JP3605366B2 - Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same - Google Patents

Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same Download PDF

Info

Publication number
JP3605366B2
JP3605366B2 JP2001022424A JP2001022424A JP3605366B2 JP 3605366 B2 JP3605366 B2 JP 3605366B2 JP 2001022424 A JP2001022424 A JP 2001022424A JP 2001022424 A JP2001022424 A JP 2001022424A JP 3605366 B2 JP3605366 B2 JP 3605366B2
Authority
JP
Japan
Prior art keywords
thermoelectric
crystal
type
thermoelectric element
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001022424A
Other languages
Japanese (ja)
Other versions
JP2002232025A (en
Inventor
健一 田島
広一 田中
啓久 瀬知
和博 西薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001022424A priority Critical patent/JP3605366B2/en
Publication of JP2002232025A publication Critical patent/JP2002232025A/en
Application granted granted Critical
Publication of JP3605366B2 publication Critical patent/JP3605366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱電素子の製造方法および熱電素子およびそれを用いた熱電モジュールに関する。
【0002】
【従来技術】
従来より、ペルチェ効果を利用した熱電素子を用いた熱電モジュールによる冷却がレーザーダイオードの温度制御、恒温槽あるいは冷蔵庫に多用されており、室温付近における冷却用熱電モジュールに用いられる熱電材料としては、冷却特性が優れるという観点からBiTe(テルル化ビスマス)の材料が一般的に用いられている。
【0003】
さらに熱電素子はp型およびn型を対にして用いる必要があり、p型にはBiTeとSbTe(テルル化アンチモン)との固溶体が、n型にはBiTeとBiSe(セレン化ビスマス)との固溶体が特に優れた性能を示すことが知られ、このA型(AはBiまたはSbの1種または2種、BはTeまたはSeの1種または2種)結晶が冷却用熱電モジュール用熱電材料として広く用いられている。
【0004】
このA型結晶は古くよりゾーンメルト法、一方向凝固などによって結晶粒が大きいインゴットあるいは単結晶として作製され、これをスライスしたものを用いてきたが、熱電モジュールに使用される熱電素子は数mm角の大きさに切断する際にへき開面を持つこれら結晶の多くは加工歩留まりが極めて低く、近年では加工に対する強度を保たせるためにホットプレス等により作製された多結晶体が用いられている。
【0005】
しかし、A型単結晶における熱電特性は結晶軸に対して異方性があるため、結晶方向がランダムである多結晶体では性能が低下してしまうという問題があった。そこで、単結晶並みの冷却性能を有する熱電モジュール作製のためには単結晶並に結晶が配向した材料を用いる必要があり、ホットフォージングによる圧延焼結によって高配向材料を作製する方法が特開平10−178219号公報に提案されている。
【0006】
また、インゴットや単結晶を作製し、これを粉砕して焼成する工程は複雑であり、また長時間の処理を必要とし、スライス処理を含むものではスライスロスが生じて、コストが上昇するため、特定の混合原料を希望する形状に成形した後に焼成し、熱電素子を得ることが、特開平2−256283号公報で提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、特開平10−178219号公報の方法では、原料として用いる金属粉末がA型結晶でなくてはならず、この結晶を作製するためには金属粉末をあらかじめ溶融させるなどして合金を形成させた後に冷却後あるいは冷却過程で粉砕しなくてはならず、焼結前の原料コストを大幅に引き上げていたという問題があり、また、インゴット及び単結晶の粉砕後に得られる結晶の大きさ、形状によって焼結体の結晶の大きさ、配向度が大きく変化するために配向度を充分高め安定させることは容易では無く、また原料歩留まりも低いという問題があった。
【0008】
また、特開平2−256283号公報の方法では、工程は減少し、スライスロスが無くなるが、配向性が小さいため、熱電性能が低下してしまうという問題があった。そのため、冷却用途としては充分な性能指数が得られず、この方法により製作された熱電素子を用いた熱電モジュールは実用化されていない。
【0009】
本発明は、低コストで量産性に優れ、かつ結晶配向度の高い熱電素子の製造方法及びその方法を用いて作製した熱電性能に優れた熱電素子および熱電モジュールを実現することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、板状のA型単結晶と、反応してA型結晶を形成する金属粉末とを含む成形体を焼結させることで容易に配向度の高い合金が得られ、得られた熱電素子は熱電性能に優れるという知見に基づくものである。
【0011】
