JP3607249B2 - Thermoelectric conversion material and thermoelectric conversion element using the same - Google Patents

Thermoelectric conversion material and thermoelectric conversion element using the same Download PDF

Info

Publication number
JP3607249B2
JP3607249B2 JP2001400601A JP2001400601A JP3607249B2 JP 3607249 B2 JP3607249 B2 JP 3607249B2 JP 2001400601 A JP2001400601 A JP 2001400601A JP 2001400601 A JP2001400601 A JP 2001400601A JP 3607249 B2 JP3607249 B2 JP 3607249B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
type
molded body
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001400601A
Other languages
Japanese (ja)
Other versions
JP2003197985A (en
Inventor
新哉 桜田
直樹 首藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001400601A priority Critical patent/JP3607249B2/en
Publication of JP2003197985A publication Critical patent/JP2003197985A/en
Application granted granted Critical
Publication of JP3607249B2 publication Critical patent/JP3607249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は熱電変換材料および熱電変換素子に係わり、特にFe−V−Al系の熱電変換材料およびそれを用いた熱電変換素子に関する。
【0002】
【従来の技術】
近年、地球環境問題に対する意識の高揚から、フロンレス冷却機器であるペルチェ効果を利用した熱電冷却素子に関する関心が高まっている。また、同じく、二酸化炭素排出量を削減するために、未利用廃熱エネルギーを使った発電システムを提供する、ゼーベック効果を利用した熱電発電素子に関する関心が高まっている。
現在室温付近で利用されている熱電材料は、効率の高さから、Bi−Te系の単結晶または多結晶体を使用したものが多い。この材料を用いて熱電素子化するためには、p型、n型両材料が必要となる。このうちn型材料には一般にSeが添加される。また、室温より高温で使用される熱電変換材料には、やはり効率の高さから、Pb−Te系が用いられている。
ところで、これら素子に用いられているSe(セレン),Pb(鉛),Te(テルル)は人体にとって有毒有害であり、また地球環境問題の観点からも好ましくない。このため、これまでBi−Te系、Pb−Te系材料に代わる無害な材料の検討がなされている。
【0003】
現在検討されている材料のひとつに、Fe−V−Al系材料がある。Fe3AlにおけるFeの1/3をVで置換したFe2VAl合金はL2型結晶構造(ホイスラー構造)を有し、半導体的な電気伝導の挙動を示すとともにBi−Te系材料に匹敵する高いゼーベック係数を室温で示すことが報告され注目を集めている(2000年日本金属学会秋期大会講演概要p.361)。さらに、Fe2VAlにおけるAlの一部をSiで置換した合金の出力因子は室温で5.4×10−3W/mKに達し、Bi−Te系材料の4〜5−3W/mKに匹敵する大きさであることが報告されている(日本金属学会誌 第65巻 第7号(2001)652−656)。
【0004】
熱電変換材料の性能指数Zは、材料の熱起電力を示すゼーベック係数をα、導電率をσ、熱伝導率をκとした時、Z=ασ/κで示され、ασが前述した出力因子である。一般にZの値が高いほど熱電変換材料としての性能が優れている。すなわち、熱電変換材料として応用するためには出力因子だけではなく、熱伝導率を小さくしてZを上げることが必要である。
しかしながら、前述したFe−V−Al合金は出力因子の観点ではBi−Te系材料に匹敵する高い値を有するものの、熱伝導度が10倍程度高いため実用化に至っていない。
【0005】
【発明が解決しようとする課題】
本発明はこのような観点からなされたものであり、Fe−V−Al合金を基に出力因子を出来るだけ損なうことなく熱伝導率を低下させ、性能指数Zの大きな熱電変換材料およびそれを用いた熱電変換素子を提供することを目的とする。
【0006】
【課題を解決するための手段】
ホイスラー合金Fe2VAlは、バンド計算(G.Y.Guo et.al.,J.Phys.:Condens.Matter.10(1998)L119)によりその電子状態が詳しく調べられている。計算結果によると、フェルミ準位においてΓ点付近にFeの3dバンドからなる正孔ポケット、X点付近にVの3dバンドからなる電子ポケットが形成されることがわかっており、フェルミ面のわずかな変化でキャリア濃度およびゼーベック係数が大きく変化することが推察される。本発明者らはFe2VAl近傍の組成におけるFeの一部をCr、Mn、Co、Niといった他の3d遷移元素で置換した合金についてゼーベック係数の変化を調べたところ、置換元素がFeよりも周期律表で左側に位置するCr、Mnの場合にはゼーベック係数は正に、また、Feよりも周期律表で右側に位置するCo、Niの場合には負になることを確認した。つまり、3d電子数の制御でゼーベック係数の正負や絶対値を制御できることが示され、特にMnで置換した場合には100μV/Kを超える正の大きなゼーベック係数が得られることが明らかになった。さらに、前記MnでFeを置換した合金は、置換しない場合と比較して熱伝導率が低下することを見出し、その結果、高い性能指数を持つ熱電変換材料が実現され本発明に至ったものである。
【0007】
すなわち、第1の本発明は、下記の組成式で表される組成を有することを特徴とする熱電変換材料である。
(Fe1―a(E1−b100−x―y−z
