KR101323319B1 - The manufacturing process of Bi-Te-Se thermoelectric materials doped with silver - Google Patents

The manufacturing process of Bi-Te-Se thermoelectric materials doped with silver Download PDF

Info

Publication number
KR101323319B1
KR101323319B1 KR1020120002425A KR20120002425A KR101323319B1 KR 101323319 B1 KR101323319 B1 KR 101323319B1 KR 1020120002425 A KR1020120002425 A KR 1020120002425A KR 20120002425 A KR20120002425 A KR 20120002425A KR 101323319 B1 KR101323319 B1 KR 101323319B1
Authority
KR
South Korea
Prior art keywords
thermoelectric
added
thermoelectric material
silver
doping
Prior art date
Application number
KR1020120002425A
Other languages
Korean (ko)
Other versions
KR20130081444A (en
Inventor
오민욱
이희웅
김봉서
박수동
민복기
손지희
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Priority to KR1020120002425A priority Critical patent/KR101323319B1/en
Publication of KR20130081444A publication Critical patent/KR20130081444A/en
Application granted granted Critical
Publication of KR101323319B1 publication Critical patent/KR101323319B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/853Thermoelectric active materials comprising inorganic compositions comprising arsenic, antimony or bismuth

Abstract

본 발명은 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법에 관한 것으로, Bi-Te-Se계 열전재료에 은 원소를 도핑재로 첨가하고, 진공상태의 앰플에 장입하여 용융시키는 제1단계와; 상기 용융된 원료를 급냉시켜 잉곳을 제조하는 제2단계와; 상기 잉곳을 파쇄하여 도핑재가 첨가된 열전재료분말을 제조하는 제3단계와; 상기 도핑재가 첨가된 열전재료 분말을 열간 프레스 하는 제4단계와; 상기 제4단계를 거친 도핑재가 첨가된 열전재료를 컷팅시키는 제5단계;를 포함하여 구성되는 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법을 기술적 요지로 한다. 이에 따라, Bi-Te-Se계 열전 재료에 은 원소를 도핑재로 첨가하여 소정의 급냉 및 소결 과정 그리고 열처리를 거침으로써 그 열전특성이 향상되는 이점이 있다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a bismuth-telelium-selenium-based thermoelectric material to which silver is added, wherein a silver element is added to a Bi-Te-Se-based thermoelectric material as a dopant, and charged into a vacuum ampoule to melt. Step 1; A second step of rapidly cooling the molten raw material to produce an ingot; Crushing the ingot to prepare a thermoelectric material powder to which a doping material is added; Thermoelectric material to which the doping material is added A fourth step of hot pressing the powder; The manufacturing method of the bismuth-telelium-selenium-type thermoelectric material to which silver is comprised including the 5th step which cuts the thermoelectric material to which the doping material which passed the said 4th step was added is a technical subject matter. Accordingly, there is an advantage in that the thermoelectric properties are improved by adding a silver element to the Bi-Te-Se-based thermoelectric material as a doping material and undergoing a quenching and sintering process and heat treatment.

Description

은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법{The manufacturing process of Bi-Te-Se thermoelectric materials doped with silver}Manufacturing method of Bi-Te-Se thermoelectric materials doped with silver

본 발명은 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법에 관한 것으로, 더욱 상세하게는, Bi-Te-Se계 열전 재료에 은 원소를 도핑재로 첨가하여 소정의 급냉 및 소결 과정 그리고 열처리를 거침으로써 그 열전특성을 향상시키기 위한 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법에 관한 것이다. The present invention relates to a method for manufacturing a bismuth-telelium-selenium-based thermoelectric material to which silver is added, and more particularly, a predetermined quenching and sintering process by adding a silver element as a dopant to a Bi-Te-Se-based thermoelectric material. In addition, the present invention relates to a method for producing a bismuth-telelium-selenium-based thermoelectric material to which silver is added to improve the thermoelectric properties by heat treatment.

일반적으로, 열전기술은 열에너지를 전기에너지로, 반대로 전기에너지를 열에너지로 고체 상태에서 직접 변환하는 기술로서, 열에너지를 전기에너지로 변환하는 열전발전 및 전기에너지를 열에너지로 변환하는 열전냉각 분야에 응용되고 있다.Generally, thermoelectric technology is a technology to convert heat energy directly into electric energy, and conversely to convert electric energy into heat energy directly in solid state. It is applied to thermoelectric power generation which converts heat energy into electric energy and thermoelectric cooling which converts electric energy into heat energy have.

이러한, 열전발전 및 열전냉각 열전냉각을 위해 재료로 사용되는 열전재료는 열전특성이 증가할수록 열전소자의 성능이 향상된다. 그 열전성능을 결정하는 것은, 열기전력(V), 제벡 계수(α), 펠티어 계수(π), 톰슨 계수(τ), 네른스트 계수(Q), 에팅스하우젠 계수(P), 전기 전도율(σ), 출력 인자(PF), 성능 지수(Z), 무차원성능지수(ZT=α 2 σT/κ(여기에서, T는 절대온도이다)), 열전도율(κ), 로렌츠수(L), 전기 저항율(ρ) 등의 물성이다.The thermoelectric material used as the material for thermoelectric power generation and thermoelectric cooling thermoelectric cooling improves the performance of the thermoelectric element as the thermoelectric properties increase. The determination of the thermoelectric performance is based on the assumption that the thermoelectric performance is determined based on the thermoelectric power V, the Seebeck coefficient?, The Peltier coefficient?, The Thomson coefficient?, The Nernst coefficient Q, the Etchinghausen coefficient P, ), The output factor (PF), the figure of merit (Z), the dimensionless figure of merit (ZT = α 2 σT / κ where T is the absolute temperature), thermal conductivity (κ), Lorentz number And resistivity (rho).

특히, 무차원성능지수(ZT)는 열전 변환 에너지 효율을 결정하는 중요한 요소로써, 성능 지수(Z=α 2 σ/κ)의 값이 큰 열전 재료를 사용하여 열전 소자를 제조함으로써, 냉각 및 발전의 효율을 높일 수 있게 된다. 즉, 열전재료는 제벡 계수와 전기전도도가 높을수록 그리고 열전도도가 낮을수록 우수한 열전성능을 가지게 된다.Particularly, the dimensionless figure of merit (ZT) is an important factor for determining the thermoelectric conversion energy efficiency. The thermoelectric device is manufactured by using a thermoelectric material having a high performance index (Z =? 2 ? /?), It is possible to increase the efficiency of the apparatus. That is, thermoelectric materials have better thermoelectric performance as the Seebeck coefficient, electrical conductivity and thermal conductivity are lower.

현재 상용화된 열전재료는 ZT가 약 1 정도 수준으로, 사용 온도 별로 상온용으로 Bi-Te계, 중온용으로 Pb-Te계, Mg-Si계, 고온용으로 산화물, Fe-Si계 등으로 구별된다.Currently commercialized thermoelectric materials have a ZT of about 1 level, and are classified into Bi-Te-based for room temperature, Pb-Te-based, Mg-Si-based, and high-temperature oxide, Fe-Si-based, etc. do.

한편, 이러한 열전재료의 열전성능을 향상시키기 위해서는 다양한 원소를 첨가 또는 치환하는 방법(조성 제어), 미세 조직을 제어하는 방법(제조 공정 제어), 이상 입자 또는 불순물을 도입하는 방법 등이 있다.On the other hand, in order to improve the thermoelectric performance of such thermoelectric materials, there are a method of adding or replacing various elements (composition control), a method of controlling microstructure (manufacturing process control), a method of introducing abnormal particles or impurities, and the like.

일반적으로 금속계 열전재료는 전기전도도를 유지하면서 가능하면 열전도도를 낮추기 위해 다양한 방법들이 사용되고 있다. 반면에 산화물 열전재료는 제벡 계수를 증가시켜 성능지수를 개선하고자 하는 시도들이 주로 진행되고 있다.In general, metal-based thermoelectric materials are used in various ways to reduce the thermal conductivity if possible while maintaining the electrical conductivity. On the other hand, attempts have been made to improve the performance index of oxide thermoelectric materials by increasing the Seebeck coefficient.

AgSbTe2 화합물을 포함하는 이원계 화합물 (AgSbTe2)-(mPbTe)(LAST-m) 벌크(bulk)는 약 700K에서 m=18일때 Pb-Te 기지상에 Ag-Sb-rich상의 나노돗(nano-dot)의 형성에 기인하여 포논 산란에 의한 열전도도의 감소와 함께 높은 ZT≒1.7를 가진다. 마찬가지로, LAST와 비슷한 화학조성을 가지는 (GeTe)x(AgSbTe2)100-x(TAGS-x) 합금도 x=80일 때 나노도메인(nano-domain)의 형성에 기인하여 800K에서 ZT1.9를 가진다.AgSbTe 2 Binary Compounds (AgSbTe 2 )-(mPbTe) (LAST-m) Bulk Including Compounds of Nano-dots on Ag-Sb-rich on Pb-Te Matrix at m = 18 at 700 K Due to the formation, it has a high ZT ≒ 1.7 with a decrease in thermal conductivity due to phonon scattering. Likewise, (GeTe) x (AgSbTe 2 ) 100-x (TAGS-x) alloys with chemical compositions similar to LAST have ZT 1.9 at 800K due to the formation of nano-domains at x = 80. .

이상의 연구결과에서 높은 열전특성을 나타내는 중온용 열전재료인 LAST-m 화합물과 TAGS-x 화합물의 공통 구성 성분인 Ag 첨가를 기본으로 하는 SbTe계 화합물에 대한 다각적인 측면에서의 이론적, 실험적 연구결과가 요구된다.From the above results, theoretical and experimental results from various aspects of SbTe-based compounds based on the addition of Ag, a common constituent of LAST-m compound and TAGS-x compound, which are high-temperature thermoelectric materials, exhibit high thermoelectric properties. Required.

본 출원인은 상기와 같은 열전재료에 관한 연구로 대한민국특허청에 출원번호 10-2010-99418호에 "도핑재 첨가에 의한 쌍정이 형성된 Te계 열전재료의 제조방법 및 그 열전재료"라는 제목으로 p 타입인 Bi-Sb-Te계 열전재료에 은을 첨가하여 열전성능이 향상된 열전재료에 대해 선출원하였다. The present applicant is a study on the thermoelectric material as described above in the Korean Patent Office No. 10-2010-99418 in the p-type titled "Method of manufacturing a TE-based thermoelectric material with twins formed by the addition of a doping material and its thermoelectric material" The addition of silver to the Bi-Sb-Te-based thermoelectric material has been selected for thermoelectric material with improved thermoelectric performance.

그러나 n 타입인 Bi-Te-Se계 열전재료에 은을 도핑 하여 열전성능을 향상시키고자 하는 시도는 없었다. However, no attempt has been made to improve thermoelectric performance by doping silver to n-type Bi-Te-Se-based thermoelectric materials.

따라서, 본 발명은 상기한 종래기술의 문제점을 해결하기 위해 안출된 것으로, Bi-Te-Se계 열전 재료에 은 원소를 도핑재로 첨가하여 소정의 급냉 및 소결 과정 그리고 열처리를 거침으로써 그 열전특성을 향상시키기 위한 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법을 제공하는 것을 목적으로 한다.Accordingly, the present invention has been made to solve the above problems of the prior art, the thermoelectric properties of the Bi-Te-Se-based thermoelectric material by adding a silver element as a doping material and undergoing a predetermined quenching and sintering process and heat treatment It is an object of the present invention to provide a method for producing a bismuth-telelium-selenium-based thermoelectric material to which silver is added to improve the efficiency.

상기한 목적을 달성하기 위한 본 발명은, Bi-Te-Se계 열전재료에 은 원소를 도핑재로 첨가하고, 진공상태의 앰플에 장입하여 용융시키는 제1단계와; 상기 용융된 원료를 급냉시켜 잉곳을 제조하는 제2단계와; 상기 잉곳을 파쇄하여 도핑재가 첨가된 열전재료분말을 제조하는 제3단계와; 상기 도핑재가 첨가된 열전재료 분말을 열간 프레스 하는 제4단계와; 상기 제4단계를 거친 도핑재가 첨가된 열전재료를 컷팅시키는 제5단계;를 포함하여 구성되는 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법을 기술적 요지로 한다.The present invention for achieving the above object, the first step of adding a silver element to the Bi-Te-Se-based thermoelectric material as a doping material, and charged into a vacuum ampoule to melt; A second step of rapidly cooling the molten raw material to produce an ingot; Crushing the ingot to prepare a thermoelectric material powder to which a doping material is added; Thermoelectric material to which the doping material is added A fourth step of hot pressing the powder; The manufacturing method of the bismuth-telelium-selenium-type thermoelectric material to which silver is comprised including the 5th step which cuts the thermoelectric material to which the doping material which passed the said 4th step was added is a technical subject matter.

상기 Bi-Te-Se계 열전재료는 Bi2Te2 .85Se0 .15, Bi2Te2 .55Se0 .45중 하나가 되는 것이 바람직하다.The Bi-Te-Se-based thermoelectric material is preferably one of the Bi 2 Te 2 .85 Se 0 .15 , Bi 2 Te 2 .55 Se 0 .45.

상기 제1단계의 은 원소는 0.001 내지 0.1 중량비로 첨가되는 것이 바람직하다.The silver element of the first step is preferably added in a weight ratio of 0.001 to 0.1.

상기 제1단계는 아르곤 가스 분위기에서 진행되는 것이 바람직하다.The first step is preferably carried out in an argon gas atmosphere.

상기 제1단계는, 700℃ 내지 1,000℃의 온도에서 8시간 내지 12시간 진행되는 것이 바람직하다. The first step is preferably performed for 8 hours to 12 hours at a temperature of 700 ℃ to 1,000 ℃.

상기 제4단계는, 300℃ 내지 500℃의 온도, 100㎫ 내지 300㎫의 압력하에서 20분 내지 1시간 동안 진행되는 것이 바람직하다.The fourth step is preferably performed for 20 minutes to 1 hour under a temperature of 300 ℃ to 500 ℃, a pressure of 100 MPa to 300 MPa.

이에 따라, Bi-Te-Se계 열전 재료에 은 원소를 도핑재로 첨가하여 소정의 급냉 및 소결 과정 그리고 열처리를 거침으로써 그 열전특성이 향상되는 이점이 있다. Accordingly, there is an advantage in that the thermoelectric properties are improved by adding a silver element to the Bi-Te-Se-based thermoelectric material as a doping material and undergoing a quenching and sintering process and heat treatment.

상기의 구성에 의한 본 발명은, Bi-Te-Se계 열전 재료에 은 원소를 도핑재로 첨가하여 소정의 급냉 및 소결 과정 그리고 열처리를 거침으로써 그 열전특성이 향상되어 열전발전 및 열전냉각 분야에서 열전재료로써 사용될 수 있는 효과가 있다. According to the present invention, the thermoelectric properties are improved by adding a silver element to the Bi-Te-Se-based thermoelectric material as a doping material and undergoing a predetermined quenching and sintering process and heat treatment. There is an effect that can be used as a thermoelectric material.

도 1은 본 발명의 제1실시예에 따라 형성된 은이 0.05 중량비로 Bi2Te2.85Se0.15에 첨가된 열전재료의 (a)전기비저항, (b)제벡계수, (c)파워팩터(Power factor), (d)열전도도를 나타낸 도이고,
도 2는 본 발명의 제1실시예에 따라 형성된 은이 0.05 중량비로 Bi2Te2.85Se0.15에 첨가된 열전재료의 무차원 성능지수를 나타낸 도이고,
도 3은 본 발명의 제2실시예에 따라 형성된 은이 0.01 중량비로 Bi2Te2.55Se0.45에 첨가된 열전재료의 (a)전기비저항, (b)제벡계수, (c)파워팩터(Power factor), (d)열전도도를 나타낸 도이고,
도 4는 본 발명의 제2실시예에 따라 형성된 은이 0.01 중량비로 Bi2Te2.55Se0.45에 첨가된 열전재료의 무차원 성능지수를 나타낸 도이다.
1 shows (a) electrical resistivity, (b) Seebeck coefficient, and (c) power factor of a thermoelectric material in which silver formed according to the first embodiment of the present invention is added to Bi 2 Te 2.85 Se 0.15 in a weight ratio of 0.05. (d) is a diagram showing thermal conductivity,
FIG. 2 is a diagram illustrating a dimensionless performance index of thermoelectric materials in which silver formed according to the first embodiment of the present invention is added to Bi 2 Te 2.85 Se 0.15 in a weight ratio of 0.05;
3 shows (a) electrical resistivity, (b) Seebeck coefficient, and (c) power factor of a thermoelectric material in which silver formed according to a second embodiment of the present invention is added to Bi 2 Te 2.55 Se 0.45 in a weight ratio of 0.01. (d) is a diagram showing thermal conductivity,
FIG. 4 is a diagram illustrating a dimensionless performance index of thermoelectric material in which silver formed according to the second embodiment of the present invention is added to Bi 2 Te 2.55 Se 0.45 in a weight ratio of 0.01.

이하 본 발명의 바람직한 실시예를 첨부된 도면을 참조로 상세히 설명하기로 한다. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도1은 본 발명의 제1실시예에 따라 형성된 도핑재가 첨가된 열전재료의 열전특성 및 비교예의 열전특성을 나타낸 도이고, 도2는 본 발명의 제1실시예에 따라 형성된 도핑재가 첨가된 열전재료 및 비교예의 열전재료의 무차원 성능지수를 나타낸 도이고, 도3은 본 발명의 제2실시예에 따라 형성된 도핑재가 첨가된 열전재료의 열전특성 및 비교예의 열전특성을 나타낸 도이고, 도4는 본 발명의 제2실시예에 따라 형성된 도핑재가 첨가된 열전재료 및 비교예의 열전재료의 무차원 성능지수를 나타낸 도이다.1 is a diagram illustrating thermoelectric properties of a thermoelectric material to which a doping material is added according to a first embodiment of the present invention and thermoelectric properties of a comparative example, and FIG. 2 is a thermoelectric to which a doping material is formed according to a first embodiment of the present invention. Figure 3 shows the dimensionless performance index of the material and the thermoelectric material of the comparative example, Figure 3 is a diagram showing the thermoelectric characteristics of the thermoelectric material to which the doping material is formed according to the second embodiment of the present invention and the thermoelectric characteristics of the comparative example, Figure 4 Is a diagram showing the dimensionless performance index of the thermoelectric material to which the doping material formed according to the second embodiment of the present invention is added and the thermoelectric material of the comparative example.

도시된 바와 같이, 본 발명에 따른 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법은 크게, Bi-Te-Se계 열전재료에 은 원소를 도핑재로 첨가하고, 진공상태의 앰플에 장입하여 용융시키는 제1단계와; 상기 용융된 원료를 급냉시켜 잉곳을 제조하는 제2단계와; 상기 잉곳을 파쇄하여 도핑재가 첨가된 열전재료분말을 제조하는 제3단계와; 상기 도핑재가 첨가된 열전재료 분말을 열간 프레스 하는 제4단계와; 상기 제4단계를 거친 도핑재가 첨가된 열전재료를 컷팅시키는 제5단계;로 구성된다.As shown in the drawing, a method for producing a bismuth-telelium-selenium-based thermoelectric material to which silver is added according to the present invention is largely added to a Bi-Te-Se-based thermoelectric material by adding a silver element as a dopant, and to a vacuum ampoule. A first step of charging and melting; A second step of rapidly cooling the molten raw material to produce an ingot; Crushing the ingot to prepare a thermoelectric material powder to which a doping material is added; Thermoelectric material to which the doping material is added A fourth step of hot pressing the powder; And a fifth step of cutting the thermoelectric material to which the doping material passed through the fourth step is added.

이하 본 발명의 바람직한 실시예를 보다 구체적으로 설명한다.
Hereinafter, preferred embodiments of the present invention will be described in more detail.

< 제1실시예 >&Lt; Embodiment 1 >

먼저 99.999% 이상의 고순도 Bi, Se, Te 열전재료와 Ag 도핑재를 염산, 질산, 아세톤, 에탄올 등을 이용하여 세척한다.First, high purity Bi, Se, Te thermoelectric material and Ag dopant of 99.999% or more are washed with hydrochloric acid, nitric acid, acetone, ethanol, and the like.

그런 다음, Bi2Te2 .85Se0 .15의 비율에 맞게 각 열전재료를 준비하고, 여기에 0.05 중량비가 되도록 은(Ag) 원소 및 각각의 열전재료를 정밀 저울을 이용하여 각 원료들을 칭량하여 준비한다. That meet the requirements of the following, Bi 2 Te 2 .85 ratio of Se 0 .15 prepare each thermal conductive material, such that the weight ratio of 0.05 to herein (Ag) elements and weighing the respective raw materials by using a precision balance for each of the thermoelectric material To prepare.

그리고 상기 칭량된 원료들을 석영관(quartz tube)에 장입하고, 내부 압력이 10-5torr 수준이 되도록 한다. Then, the weighed raw materials are charged into a quartz tube, and the internal pressure is 10 -5 torr.

내부압력이 10-5torr 의 진공상태가 되면, 아르곤 가스를 채워 밀봉한다. When the internal pressure reaches 10 -5 torr in vacuum, seal it with argon gas.

밀봉된 앰플은 록킹 퍼니쉬(rocking furnace)에 넣고 800℃ 정도에서 10시간 동안 용융시킨 후 급냉시킨다. The sealed ampoules are placed in a rocking furnace, melted at about 800 ° C. for 10 hours, and then quenched.

상기 급속 냉각을 통해 형성된 잉곳을 볼밀링(ball milling) 법으로 파쇄하여 420℃ 온도에서 30분 동안 200㎫의 압력으로 핫프레스(hot press) 공정후 와이어 컷팅하여 소정 크기의 열전재료를 제조하게 된다.The ingot formed through rapid cooling is crushed by a ball milling method to produce a thermoelectric material having a predetermined size by wire cutting after a hot press process at a pressure of 200 MPa for 30 minutes at a temperature of 420 ° C. .

상기와 같이, 제1실시예를 통한 Bi2Te2 .85Se0 .15 열전물질에 은 원소가 도핑된 샘플 및 비교예로써 은 원소가 도핑되지 않은 Bi2Te2 .85Se0 .15 열전물질에 대하여 샘플을 준비하고 이에 대한 열전특성을 조사하였다.As described above, in the first embodiment, the Bi 2 Te 2 .85 Se 0 .15 thermal conductive material is in the element-doped samples and the comparative examples are not as Bi 2 Te 2 .85 Se 0 .15 thermal element is not doped with Samples were prepared for the material and their thermoelectric properties were investigated.

도1은 본 발명의 제1실시예에 따라 형성된 도핑재가 첨가된 열전재료의 열전특성 및 비교예의 열전특성을 나타낸 도로써, 도1(a)는 전기비저항을 나타낸 도이고, 도1(b)는 제벡계수를 나타낸 도이고, 도1(c)는 파워팩터(power factor)를 나타낸 도이고, 도1(d)는 열전도도를 나타낸 도이다. 1 is a diagram showing the thermoelectric properties of the thermoelectric material to which the doping material is added according to the first embodiment of the present invention and the thermoelectric properties of the comparative example, Figure 1 (a) is a view showing the electrical resistivity, Figure 1 (b) 1 is a diagram showing Seebeck coefficient, FIG. 1 (c) is a diagram showing a power factor, and FIG. 1 (d) is a diagram showing thermal conductivity.

전기비저항 값을 보면, Ag를 첨가함에 따라 비저항값은 Ag를 첨가하지 않은 경우에 비해 상대적으로 적은 값을 가짐을 알 수 있다.Looking at the electrical resistivity value, it can be seen that as the Ag is added, the specific resistivity value is relatively small compared to the case where no Ag is added.

Ag를 첨가함으로 인하여 비저항의 차이는 온도에 따라 일정한 반면, 제벡 계수의 차이는 온도에 따라 다른 경향성을 보인다. Due to the addition of Ag, the difference in resistivity is constant with temperature, while the Seebeck coefficient difference tends to vary with temperature.

저온에서는 Ag를 첨가한 경우 더 높은 제벡 계수를 가지는 반면, 고온에서는 Ag를 첨가한 경우 더 낮은 제벡 계수 값을 가지나, 제벡 계수의 절대값은 Ag를 첨가한 경우 고온에서 상대적으로 더 큰 값을 가진다. 따라서 Ag첨가시, 고온에서 향상된 제벡계수의 절대값 및 낮은 전기비저항으로 인해 높은 파워팩터(power factor)값을 가지게 된다. At low temperature, Ag has higher Seebeck coefficient, while at high temperature Ag has lower Seebeck coefficient, but the absolute value of Seebeck coefficient is higher at high temperature when Ag is added. . Therefore, when Ag is added, it has a high power factor due to the absolute value of the Seebeck coefficient and low electrical resistivity improved at high temperatures.

열전도도의 경우를 보면, 고온으로 갈수록 Ag를 첨가한 경우가 더 낮은 열전도도를 보였다. In the case of thermal conductivity, Ag was further lowered at higher temperatures.

도2는 본 발명의 제1실시예에 따라 형성된 도핑재가 첨가된 열전재료의 무차원 성능지수 및 비교예의 무차원 성능지수를 나타낸 도로써, Ag의 첨가시 비저항이 감소하고, 고온에서 더 높아진 제벡계수 절대값과 더 낮아진 열전도도로 인하여 약 375K 이상의 고온에서 Ag가 첨가되지 않은 비교예에 비하여 열전특성이 향상됨을 알 수 있다.
2 is a view showing the dimensionless performance index of the thermoelectric material to which the doping material is added according to the first embodiment of the present invention and the dimensionless performance index of the comparative example. It can be seen that the thermoelectric properties are improved compared to the comparative example in which Ag is not added at a high temperature of about 375 K or more due to the absolute coefficient and lower thermal conductivity.

< 제2실시예 >&Lt; Embodiment 2 >

99.999% 이상의 고순도 Bi, Se, Te 열전재료와 Ag 도핑재를 염산, 질산, 아세톤, 에탄올 등을 이용하여 세척한다.High-purity Bi, Se, Te thermoelectric materials and Ag doping materials of more than 99.999% are washed with hydrochloric acid, nitric acid, acetone, ethanol and the like.

그런 다음, Bi2Te2 .55Se0 .45의 비율에 맞게 각 열전재료를 준비하고, 여기에 0.01 중량비가 되도록 은(Ag) 원소 및 각각의 열전재료를 정밀 저울을 이용하여 각 원료들을 칭량하여 준비한다. Then, according to the ratio of Bi 2 Te 2 .55 Se 0 .45 prepare each thermal conductive material, such that the weight ratio of 0.01 to herein (Ag) element and weighing each raw material to the respective thermoelectric material using a precision balance To prepare.

그리고 상기 칭량된 원료들을 석영관(quartz tube)에 장입하고, 내부 압력이 10-5torr 수준이 되도록 한다. Then, the weighed raw materials are charged into a quartz tube, and the internal pressure is 10 -5 torr.

내부압력이 10-5torr 의 진공상태가 되면, 아르곤 가스를 채워 밀봉한다. When the internal pressure reaches 10 -5 torr in vacuum, seal it with argon gas.

밀봉된 앰플은 록킹 퍼니쉬(rocking furnace)에 넣고 800℃ 정도에서 10시간 동안 용융시킨 후 급냉시킨다. The sealed ampoules are placed in a rocking furnace, melted at about 800 ° C. for 10 hours, and then quenched.

상기 급속 냉각을 통해 형성된 잉곳을 볼밀링(ball milling) 법으로 파쇄하여 420℃ 온도에서 30분 동안 200㎫의 압력으로 핫프레스(hot press) 공정후 와이어 컷팅하여 소정 크기의 열전재료를 제조하게 된다.The ingot formed through rapid cooling is crushed by a ball milling method to produce a thermoelectric material having a predetermined size by wire cutting after a hot press process at a pressure of 200 MPa for 30 minutes at a temperature of 420 ° C. .

상기와 같이, 제2실시예를 통한 Bi2Te2 .55Se0 .45 열전물질에 은 원소가 도핑된 샘플 및 비교예로써 은 원소가 도핑되지 않은 Bi2Te2 .55Se0 .45 열전물질에 대하여 샘플을 준비하고 이에 대한 열전특성을 조사하였다.As described above, in the second embodiment the Bi 2 Te 2 .55 Se 0 .45 thermal conductive material in the element is a Bi 2 Te 2 .55 Se 0 .45 thermally non element is doped as the doped samples and the comparative example by Samples were prepared for the material and their thermoelectric properties were investigated.

도3은 본 발명의 제2실시예에 따라 형성된 도핑재가 첨가된 열전재료의 열전특성 및 비교예의 열전특성을 나타낸 도로써, 도3(a)는 전기비저항을 나타낸 도이고, 도3(b)는 제벡계수를 나타낸 도이고, 도3(c)는 파워팩터(power factor)를 나타낸 도이고, 도3(d)는 열전도도를 나타낸 도이다. 3 is a diagram illustrating thermoelectric characteristics of a thermoelectric material to which a doping material is formed according to a second embodiment of the present invention and thermoelectric characteristics of a comparative example, FIG. 3 (a) is a diagram showing an electrical resistivity, and FIG. 3 (b). Figure 3 shows the Seebeck coefficient, Figure 3 (c) shows the power factor (power factor), Figure 3 (d) shows the thermal conductivity.

전기비저항 값을 보면, Ag를 첨가함에 따라 비저항값이 Ag를 첨가하지 않은 경우에 비해 상대적으로 적은 값을 가짐을 알 수 있다. Looking at the electrical resistivity value, it can be seen that as Ag is added, the resistivity value is relatively smaller than the case where Ag is not added.

Ag를 첨가함으로 인하여 비저항의 차이는 온도에 따라 일정한 반면, 제벡 계수의 차이는 온도에 따라 다른 경향성을 보인다. Due to the addition of Ag, the difference in resistivity is constant with temperature, while the Seebeck coefficient difference tends to vary with temperature.

저온에서는 Ag를 첨가한 경우 더 높은 제벡 계수를 가지는 반면, 고온에서는 Ag를 첨가한 경우와 첨가하지 않은 경우가 비슷한 값을 가짐을 알 수 있다. At low temperatures, Ag has a higher Seebeck coefficient, while at high temperatures, Ag and non-Ag have similar values.

그리고 파워팩터인 경우도 고온 부분에서 Ag를 첨가한 경우 낮아진 전기비저항으로 인해 비교예에 비하여 더 큰 값을 가짐을 알 수 있다. In addition, even in the case of the power factor, when Ag is added in the high temperature portion, it can be seen that it has a larger value than the comparative example due to the lower electrical resistivity.

열전도도의 경우를 보면, 고온으로 갈수록 Ag를 첨가한 경우가 더 낮은 열전도도를 보였다. In the case of thermal conductivity, Ag was added to the higher temperature, the lower the thermal conductivity.

도4는 본 발명의 제2실시예에 따라 형성된 도핑재가 첨가된 열전재료의 무차원 성능지수 및 비교예의 무차원 성능지수를 나타낸 도로써, Ag의 첨가시 약 375K 이상의 고온에서 Ag가 첨가되지 않은 비교예에 비하여 열전특성이 향상됨을 알 수 있다. 4 is a diagram illustrating a dimensionless performance index of the thermoelectric material to which the doping material is added according to the second embodiment of the present invention and a dimensionless performance index of the comparative example, in which Ag is not added at a high temperature of about 375 K or more when Ag is added; It can be seen that the thermoelectric properties are improved as compared with the comparative example.

Claims (6)

Bi-Te-Se계 열전재료에 은 원소를 도핑재로 첨가하고, 진공상태의 앰플에 장입하여 용융시키는 제1단계와; 상기 용융된 원료를 급냉시켜 잉곳을 제조하는 제2단계와; 상기 잉곳을 파쇄하여 도핑재가 첨가된 열전재료분말을 제조하는 제3단계와; 상기 도핑재가 첨가된 열전재료 분말을 열간 프레스 하는 제4단계와; 상기 제4단계를 거친 도핑재가 첨가된 열전재료를 컷팅시키는 제5단계;를 포함하여 구성되되,
상기 Bi-Te-Se계 열전재료는 Bi2Te2.85Se0.15, Bi2Te2.55Se0.45중 하나가 됨을 특징으로 하는 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법.
Adding a silver element to the Bi-Te-Se-based thermoelectric material as a dopant, charging the molten element in a vacuum ampoule; A second step of rapidly cooling the molten raw material to produce an ingot; Crushing the ingot to prepare a thermoelectric material powder to which a doping material is added; Thermoelectric material to which the doping material is added A fourth step of hot pressing the powder; And a fifth step of cutting the thermoelectric material to which the doping material has passed through the fourth step.
The Bi-Te-Se-based thermoelectric material is Bi 2 Te 2.85 Se 0.15 , Bi 2 Te 2.55 Se 0.45 characterized in that the bismuth-telelium-selenium-based thermoelectric material is added.
삭제delete 제1항에 있어서, 상기 제1단계의 은 원소는 0.001 내지 0.1 중량비로 첨가됨을 특징으로 하는 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법.The method of claim 1, wherein the silver element of the first step is added in a weight ratio of 0.001 to 0.1. 제3항에 있어서, 상기 제1단계는 아르곤 가스 분위기에서 진행됨을 특징으로 하는 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법.The method of claim 3, wherein the first step is performed in an argon gas atmosphere. 제4항에 있어서, 상기 제1단계는, 700℃ 내지 1,000℃의 온도에서 8시간 내지 12시간 진행됨을 특징으로 하는 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법.5. The method of claim 4, wherein the first step is performed for 8 to 12 hours at a temperature of 700 ° C. to 1,000 ° C. 6. 제 1항, 제 3항 내지 제5항 중 어느 하나의 항에 있어서, 상기 제4단계는, 300℃ 내지 500℃의 온도, 100㎫ 내지 300㎫의 압력하에서 20분 내지 1시간 동안 진행됨을 특징으로 하는 은이 첨가된 비스무스-텔레리움-셀레니움계 열전재료의 제조방법.6. The method of claim 1, wherein the fourth step is performed for 20 minutes to 1 hour at a temperature of 300 ° C. to 500 ° C. and a pressure of 100 MPa to 300 MPa. 7. A method for producing a bismuth-telelium-selenium-based thermoelectric material to which silver is added.
KR1020120002425A 2012-01-09 2012-01-09 The manufacturing process of Bi-Te-Se thermoelectric materials doped with silver KR101323319B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120002425A KR101323319B1 (en) 2012-01-09 2012-01-09 The manufacturing process of Bi-Te-Se thermoelectric materials doped with silver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120002425A KR101323319B1 (en) 2012-01-09 2012-01-09 The manufacturing process of Bi-Te-Se thermoelectric materials doped with silver

Publications (2)

Publication Number Publication Date
KR20130081444A KR20130081444A (en) 2013-07-17
KR101323319B1 true KR101323319B1 (en) 2013-10-29

Family

ID=48993133

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120002425A KR101323319B1 (en) 2012-01-09 2012-01-09 The manufacturing process of Bi-Te-Se thermoelectric materials doped with silver

Country Status (1)

Country Link
KR (1) KR101323319B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024438B2 (en) 2017-06-07 2021-06-01 Lg Chem, Ltd. Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108821771B (en) * 2018-05-29 2020-06-09 桂林电子科技大学 Preparation method of silver-selenium ternary compound polycrystalline block material with high thermoelectric performance
CN112768594B (en) * 2021-01-11 2024-04-02 中国科学技术大学 Bismuth-tellurium natural superlattice thermoelectric material and preparation method thereof
CN116023141B (en) * 2022-12-19 2024-03-29 纯钧新材料(深圳)有限公司 N-type bismuth telluride base material and its preparation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106460A (en) 1998-07-27 2000-04-11 Komatsu Ltd Thermoelectric semiconductor material and manufacture thereof
KR20070065477A (en) * 2005-12-20 2007-06-25 한국생산기술연구원 Method for manufacturing bi-te based thermoelectric materials
KR101172802B1 (en) 2009-12-31 2012-08-09 한국전기연구원 fabrication method for Te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000106460A (en) 1998-07-27 2000-04-11 Komatsu Ltd Thermoelectric semiconductor material and manufacture thereof
KR20070065477A (en) * 2005-12-20 2007-06-25 한국생산기술연구원 Method for manufacturing bi-te based thermoelectric materials
KR101172802B1 (en) 2009-12-31 2012-08-09 한국전기연구원 fabrication method for Te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials thereby

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11024438B2 (en) 2017-06-07 2021-06-01 Lg Chem, Ltd. Chalcogen-containing compound, its preparation method and thermoelectric element comprising the same

Also Published As

Publication number Publication date
KR20130081444A (en) 2013-07-17

Similar Documents

Publication Publication Date Title
KR101172802B1 (en) fabrication method for Te-based thermoelectric materials containing twins formed by addition of dopant and thermoelectric materials thereby
CN108238796A (en) Copper seleno solid solution thermoelectric material and preparation method thereof
KR101323319B1 (en) The manufacturing process of Bi-Te-Se thermoelectric materials doped with silver
KR101417968B1 (en) PbTe thermoelectric material doped with Na and Ag and manufacturing method thereby
KR101072299B1 (en) fabrication method for La doped AgSbTe2 thermoelectric materials and the thermoelectric materials thereby
KR20130078478A (en) Fabrication method for te-based thermoelectric materials containing twins formed by addition of dopant and nano particle sintering
KR101631858B1 (en) Thermoelectric telluride materials formed complex-crystalline structure by interstitial doping
KR101323320B1 (en) GeTe thermoelectric material doped with Ag and Sb and manufacturing method thereby
KR101417965B1 (en) GeTe thermoelectric material doped with Ag and Sb and La and manufacturing method thereby
KR20110078316A (en) Fabrication method of thermoelectric materials containing nano-dot made by external generation and inclusion
KR102198207B1 (en) Thermoelectric telluride materials formed complex-crystalline structure by interstitial doping
CN109776093B (en) Preparation method of nano composite thermoelectric material
CN108198934B (en) Composite thermoelectric material and preparation method thereof
KR102269404B1 (en) Selenium content increased thermal element
KR101323321B1 (en) MnTe thermoelectric material doped with Sb and manufacturing method thereby
TWI417248B (en) Thermoelectric material, method for fabricating the same, and thermoelectric module employing the same
KR101147230B1 (en) fabrication method for rare earth element added AgSbTe2 thermoelectric materials and the thermoelectric materials thereby
KR101215562B1 (en) GeTe thermoelectric material doped Sb and manufacturing method thereby
KR102273056B1 (en) Copper-doped thermoelectric material
KR101296813B1 (en) The manufacturing process of embedded nano-dot on Rare earth doped AgSbTe₂matrix in thermoelectric materials
KR101367719B1 (en) Three-elements thermoelectric materials and fabrication method for the same
KR101405364B1 (en) SYNTHESIZING METHOD FOR Al-DOPED Mn-Si THERMOELECTRIC MATERIAL AND THERMOELECTRIC MATERIAL SYNTHESIZED BY THE METHOD
KR101531011B1 (en) PbTe thermoelectric material doped with Na and Ag and manufacturing method thereby
KR101952358B1 (en) The thermoelectric device having improved thermoelectric characteristics
KR20130098605A (en) Fabrication method for zn4sb3 thermoelectric materials doped with mn and thermoelectric materials thereby

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20181023

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20191021

Year of fee payment: 7