即ち、本発明の熱電素子の製造方法は、AをBi及び/又はSb、BをTe及び/又はSeとしたとき、A型単結晶を5〜80容量%と、反応して前記A型結晶となる金属及び/又は合金からなる粉末とを含む成形体を焼成し、前記A型結晶を主体とする合金を得ることを特徴とするものである。
【0012】
これにより、高コストであるA型単結晶の使用を極力抑えることにより素子製造の低コスト化が図れ、かつ焼結時に板状結晶の形状を保ちながら結晶成長が起こるために、得られる素子の配向性を高めることが可能である。そのために本発明品で得られる熱電素子を用いることで冷却用途用高性能な熱電モジュールを低コストで作製できる。
【0013】
また、前記A型単結晶が、最大径d及び厚みtを有する板状結晶であり、比d/tの平均が3.0以上、レーザー回折法による前記A型単結晶の平均粒子径が1.0μm以上であることが好ましい。これにより、焼結体の結晶配向性を高めることが可能となり、素子の性能指数を高めることができる。
【0014】
さらに、前記成形体がI、Cl、Hg、Br、Ag及びCuのうち少なくとも1種を含むことが好ましい。これにより、熱電半導体のキャリア濃度を調整することができ、さらに熱電特性を高めることが可能となる。
【0015】
また、本発明の熱電素子は、作製されたA型単結晶を主体とする合金からなり、特定の方向に対してC面配向度が0.40以上であることを特徴とするものである。これにより、結晶配向による高い性能指数が維持できる。
【0016】
さらに、本発明の熱電モジュールは、 型結晶からなる複数の熱電素子と、該熱電素子を挟持する一対の熱交換基板と、該熱交換基板の一主面に設けられ、前記熱電素子を電気的に接続する配線とを具備する熱電モジュールにおいて、前記熱電素子の電流が流れる方向と平行な面のC面配向度が0.40以上、性能指数が2×10−3/K以上であることを特徴とするものである。これにより、レ―ザーダイオード等の冷却用途として充分な特性を有する。
【0017】
【発明の実施の形態】
本発明の熱電素子の製造方法は、A型結晶(AはBi及び/又はSb、BはTe及び/又はSe)からなる半導体結晶であって、組成比B/Aが1.45〜1.55であることが好ましく、特に公知であるBiTe、BiTeとBiSeの固溶体であるBiTe3−xSe(x=0.05〜0.25)、又はBiTeとSbTeの固溶体であるBiSb2−yTe(y=0.1〜0.6)を好適に用いることができる。
【0018】
本発明によれば、原料としてA型結晶の少なくとも2種類の性状を有する粉末を用いることが重要である。まず、第1の粉末は、Bi及び/又はSbと、Te及び/又Seとからなる型単結晶を準備する。即ち、AをBi及び/又はSb、BをTe及び/又Seとしたとき、Aで表される単結晶を、全量中で5容量%以上となるように準備する。
【0019】
型単結晶は、配向性を高める上で、形状に異方性を持つものであればどのようなものでも良いが、特に、最大径d及び厚みtを有する板状結晶であることが好ましい。そして、板状結晶の厚みtに対する最大径dの比d/tで示されるアスペクト比の平均が3.0以上、特は4.0以上、さらには5.0以上が、焼結体の粒子径をそろえ、熱電特性の均一性を高める上でまた、配向度を高める上で好ましい。
【0020】
また、レーザー回折法で求められる平均粒子径d50(累積重量比率50%時の粒子径)が1.0μm以上、特に2.0μm、さらには3.0μm以上が、配向性を高め、かつ配向の方位を成形時、焼結時の圧力の方向に対して異方性を持つ点で好ましい。
【0021】
これらのA型結晶がn型半導体の場合、成形体がI、Cl、Hg、Br、Ag及びCuのうち少なくとも1種を、ドーパントとして含むことが、半導体特性を向上し、その結果、熱電特性を改善するために好ましい。例えば、n型であるBiTe2.95Se0.05に対して、HgBr、あるいはSbIを0.06〜0.10重量%添加することにより、電子あるいは空孔のキャリア濃度を高めることができる。なお、p型半導体においては、TeやSeをドーパントとして用いるため、TeやSeを過剰に含有するA型結晶を用いることができる。
【0022】
第2の粉末には、焼成によって上記のA型結晶になるような金属粉末を準備する。例えば、単結晶がBiTeの場合、BiとTeをモル比で2:3になるように、Bi粉末とTe粉末を準備する。また、Bi0.5Sb1.5Teの場合、BiとSbとTeをモル比で0.5:1.5:3となるようにBi粉末とSb粉末とTe粉末を準備しても良いし、また、BiTeとSbTeのモル比が1:3となる合金混合粉末を準備しても良いし、上記の金属粉末と合金粉末とを混合しても良い。
【0023】
上記第2の結晶である金属粉末及び/又は合金粉末は、第1の単結晶である板状結晶とは異なる物質であり、焼成中に反応して板状結晶となるように組成を調製された金属及び/又は合金であることが重要である。これは、反応により種結晶の板状結晶が成長し、配向性の高い焼結体が得られ、逆に、種結晶の板状結晶と同じ結晶であると、単に焼結が進み、板状の種結晶の形状異方性に従う結晶成長による異方性が生じにくくなるためである。
【0024】
次に、上記板状結晶と、金属粉末及び/又は合金粉末とを混合し混合原料を作製するが、本発明によれば、上記混合粉末中に板状結晶が5〜80容量%含まれることが重要であり、特に10〜70容量%、さらには20〜60容量%であることが好ましい。即ち、5容量%より少ないと、焼結体中におけるA型結晶の配向性が小さくなり、また、80容量%を越えると緻密体が得難くなるためである。
【0025】
上記混合原料を作製するための混合方法は、メカニカルアロイングなど板状結晶の破壊を引き起こす粉砕工程は避け、湿式または乾式のボールミル混合等の方法を用いることが好ましい。
【0026】
