JP3523600B2 - Thermoelectric element manufacturing method - Google Patents

Thermoelectric element manufacturing method

Info

Publication number
JP3523600B2
JP3523600B2 JP2001022423A JP2001022423A JP3523600B2 JP 3523600 B2 JP3523600 B2 JP 3523600B2 JP 2001022423 A JP2001022423 A JP 2001022423A JP 2001022423 A JP2001022423 A JP 2001022423A JP 3523600 B2 JP3523600 B2 JP 3523600B2
Authority
JP
Japan
Prior art keywords
thermoelectric
firing
temperature
thermoelectric element
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001022423A
Other languages
Japanese (ja)
Other versions
JP2002232024A (en
Inventor
和博 西薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001022423A priority Critical patent/JP3523600B2/en
Publication of JP2002232024A publication Critical patent/JP2002232024A/en
Application granted granted Critical
Publication of JP3523600B2 publication Critical patent/JP3523600B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱電半導体材料の
焼結をマイクロ波の照射により行う熱電半導体素子の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thermoelectric semiconductor element, in which a thermoelectric semiconductor material is sintered by microwave irradiation.

【0002】[0002]

【従来技術】従来より、P型半導体とN型半導体とを金
属を介し接合しPN接合対を形成し、接合部に流す電流
の方向によって一端が発熱されるとともに他端が冷却さ
れるいわゆるペルチェ効果を利用した熱電半導体素子
は、小型で構造が簡単でありフロンレスの冷却技術、光
検出素子、半導体製造装置等の電子冷却素子、レーザー
ダイオードの温度調節等の温調装置等の種々のデバイス
への幅広い利用が期待されている。
2. Description of the Related Art Conventionally, a Peltier semiconductor in which a P-type semiconductor and an N-type semiconductor are joined via a metal to form a PN junction pair, one end of which heat is generated and the other end of which is cooled by the direction of a current flowing through the joint, is called a Peltier. Thermoelectric semiconductor elements that utilize the effect are compact and simple in structure, and can be applied to various devices such as CFC-less cooling technology, photodetection elements, electronic cooling elements such as semiconductor manufacturing equipment, and temperature control devices such as temperature control of laser diodes. Is expected to be widely used.

【0003】これらの熱電半導体素子としては、室温付
近で最も性能が良い熱電半導体材料としてBi2Te3
Sb2Te3、Bi2Se3のカルコゲン系化合物及びこれ
らの固溶体が主として用いられている。
For these thermoelectric semiconductor elements, Bi 2 Te 3 is used as the thermoelectric semiconductor material having the best performance near room temperature.
Chabogen compounds such as Sb 2 Te 3 and Bi 2 Se 3 and solid solutions thereof are mainly used.

【0004】これらの熱電素子の性能を向上するために
は酸素量の低減が非常に重要であり、そのため高純度の
各元素を所定量秤量し、ガラス管に真空封入し、溶融・
攪拌後冷却することで原料インゴットを作製し、インゴ
ットを粉砕・分級し、水素還元を行った後に不活性雰囲
気中でホットプレスを行い焼結体を得る方法を挙げるこ
とができる。例えば、ビスマス、テルル、セレン、アン
チモンからなる3種または4種の元素を主成分と添加剤
との混合粉を溶解・粉砕し、得られた合金粉末をホット
プレス法により焼成することが、特開平01−1064
78号公報に記載されている。
In order to improve the performance of these thermoelectric elements, it is very important to reduce the amount of oxygen. Therefore, a predetermined amount of each element of high purity is weighed, vacuum sealed in a glass tube, and melted.
A method of producing a raw material ingot by stirring and then cooling, crushing and classifying the ingot, performing hydrogen reduction, and then hot pressing in an inert atmosphere to obtain a sintered body can be mentioned. For example, it is preferable to melt and pulverize a mixed powder of a main component and an additive of three or four elements consisting of bismuth, tellurium, selenium, and antimony, and calcine the obtained alloy powder by a hot pressing method. Kaihei 01-1064
No. 78 publication.