(式中、Aは、MnまたはCrの少なくとも一種、Dは、Ti,Co,Ni,Cu,Zn,Zr,Nb,Mo,Ag,Hf,Ta,W,Y,および希土類元素の群から選ばれる少なくとも一種の元素、EはAlまたはSiの少なくとも一種、Gは、B,C,N,P,S,Mg,Ga,Ge,Sn,In,およびBiの群から選ばれる少なくとも一種の元素、a、bはそれぞれ0≦a≦0.2、0≦b≦0.2、x、y、zはそれぞれ、2≦x、35≦x+y≦60、15≦z≦35の数を表す。)
【0008】
前記第1の本発明において、前記化学式のx+yおよびzは、それぞれ、2≦x、48≦x+y≦52、25≦z≦33の数であることが望ましい。
前記第1の本発明の熱電変換材料において、L2型結晶構造を有する結晶相が全結晶相および非晶質層の内の50体積%以上を占める相であることが望ましい。このL2型結晶構造を有する結晶相が50体積%を下回った場合、十分な性能指数Zを有する材料が得られない。
【0009】
第2の本発明は、電気的に接続されたp型熱電変換材料とn型熱電変換材料とを備えた熱電変換素子において、前記p型熱電変換材料と前記n型熱電変換材料のいずれか一方もしくは双方として、下記の組成式で表される材料を用いたことを特徴とする熱電変換素子である。
(Fe1―a(E1−b100−x―y−z
(式中、Aは、MnまたはCrの少なくとも一種、Dは、Ti,Co,Ni,Cu,Zn,Zr,Nb,Mo,Ag,Hf,Ta,W,Y,および希土類元素の群から選ばれる少なくとも一種の元素、EはAlまたはSiの少なくとも一種、Gは、B,C,N,P,S,Mg,Ga,Ge,Sn,In,およびBiの群から選ばれる少なくとも一種の元素、a、bはそれぞれ0≦a≦0.2、0≦b≦0.2、x、y、zはそれぞれ、2≦x、35≦x+y≦60、15≦z≦35の数を表す。)
【0010】
【発明の実施の形態】
まず、本発明の熱電変換材料について詳細に説明する。
[熱電変換材料]
本発明の熱電変換材料の一実施形態は、下記の組成式で表される組成を有するものである。
Fe100−x―y−z
(式中、Aは、MnまたはCrの少なくとも一種、EはAlまたはSiの少なくとも一種、x、y、zはそれぞれ、2≦x、35≦x+y≦60、15≦z≦35の数を表す。)
【0011】
前記組成を有する材料の結晶形としては、L2型結晶構造すなわちホイスラー型結晶構造や、α−Fe相などがあるが、本発明の熱電変換材料としては、これらの結晶形の内、L2型結晶構造すなわちホイスラー型結晶構造を有する結晶相を全相の内の50体積%以上とすることによって、より性能指数Zの大きな熱電変換材料が得られる。本発明の熱電変換材料を構成する他の相については特に制約を受けるものではなく、これらのいずれの相か、あるいは、非晶質相であっても良い。
【0012】
以下、本発明を構成する各成分の配合理由および配合量の規定理由について述べる。
本発明の熱電変換材料には、MnまたはCrが2原子%以上配合される。MnまたはCrの配合量が2原子%未満であると前述した熱伝導率低下の効果が小さくなり好ましくない。より好ましいMnまたはCrの配合量は2〜50原子%であり、さらに好ましくは5〜25原子%である。
【0013】
また、本発明の熱電変換材料は、A元素すなわちMnまたはCrと、Feの総量が35〜60原子%の範囲で配合される。MnまたはCrとFeの総量が35原子%未満の場合、および60原子%を超える場合には大きなゼーベック係数が得られない。より好ましいMnまたはCrとFeの総量は40〜55原子%、さらに好ましくは42〜52原子%である。
【0014】
また、本発明の熱電変換材料はVが、15〜35原子%の範囲で配合される。Vの配合量が15原子%未満の場合、ホイスラー型結晶構造以外の結晶相が主相となってしまう恐れがあり、その結果、良好な熱電性能が得られない。また、Vの配合量が35原子%を超えると、ゼーベック係数の低下が著しい。より好ましいV配合量の範囲は20〜30原子%、さらに好ましくは22〜28原子%である。
【0015】
また、本発明の別の実施形態は、下記の組成式で表される組成を有するものである。
(Fe1―a(E1−b100−x―y−z
(式中、Aは、MnまたはCrの少なくとも一種、Dは、Ti,Co,Ni,Cu,Zn,Zr,Nb,Mo,Ag,Hf,Ta,W,Y,および希土類元素の群から選ばれる少なくとも一種の元素、EはAlまたはSiの少なくとも一種、Gは、B,C,N,P,S,Mg,Ga,Ge,Sn,In,およびBiの群から選ばれる少なくとも一種の元素、a、bはそれぞれ0≦a≦0.2、0≦b≦0.2、x、y、zはそれぞれ、2≦x、35≦x+y≦60、15≦z≦35の数を表す。)
すなわち、先に述べた熱電変換材料において、Feの一部をTi,Cr,Co,Ni,Cu,Zn,Zr,Nb,Mo,Ag,Hf,Ta,W,Y,および希土類元素の群から選ばれる少なくとも一種で置換することもできる。このような置換によって熱伝導率を更に低下させることができ、性能指数Zを高めることが可能である。ただし、過剰の置換はゼーベック係数の低下などによって逆にZを低下させる恐れがあるため、置換する元素の量は、Feと置換元素量の総量に対して20原子%以下とすることが好ましい。また、Feと置換元素量の総量に対して3原子%以上とすることが好ましく、これよりも少ないと置換することによる充分な効果が得られない。
【0016】
また、本発明の熱電変換材料において、D元素すなわちAlまたはSiの一部をB,C,N,P,S,Mg,Ga,Ge,Sn,In,Biの群から選ばれる少なくとも一種で置換することもできる。このような置換によって熱伝導率を更に低下することができ、性能指数Zを高めることが可能である。ただし、過剰の置換はゼーベック係数の低下などによって逆にZを低下させる恐れがあるため、置換する元素の量は、E元素と置換元素量の総量に対して20原子%以下とすることが好ましい。また、Feと置換元素量の総量に対して8原子%以上とすることが好ましく、これよりも少ないと置換することによる充分な効果が得られない。
【0017】
以下、本発明の熱電変換材料成形体の製造例を説明する。
まず、上記組成式で示される所定量の各元素を含有する合金を、アーク溶解や高周波溶解などによって作製する。
この合金は、単ロール法、双ロール法、回転ディスク法、ガスアトマイズ法などの液体急冷法やメカニカルアロイング法などの固相反応を利用した方法で製造することができる。この液体急冷法やメカニカルアロイング法などによって合金を製造した場合、合金を構成する結晶相が微細化できることや、結晶相内への元素の固溶域を拡大することができるなどの効果があり、熱伝導度の低減、ゼーベック係数の増大などに有効である。また、この合金は、必要に応じて熱処理が施され、これによって合金を単相化したり、結晶粒子径を制御するなどして、さらに熱電特性を高めることも可能である。この工程で溶解、液体急冷、メカニカルアロイングおよび熱処理を実施する際の雰囲気はArなどの不活性雰囲気中が好ましい。