得られた混合原料を、公知の成形方法であるラバープレス、金型プレス等を用いて成形し、得られた成形体を焼成する。あるいは粉末のままカーボンダイス等の型に入れて焼成する。なお、焼成を行う前に、原料中の板状結晶、金属粉末及び合金粉末の表面の酸化物層や吸着酸素を取り除くため、還元雰囲気で熱処理することが好ましい。例えば、水素やフォーミングガス等のガス雰囲気中、300〜400℃で1〜24時間程度の熱処理を行う。この熱処理によって粒子表面の酸素を取り除くことができ、配向性が高まって、高い性能指数を有する熱電素子が得られる。
【0027】
焼成は、公知の焼成方法である常圧焼成、ホットプレス、雰囲気加圧焼成、プラズマ焼結、マイクロ波焼結、HIP焼結等を用いることができるが、特に配向度を高める上でホットプレス、HIP焼結及びプラズマ焼成が望ましい。
【0028】
ホットプレスの場合、ホットプレス用型の中にそのまま粉末を投入しても良いが、板状結晶の配向度を高めるために一軸の金型プレスを行って成形体を前もって作製し、その成形体をホットプレス用型に装填することが好ましい。
【0029】
焼成温度は、融点よりも100℃程度低い温度で焼結させることが好ましく、例えばBiTeであれば400〜500℃、Bi0.5Sb1.5Teであれば400〜480℃が望ましい。この温度域では種結晶自体は変化しないが、周りに存在する種結晶以外の金属が種結晶と同じ組成へ化学変化を起こす条件であり、この条件下であれば金属から種結晶組成への変化は主として種結晶表面上で生じるため、板状種結晶の形状異方性を保ちながら選択的な結晶成長が起こるため、配向組織を得やすい。
【0030】
このようにして作製された熱電素子は、A型結晶を主体し、高い配向を有する焼結体からなる。そして、その配向は、特定の方向に対してC面配向度が0.40以上であることが重要である。このような配向性を有する熱電素子は、C面方向の抵抗率が低いためにC面方向の熱電特性が高いという特徴を有する。
【0031】
なお、配向度とは、X線回折により得られたA型結晶のI(006)、I(015)、I(0015)のピーク強度をそれぞれ求め、これらのピーク強度の和に対するI(006)とI(0015)との割合を示し、以下の式で与えられるfで表されるものである。f=I(006)+I(0015)/I(006)+I(015)+I(0015)さらに、本発明の熱電モジュールは、 型結晶からなる複数の熱電素子と、該熱電素子を挟持する一対の熱交換基板と、該熱交換基板の一主面に設けられ、前記熱電素子を電気的に接続する配線とを具備する熱電モジュールであり、n型熱電素子とp型熱電素子とが同数かつ複数だけ適当な間隔を置いて並び、それぞれが直列に電気接続され、外部電極に連結しており、熱電素子の両端部が熱交換基板によって挟持されている構造を有している。
【0032】
そして、n型及びp型の熱電素子において、それぞれ電流が流れる方向に対して平行な面のC面配向度fが0.40以上、性能指数が2×10−3/K以上であることが重要であり、これにより、熱電素子として優れた性能を発現できる。
【0033】
ここで、性能指数Zとは、ゼーベック係数をS、抵抗率をρ、熱伝導率をkとしたとき、以下の式
Z=S/ρk
で定義されるもので、熱電素子を冷却素子あるいは発電素子として用いる場合の効率を示すものである。
【0034】
【実施例】
実施例1
n型熱電素子のために、種結晶のA型単結晶として純度99.99%以上のBiTe2.95Se0.05結晶、金属原料として純度99.99%以上、平均粒子径100μmのBi、Te及びSeの各金属粉末、所望により添加するドーパントとして純度99.9%、平均粒子径1.8μmのSbI粉末を準備した。
【0035】
また、p型熱電素子のために、種結晶のA型単結晶として純度99.99%以上のBi0.5Sb1.5Te結晶、金属原料として純度99.99%以上、平均粒子径100μmのBi、Sb及びTeの各金属粉末を準備した。
【0036】
単結晶は、スタンプミルで粉砕し、いくつかのメッシュを用いて分級し、数種類の板状結晶を得た。この板状結晶の平均粒子径をレーザー回折法で求め、結晶の最大径dと厚みtはSEM写真から200個の粒子の平均を求め、アスペクト比d/tを算出した。
【0037】
n型熱電素子用として準備したBi、Te及びSeの各金属粉末は、組成がBiTe2.95Se0.05となるように、また、p型熱電素子用として準備したBi、Sb及びTeの各金属粉末は、Bi0.5Sb1.5Te組成となるように、それぞれ秤量し、イソプロパノール(IPA)を溶媒とし、ウレタン製ボールを用いてそれぞれ混合した。
【0038】
混合したスラリーを真空中、60℃で乾燥し、得られた混合粉末を、200メッシュを通し、金属粉末を得た。
【0039】
このようにして得られた単結晶である板状結晶と金属粉末は、表1に示す組成に各10gずつ秤量し、アルミナ乳鉢で混合しその後、混合粉末を20mmφの金型に入れ、100MPaの圧力で一軸にプレス成形した。
【0040】
成形体を水素気流中、350℃で24時間熱処理を行った後、表1に示す条件にて常圧焼成法(NS)、Ar雰囲気での加圧焼成(GPS)、ホットプレス(HP)、等方加圧焼結(HIP)、放電プラズマ焼結(SPS)により焼成した。
【0041】
焼結体はプレス方向に対して平行な方向に対して熱伝導率、ゼーベック係数及び抵抗率を測定するために、それぞれ測定試料を作製した。熱伝導率測定には、直径10mm、厚み1mmの円板試料を、ゼーベック係数、抵抗率測定には縦4mm、横4mm、長さ15mmの角柱試料を作製した。
【0042】
熱伝導率はレーザーフラッシュ法により、ゼーベック係数は真空理工社製熱電能評価装置により、抵抗率は4端子法により、それぞれ25℃の条件下で測定した。
【0043】
また、熱電性能指数Zは、Z=S/ρk(Sはゼーベック係数、ρは抵抗率、kは熱伝導率である)より算出した。
【0044】
さらに、C面配向度fの測定には、上記角柱試料を用いた。即ち、縦4mm、横4mmの断面又は端面をX線回折で測定し、得られたピーク強度から以下の式f=I(006)+I(0015)/I(006)+I(015)+I(0015)
を用いて算出した。結果を表1に示す。
【0045】
【表1】