【0005】また、溶融・粉砕した合金粉末をダイスに
充填し加熱しながらシリンダにより押し出し、ダイス出
口を1個の熱電素子断面の形状にすることで長尺状の熱
電半導体材料を作製し、所定の長さで切断し、熱電半導
体素子を作製する熱間押し出し法を挙げることができ
る。例えば、熱電材料の押し出し材を押し出しダイスに
装入し、加熱しながらシリンダにより素材を押し出し、
一定の長さで切断し熱電半導体素子を得る方法が特開平
08−186299号公報に記載されている。
Further, a molten and crushed alloy powder is filled in a die and extruded by a cylinder while being heated, and a die outlet is formed into one thermoelectric element cross-sectional shape to prepare a long thermoelectric semiconductor material, and a predetermined shape is prepared. The hot extrusion method of producing a thermoelectric semiconductor element by cutting at a length of 1 can be mentioned. For example, insert the extruded material of thermoelectric material into an extrusion die, and extrude the material with a cylinder while heating,
A method for obtaining a thermoelectric semiconductor element by cutting it at a constant length is described in JP-A-08-186299.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記特
開平01−106478号公報のようなホットプレスを
用いる方法では緻密体が得られるものの焼結工程後に所
望の素子大きさにカッター等で切断する必要があるため
切り粉が発生し、材料費が無駄になり、製品コストが上
昇する問題があった。
However, in the method using a hot press as in the above-mentioned Japanese Patent Laid-Open No. 01-106478, although a dense body can be obtained, it is necessary to cut it into a desired element size with a cutter or the like after the sintering step. Therefore, there is a problem that cutting chips are generated, material costs are wasted, and product costs rise.

【0007】また、この方法では、切断する部分によっ
て素子の熱電性能が異なり、性能のばらつきが大きく、
不良の発生が多いという問題があった。
Further, in this method, the thermoelectric performance of the element differs depending on the part to be cut, resulting in a large variation in performance.
There was a problem that many defects occurred.

【0008】また、特開平08−186299号公報に
示された方法では、1個ずつ熱電素子を切断するため押
し出しに要する時間が長く、約400℃の高温で押し出
し加工しているので、押し出し素材が高温に長時間曝さ
れることになる。このため、初期に押し出しされた素子
と終期に押し出された素子とで高温に曝される時間が異
なるために熱電素子毎の特性のばらつきが大きいといっ
た問題があった。
In the method disclosed in Japanese Unexamined Patent Publication No. 08-186299, the time required for extrusion is long because the thermoelectric elements are cut one by one, and the extrusion process is performed at a high temperature of about 400 ° C. Will be exposed to high temperatures for a long time. For this reason, there is a problem in that the elements extruded in the initial stage and the elements extruded in the final stage are exposed to high temperatures for different times, so that the characteristics of the thermoelectric elements vary widely.

【0009】さらに、簡便で低コストの常圧焼成等によ
る焼結法では緻密体を得ることが困難であり、性能が劣
っているといった問題があった。
Further, there is a problem that it is difficult to obtain a dense body by a simple and low-cost sintering method such as normal pressure firing, and the performance is inferior.

【0010】従って、本発明は、緻密で、特性ばらつき
のない熱電素子を低コストで製造する方法を提供するこ
とを目的とする。
Therefore, an object of the present invention is to provide a method for manufacturing a thermoelectric element which is dense and has no characteristic variation at low cost.

【0011】[0011]

【課題を解決するための手段】本発明は、焼成によって
製品と略同一形状になる成形体をマイクロ波加熱により
焼成することで、熱電材料の製造工程を簡略化でき、均
一な緻密体が得られるという知見に基づきなされたもの
で、コスト削減及び素子性能の均一化を図ったものであ
る。
The present invention is capable of simplifying the manufacturing process of a thermoelectric material and obtaining a uniform dense body by firing a molded body having a substantially same shape as a product by firing by microwave heating. It was made based on the knowledge that it is possible to achieve cost reduction and uniform element performance.

【0012】即ち、本発明の熱電素子の製造方法は、B
i、Te、Sb及びSeから選ばれる少なくとも2種か
らなる熱電材料の原料粉末を成形した後、マイクロ波加
熱を用いて焼成することを特徴とするものである。
That is, the method of manufacturing a thermoelectric element of the present invention is
It is characterized in that a raw material powder of a thermoelectric material consisting of at least two kinds selected from i, Te, Sb and Se is molded and then fired by using microwave heating.

【0013】この方法によれば、マイクロ波の照射によ
る加熱で焼成することで、従来の焼結法では得られにく
かった緻密体を低温・短時間で得ることができ、蒸気圧
の高いセレン、テルル等の蒸発量を抑制でき、表面近傍
における組成変化を防止できる。その結果、組成ずれ、
または過剰なセレン、テルルを添加する必要がないばか
りか、成形体が均一に加熱されるため、特性の均一な材
料が得られ、特性のばらつきを抑制することができる。
According to this method, it is possible to obtain a dense body, which is hard to be obtained by the conventional sintering method, at a low temperature for a short time by firing by heating by irradiation of microwaves. The evaporation amount of tellurium or the like can be suppressed, and the composition change near the surface can be prevented. As a result, composition shift,
Alternatively, it is not necessary to add an excessive amount of selenium or tellurium, and since the molded body is heated uniformly, a material having uniform characteristics can be obtained and variation in characteristics can be suppressed.

【0014】また、本発明によれば、製品と略同一の焼
結体を得ることができるため、熱電半導体材料の焼結体
を切断する工程を省略することができる。従って、切断
時の材料のロス、素子の欠け等による歩留まりの向上が
でき、材料コストの低減を図ることができる。
Further, according to the present invention, it is possible to obtain a sintered body which is substantially the same as the product, so that the step of cutting the sintered body of the thermoelectric semiconductor material can be omitted. Therefore, the yield due to material loss during cutting, chipping of elements, etc. can be improved, and the material cost can be reduced.

【0015】また、前記焼成に先立って、前記成形体に
マイクロ波を照射して還元処理を行うことが好ましい。
従来は、長時間を有する還元処理が、短時間で行うこと
ができ、そのまま焼成も行えるため、一貫した工程によ
り熱電素子製造の効率化を図ることができる。
Further, it is preferable to perform a reduction treatment by irradiating the molded body with microwaves prior to the firing.
Conventionally, the reduction treatment that takes a long time can be performed in a short time, and the firing can be performed as it is, so that the efficiency of the thermoelectric element manufacturing can be improved by the consistent process.

【0016】さらに、前記マイクロ波の周波数が0.9
GHz以上であることが好ましい。0.9GHz以上の
マイクロ波を用いることによって熱電材料が効果的にマ
イクロ波を吸収でき、焼成時間をより短くできるため、
さらなる揮発量の抑制と結晶粒子の微細化が可能とな
り、均一性と熱電性能とを向上することができる。ま
た、焼成温度も低く、時間も短時間で済むため素子形成
のプロセスコストを抑えることができ最終的な熱電モジ
ュールの低コスト化が可能となる。
Further, the frequency of the microwave is 0.9
It is preferably at least GHz. By using the microwave of 0.9 GHz or more, the thermoelectric material can effectively absorb the microwave and shorten the firing time,
It is possible to further suppress the volatilization amount and make the crystal particles finer, and it is possible to improve the uniformity and thermoelectric performance. Further, since the firing temperature is low and the time is short, the process cost for forming the element can be suppressed and the final cost of the thermoelectric module can be reduced.

【0017】さらにまた、前記マイクロ波加熱による焼
成が、前記成形体を10℃/min以上の速度で昇温す
る工程と、200℃〜550℃の温度に30分以下の時
間保持する工程とを含むことが好ましい。これにより、
熱電素子の相対密度を95%以上に緻密化できるととも
に、短時間処理により揮発成分の蒸発量を少なくできる
ため、特性のばらつきを抑制し、粒成長をさらに抑制し
た微細組織を実現できる。
Furthermore, the firing by microwave heating comprises a step of raising the temperature of the molded body at a rate of 10 ° C./min or more, and a step of holding the temperature at 200 ° C. to 550 ° C. for a time of 30 minutes or less. It is preferable to include. This allows
Since the relative density of the thermoelectric element can be densified to 95% or more, and the evaporation amount of the volatile component can be reduced by the short-time treatment, it is possible to suppress the variation in characteristics and realize the fine structure in which the grain growth is further suppressed.

【0018】[0018]

【発明の実施の形態】本発明は、Bi、Te、Sb、S
eから選ばれる少なくとも2種からなる熱電半導体から
なる熱電素子に関するものであり、まず、上記の熱電半
導体からなる原料粉末を準備する。この原料は、公知の
方法を利用でき、例えば、ガラス管に混合粉末を充填
し、容器内を真空又はアルゴンガス封入により金属粉末
の酸化を防止する。そして、ロッキング炉により所定の
温度に昇温し、金属粉末を溶融し、得られた合金塊を粉
砕して焼成原料とすることができる。また、この際ドー
パントとしてHgBr2やSbI等の元素を添加しても
良い。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is based on Bi, Te, Sb, S.
The present invention relates to a thermoelectric element made of at least two kinds of thermoelectric semiconductors selected from e. First, a raw material powder made of the above thermoelectric semiconductor is prepared. A known method can be used for this raw material. For example, a glass tube is filled with the mixed powder, and the inside of the container is vacuumed or filled with argon gas to prevent the metal powder from being oxidized. Then, the temperature can be raised to a predetermined temperature by a rocking furnace, the metal powder can be melted, and the obtained alloy lump can be crushed to be a firing raw material. At this time, an element such as HgBr 2 or SbI may be added as a dopant.

【0019】なお、溶融した合金を冷却する際には、そ
のまま凝固点以下に冷却しても良いが、結晶配向を考慮
して、凝固点以上の温度に保持して一端から除冷し一方
向凝固を行い、結晶成長方位を制御することが好まし
い。
When the molten alloy is cooled, it may be cooled below the freezing point as it is, but in consideration of the crystal orientation, it is kept at a temperature above the freezing point and is cooled from one end to be unidirectionally solidified. It is preferable to control the crystal growth orientation by performing the above.