【0018】
次に、前記合金をボールミル、ブラウンミル、スタンプミルなどによって粉砕して合金粉末とした後、この合金粉末を焼結法、ホットプレス法、SPS法などによって一体成型する。この工程で、一体成型を実施する際の雰囲気は、Arなどの不活性雰囲気中が好ましい。
【0019】
次いで、得られた成型体を例えば角柱状など所望の形状・寸法に機械加工して熱電変換材料成形体を製造することができる。
【0020】
[熱電変換素子]
以下本発明の熱電変換素子について説明する。
本発明の熱電変換素子は、電気的に接続されたp型熱電変換材料成形体とn型熱電変換材料成形体とを備えた熱電変換素子において、前記p型熱電変換材料と前記n型熱電変換材料のいずれか一方もしくは双方として、下記の組成式で表される材料を用いたことを特徴とするものである。
(Fe1―a(E1−b100−x―y−z
(式中、Aは、MnまたはCrの少なくとも一種、Dは、Ti,Co,Ni,Cu,Zn,Zr,Nb,Mo,Ag,Hf,Ta,W,Y,および希土類元素の群から選ばれる少なくとも一種の元素、EはAlまたはSiの少なくとも一種、Gは、B,C,N,P,S,Mg,Ga,Ge,Sn,In,およびBiの群から選ばれる少なくとも一種の元素、a、bはそれぞれ0≦a≦0.2、0≦b≦0.2、x、y、zはそれぞれ、2≦x、35≦x+y≦60、15≦z≦35の数を表す。)
p型とn型のどちらか一方に本発明の熱電変換材料を用いる場合には、他方はBi−Te系材料など既知の材料を使用すればよい。
【0021】
以下本発明に係る熱電変換素子の一態様を図1に示す。
図1において、1は本発明の熱電変換素子である。そして、例えば角柱状のp型熱電変換材料成形体2と、これも角柱状のn型熱電変換材料成形体3とを、並列に且つ離間するように配置し、これらの成形体の両端部を、例えば短冊状のアルミニウムなど導電材料からなる共通電極8によって電気的に直列に接続する。そして、両端部にある熱電変換材料成形体から、外部に取り出すための電極端子6,7を接続する。前記共通電極8の外側には、電気絶縁材料であり且つ熱伝導性材料からなる低温側熱伝導層4と、高温側熱伝導層5とを、覆設する。
この素子において、熱電変換材料成形体2,3と、共通電極8との接着接続は、公知の導電性接着剤によって行うことができる。また、共通電極8と低温側および高温側熱伝導層4,5との接着は、公知の有機接着剤もしくは無機接着剤を用いて行うことができる。
【0022】
このような素子において、低温側熱伝導層4を低温度(L)にし、かつ高温側熱伝導層5を高温度(H)にして両熱伝導層に温度差を与えると、p型半導体である熱電変換材料成形体2においては、正の電荷を持ったホールが低温度L側に、n型半導体である熱電変換材料成形体3においては、負の電荷を持った電子が低温度側Lに移動する。その結果、電極端子6,7間に電位差が生じることになる。
一方、このような素子において、電極端子6を正極に、電極端子7を負極にして電圧を印加すると、前述と同様にホールおよび電子が移動して、個々の熱電変換材料成形体の両端に温度差が生じ、低温側熱伝導層4が低温に冷却され、一方高温側熱伝導層5が高温に加熱される。
このようにして本発明の熱電変換素子を、発電素子あるいは加熱・冷却素子として用いることができる。
【0023】
上記実施の形態においては、複数の熱電変換材料を、線状に配列した例を示したが、熱電変換材料成形体を面状に配列することによってさらに熱電変換効率を向上させることもできる。
【0024】
【実施例】
(実施例1)
所定量のFe、Mn、V、Al原料を秤量してアーク溶解にて合金を製造した後、ボールミルを用いて45μm以下に粉砕、900℃で1時間ホットプレスすることにより外径10mmφ、厚み2mmの成型体を得た。成型体の生成相をX線回折で調査したところ、ホイスラー型の結晶構造を有することを確認した。成型体の組成を表1に示した。成型体の熱拡散率をレーザーフラッシュ法、密度をアルキメデス法、比熱をDSC(示差走査熱量計)法でそれぞれ測定し、それらの結果から熱伝導率κを求めたところ、300Kで4.5W/mKであった。また、前記成型体を針状に切り出してゼーベック係数αを測定したところ、300Kで115μV/Kであった。さらに、前記針状の成型体の電気抵抗率ρを4端子法にて測定した結果、300Kで0.92mΩcmであった。これらの結果から性能指数Z(Z=α/ρκ)を求めたところ、3.19×10−4−1であった。
【0025】
(実施例2〜7、比較例1)
実施例1と同様の方法で合金を製造、実施例1と同様にボールミル粉砕、ホットプレスすることにより成型体を得た。成型体の生成相をX線回折で調査したところ、いずれもホイスラー型の結晶構造を有することを確認した。実施例2〜5、比較例1の各成型体の組成を表1に示した。また、実施例1と同様の方法で求めた300Kでの性能指数Zの値を表1に併記した。
実施例1〜5および比較例1から、Feの一部をMnで置換した本発明の組成の方が熱伝導率が小さく、その結果、性能指数Zの値が高いことがわかる。
【0026】
(実施例8)
所定量のFe、Mn、V、Al原料を秤量してアーク溶解にて合金を製造した後、前記合金をAr雰囲気中で溶解し、40m/sの周速度で回転する直径300mmの銅製ロールに射出する液体急冷法により急冷薄帯を作製した。次いで、この急冷薄帯をボールミルを用いて45μm以下に粉砕、850℃で30分間ホットプレスすることにより外径10mmφ、厚み2mmの成型体を得た。成型体の生成相をX線回折で調査したところ、ホイスラー型の結晶構造を有することを確認した。成型体の組成を表1に示した。成型体の熱拡散率をレーザーフラッシュ法、密度をアルキメデス法、比熱をDSC(示差走査熱量計)法でそれぞれ測定し、それらの結果から熱伝導率κを求めたところ、300Kで3.8W/mKであった。また、前記成型体を針状に切り出してゼーベック係数αを測定したところ、300Kで118μV/Kであった。さらに、前記針状の成型体の電気抵抗率ρを4端子法にて測定した結果、300Kで0.95mΩcmであった。これらの結果から性能指数Z(Z=α/ρκ)を求めたところ、3.86×10−4−1であった。
【0027】
(実施例9〜12、比較例2)
実施例8と同様の方法で急冷薄帯を作製、実施例8と同様にボールミル粉砕、ホットプレスすることにより成型体を得た。成型体の生成相をX線回折で調査したところ、いずれもホイスラー型の結晶構造を有することを確認した。実施例9〜12、比較例2の各成型体の組成を表1に示した。また、実施例1と同様の方法で求めた300Kでの性能指数Zの値を表1に併記した。
実施例8〜12および比較例2から、Feの一部をMnで置換した本発明の組成の方が熱伝導率が小さく、その結果、性能指数Zの値が高いことがわかる。
【0028】
【表1】