Figure 0003605366
【0046】
本発明の試料No.2〜8、10〜16、18〜23及び25、26は、配向度が0.41以上、性能指数が2.07×10−3/K以上と大きかった。
【0047】
一方、原料中にA型単結晶が2容量%と少なく、本発明の範囲外の試料No.1及び17は、配向度が0.35以下、性能指数が1.93×10−3/K以下といずれも低かった。
【0048】
また、原料中にA型単結晶が95容量%と多く、本発明の範囲外の試料No.9及び24は、配向度が0.38以下、性能指数が1.89×10−3/K以下といずれも低かった。
【0049】
実施例2
実施例1と同様にして作製したC面配向度が高く、性能指数の高い試料No.12及び22を用いてn型、p型それぞれ18対の縦1.2mm、横1.2mm及び高さ2mmの熱電素子を切り出した。なお、このとき長手方向側面にC面配向する方向に切り出した。
【0050】
それぞれの素子にNi電極をメッキしたのち、Sn−Pbはんだを用いて片面にNiメッキされたCu電極が配線された10×12mmのアルミナ基板上にn型、p型が対になるように接合し、電極の端面にリード線をはんだ付けし、熱電モジュールを組み立てた。
【0051】
モジュールの評価は電圧を変化させたときに、放熱面の温度を27℃と一定にしたときの冷却面における温度から放熱面と冷却面の温度差を求めた。結果は70℃であり、レーザーダイオード冷却用ペルチェ素子として充分な性能を有していた。
【0052】
比較例
試料No.1及び17を用いてn型、p型それぞれ18対の1.2×1.2x2mmの熱電素子を同様にして切り出した。なお、このとき長手方向側面にC面配向する方向に切り出した。
【0053】
性能評価は、実施例2と同様にして行った。結果は温度差が61℃と冷却性能が本発明品と比べて劣っており、レーザーダイオード冷却用として使用できないレベルのものであった。
【0054】
【発明の効果】
本発明によれば、型単結晶と、反応して型単結晶を形成する金属粉末とからなる混合原料を型単結晶が配向するように成形し、それを焼成することによって、型単結晶を粒成長させ、特定の方向に配向し、熱電特性に優れた熱電素子を製造できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a thermoelectric element, a thermoelectric element, and a thermoelectric module using the same.
[0002]
[Prior art]
Conventionally, cooling by a thermoelectric module using a thermoelectric element using the Peltier effect has been frequently used for temperature control of a laser diode, a thermostat or a refrigerator, and a thermoelectric material used for a thermoelectric module for cooling near room temperature includes cooling. material Bi 2 Te 3 from the viewpoint of characteristics superior (bismuth telluride) is generally used.
[0003]
Further thermoelectric device must be used as a pair of p-type and n-type, a solid solution of the p-type Bi 2 Te 3 and Sb 2 Te 3 (antimony telluride) is, the n-type and Bi 2 Te 3 It is known that a solid solution with Bi 2 Se 3 (bismuth selenide) exhibits particularly excellent performance, and this A 2 B 3 type (A is one or two of Bi or Sb, B is one of Te or Se) (Seed or two kinds) crystals are widely used as thermoelectric materials for thermoelectric modules for cooling.
[0004]
This A 2 B 3 type crystal has long been produced as an ingot or a single crystal having a large crystal grain by a zone melt method, a unidirectional solidification, or the like, and a sliced product thereof has been used, but a thermoelectric element used in a thermoelectric module has been used. Many of these crystals, which have cleavage planes when cut to a size of several mm square, have extremely low processing yields, and in recent years, polycrystals manufactured by hot pressing or the like have been used to maintain strength for processing. ing.
[0005]
However, since the thermoelectric properties of the A 2 B 3 type single crystal are anisotropic with respect to the crystal axis, there is a problem that the performance deteriorates in a polycrystal having a random crystal direction. Therefore, in order to produce a thermoelectric module having a cooling performance comparable to that of a single crystal, it is necessary to use a material in which crystals are oriented in the same manner as a single crystal. It is proposed in JP-A-10-178219.
[0006]
In addition, the process of producing an ingot or a single crystal, crushing and baking it is complicated, requires a long-time treatment, and a process including a slice process causes a slice loss and increases costs, Japanese Patent Application Laid-Open No. 2-256283 has proposed that a specific mixed raw material is formed into a desired shape and then fired to obtain a thermoelectric element.
[0007]
[Problems to be solved by the invention]
However, according to the method disclosed in Japanese Patent Application Laid-Open No. H10-178219, the metal powder used as a raw material must be an A 2 B 3 type crystal. After forming or cooling, it has to be crushed after cooling or in the cooling process, which raises the cost of raw materials before sintering greatly, and the size of crystals obtained after crushing ingots and single crystals. However, since the crystal size and orientation of the sintered body greatly change depending on the shape, it is not easy to sufficiently raise and stabilize the orientation, and there is a problem that the raw material yield is low.
[0008]
In the method disclosed in Japanese Patent Application Laid-Open No. 2-256283, the number of steps is reduced and slice loss is eliminated, but there is a problem that thermoelectric performance is reduced due to small orientation. Therefore, a sufficient figure of merit for cooling is not obtained, and a thermoelectric module using a thermoelectric element manufactured by this method has not been put to practical use.
[0009]
An object of the present invention is to provide a method for manufacturing a thermoelectric element that is low in cost, has excellent mass productivity, and has a high degree of crystal orientation, and a thermoelectric element and a thermoelectric module that are manufactured by using the method and have excellent thermoelectric performance.
[0010]
[Means for Solving the Problems]
According to the present invention, an alloy having a high degree of orientation can be easily obtained by sintering a compact containing a plate-like A 2 B 3 type single crystal and a metal powder which reacts to form an A 2 B 3 type crystal. The obtained thermoelectric element is based on the finding that it has excellent thermoelectric performance.
[0011]
That is, in the method for producing a thermoelectric element of the present invention, when A is Bi and / or Sb and B is Te and / or Se, the A 2 B 3 type single crystal reacts with 5 to 80% by volume, firing the shaped body comprising a powder of metal and / or alloy becomes a 2 B 3 type crystal, it is characterized in that to obtain an alloy mainly composed of the a 2 B 3 type crystal.
[0012]
As a result, the cost of manufacturing the element can be reduced by minimizing the use of the high-cost A 2 B 3 type single crystal, and crystal growth occurs while maintaining the shape of the plate-like crystal during sintering. It is possible to increase the orientation of the element to be obtained. Therefore, by using the thermoelectric element obtained by the product of the present invention, a high-performance thermoelectric module for cooling use can be manufactured at low cost.
[0013]
Also, the A 2 B 3 type single crystal is a plate-like crystals having a maximum diameter d and thickness t, the ratio d / average t is 3.0 or more, said by laser diffraction method A 2 B 3 type single crystal Is preferably 1.0 μm or more. As a result, the crystal orientation of the sintered body can be increased, and the performance index of the device can be increased.
[0014]
Further, it is preferable that the molded body contains at least one of I, Cl, Hg, Br, Ag and Cu. Thereby, the carrier concentration of the thermoelectric semiconductor can be adjusted, and the thermoelectric characteristics can be further improved.
[0015]
Further, the thermoelectric element of the present invention is made of an alloy mainly composed of the produced A 2 B 3 type single crystal, and has a C-plane orientation degree of 0.40 or more in a specific direction. It is. Thereby, a high figure of merit due to the crystal orientation can be maintained.
[0016]
Further, the thermoelectric module of the present invention is provided with a plurality of thermoelectric elements made of A 2 B 3 type crystal , a pair of heat exchange substrates sandwiching the thermoelectric elements, and provided on one main surface of the heat exchange substrate, In a thermoelectric module including wiring for electrically connecting elements, a degree of C-plane orientation of a plane parallel to a current flowing direction of the thermoelectric element is 0.40 or more, and a figure of merit is 2 × 10 −3 / K or more. It is characterized by being. Thereby, it has sufficient characteristics for cooling applications such as laser diodes.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