【0020】また、上記の合金塊の粉砕には、公知の方
法であるスタンプミル、ボールミル、振動ミル等を挙げ
ることができる。
For crushing the above-mentioned alloy ingot, known methods such as a stamp mill, a ball mill and a vibration mill can be mentioned.

【0021】粉砕後に熱電半導体からなる原料中の酸素
を除去するため、水素ガス等の還元性雰囲気中でマイク
ロ波を照射して還元処理を行うことが好ましい。この還
元処理は通常の加熱炉でも行うことが可能であるが、特
にマイクロ波加熱を用いることが、短時間で実施できる
とともに、表面の反応性がより改善して焼結性を高め、
焼結体の熱電特性を向上することができる。なお、この
還元処理は、焼成の前であれば成形後でも差し支えな
い。
In order to remove oxygen in the raw material made of a thermoelectric semiconductor after pulverization, it is preferable to carry out the reduction treatment by irradiating with microwaves in a reducing atmosphere such as hydrogen gas. This reduction treatment can be carried out in an ordinary heating furnace, but in particular, microwave heating can be carried out in a short time, and the reactivity of the surface is further improved to enhance the sinterability,
The thermoelectric properties of the sintered body can be improved. Note that this reduction treatment may be performed after molding as long as it is before firing.

【0022】この焼成原料を公知の成形方法、例えば、
一軸プレス法、CIP法、鋳込み法、射出成形法等によ
り成形体を作製する。プレス法による成形方法を用いる
場合、成形圧100MPaで成形して所望の形状を得る
ことができるが、ドクターブレード法を用いテープ状に
成形し、該成形体を積層することで素子形状の成形体を
作製しても良い。
This firing raw material is formed by a known molding method, for example,
A molded body is produced by a uniaxial pressing method, a CIP method, a casting method, an injection molding method or the like. When a molding method using a pressing method is used, a desired shape can be obtained by molding with a molding pressure of 100 MPa, but a molded body having an element shape can be formed by forming a tape shape using a doctor blade method and stacking the molded bodies. May be produced.

【0023】このとき、成形体の寸法が、焼成後に製品
と略同一形状になるようにすることが重要である。これ
により、焼結後素子を切断する必要がなく、切断時の材
料のロス、欠けなどによる不良品の発生を抑えることが
できる。また、成形体が均一に加熱されるため、素子毎
の性能のばらつきを抑えることができる。
At this time, it is important that the size of the molded body is substantially the same as that of the product after firing. As a result, it is not necessary to cut the element after sintering, and it is possible to suppress the generation of defective products due to material loss or chipping during cutting. Further, since the molded body is heated uniformly, it is possible to suppress variations in performance among the elements.

【0024】得られた成形体はマイクロ波加熱によって
焼成する。即ち、成形体にマイクロ波を照射し、合金に
マイクロ波を吸収させて自己発熱させるため、エネルギ
ー効率が高く、急昇温が可能で、且つ低コストに寄与で
きる。また、マイクロ波が材料粒子表面に均一に作用す
るため、成形体を均一に加熱することができ、特性のば
らつきを抑制することができる。
The obtained compact is fired by microwave heating. That is, since the compact is irradiated with microwaves and the alloy absorbs the microwaves to generate heat by itself, the energy efficiency is high, the temperature can be rapidly raised, and the cost can be reduced. Moreover, since the microwaves uniformly act on the surface of the material particles, it is possible to uniformly heat the molded body and suppress variations in characteristics.

【0025】このマイクロ波加熱は、成形体をマイクロ
波加熱装置の共振器内に配置し、マグネトロン、クライ
ストロン又はジャイロトロン等の発振管より発振され、
導波管を通して空洞共振器内に導かれたマイクロ波を成
形体に照射するものである。
In this microwave heating, the molded body is placed in the resonator of the microwave heating apparatus and is oscillated by an oscillating tube such as a magnetron, a klystron or a gyrotron.
This is to irradiate the molded body with the microwave guided into the cavity resonator through the waveguide.

【0026】なお、成形体はアルミナ繊維等からなる断
熱材にて周囲を囲むことで試料表面からの放熱を抑制で
き、効果的に加熱することができる。また、試料温度は
公知の測定方法、例えばタングステン−レニウム等の熱
電対や二色温度計等の非接触法で測定することができ
る。
By surrounding the periphery of the molded body with a heat insulating material made of alumina fiber or the like, it is possible to suppress the heat radiation from the sample surface and heat it effectively. The sample temperature can be measured by a known measurement method, for example, a non-contact method such as a thermocouple of tungsten-rhenium or a dichroic thermometer.

【0027】このマイクロ波加熱に用いるマイクロ波の
周波数は0.9GHz以上、特に2GHz以上、さらに
は10GHz以上、より好適には25GHz以上である
ことが望ましい。0.9GHz以上とすることで熱電半
導体からなる粉末原料が効果的にマイクロ波を吸収で
き、加熱・焼結時間を極力短くすることが可能となる。
そのため揮発量を抑制でき、また熱電半導体の結晶粒子
が粒成長することなく焼結でき、結晶粒微細化が可能で
あり、熱伝導率を低くすることができる。
The frequency of the microwave used for the microwave heating is preferably 0.9 GHz or higher, particularly 2 GHz or higher, further 10 GHz or higher, and more preferably 25 GHz or higher. By setting the frequency to 0.9 GHz or more, the powder raw material made of the thermoelectric semiconductor can effectively absorb the microwave, and the heating / sintering time can be shortened as much as possible.
Therefore, the amount of volatilization can be suppressed, the crystal grains of the thermoelectric semiconductor can be sintered without grain growth, the crystal grains can be miniaturized, and the thermal conductivity can be lowered.

【0028】さらに前記マイクロ波加熱は、合金の酸化
を防止するため、窒素ガスやアルゴン等の不活性ガス雰
囲気で行うことが好ましい。
Further, the microwave heating is preferably performed in an atmosphere of an inert gas such as nitrogen gas or argon in order to prevent the alloy from being oxidized.

【0029】また、マイクロ波加熱は、昇温工程と焼成
工程とを含み、昇温工程においては、昇温速度が10℃
/min以上であることが好ましい。また、焼成工程に
おいては、200℃〜550℃の温度で、30分以下の
時間保持することが好ましい。
The microwave heating includes a temperature raising step and a firing step, and the temperature raising rate is 10 ° C. in the temperature raising step.
/ Min or more is preferable. Further, in the firing step, it is preferable to maintain the temperature at 200 ° C. to 550 ° C. for a time of 30 minutes or less.

【0030】このような高速昇温及び短時間焼成によ
り、蒸発による合金の組成変動を抑制でき、粒成長を抑
制でき熱伝導率を低くすることで熱電特性を向上でき
る。また、粒子表面の反応性及び拡散速度を高める結
果、焼結体の相対密度を95%以上、特に98%以上に
緻密化できるため、例えば焼結体の表面に半田付けを行
う場合、内部に半田がしみ込んで性能低下を起こすこと
なく、優れた熱電特性を示すことができる。
By such rapid temperature rise and short-time firing, the compositional change of the alloy due to evaporation can be suppressed, grain growth can be suppressed, and the thermal conductivity can be lowered to improve thermoelectric properties. Further, as a result of increasing the reactivity and diffusion rate of the particle surface, the relative density of the sintered body can be densified to 95% or more, particularly 98% or more. For example, when soldering the surface of the sintered body, Excellent thermoelectric properties can be exhibited without the performance of the solder penetrating and causing a deterioration in performance.

【0031】昇温速度が10℃/minより低いと昇温
に多くの時間を必要とするため、テルルやセレン等の成
分が揮発して組成ずれを起こしやすく、不良の原因とな
る。したがって10℃/min以上、特に15℃/mi
n以上、さらには20℃/min以上であることが好ま
しい。
If the temperature raising rate is lower than 10 ° C./min, it takes a long time to raise the temperature, so that components such as tellurium and selenium are likely to volatilize to cause compositional deviation, which causes defects. Therefore, 10 ° C / min or more, especially 15 ° C / mi
It is preferably n or more, more preferably 20 ° C./min or more.

【0032】また同様に、組成ずれ防止のため、200
℃〜550℃、特に300℃〜500℃、さらには35
0℃〜450℃の温度で、30分以下、特に20分以
下、さらには10分以下、より好適には5分以下の焼成
を行うことが好ましい。
Similarly, in order to prevent composition deviation, 200
℃ ~ 550 ℃, especially 300 ℃ ~ 500 ℃, even 35
It is preferable to perform calcination at a temperature of 0 ° C. to 450 ° C. for 30 minutes or less, particularly 20 minutes or less, further 10 minutes or less, and more preferably 5 minutes or less.

【0033】このようにして得られた熱電素子は、所望
により外径加工を実施し、寸法を統一することができ
る。そして、例えば、上記の熱電素子を複数配列し、一
対の熱交換基板で挟持するとともに、熱電素子を電気的
に接続して熱電モジュールを作製し、上記の配列した熱
電素子に電気を供給して、熱交換器板の一方を冷却する
ことができる。
The thermoelectric element thus obtained can be subjected to outer diameter processing as desired to uniform the dimensions. Then, for example, a plurality of the above-mentioned thermoelectric elements are arranged, sandwiched between a pair of heat exchange substrates, and the thermoelectric elements are electrically connected to produce a thermoelectric module, and electricity is supplied to the arranged thermoelectric elements. , One of the heat exchanger plates can be cooled.

【0034】[0034]

【実施例】出発原料には、純度99.99%以上のビス
マス、テルル、およびセレンをn型としてBi2Te
2.85Se0.15となるように秤量し、これらの混合粉末を
それぞれパイレックス(登録商標)ガラス管に真空封入
しロッキング炉にて溶融・攪拌後冷却することにより熱
電半導体材料インゴットを作製した。その後スタンプミ
ルを用いて粗粉砕した後、エタノール溶媒中で24時間
回転ミルを施した。
Example As starting materials, Bi 2 Te with n-type bismuth, tellurium, and selenium having a purity of 99.99% or more was used.
2.85 Se 0.15 was weighed, and these mixed powders were vacuum sealed in a Pyrex (registered trademark) glass tube, melted and stirred in a rocking furnace, and then cooled to prepare a thermoelectric semiconductor material ingot. Then, after roughly pulverizing using a stamp mill, a rotary mill was applied in an ethanol solvent for 24 hours.

【0035】粉砕原料をシリカチューブに入れ2L/m
inの流量の水素気流中で28GHzのマイクロ波を照
射し水素還元処理を行った後、一軸プレスにて100M
Paの成形圧で、縦1mm、横1mm、長さ1.5mm
の成形体を作製した。
The pulverized raw material was put into a silica tube and 2 L / m
Irradiate with microwave of 28 GHz in hydrogen gas flow of in to perform hydrogen reduction treatment, then uniaxial press 100M
1 mm length, 1 mm width, and 1.5 mm length at a molding pressure of Pa
A molded body of was produced.

【0036】得られた成形体は、マイクロ波加熱炉の空
洞共振器内のアルミナ断熱材中に設置され、マイクロ波
を照射して焼成した。ここで、マイクロ波加熱炉のマイ
クロ波源として、周波数0.915GHz、出力3k
W、及び2.45GHz、出力2kWのマグネトロン、
周波数28GHz、出力10kWのジャイロトロンのい
ずれかを用いた。そして、還元処理は2L/minの水
素気流中のマイクロ波加熱により表1の条件にて行い、
焼成は2L/minのアルゴンガス気流中のマイクロ波
加熱により表1に示す条件で行った。
The obtained molded body was placed in an alumina heat insulating material in a cavity resonator of a microwave heating furnace, and was irradiated with microwaves to be fired. Here, the microwave source of the microwave heating furnace has a frequency of 0.915 GHz and an output of 3 k.
W, 2.45 GHz, output 2 kW magnetron,
A gyrotron with a frequency of 28 GHz and an output of 10 kW was used. Then, the reduction treatment is performed by microwave heating in a hydrogen flow of 2 L / min under the conditions of Table 1,
The firing was performed under the conditions shown in Table 1 by microwave heating in a 2 L / min argon gas stream.

【0037】なお、試料No.13は、上記粉砕原料を
Ar雰囲気中で圧力300Kg/cm2、温度500℃
で10分間のホットプレスを行って直径200mmの焼
結体を作製し、その後縦0.9mm、横0.9mm、長
さ1.2mmに切断した。また、試料No.14は、上
記粉砕原料をAr雰囲気中で押出しながら焼成し、縦
0.9mm、横0.9mm、長さ500mmの素材を作
製し、縦0.9mm、横0.9mm、長さ1.2mmに
切断した。
Sample No. 13 is a pressure of 300 Kg / cm 2 at a temperature of 500 ° C. in the Ar atmosphere of the pulverized raw material.
Was hot-pressed for 10 minutes to prepare a sintered body having a diameter of 200 mm, and then cut into a piece having a length of 0.9 mm, a width of 0.9 mm and a length of 1.2 mm. In addition, the sample No. No. 14 is a material having a length of 0.9 mm, a width of 0.9 mm, and a length of 500 mm, which is fired while extruding the crushed raw material in an Ar atmosphere. The length is 0.9 mm, the width is 0.9 mm, and the length is 1.2 mm. Disconnected.

【0038】得られた焼結体は、表面の研削加工を行
い、アルキメデス法により比重を測定し、理論密度から
相対密度を測定した。また、4端子法により25℃の導
電率σを測定しσ=1/ρにより比抵抗ρを算出した。
The surface of the obtained sintered body was ground, the specific gravity was measured by the Archimedes method, and the relative density was measured from the theoretical density. Further, the electrical conductivity σ at 25 ° C. was measured by the 4-terminal method, and the specific resistance ρ was calculated from σ = 1 / ρ.

【0039】さらに、熱伝導率は、直径10mm、厚み
1mmの試験片を別途作製し、JISR1611のレー
ザーフラッシュ法にて測定した。また、ゼーベック係数
は、縦4mm、横4mm、長さ15mmの角柱試料を作
製し、真空理工社製熱電能評価装置により、25℃で測
定した。そして、性能指数Zは、Z=S2/ρk(Sは
ゼーベック係数、ρは抵抗率、kは熱伝導率である)よ
り算出した。
Further, the thermal conductivity was measured by a laser flash method of JISR1611 by separately preparing a test piece having a diameter of 10 mm and a thickness of 1 mm. The Seebeck coefficient was measured at 25 ° C. by using a thermoelectric power evaluation device manufactured by Vacuum Riko Co., Ltd. to prepare a prismatic sample having a length of 4 mm, a width of 4 mm, and a length of 15 mm. The performance index Z was calculated from Z = S 2 / ρk (S is Seebeck coefficient, ρ is resistivity, and k is thermal conductivity).

【0040】また、特性ばらつき評価のため、性能指数
のばらつき(不良率)を100個の試料に基づいて算出
した。さらに、成形体から試料作製までの原料の損失を
重量変化から測定した。結果を表1に示す。
Further, in order to evaluate the characteristic variation, the variation (defective rate) of the figure of merit was calculated based on 100 samples. Furthermore, the loss of the raw material from the molded body to the sample preparation was measured from the weight change. The results are shown in Table 1.

【0041】[0041]

【表1】 [Table 1]

【0042】本発明の試料No.1〜12は、相対密度
が95%以上となり、性能指数Zが全て3×10-3/K
を超え、熱電性能に優れた素子であった。また、同一条
件で作製した100個の熱電素子の性能指数は性能のば
らつきが2%以内とばらつきの少ないものであった。
Sample No. of the present invention. Nos. 1 to 12 have a relative density of 95% or more, and all the performance indexes Z are 3 × 10 −3 / K.
It was an element excellent in thermoelectric performance. In addition, the performance index of 100 thermoelectric elements produced under the same conditions had a small variation of 2% or less.

【0043】一方、ホットプレス法で作製した本発明の
範囲外の試料No.13は性能指数Zが2.41×10
-3/K、性能指数のばらつきは6%、原料損失率が46
%であった。
On the other hand, the sample No. manufactured by the hot press method and out of the range of the present invention. 13 has a figure of merit Z of 2.41 × 10
-3 / K, figure of merit variation 6%, raw material loss rate 46
%Met.

【0044】また、押出焼成法で作製した本発明の範囲
外の試料No.14は熱電性能Zが2.52×10-3
K、性能指数のばらつきは12%、原料損失率が33%
であった。
Further, sample No. manufactured by the extrusion firing method and outside the scope of the present invention. 14 has a thermoelectric performance Z of 2.52 × 10 −3 /
K, 12% dispersion in performance index, 33% raw material loss rate
Met.

【0045】[0045]

【発明の効果】本発明の熱電素子の製造方法は、加圧す
ることなく低温短時間で緻密体を得ることができ、また
切断工程を省略できるため、その結果、材料の無駄がな
く、熱電性能に優れた熱電半導体素子を実現できる。
According to the method of manufacturing a thermoelectric element of the present invention, a dense body can be obtained at a low temperature in a short time without applying pressure, and a cutting step can be omitted. As a result, there is no waste of material and thermoelectric performance is improved. An excellent thermoelectric semiconductor element can be realized.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Bi、Te、Sb及びSeから選ばれる少
なくとも2種からなる熱電材料の原料粉末を成形した
後、マイクロ波加熱を用いて焼成することを特徴とする
熱電素子の製造方法。
1. A method for producing a thermoelectric element, which comprises forming a raw material powder of a thermoelectric material consisting of at least two kinds selected from Bi, Te, Sb and Se, and then firing it by using microwave heating.
【請求項2】前記焼成に先立って、前記成形体にマイク
ロ波を照射して還元処理を行うことを特徴とする請求項
1記載の熱電素子の製造方法。
2. The method for manufacturing a thermoelectric element according to claim 1, wherein the compact is irradiated with microwaves to carry out a reduction treatment prior to the firing.
【請求項3】前記マイクロ波の周波数が0.9GHz以
上であることを特徴とする請求項1または2記載の熱電
素子の製造方法。
3. The method of manufacturing a thermoelectric element according to claim 1, wherein the microwave has a frequency of 0.9 GHz or higher.
【請求項4】前記マイクロ波加熱による焼成が、前記成
形体を10℃/min以上の速度で昇温する工程と、2
00℃〜550℃の温度に30分以下の時間保持する工
程とを含むことを特徴とする請求項1乃至3のうちいず
れかに記載の熱電素子の製造方法。
4. A step of raising the temperature of the molded body at a rate of 10 ° C./min or more by firing by the microwave heating;
4. The method for manufacturing a thermoelectric element according to claim 1, further comprising a step of holding the temperature at 00 ° C. to 550 ° C. for 30 minutes or less.
JP2001022423A 2001-01-30 2001-01-30 Thermoelectric element manufacturing method Expired - Fee Related JP3523600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001022423A JP3523600B2 (en) 2001-01-30 2001-01-30 Thermoelectric element manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001022423A JP3523600B2 (en) 2001-01-30 2001-01-30 Thermoelectric element manufacturing method

Publications (2)

Publication Number Publication Date
JP2002232024A JP2002232024A (en) 2002-08-16
JP3523600B2 true JP3523600B2 (en) 2004-04-26

Family

ID=18887839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001022423A Expired - Fee Related JP3523600B2 (en) 2001-01-30 2001-01-30 Thermoelectric element manufacturing method

Country Status (1)

Country Link
JP (1) JP3523600B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7939744B2 (en) * 2001-08-21 2011-05-10 Kyocera Corporation Thermoelectric element
JP2005072391A (en) 2003-08-26 2005-03-17 Kyocera Corp N-type thermoelectric material, its manufacturing method and n-type thermoelectric element
JP5128885B2 (en) * 2007-09-27 2013-01-23 三菱重工環境・化学エンジニアリング株式会社 Asphalt heating apparatus and method and paving material manufacturing equipment
KR20200109733A (en) * 2019-03-14 2020-09-23 엘티메탈 주식회사 METHOD FOR MANUFACTURING Bi-Te BASED THERMOELECTRIC MATERIAL BY USING MICROWAVE SINTERING AND Bi-Te BASED THERMOELECTRIC MATERIAL MANUFACTURED THEREBY
CN113121235B (en) * 2021-04-09 2022-04-12 哈尔滨工业大学 Preparation method of thermoelectric power generation material

Also Published As

Publication number Publication date
JP2002232024A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
Qiu et al. 3D Printing of highly textured bulk thermoelectric materials: mechanically robust BiSbTe alloys with superior performance
CN100448045C (en) Thermoelectric material, thermoelectric element and thermoelectric module, and method for manufacturing same
CN1969354B (en) Process for producing a heusler alloy, a half heusler alloy, a filled skutterudite based alloy and thermoelectric conversion system using them
US5318743A (en) Processes for producing a thermoelectric material and a thermoelectric element
CN105990511B (en) A kind of method that step reaction in-situ prepares homogeneous block thermoelectric material
CN100549195C (en) A kind of filled skutterudite-base thermoelectrical composite material and preparation method thereof
WO1990016086A1 (en) Thermoelectric semiconductor material and method of producing the same
JP2000252526A (en) Skutterudite thermoelectric material, thermocouple and manufacture thereof
WO2001017034A1 (en) Process for producing thermoelectric material and thermoelectric material thereof
CN1962416A (en) Preparation process of bismuth telluride base thermoelectrical material
KR20070117270A (en) Method for fabricating thermoelectric material by mechanical milling-mixing and thermoelectric material fabricated thereby
JP4479628B2 (en) Thermoelectric material, manufacturing method thereof, and thermoelectric module
JP3523600B2 (en) Thermoelectric element manufacturing method
CN105990510B (en) A kind of copper seleno high performance thermoelectric material and preparation method thereof
CN108198934B (en) Composite thermoelectric material and preparation method thereof
JP4467584B2 (en) Thermoelectric material manufacturing method
JPH09321347A (en) Thermoelectric conversion material and manufacture thereof
JP4666841B2 (en) Method for manufacturing thermoelectric material
JP2003298122A (en) Method of manufacturing thermoelectric conversion material
JP4671553B2 (en) Thermoelectric semiconductor manufacturing method
JP2004179264A (en) Thermoelectric material and manufacturing method therefor
JP2003243733A (en) METHOD FOR MANUFACTURING p-TYPE THERMOELECTRIC CONVERSION MATERIAL
JP3605366B2 (en) Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
KR20200109733A (en) METHOD FOR MANUFACTURING Bi-Te BASED THERMOELECTRIC MATERIAL BY USING MICROWAVE SINTERING AND Bi-Te BASED THERMOELECTRIC MATERIAL MANUFACTURED THEREBY

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040206

LAPS Cancellation because of no payment of annual fees