Figure 0003607249
【0029】
また、実施例3のWに代えて、Zn、Ag、Hf又はYでFeの一部を置換した場合にも、Feを置換しない場合に比べて熱伝導率が小さく、その結果、性能指数Zの値が高かった。
また、実施例4のGaに代えて、P,S,Mg,Ge,Sn,In又はBiでAlの一部を置換した場合にも、Feを置換しない場合に比べて熱伝導率が小さく、その結果、性能指数Zの値が高かった。
【0030】
【発明の効果】
以上説明したように、本発明によればFe−V−Al合金のFeの一部をMnまたはCrで置換した組成の合金を採用することにより、熱伝導率が小さく、性能指数Zの大きな熱電変換材料を提供でき、これによって優れた性能の熱電変換素子を提供することが可能となった。本発明の熱電変換材料および熱電変換素子は従来より知られたBi−Te系材料と比較して毒性が小さいため地球環境問題の観点からも好ましく、工業的価値は大なるものがある。
【図面の簡単な説明】
【図1】本発明の熱電変換素子の1例を示す概略図
【符号の説明】
1・・・熱電変換素子
2・・・p型熱電変換材料成形体
3・・・n型熱電変換材料成形体
4・・・低温度側熱伝導層
5・・・高温度側熱伝導層
6,7・・・電極端子
8・・・共通電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermoelectric conversion material and a thermoelectric conversion element, and more particularly to an Fe—V—Al-based thermoelectric conversion material and a thermoelectric conversion element using the same.
[0002]
[Prior art]
In recent years, interest in the thermoelectric cooling element using the Peltier effect, which is a chlorofluorocarbon-free cooling device, has increased due to the heightened awareness of global environmental problems. Similarly, in order to reduce carbon dioxide emissions, there is an increasing interest in thermoelectric power generation elements using the Seebeck effect that provide power generation systems using unused waste heat energy.
Many thermoelectric materials currently used near room temperature use Bi-Te single crystals or polycrystals because of their high efficiency. In order to make a thermoelectric element using this material, both p-type and n-type materials are required. Of these, Se is generally added to n-type materials. Also, Pb—Te system is used for thermoelectric conversion materials used at a temperature higher than room temperature because of its high efficiency.
By the way, Se (selenium), Pb (lead), and Te (tellurium) used in these elements are toxic and harmful to the human body and are not preferable from the viewpoint of global environmental problems. For this reason, harmless materials that replace Bi—Te and Pb—Te materials have been studied so far.
[0003]
One of the materials currently being studied is an Fe-V-Al-based material. An Fe2VAl alloy in which 1/3 of Fe in Fe3Al is replaced with V has an L2 type 1 crystal structure (Heusler structure), exhibits a semiconductor-like electrical conduction behavior, and has a high Seebeck coefficient comparable to Bi-Te materials. It is reported to show at room temperature and attracts attention (Outline of the 2000 Annual Meeting of the Japan Institute of Metals p.361). Furthermore, the power factor of the alloy in which part of Al in Fe2VAl is replaced with Si reaches 5.4 × 10 −3 W / mK 2 at room temperature, and reaches 4 to 5 −3 W / mK 2 of Bi—Te based material. It is reported that the size is comparable (The Japan Institute of Metals, Vol. 65, No. 7 (2001) 652-656).
[0004]
The performance index Z of the thermoelectric conversion material is expressed as Z = α 2 σ / κ, where α is the Seebeck coefficient indicating the thermoelectromotive force of the material, σ is the conductivity, and κ is the thermal conductivity, and α 2 σ is This is the output factor described above. In general, the higher the value of Z, the better the performance as a thermoelectric conversion material. That is, in order to apply as a thermoelectric conversion material, it is necessary to increase not only the output factor but also the thermal conductivity to increase Z.
However, although the aforementioned Fe-V-Al alloy has a high value comparable to the Bi-Te material in terms of output factor, it has not been put into practical use because its thermal conductivity is about 10 times higher.
[0005]
[Problems to be solved by the invention]
The present invention has been made from such a viewpoint, and based on the Fe-V-Al alloy, the thermal conductivity is reduced without losing the output factor as much as possible, and the thermoelectric conversion material having a large figure of merit Z is used. An object of the present invention is to provide a thermoelectric conversion element.
[0006]
[Means for Solving the Problems]
The electronic state of the Heusler alloy Fe2VAl has been investigated in detail by band calculation (G. Guo et. Al., J. Phys .: Condens. Matter. 10 (1998) L119). According to the calculation results, it is known that a hole pocket composed of Fe 3d band is formed near the Γ point in the Fermi level, and an electron pocket composed of 3d band of V is formed near the X point. It is inferred that the carrier concentration and Seebeck coefficient change greatly with the change. The present inventors examined the change in the Seebeck coefficient for an alloy in which a part of Fe in the composition near Fe2VAl was replaced with another 3d transition element such as Cr, Mn, Co, and Ni. It was confirmed that the Seebeck coefficient was positive in the case of Cr and Mn located on the left side in the table and negative in the case of Co and Ni located on the right side of the periodic table rather than Fe. In other words, it was shown that the positive / negative and absolute values of the Seebeck coefficient can be controlled by controlling the number of 3d electrons, and in particular, when it was substituted with Mn, it became clear that a large positive Seebeck coefficient exceeding 100 μV / K could be obtained. Furthermore, it has been found that the alloy in which Fe is substituted with Mn has a lower thermal conductivity as compared with the case where Fe is not substituted, and as a result, a thermoelectric conversion material having a high figure of merit has been realized and the present invention has been achieved. is there.
[0007]
That is, the first aspect of the present invention is a thermoelectric conversion material having a composition represented by the following composition formula.
A x (Fe 1-a D a) y V z (E 1-b G b) 100-x-y-z
(Wherein A is at least one of Mn or Cr, D is selected from the group of Ti, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ag, Hf, Ta, W, Y, and rare earth elements) At least one element selected from the group consisting of B, C, N, P, S, Mg, Ga, Ge, Sn, In, and Bi, a, b are 0 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.2, x, y, and z are numbers of 2 ≦ x, 35 ≦ x + y ≦ 60, and 15 ≦ z ≦ 35, respectively.
[0008]
In the first aspect of the present invention, x + y and z in the chemical formula are preferably numbers of 2 ≦ x, 48 ≦ x + y ≦ 52, and 25 ≦ z ≦ 33, respectively.
In the thermoelectric conversion material of the first aspect of the present invention, it is desirable that the crystal phase having the L2 type 1 crystal structure is a phase occupying 50% by volume or more of the total crystal phase and the amorphous layer. When the crystal phase having this L2 type 1 crystal structure is less than 50% by volume, a material having a sufficient figure of merit Z cannot be obtained.
[0009]
2nd this invention is a thermoelectric conversion element provided with the p-type thermoelectric conversion material and n-type thermoelectric conversion material which were electrically connected, Either one of the said p-type thermoelectric conversion material and the said n-type thermoelectric conversion material Or it is a thermoelectric conversion element characterized by using the material represented by the following compositional formula as both.
A x (Fe 1-a D a) y V z (E 1-b G b) 100-x-y-z
(Wherein A is at least one of Mn or Cr, D is selected from the group of Ti, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ag, Hf, Ta, W, Y, and rare earth elements) At least one element selected from the group consisting of B, C, N, P, S, Mg, Ga, Ge, Sn, In, and Bi, a, b are 0 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.2, x, y, and z are numbers of 2 ≦ x, 35 ≦ x + y ≦ 60, and 15 ≦ z ≦ 35, respectively.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
First, the thermoelectric conversion material of the present invention will be described in detail.
[Thermoelectric conversion material]
One embodiment of the thermoelectric conversion material of the present invention has a composition represented by the following composition formula.
A x Fe y V z E 100-xyz
(In the formula, A represents at least one of Mn or Cr, E represents at least one of Al or Si, and x, y, and z represent numbers of 2 ≦ x, 35 ≦ x + y ≦ 60, and 15 ≦ z ≦ 35, respectively. .)
[0011]
Examples of the crystal form of the material having the above composition include an L2 type 1 crystal structure, that is, a Heusler type crystal structure, an α-Fe phase, and the like. The thermoelectric conversion material of the present invention includes L2 1 A thermoelectric conversion material having a larger figure of merit Z can be obtained by setting the crystal phase having a type crystal structure, that is, a Heusler type crystal structure, to 50% by volume or more of all phases. The other phases constituting the thermoelectric conversion material of the present invention are not particularly limited, and any of these phases or an amorphous phase may be used.
[0012]
Hereinafter, the reason for blending each component constituting the present invention and the reason for defining the blending amount will be described.
In the thermoelectric conversion material of the present invention, 2 atomic% or more of Mn or Cr is blended. If the blending amount of Mn or Cr is less than 2 atomic%, the above-described effect of decreasing the thermal conductivity is reduced, which is not preferable. A more preferable amount of Mn or Cr is 2 to 50 atomic%, and further preferably 5 to 25 atomic%.
[0013]
Moreover, the thermoelectric conversion material of this invention is mix | blended in the range whose element A, ie, Mn or Cr, and the total amount of Fe are 35-60 atomic%. When the total amount of Mn or Cr and Fe is less than 35 atomic% and exceeds 60 atomic%, a large Seebeck coefficient cannot be obtained. More preferably, the total amount of Mn or Cr and Fe is 40 to 55 atomic%, more preferably 42 to 52 atomic%.
[0014]
Moreover, V is mix | blended in the range of 15-35 atomic% in the thermoelectric conversion material of this invention. When the compounding amount of V is less than 15 atomic%, a crystal phase other than the Heusler type crystal structure may become a main phase, and as a result, good thermoelectric performance cannot be obtained. Moreover, when the compounding amount of V exceeds 35 atomic%, the Seebeck coefficient is remarkably lowered. A more preferable range of the V content is 20 to 30 atomic%, and further preferably 22 to 28 atomic%.
[0015]
Another embodiment of the present invention has a composition represented by the following composition formula.
A x (Fe 1-a D a) y V z (E 1-b G b) 100-x-y-z
(Wherein A is at least one of Mn or Cr, D is selected from the group of Ti, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ag, Hf, Ta, W, Y, and rare earth elements) At least one element selected from the group consisting of B, C, N, P, S, Mg, Ga, Ge, Sn, In, and Bi, a, b are 0 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.2, x, y, and z are numbers of 2 ≦ x, 35 ≦ x + y ≦ 60, and 15 ≦ z ≦ 35, respectively.
That is, in the thermoelectric conversion material described above, a part of Fe is derived from the group of Ti, Cr, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ag, Hf, Ta, W, Y, and rare earth elements. It can also be substituted with at least one selected. Such substitution can further lower the thermal conductivity and increase the figure of merit Z. However, since excessive substitution may lower Z due to a decrease in Seebeck coefficient or the like, the amount of the element to be substituted is preferably 20 atomic% or less with respect to the total amount of Fe and the amount of substitution element. Moreover, it is preferable to set it as 3 atomic% or more with respect to the total amount of Fe and the amount of substitution elements, and when less than this, sufficient effect by substitution will not be acquired.
[0016]
In the thermoelectric conversion material of the present invention, a part of the D element, that is, Al or Si, is replaced with at least one selected from the group of B, C, N, P, S, Mg, Ga, Ge, Sn, In, and Bi. You can also Such substitution can further lower the thermal conductivity and increase the figure of merit Z. However, since excessive substitution may lower Z due to a decrease in Seebeck coefficient or the like, the amount of elements to be substituted is preferably 20 atomic% or less with respect to the total amount of element E and the amount of substitution elements. . Moreover, it is preferable to set it as 8 atomic% or more with respect to the total amount of Fe and the amount of substitution elements, and when less than this, sufficient effect by substitution will not be acquired.
[0017]
Hereinafter, the manufacture example of the thermoelectric conversion material molded object of this invention is demonstrated.
First, an alloy containing a predetermined amount of each element represented by the above composition formula is produced by arc melting, high frequency melting or the like.
This alloy can be produced by a method using a solid phase reaction such as a liquid quenching method such as a single roll method, a twin roll method, a rotating disk method, a gas atomizing method, or a mechanical alloying method. When an alloy is manufactured by this liquid quenching method or mechanical alloying method, there is an effect that the crystal phase constituting the alloy can be refined and the solid solution region of the element into the crystal phase can be expanded. It is effective for reducing thermal conductivity and increasing Seebeck coefficient. In addition, the alloy can be heat-treated as necessary, and the thermoelectric properties can be further improved by making the alloy into a single phase or controlling the crystal particle diameter. In this step, the atmosphere for carrying out dissolution, liquid quenching, mechanical alloying and heat treatment is preferably an inert atmosphere such as Ar.
[0018]
Next, the alloy is pulverized by a ball mill, a brown mill, a stamp mill or the like to form an alloy powder, and then the alloy powder is integrally formed by a sintering method, a hot press method, an SPS method, or the like. In this step, the atmosphere for carrying out the integral molding is preferably an inert atmosphere such as Ar.
[0019]
Next, the obtained molded body can be machined into a desired shape and size such as a prismatic shape to produce a thermoelectric conversion material molded body.
[0020]
[Thermoelectric conversion element]
The thermoelectric conversion element of the present invention will be described below.
The thermoelectric conversion element of the present invention is a thermoelectric conversion element comprising an electrically connected p-type thermoelectric conversion material molded body and an n-type thermoelectric conversion material molded body, wherein the p-type thermoelectric conversion material and the n-type thermoelectric conversion are provided. As one or both of the materials, a material represented by the following composition formula is used.
A x (Fe 1-a D a) y V z (E 1-b G b) 100-x-y-z
(Wherein A is at least one of Mn or Cr, D is selected from the group of Ti, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ag, Hf, Ta, W, Y, and rare earth elements) At least one element selected from the group consisting of B, C, N, P, S, Mg, Ga, Ge, Sn, In, and Bi, a, b are 0 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.2, x, y, and z are numbers of 2 ≦ x, 35 ≦ x + y ≦ 60, and 15 ≦ z ≦ 35, respectively.
When the thermoelectric conversion material of the present invention is used for either the p-type or the n-type, a known material such as a Bi—Te-based material may be used for the other.
[0021]
An embodiment of a thermoelectric conversion element according to the present invention is shown in FIG.
In FIG. 1, 1 is a thermoelectric conversion element of the present invention. For example, a prismatic p-type thermoelectric conversion material molded body 2 and a prismatic n-type thermoelectric conversion material molded body 3 are arranged in parallel and spaced apart from each other, and both end portions of these molded bodies are arranged. For example, they are electrically connected in series by a common electrode 8 made of a conductive material such as strip-shaped aluminum. And the electrode terminals 6 and 7 for taking out from the thermoelectric conversion material molded object in both ends are connected. On the outside of the common electrode 8, a low-temperature side heat conductive layer 4 and a high-temperature side heat conductive layer 5 which are made of an electrically insulating material and made of a heat conductive material are covered.