The method for producing a thermoelectric element according to the present invention is directed to a semiconductor crystal comprising an A 2 B 3 type crystal (A is Bi and / or Sb, B is Te and / or Se), and has a composition ratio B / A of 1.45. is preferably ~1.55, particularly a solid solution of Bi 2 Te 3, Bi 2 Te 3 and Bi 2 Se 3 is known Bi 2 Te 3-x Se x (x = 0.05~0.25 ), or Bi 2 Te 3 and Sb to 2 Te Bi y Sb 2-y Te 3 is a solid solution of 3 (y = 0.1 to 0.6) can be suitably used.
[0018]
According to the present invention, it is important to use, as a raw material, a powder having at least two kinds of properties of A 2 B 3 type crystal. First, as the first powder, a type single crystal composed of Bi and / or Sb and Te and / or Se is prepared. That is, when A is Bi and / or Sb and B is Te and / or Se, a single crystal represented by A 2 B 3 is prepared so as to be at least 5% by volume in the total amount.
[0019]
The A 2 B 3 type single crystal is not particularly limited as long as it has anisotropy in shape to enhance the orientation, but is particularly a plate-like crystal having a maximum diameter d and a thickness t. Is preferred. The average of the aspect ratio represented by the ratio d / t of the maximum diameter d to the thickness t of the plate-like crystal d / t is 3.0 or more, particularly 4.0 or more, and more preferably 5.0 or more. It is preferable in order to improve the uniformity of the thermoelectric characteristics and to increase the degree of orientation.
[0020]
An average particle diameter d50 (particle diameter at a cumulative weight ratio of 50%) determined by a laser diffraction method of 1.0 μm or more, especially 2.0 μm, and more preferably 3.0 μm or more enhances the orientation and improves the orientation. The orientation is preferable because it has anisotropy with respect to the direction of the pressure during molding and sintering.
[0021]
When the A 2 B 3 type crystal is an n-type semiconductor, the molded body contains at least one of I, Cl, Hg, Br, Ag and Cu as a dopant, whereby the semiconductor characteristics are improved. As a result, It is preferable to improve thermoelectric characteristics. For example, by adding 0.06 to 0.10% by weight of HgBr 2 or SbI 3 to Bi 2 Te 2.95 Se 0.05 which is n-type, the carrier concentration of electrons or holes is increased. be able to. Note that in a p-type semiconductor, since Te or Se is used as a dopant, an A 2 B 3 type crystal containing excess Te or Se can be used.
[0022]
As the second powder, a metal powder is prepared so that the above-mentioned A 2 B 3 type crystal is obtained by firing. For example, when the single crystal is Bi 2 Te 3 , Bi powder and Te powder are prepared so that the molar ratio of Bi and Te is 2: 3. In the case of Bi 0.5 Sb 1.5 Te 3 , Bi powder, Sb powder, and Te powder are prepared so that the molar ratio of Bi, Sb, and Te is 0.5: 1.5: 3. Good, an alloy mixed powder in which the molar ratio of Bi 2 Te 3 to Sb 2 Te 3 is 1: 3 may be prepared, or the above-mentioned metal powder and alloy powder may be mixed.
[0023]
The metal powder and / or alloy powder as the second crystal is a substance different from the plate crystal as the first single crystal, and the composition thereof is adjusted so as to react during firing and become a plate crystal. It is important that the metal and / or the alloy is a suitable metal. This is because a plate crystal of a seed crystal grows by a reaction, and a sintered body with high orientation is obtained. Conversely, if the crystal is the same as the plate crystal of the seed crystal, sintering simply proceeds, This is because anisotropy due to crystal growth in accordance with the shape anisotropy of the seed crystal is less likely to occur.
[0024]
Next, a mixed raw material is prepared by mixing the plate-like crystal with a metal powder and / or an alloy powder. According to the present invention, the mixed powder contains 5 to 80% by volume of the plate-like crystal. Is important, and particularly preferably 10 to 70% by volume, more preferably 20 to 60% by volume. That is, when the content is less than 5% by volume, the orientation of the A 2 B 3 type crystal in the sintered body becomes small, and when it exceeds 80% by volume, it becomes difficult to obtain a dense body.
[0025]
As a mixing method for producing the mixed raw material, it is preferable to use a wet or dry ball mill mixing method or the like, avoiding a pulverizing step that causes the destruction of plate crystals such as mechanical alloying.
[0026]
The obtained mixed raw material is molded using a known molding method, such as a rubber press or a mold press, and the obtained molded body is fired. Alternatively, the powder is put into a mold such as a carbon die and fired. Prior to firing, heat treatment is preferably performed in a reducing atmosphere in order to remove an oxide layer and adsorbed oxygen on the surface of the plate-like crystals, metal powder, and alloy powder in the raw material. For example, heat treatment is performed in a gas atmosphere such as hydrogen or forming gas at 300 to 400 ° C. for about 1 to 24 hours. By this heat treatment, oxygen on the particle surface can be removed, the orientation is enhanced, and a thermoelectric element having a high figure of merit can be obtained.
[0027]
For sintering, known sintering methods such as normal-pressure sintering, hot pressing, atmospheric pressure sintering, plasma sintering, microwave sintering, and HIP sintering can be used. , HIP sintering and plasma sintering are desirable.
[0028]
In the case of hot pressing, the powder may be directly charged into a hot press mold, but a uniaxial mold press is performed to increase the degree of orientation of the plate-like crystal, and a molded body is prepared in advance, and the molded body is formed. Is preferably loaded into a hot press mold.
[0029]
The sintering temperature is preferably about 100 ° C. lower than the melting point, for example, 400 to 500 ° C. for Bi 2 Te 3 and 400 to 480 ° C. for Bi 0.5 Sb 1.5 Te 3. Is desirable. In this temperature range, the seed crystal itself does not change, but the surrounding metal other than the seed crystal undergoes a chemical change to the same composition as the seed crystal, and under this condition, the metal changes to the seed crystal composition Is mainly generated on the surface of the seed crystal, and selective crystal growth occurs while maintaining the shape anisotropy of the plate-like seed crystal.
[0030]
The thermoelectric element manufactured in this manner is made of a sintered body having a high orientation mainly composed of A 2 B 3 type crystal. It is important that the degree of C-plane orientation in a specific direction is 0.40 or more. A thermoelectric element having such an orientation has a characteristic that thermoelectric characteristics in the C-plane direction are high because the resistivity in the C-plane direction is low.
[0031]
The degree of orientation refers to the I (006) , I (015) , and I (0015) peak intensities of the A 2 B 3 type crystal obtained by X-ray diffraction, and the I to the sum of these peak intensities. It indicates the ratio between (006) and I (0015) and is represented by f given by the following equation. f = I (006) + I (0015) / I (006) + I (015) + I (0015) Further, the thermoelectric module of the present invention comprises a plurality of thermoelectric elements made of A 2 B 3 type crystal and the thermoelectric elements. A thermoelectric module including a pair of heat exchange substrates to be sandwiched, and a wiring provided on one main surface of the heat exchange substrate and electrically connecting the thermoelectric elements, and an n-type thermoelectric element and a p-type thermoelectric element. Are arranged at the same number and at appropriate intervals at appropriate intervals, each is electrically connected in series, connected to an external electrode, and has a structure in which both ends of a thermoelectric element are sandwiched by a heat exchange board.
[0032]
In the n-type and p-type thermoelectric elements, the degree of C-plane orientation f of the plane parallel to the direction in which current flows is 0.40 or more, and the figure of merit is 2 × 10 −3 / K or more. This is important, and thereby, excellent performance as a thermoelectric element can be exhibited.
[0033]
Here, the figure of merit Z is represented by the following equation Z = S 2 / ρk, where S is the Seebeck coefficient, ρ is the resistivity, and k is the thermal conductivity.
And shows the efficiency when the thermoelectric element is used as a cooling element or a power generation element.
[0034]
【Example】
Example 1
For an n-type thermoelectric element, a Bi 2 Te 2.95 Se 0.05 crystal having a purity of 99.99% or more as a seed crystal A 2 B 3 type single crystal, a purity of 99.99% or more as a metal raw material, and an average particle Bi, Te, and Se metal powders having a diameter of 100 μm, and SbI 3 powder having a purity of 99.9% and an average particle diameter of 1.8 μm as a dopant to be added as needed were prepared.
[0035]
Further, for a p-type thermoelectric element, a Bi 0.5 Sb 1.5 Te 3 crystal having a purity of 99.99% or more as a seed crystal A 2 B 3 single crystal, a purity of 99.99% or more as a metal raw material, Bi, Sb and Te metal powders having an average particle diameter of 100 μm were prepared.
[0036]
The single crystal was pulverized by a stamp mill and classified using several meshes to obtain several types of plate-like crystals. The average particle diameter of the plate-like crystal was determined by a laser diffraction method, the maximum diameter d and the thickness t of the crystal were determined by averaging 200 particles from an SEM photograph, and the aspect ratio d / t was calculated.
[0037]
The Bi, Te and Se metal powders prepared for the n-type thermoelectric element have a composition of Bi 2 Te 2.95 Se 0.05, and Bi, Sb and Each metal powder of Te was weighed so as to have a Bi 0.5 Sb 1.5 Te 3 composition, and each was mixed using isopropanol (IPA) as a solvent and a urethane ball.
[0038]
The mixed slurry was dried at 60 ° C. in a vacuum, and the obtained mixed powder was passed through a 200 mesh to obtain a metal powder.
[0039]
The plate-like crystal and the metal powder, which are single crystals, obtained in this manner were weighed by 10 g each in the composition shown in Table 1, mixed in an alumina mortar, and then placed in a 20 mmφ mold, and 100 MPa. Press molding was performed uniaxially under pressure.
[0040]
The molded body was heat-treated at 350 ° C. for 24 hours in a hydrogen stream, and then subjected to normal pressure firing (NS), pressure firing in an Ar atmosphere (GPS), hot pressing (HP) under the conditions shown in Table 1. It was fired by isotropic pressure sintering (HIP) and spark plasma sintering (SPS).
[0041]
In order to measure the thermal conductivity, the Seebeck coefficient, and the resistivity in a direction parallel to the pressing direction, a measurement sample was prepared for each of the sintered bodies. For the measurement of the thermal conductivity, a disk sample having a diameter of 10 mm and a thickness of 1 mm was prepared, and for the measurement of the Seebeck coefficient and the resistivity, a prism sample having a length of 4 mm, a width of 4 mm and a length of 15 mm was prepared.
[0042]
The thermal conductivity was measured by a laser flash method, the Seebeck coefficient was measured by a thermoelectricity evaluation device manufactured by Vacuum Riko Co., and the resistivity was measured by a four-terminal method at 25 ° C.
[0043]
The thermoelectric figure of merit Z was calculated from Z = S 2 / ρk (S is the Seebeck coefficient, ρ is the resistivity, and k is the thermal conductivity).
[0044]
Further, the prism sample was used for measuring the C plane orientation degree f. That is, a cross section or an end face of 4 mm in length and 4 mm in width is measured by X-ray diffraction, and the following expression f = I (006) + I (0015) / I (006) + I (015) + I (0015 ) is obtained from the obtained peak intensity. )
Was calculated. Table 1 shows the results.
[0045]
[Table 1]
Figure 0003605366
[0046]
Sample No. of the present invention In 2 to 8, 10 to 16, 18 to 23, and 25 and 26, the degree of orientation was 0.41 or more, and the figure of merit was as large as 2.07 × 10 −3 / K or more.
[0047]
On the other hand, the amount of A 2 B 3 type single crystal in the raw material was as small as 2% by volume, and Sample No. In Examples 1 and 17, the degree of orientation was 0.35 or less, and the figure of merit was 1.93 × 10 −3 / K or less.
[0048]
In addition, A 2 B 3 type single crystal was as large as 95% by volume in the raw material, and sample No. In Nos. 9 and 24, the degree of orientation was 0.38 or less, and the figure of merit was 1.89 × 10 −3 / K or less.
[0049]
Example 2
Sample No. having a high degree of C-plane orientation and a high figure of merit produced in the same manner as in Example 1. Using 12 and 22, 18 pairs each of n-type and p-type thermoelectric elements having a length of 1.2 mm, a width of 1.2 mm, and a height of 2 mm were cut out. At this time, it was cut out in the direction of C-plane orientation on the longitudinal side surface.
[0050]
After plating a Ni electrode on each element, it is joined using Sn-Pb solder on a 10 × 12 mm alumina substrate on which a Cu electrode plated with Ni on one side is wired so that n-type and p-type are paired. Then, a lead wire was soldered to the end face of the electrode, and a thermoelectric module was assembled.
[0051]
In the evaluation of the module, when the voltage was changed, the temperature difference between the heat radiating surface and the cooling surface was obtained from the temperature on the cooling surface when the temperature of the heat radiating surface was kept constant at 27 ° C. The result was 70 ° C., indicating that the device had sufficient performance as a Peltier device for cooling a laser diode.
[0052]
Comparative Example Sample No. Using 1 and 17, 18 pairs of n-type and p-type thermoelectric elements of 1.2 × 1.2 × 2 mm were cut out in the same manner. At this time, it was cut out in the direction of C-plane orientation on the side surface in the longitudinal direction.
[0053]
The performance evaluation was performed in the same manner as in Example 2. As a result, the temperature difference was 61 ° C., and the cooling performance was inferior to that of the product of the present invention, and was at a level that could not be used for cooling a laser diode.
[0054]
【The invention's effect】
According to the present invention, a mold single crystal and a mixed raw material comprising a metal powder that reacts to form a mold single crystal are formed so that the mold single crystal is oriented, and then fired to form the mold single crystal. It is possible to produce a thermoelectric element which is grown in a grain direction and oriented in a specific direction and has excellent thermoelectric properties.

Claims (5)

AをBi及び/又はSb、BをTe及び/又はSeとしたとき、A型単結晶を5〜80容量%と、反応して前記A型結晶となる金属及び/又は合金からなる粉末とを含む成形体を焼成し、前記A型結晶を主体とする合金を得ることを特徴とする熱電素子の製造方法。When A is Bi and / or Sb and B is Te and / or Se, a metal that reacts with the A 2 B 3 type single crystal with 5 to 80% by volume to become the A 2 B 3 type crystal and / or A method for producing a thermoelectric element, comprising: sintering a compact containing a powder of an alloy to obtain an alloy mainly composed of the A 2 B 3 type crystal. 前記A型単結晶が、最大径d及び厚みtを有する板状結晶であり、比d/tの平均が3.0以上、レーザー回折法による前記A型単結晶の平均粒子径が1.0μm以上であることを特徴とする請求項1記載の熱電素子の製造方法。Wherein A 2 B 3 type single crystal is a plate-like crystals having a maximum diameter d and thickness t, the average of the ratio d / t is 3.0 or more, the average of the A 2 B 3 type single crystal by the laser diffraction method The method for producing a thermoelectric element according to claim 1, wherein the particle diameter is 1.0 µm or more. 前記成形体がI、Cl、Hg、Br、Ag及びCuのうち少なくとも1種を含むことを特徴とする請求項1又は2記載の熱電素子の製造方法。The method for manufacturing a thermoelectric device according to claim 1, wherein the molded body contains at least one of I, Cl, Hg, Br, Ag, and Cu. 請求項1乃至3のいずれかに記載の方法で作製されたA型単結晶を主体とする合金からなり、特定の方向に対してC面配向度が0.40以上であることを特徴とする熱電素子。An alloy mainly composed of an A 2 B 3 type single crystal produced by the method according to claim 1, wherein the degree of C-plane orientation in a specific direction is 0.40 or more. Characteristic thermoelectric element. 型結晶からなる複数の熱電素子と、該熱電素子を挟持する一対の熱交換基板と、該熱交換基板の一主面に設けられ、前記熱電素子を電気的に接続する配線とを具備する熱電モジュールにおいて、前記熱電素子の電流が流れる方向と平行な面のC面配向度が0.40以上、性能指数が2×10−3/K以上であることを特徴とする熱電モジュール。 A plurality of thermoelectric elements made of A 2 B 3 type crystal, a pair of heat exchange boards sandwiching the thermoelectric elements, and a wiring provided on one main surface of the heat exchange board and electrically connecting the thermoelectric elements. Wherein the degree of C-plane orientation of a plane parallel to the direction in which the current of the thermoelectric element flows is 0.40 or more, and the figure of merit is 2 × 10 −3 / K or more. .
JP2001022424A 2001-01-30 2001-01-30 Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same Expired - Fee Related JP3605366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001022424A JP3605366B2 (en) 2001-01-30 2001-01-30 Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001022424A JP3605366B2 (en) 2001-01-30 2001-01-30 Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same

Publications (2)

Publication Number Publication Date
JP2002232025A JP2002232025A (en) 2002-08-16
JP3605366B2 true JP3605366B2 (en) 2004-12-22

Family

ID=18887840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001022424A Expired - Fee Related JP3605366B2 (en) 2001-01-30 2001-01-30 Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same

Country Status (1)

Country Link
JP (1) JP3605366B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4658370B2 (en) * 2001-04-26 2011-03-23 京セラ株式会社 Method for producing intermetallic compound, thermoelectric element and thermoelectric module produced using the same
US7939744B2 (en) * 2001-08-21 2011-05-10 Kyocera Corporation Thermoelectric element
JP2005072391A (en) * 2003-08-26 2005-03-17 Kyocera Corp N-type thermoelectric material, its manufacturing method and n-type thermoelectric element
WO2014201430A1 (en) * 2013-06-14 2014-12-18 The Regents Of The University Of California Dispenser printed mechanically-alloyed p-type flexible thermoelectric generators

Also Published As

Publication number Publication date
JP2002232025A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
US6274802B1 (en) Thermoelectric semiconductor material, manufacture process therefor, and method of hot forging thermoelectric module using the same
US8519256B2 (en) Thermoelectric material, thermoelectric element, thermoelectric module and method for manufacturing the same
JP5480258B2 (en) Thermoelectric materials and chalcogenide compounds
US5318743A (en) Processes for producing a thermoelectric material and a thermoelectric element
US20070006911A1 (en) Thermoelectric Element
EP2662331B1 (en) Thermoelectric material, and thermoelectric module and thermoelectric apparatus including the thermoelectric material
KR20110052225A (en) Nanocomposite thermoelectric material, and thermoelectric device and thermoelectric module comprising same
EP2562835B1 (en) Clathrate compound, thermoelectric material, and method for producing thermoelectric material
US20030168094A1 (en) Thermoelectric material and process for manufacturing the same
US20020062853A1 (en) Method of manufacturing a thermoelectric element and a thermoelectric module
JP3958857B2 (en) Thermoelectric semiconductor material manufacturing method
JP3605366B2 (en) Thermoelectric element manufacturing method, thermoelectric element and thermoelectric module manufactured using the same
JP3219244B2 (en) Thermoelectric semiconductor material and thermoelectric module using the same
JP3929880B2 (en) Thermoelectric material
JPH09321347A (en) Thermoelectric conversion material and manufacture thereof
JP4467584B2 (en) Thermoelectric material manufacturing method
JP4658370B2 (en) Method for producing intermetallic compound, thermoelectric element and thermoelectric module produced using the same
JP3526563B2 (en) Thermoelectric element, method of manufacturing the same, and thermoelectric module
KR20190012456A (en) Thermoelectric material, thermoelectric element, thermoelectric module comprising the same and manufacturing method of the thermoelectric material
JP2004349566A (en) Unidirectional coagulation thermoelectric crystal material and its manufacturing method, thermoelectric component using the same and its manufatcuring method, and thermoelectric module
JP4666841B2 (en) Method for manufacturing thermoelectric material
JP3580783B2 (en) Thermoelectric element manufacturing method and thermoelectric element
JP4671553B2 (en) Thermoelectric semiconductor manufacturing method
JP4601206B2 (en) Method for manufacturing thermoelectric element
JP3543650B2 (en) Method for producing thermoelectric material and method for producing thermoelectric module

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3605366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071008

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees