base material, or a mixture of two or more thereof TE-type thermoelectric material in which twins are formed by addition of a dopant.
제 9항에 있어서, 상기 도핑재는,
Na, Ca, Cd, La, Ce, Mg, Cr, Co, Ag, Ge, Nb, Mo, Ru, Sn, In, Sr, Eu, Pb 중 어느 하나, 또는 이들을 둘 이상 혼합한 혼합물을 사용하는 것을 특징으로 하는 도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료.
The method of claim 9, wherein the doping material,
Using any one of Na, Ca, Cd, La, Ce, Mg, Cr, Co, Ag, Ge, Nb, Mo, Ru, Sn, In, Sr, Eu, Pb, or a mixture of two or more thereof TE-type thermoelectric material in which twins are formed by addition of a doping material.
KR1020100099418A 2009-12-31 2010-10-12 fabrication method for Te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials thereby KR101172802B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090135099 2009-12-31
KR1020090135099 2009-12-31

Publications (2)

Publication Number Publication Date
KR20110079490A KR20110079490A (en) 2011-07-07
KR101172802B1 true KR101172802B1 (en) 2012-08-09

Family

ID=44918857

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100099418A KR101172802B1 (en) 2009-12-31 2010-10-12 fabrication method for Te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials thereby

Country Status (1)

Country Link
KR (1) KR101172802B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323319B1 (en) 2012-01-09 2013-10-29 한국전기연구원 The manufacturing process of Bi-Te-Se thermoelectric materials doped with silver
KR101528589B1 (en) * 2013-06-10 2015-06-16 연세대학교 산학협력단 Method of manufacturing thermoelectric material and thermoelectric material prepared by the method and thermoelectric generator
CN108886080A (en) * 2016-03-31 2018-11-23 住友化学株式会社 The manufacturing method of compound, thermo-electric converting material and compound
US11171277B2 (en) 2016-03-31 2021-11-09 Sumitomo Chemical Company, Limited Compound and thermoelectric conversion material
US11276809B2 (en) 2016-10-31 2022-03-15 Lg Chem, Ltd. Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
US11358864B2 (en) 2017-06-30 2022-06-14 Lg Chem, Ltd. Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296813B1 (en) * 2011-12-30 2013-08-14 한국전기연구원 The manufacturing process of embedded nano-dot on Rare earth doped AgSbTe₂matrix in thermoelectric materials
KR101323320B1 (en) * 2012-02-10 2013-10-29 한국전기연구원 GeTe thermoelectric material doped with Ag and Sb and manufacturing method thereby
KR102146022B1 (en) * 2012-10-12 2020-08-28 엘지이노텍 주식회사 Thermoelectric materials and method for manufacturing the same
US9444025B2 (en) 2013-06-10 2016-09-13 Industry-Academic Cooperation Foundation, Yonsei University Method of manufacturing thermoelectric material and thermoelectric material prepared by the method and thermoelectric generator
JP5820550B2 (en) 2013-07-22 2015-11-24 パナソニック株式会社 (Zr, Hf) 3Ni3Sb4 n-type thermoelectric conversion material
KR101531011B1 (en) * 2013-11-27 2015-06-25 한국전기연구원 PbTe thermoelectric material doped with Na and Ag and manufacturing method thereby
KR101631858B1 (en) 2014-06-24 2016-06-20 한국전기연구원 Thermoelectric telluride materials formed complex-crystalline structure by interstitial doping
KR102242915B1 (en) * 2014-12-24 2021-04-20 한국전기연구원 Method for manufacturing a thermoelectric material having a uniform thermal conductive properties
KR102198207B1 (en) 2015-06-12 2021-01-04 한국전기연구원 Thermoelectric telluride materials formed complex-crystalline structure by interstitial doping
KR101968581B1 (en) * 2016-05-13 2019-04-12 티엠에스테크 주식회사 Method for manufacturing semiconductor of thermoelectric module, semiconductor of thermoelectric module and thermoelectric modulef using the same
KR102573731B1 (en) * 2018-08-24 2023-08-31 주식회사 엘지화학 Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269560A (en) 1999-03-15 2000-09-29 Toshiba Corp Composite oxide aggregate, manufacture thereof and thermoelectric conversion element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000269560A (en) 1999-03-15 2000-09-29 Toshiba Corp Composite oxide aggregate, manufacture thereof and thermoelectric conversion element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101323319B1 (en) 2012-01-09 2013-10-29 한국전기연구원 The manufacturing process of Bi-Te-Se thermoelectric materials doped with silver
KR101528589B1 (en) * 2013-06-10 2015-06-16 연세대학교 산학협력단 Method of manufacturing thermoelectric material and thermoelectric material prepared by the method and thermoelectric generator
CN108886080A (en) * 2016-03-31 2018-11-23 住友化学株式会社 The manufacturing method of compound, thermo-electric converting material and compound
US11171277B2 (en) 2016-03-31 2021-11-09 Sumitomo Chemical Company, Limited Compound and thermoelectric conversion material
CN108886080B (en) * 2016-03-31 2022-04-05 住友化学株式会社 Compound, thermoelectric conversion material, and method for producing compound
US11276809B2 (en) 2016-10-31 2022-03-15 Lg Chem, Ltd. Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
US11358864B2 (en) 2017-06-30 2022-06-14 Lg Chem, Ltd. Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same

Also Published As

Publication number Publication date
KR20110079490A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
KR101172802B1 (en) fabrication method for Te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials thereby
CN111848165B (en) P-type bismuth telluride thermoelectric material and preparation method thereof
KR101417968B1 (en) PbTe thermoelectric material doped with Na and Ag and manufacturing method thereby
KR20130078478A (en) Fabrication method for te-based thermoelectric materials containing twins formed by addition of dopant and nano particle sintering
CN101217178B (en) A preparation method for antimonide molybdenum base thermoelectric material
KR101323319B1 (en) The manufacturing process of Bi-Te-Se thermoelectric materials doped with silver
KR101072299B1 (en) fabrication method for La doped AgSbTe2 thermoelectric materials and the thermoelectric materials thereby
KR101264311B1 (en) fabrication method of thermoelectric materials containing nano-dot made by external generation and inclusion
KR101323320B1 (en) GeTe thermoelectric material doped with Ag and Sb and manufacturing method thereby
JP2847123B2 (en) Manufacturing method of thermoelectric material
KR101631858B1 (en) Thermoelectric telluride materials formed complex-crystalline structure by interstitial doping
KR101104386B1 (en) fabrication method for Zn4Sb3 thermoelectric materials
KR102198207B1 (en) Thermoelectric telluride materials formed complex-crystalline structure by interstitial doping
KR101417965B1 (en) GeTe thermoelectric material doped with Ag and Sb and La and manufacturing method thereby
KR102123041B1 (en) Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
TWI417248B (en) Thermoelectric material, method for fabricating the same, and thermoelectric module employing the same
KR102121434B1 (en) Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same
KR101323321B1 (en) MnTe thermoelectric material doped with Sb and manufacturing method thereby
KR101147230B1 (en) fabrication method for rare earth element added AgSbTe2 thermoelectric materials and the thermoelectric materials thereby
KR101296813B1 (en) The manufacturing process of embedded nano-dot on Rare earth doped AgSbTe₂matrix in thermoelectric materials
KR101367719B1 (en) Three-elements thermoelectric materials and fabrication method for the same
KR101531011B1 (en) PbTe thermoelectric material doped with Na and Ag and manufacturing method thereby
KR101952358B1 (en) The thermoelectric device having improved thermoelectric characteristics
KR20120111133A (en) Gete thermoelectric material doped sb and manufacturing method thereby
CN114477104B (en) (Sb 2 Te 3 ) n (GeTe) m Thermoelectric material and method for producing same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160801

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20170801

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20180802

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190730

Year of fee payment: 8