In this element, the adhesive connection between the thermoelectric conversion material molded bodies 2 and 3 and the common electrode 8 can be performed by a known conductive adhesive. The common electrode 8 can be bonded to the low temperature side and high temperature side heat conductive layers 4 and 5 using a known organic adhesive or inorganic adhesive.
[0022]
In such an element, when the low temperature side heat conductive layer 4 is set to a low temperature (L) and the high temperature side heat conductive layer 5 is set to a high temperature (H) to give a temperature difference between the two heat conductive layers, a p-type semiconductor is formed. In a certain thermoelectric conversion material molded body 2, positively charged holes are on the low temperature side L, and in a thermoelectric conversion material molded body 3 that is an n-type semiconductor, negatively charged electrons are on the low temperature side L. Move to. As a result, a potential difference is generated between the electrode terminals 6 and 7.
On the other hand, in such an element, when a voltage is applied with the electrode terminal 6 as a positive electrode and the electrode terminal 7 as a negative electrode, holes and electrons move in the same manner as described above, and temperature is applied to both ends of each thermoelectric conversion material molded body. A difference occurs, and the low temperature side heat conductive layer 4 is cooled to a low temperature, while the high temperature side heat conductive layer 5 is heated to a high temperature.
Thus, the thermoelectric conversion element of the present invention can be used as a power generation element or a heating / cooling element.
[0023]
In the said embodiment, although the example which arranged the some thermoelectric conversion material in the linear form was shown, thermoelectric conversion efficiency can also be improved further by arranging the thermoelectric conversion material molded object in planar shape.
[0024]
【Example】
Example 1
A predetermined amount of Fe, Mn, V, and Al raw materials are weighed and an alloy is produced by arc melting, then pulverized to 45 μm or less using a ball mill, and hot-pressed at 900 ° C. for 1 hour for an outer diameter of 10 mmφ and a thickness of 2 mm A molded body was obtained. When the formed phase of the molded body was examined by X-ray diffraction, it was confirmed that it had a Heusler type crystal structure. The composition of the molded body is shown in Table 1. The thermal diffusivity of the molded body was measured by the laser flash method, the density was measured by the Archimedes method, the specific heat was measured by the DSC (Differential Scanning Calorimetry) method, and the thermal conductivity κ was determined from these results. mK. Further, when the molded body was cut out in a needle shape and the Seebeck coefficient α was measured, it was 115 μV / K at 300K. Furthermore, as a result of measuring the electrical resistivity ρ of the needle-shaped molded body by the 4-terminal method, it was 0.92 mΩcm at 300K. The figure of merit Z (Z = α 2 / ρκ) was determined from these results and found to be 3.19 × 10 −4 K −1 .
[0025]
(Examples 2-7, Comparative Example 1)
An alloy was produced in the same manner as in Example 1, and a molded body was obtained by ball milling and hot pressing in the same manner as in Example 1. When the formed phase of the molded body was examined by X-ray diffraction, it was confirmed that all had a Heusler type crystal structure. The compositions of the molded articles of Examples 2 to 5 and Comparative Example 1 are shown in Table 1. Table 1 also shows the value of the figure of merit Z at 300 K obtained by the same method as in Example 1.
From Examples 1 to 5 and Comparative Example 1, it can be seen that the composition of the present invention in which part of Fe is substituted with Mn has a smaller thermal conductivity, and as a result, the value of the figure of merit Z is higher.
[0026]
(Example 8)
After a predetermined amount of Fe, Mn, V, and Al raw materials are weighed and an alloy is manufactured by arc melting, the alloy is melted in an Ar atmosphere, and is turned into a copper roll having a diameter of 300 mm that rotates at a peripheral speed of 40 m / s. Quenched ribbons were prepared by the liquid quenching method. Next, the quenched ribbon was pulverized to 45 μm or less using a ball mill and hot pressed at 850 ° C. for 30 minutes to obtain a molded body having an outer diameter of 10 mmφ and a thickness of 2 mm. When the formed phase of the molded body was examined by X-ray diffraction, it was confirmed that it had a Heusler type crystal structure. The composition of the molded body is shown in Table 1. The thermal diffusivity of the molded body was measured by the laser flash method, the density was measured by the Archimedes method, the specific heat was measured by the DSC (differential scanning calorimeter) method, and the thermal conductivity κ was determined from these results. mK. Further, when the molded body was cut out in a needle shape and the Seebeck coefficient α was measured, it was 118 μV / K at 300K. Furthermore, as a result of measuring the electrical resistivity ρ of the needle-like molded body by the 4-terminal method, it was 0.95 mΩcm at 300K. When the figure of merit Z (Z = α 2 / ρκ) was determined from these results, it was 3.86 × 10 −4 K −1 .
[0027]
(Examples 9 to 12, Comparative Example 2)
A quenched ribbon was prepared in the same manner as in Example 8, and a molded body was obtained by ball milling and hot pressing in the same manner as in Example 8. When the formed phase of the molded body was examined by X-ray diffraction, it was confirmed that all had a Heusler type crystal structure. The compositions of the molded articles of Examples 9 to 12 and Comparative Example 2 are shown in Table 1. Table 1 also shows the value of the figure of merit Z at 300 K obtained by the same method as in Example 1.
From Examples 8 to 12 and Comparative Example 2, it can be seen that the composition of the present invention in which part of Fe is substituted with Mn has a lower thermal conductivity, and as a result, the value of the figure of merit Z is higher.
[0028]
[Table 1]
Figure 0003607249
[0029]
In addition, even when a part of Fe is substituted with Zn, Ag, Hf, or Y instead of W in Example 3, the thermal conductivity is smaller than when Fe is not substituted, and as a result, the figure of merit Z The value of was high.
Further, in place of Ga in Example 4, even when a part of Al is substituted with P, S, Mg, Ge, Sn, In, or Bi, the thermal conductivity is small compared to the case where Fe is not substituted, As a result, the value of the figure of merit Z was high.
[0030]
【The invention's effect】
As described above, according to the present invention, by adopting an alloy having a composition in which a part of Fe of an Fe-V-Al alloy is replaced with Mn or Cr, a thermoelectric power having a small thermal conductivity and a large figure of merit Z is obtained. A conversion material can be provided, which makes it possible to provide a thermoelectric conversion element with excellent performance. The thermoelectric conversion material and the thermoelectric conversion element of the present invention are preferable from the viewpoint of global environmental problems because they are less toxic than the conventionally known Bi-Te materials, and have a large industrial value.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an example of a thermoelectric conversion element of the present invention.
DESCRIPTION OF SYMBOLS 1 ... Thermoelectric conversion element 2 ... p-type thermoelectric conversion material molded object 3 ... n-type thermoelectric conversion material molded object 4 ... Low temperature side heat conductive layer 5 ... High temperature side heat conductive layer 6 7 ... Electrode terminal 8 ... Common electrode

Claims (4)

下記の組成式で表される組成を有することを特徴とする熱電変換材料。
(Fe1―a(E1−b100−x―y−z
(式中、Aは、MnまたはCrの少なくとも一種、Dは、Ti,Co,Ni,Cu,Zn,Zr,Nb,Mo,Ag,Hf,Ta,W,Y,および希土類元素の群から選ばれる少なくとも一種の元素、EはAlまたはSiの少なくとも一種、Gは、B,C,N,P,S,Mg,Ga,Ge,Sn,In,およびBiの群から選ばれる少なくとも一種の元素、a、bはそれぞれ0≦a≦0.2、0≦b≦0.2、x、y、zはそれぞれ、2≦x、35≦x+y≦60、15≦z≦35の数を表す。)
A thermoelectric conversion material having a composition represented by the following composition formula:
A x (Fe 1-a D a) y V z (E 1-b G b) 100-x-y-z
(Wherein A is at least one of Mn or Cr, D is selected from the group of Ti, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ag, Hf, Ta, W, Y, and rare earth elements) At least one element selected from the group consisting of B, C, N, P, S, Mg, Ga, Ge, Sn, In, and Bi, a, b are 0 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.2, x, y, and z are numbers of 2 ≦ x, 35 ≦ x + y ≦ 60, and 15 ≦ z ≦ 35, respectively.
前記組成式において、x+yおよびzは、それぞれ、2≦x、40≦x+y≦5520≦z≦30の数であることを特徴とする請求項1に記載の熱電変換材料。2. The thermoelectric conversion material according to claim 1, wherein x + y and z in the composition formula are numbers of 2 ≦ x, 40 ≦ x + y ≦ 55 , and 20 ≦ z ≦ 30 , respectively. 電気的に接続されたp型熱電変換材料とn型熱電変換材料とを備えた熱電変換素子において、前記p型熱電変換材料と前記n型熱電変換材料のいずれか一方もしくは双方として、下記の組成式で表される材料を用いたことを特徴とする熱電変換素子。
(Fe1―a(E1−b100−x―y−z
(式中、Aは、MnまたはCrの少なくとも一種、Dは、Ti,Co,Ni,Cu,Zn,Zr,Nb,Mo,Ag,Hf,Ta,W,Y,および希土類元素の群から選ばれる少なくとも一種の元素、EはAlまたはSiの少なくとも一種、Gは、B,C,N,P,S,Mg,Ga,Ge,Sn,In,およびBiの群から選ばれる少なくとも一種の元素、a、bはそれぞれ0≦a≦0.2、0≦b≦0.2、x、y、zはそれぞれ、2≦x、35≦x+y≦60、15≦z≦35の数を表す。)
In a thermoelectric conversion element comprising an electrically connected p-type thermoelectric conversion material and an n-type thermoelectric conversion material, the following composition is used as one or both of the p-type thermoelectric conversion material and the n-type thermoelectric conversion material: The thermoelectric conversion element characterized by using the material represented by Formula.
A x (Fe 1-a D a) y V z (E 1-b G b) 100-x-y-z
(Wherein A is at least one of Mn or Cr, D is selected from the group of Ti, Co, Ni, Cu, Zn, Zr, Nb, Mo, Ag, Hf, Ta, W, Y, and rare earth elements) At least one element selected from the group consisting of B, C, N, P, S, Mg, Ga, Ge, Sn, In, and Bi, a, b are 0 ≦ a ≦ 0.2, 0 ≦ b ≦ 0.2, x, y, and z are numbers of 2 ≦ x, 35 ≦ x + y ≦ 60, and 15 ≦ z ≦ 35, respectively.
前記熱電変換材料において、L2型結晶構造を有する結晶相が全結晶相および非晶質層の内の50体積%以上を占める相であることを特徴とする請求項1ないし請求項のいずれかに記載の熱電変換材料。In the thermoelectric conversion material, any of claims 1 to 3, characterized in that the crystalline phase having the L2 1 type crystal structure is a phase which occupies more than 50% by volume of the total crystalline phase and an amorphous layer Thermoelectric conversion material according to crab.
JP2001400601A 2001-12-28 2001-12-28 Thermoelectric conversion material and thermoelectric conversion element using the same Expired - Fee Related JP3607249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001400601A JP3607249B2 (en) 2001-12-28 2001-12-28 Thermoelectric conversion material and thermoelectric conversion element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001400601A JP3607249B2 (en) 2001-12-28 2001-12-28 Thermoelectric conversion material and thermoelectric conversion element using the same

Publications (2)

Publication Number Publication Date
JP2003197985A JP2003197985A (en) 2003-07-11
JP3607249B2 true JP3607249B2 (en) 2005-01-05

Family

ID=27605086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001400601A Expired - Fee Related JP3607249B2 (en) 2001-12-28 2001-12-28 Thermoelectric conversion material and thermoelectric conversion element using the same

Country Status (1)

Country Link
JP (1) JP3607249B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119647A (en) * 2002-09-26 2004-04-15 Toshiba Corp Thermoelectric conversion material and thermoelectric conversion element using it
JP2004119648A (en) * 2002-09-26 2004-04-15 Toshiba Corp p-TYPE THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT USING IT
JP4521215B2 (en) * 2004-03-31 2010-08-11 株式会社東芝 Thermoelectric conversion material and thermoelectric conversion element
EP2662466A3 (en) 2004-04-21 2014-08-06 Showa Denko K.K. Process for producing thermoelectric semiconductor alloy, thermoelectric conversion module, thermoelectric power generating device, rare earth alloy, producing process thereof, thermoelectric conversion material, and thermoelectric conversion system using filled skutterudite based alloy
JP2006203186A (en) * 2004-12-24 2006-08-03 Showa Denko Kk Method of producing thermoelectric semiconductor alloy, thermoelectric conversion module, and thermoelectric power generation device
JP4809691B2 (en) 2006-02-24 2011-11-09 ヤンマー株式会社 Iron alloy thermoelectric material
JP5303721B2 (en) * 2006-03-17 2013-10-02 国立大学法人 名古屋工業大学 Thermoelectric conversion material
JP4745183B2 (en) * 2006-09-29 2011-08-10 株式会社東芝 Thermoelectric conversion material and thermoelectric conversion module using the same
JP4858976B2 (en) * 2007-01-31 2012-01-18 独立行政法人産業技術総合研究所 Composite thermoelectric conversion material
JP5723591B2 (en) 2010-12-28 2015-05-27 株式会社日立製作所 Thermoelectric conversion materials and electric field applied thermoelectric conversion elements
JP7209167B2 (en) * 2017-05-08 2023-01-20 パナソニックIpマネジメント株式会社 Jintle phase thermoelectric conversion material
KR102364931B1 (en) * 2018-01-19 2022-02-17 주식회사 엘지화학 Semiconductor compound and thermoelectric element including the same

Also Published As

Publication number Publication date
JP2003197985A (en) 2003-07-11

Similar Documents

Publication Publication Date Title
JP4745183B2 (en) Thermoelectric conversion material and thermoelectric conversion module using the same
EP1523048B1 (en) Thermoelectric material and thermoelectric module using the thermoelectric material
JP4468044B2 (en) Thermoelectric material and thermoelectric conversion element
JP2007158191A (en) Thermoelectric material, and thermoelectric conversion element using same
JP4762083B2 (en) Thermoelectric conversion material and thermoelectric conversion module using the same
JP2004356607A (en) Thermoelectric conversion material and thermoelectric transducer
JP4035572B2 (en) Thermoelectric conversion material, method for producing the same, and thermoelectric conversion element
US20040261833A1 (en) Thermoelectric conversion material, thermoelectric conversion element using the material, and electric power generation method and cooling method using the element
JP3607249B2 (en) Thermoelectric conversion material and thermoelectric conversion element using the same
JP5099976B2 (en) Method for producing thermoelectric conversion material
JP2004119648A (en) p-TYPE THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT USING IT
JP2004119647A (en) Thermoelectric conversion material and thermoelectric conversion element using it
JP4497981B2 (en) Thermoelectric material and thermoelectric conversion element
JP5201691B2 (en) Oxygen-containing intermetallic compound thermoelectric conversion material and thermoelectric conversion element to thermoelectric conversion module
JP2007173799A (en) Thermoelectric conversion material and thermoelectric conversion element
JPWO2007108176A1 (en) Thermoelectric conversion material
JP2007158192A (en) Thermoelectric conversion material, and thermoelectric conversion element using same
JP5563024B2 (en) Thermoelectric conversion material and thermoelectric conversion module using the same
JP3923041B2 (en) Thermoelectric conversion material and thermoelectric conversion element using the same
JP5269122B2 (en) Thermoelectric conversion material and thermoelectric conversion element using the same
JP4937069B2 (en) Thermoelectric conversion material and thermoelectric conversion element using the same
JP4521215B2 (en) Thermoelectric conversion material and thermoelectric conversion element
JP2004104015A (en) Thermoelectric conversion material and thermoelectric conversion element using the material
JPH038707A (en) N-type fe silicide thermoelectric conversion material
JP5269121B2 (en) Thermoelectric conversion material and thermoelectric conversion element using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees