JP4858976B2 - Composite thermoelectric conversion material - Google Patents

Composite thermoelectric conversion material Download PDF

Info

Publication number
JP4858976B2
JP4858976B2 JP2007022402A JP2007022402A JP4858976B2 JP 4858976 B2 JP4858976 B2 JP 4858976B2 JP 2007022402 A JP2007022402 A JP 2007022402A JP 2007022402 A JP2007022402 A JP 2007022402A JP 4858976 B2 JP4858976 B2 JP 4858976B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion material
composite
thermal conductivity
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007022402A
Other languages
Japanese (ja)
Other versions
JP2008192652A (en
Inventor
祐史 三上
慶三 小林
公洋 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007022402A priority Critical patent/JP4858976B2/en
Publication of JP2008192652A publication Critical patent/JP2008192652A/en
Application granted granted Critical
Publication of JP4858976B2 publication Critical patent/JP4858976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、高い熱電変換効率を有する新規な熱電変換材料及び熱電変換素子等の熱電変換部材に関するものであり、更に詳しくは、本発明は、ホイスラー合金型の結晶構造を持つ熱電変換材料と添加物質とを複合化することにより、熱伝導率を低減し、且つ高い熱電変換効率を有する熱電変換材料として優れた性能を発揮する熱電変換材料、熱電変換素子、及び熱電発電モジュールに関するものである。   The present invention relates to a novel thermoelectric conversion material having a high thermoelectric conversion efficiency and a thermoelectric conversion member such as a thermoelectric conversion element. More specifically, the present invention relates to a thermoelectric conversion material having a Heusler alloy type crystal structure and an additive The present invention relates to a thermoelectric conversion material, a thermoelectric conversion element, and a thermoelectric power generation module that exhibit excellent performance as a thermoelectric conversion material that reduces thermal conductivity and has high thermoelectric conversion efficiency by compounding a substance.

我が国では、一次供給エネルギーからの有効なエネルギーの得率は30%程度しかなく、約70%ものエネルギーを熱として大気中に廃棄している。また、工場やごみ焼却場などにおいて燃焼により生ずる熱も、その殆どが他のエネルギーに変換されることなく大気中に廃棄されている。このように、我々人類は、膨大な熱エネルギーを無駄に廃棄しており、限りある化石燃料の燃焼などの行為から僅かなエネルギーしか獲得していない。   In Japan, the effective energy yield from the primary supply energy is only about 30%, and about 70% of the energy is discarded as heat into the atmosphere. Also, most of the heat generated by combustion in factories and garbage incinerators is discarded into the atmosphere without being converted into other energy. In this way, we humans are wasting a great deal of heat energy, and have gained little energy from actions such as the burning of limited fossil fuels.

エネルギーの得率を向上させるためには、大気中に廃棄されている熱エネルギーを利用できるようにすることが必要である。そのための有効な一つの技術的手段として、熱エネルギーを直接電気エネルギーに変換する熱電変換がある。この熱電変換とは、ゼーベック効果を利用したものであり、熱電変換材料の両端に温度差を発生させることにより、熱起電力を生じさせて発電を行うエネルギー変換法である。   In order to improve the energy yield, it is necessary to be able to use the thermal energy discarded in the atmosphere. One effective technical means for that purpose is thermoelectric conversion that directly converts thermal energy into electrical energy. This thermoelectric conversion uses the Seebeck effect and is an energy conversion method in which a temperature difference is generated between both ends of a thermoelectric conversion material to generate thermoelectromotive force to generate power.

熱電発電では、例えば、熱電変換材料の一端を廃熱により生じた高温部に配置し、もう一端を大気中(室温部)に配置して、それぞれの両端に導線を接続するだけで電力を得ることができる。つまり、熱電発電では、一般的な発電装置に必要なモータやタービンなどの可動部品は不要である。このため、熱電発電では、設備コストも安く、燃焼などによるガスの排出もなく、熱電変換材料が劣化するまで継続的に発電を行うことができる。   In thermoelectric power generation, for example, one end of a thermoelectric conversion material is placed in a high-temperature part generated by waste heat, the other end is placed in the atmosphere (room temperature part), and power is obtained simply by connecting a conductive wire to each end. be able to. That is, in thermoelectric power generation, movable parts such as a motor and a turbine necessary for a general power generation device are not necessary. For this reason, in thermoelectric power generation, the facility cost is low, gas is not discharged due to combustion, and power generation can be continuously performed until the thermoelectric conversion material deteriorates.

このような長所から、熱電発電は、今後予測されるエネルギー資源の枯渇という重大な問題に対する解決策の一端を担う技術して期待されている。熱電発電を汎用的に実現するためには、高い熱電変換効率を有し、耐熱性、化学的耐久性などに優れた熱電変換材料を大量に供給することが必要となる。   Because of these advantages, thermoelectric power generation is expected as a technology that will play a part in the solution to the serious problem of depletion of energy resources that is predicted in the future. In order to realize thermoelectric power generation for a general purpose, it is necessary to supply a large amount of thermoelectric conversion materials having high thermoelectric conversion efficiency and excellent heat resistance and chemical durability.

熱電変換材料の特性は、熱電変換材料の両端に温度差を付けたときに発生する電圧の大きさを表す「熱起電力」と、電気の流れ易さである「導電率」、及び熱の伝わり易さである「熱伝導率」の3つの特性を用いて、下記式より算出される「熱電性能指数」により評価される。すなわち、熱起電力と導電率が大きく、熱伝導率が小さいものが、熱電変換材料に適している。   The characteristics of thermoelectric conversion materials are “thermoelectromotive force” indicating the magnitude of voltage generated when a temperature difference is applied to both ends of the thermoelectric conversion material, “conductivity” which is the ease of flow of electricity, and heat It is evaluated by a “thermoelectric performance index” calculated from the following formula using three characteristics of “thermal conductivity” that is easy to transmit. That is, a material having a large thermoelectromotive force and conductivity and a small heat conductivity is suitable for the thermoelectric conversion material.

この3つの熱電特性において、熱起電力と導電率は、主に電子状態密度やキャリア濃度などによって制御される電気的な成分であり、熱伝導率は、主に結晶構造や構成元素などによって変化する熱的な成分である。電気的な成分は、発電される電力の大きさに関係し、熱伝導率は、熱エネルギーを電気エネルギーに変換させる際の変換効率に影響を与え、得られる電力量に関係する。熱電性能指数を向上させる場合に、電気的な成分は、僅かなキャリアドーピングなどにより大幅に変化させられるため、比較的容易に制御されるが、熱的な成分は、結晶構造などに関係するため、容易には制御できない。   In these three thermoelectric characteristics, the thermoelectromotive force and conductivity are electrical components that are mainly controlled by the density of electronic states and carrier concentration, and the thermal conductivity varies mainly depending on the crystal structure and constituent elements. It is a thermal component. The electrical component is related to the magnitude of the generated electric power, and the thermal conductivity affects the conversion efficiency when converting thermal energy into electrical energy, and is related to the amount of electric power obtained. When improving the thermoelectric figure of merit, the electrical component can be changed relatively easily by slight carrier doping, etc., so it can be controlled relatively easily, but the thermal component is related to the crystal structure etc. Can not be easily controlled.

例えば、近年、室温近傍の低温域で高い発電性能を有する熱電変換材料として、FeやAlなどから構成されるホイスラー合金系材料が報告されている(特許文献1)。これらのホイスラー合金系は、キャリア濃度を制御することにより熱電特性の電気的な成分を数十倍程度向上させ、高い発電性能を実現しているが(非特許文献1)、熱伝導率が大きいために、熱を電気に変換する効率が低い。本発明者らが見積もったその変換効率は、1%未満であった。   For example, in recent years, a Heusler alloy material composed of Fe, Al, or the like has been reported as a thermoelectric conversion material having high power generation performance in a low temperature region near room temperature (Patent Document 1). These Heusler alloy systems improve the electrical component of thermoelectric characteristics by several tens of times by controlling the carrier concentration and realize high power generation performance (Non-patent Document 1), but have high thermal conductivity. For this reason, the efficiency of converting heat into electricity is low. The conversion efficiency estimated by the inventors was less than 1%.

熱伝導率の低減による変換効率の向上は、エネルギー再利用の有効性を高めるのみならず、最終的に得られる電力量を増加させ、発電コストを安くすることができる。つまり、ホイスラー合金系熱電材料などの様に、高熱伝導性の材料を実用化するには、熱伝導率の低減が必要不可欠である。   Improving the conversion efficiency by reducing the thermal conductivity not only increases the effectiveness of energy reuse, but also increases the amount of power finally obtained, thereby reducing the power generation cost. That is, in order to put a material having high thermal conductivity into practical use, such as a Heusler alloy thermoelectric material, it is essential to reduce thermal conductivity.

特開2004−253618号公報Japanese Patent Laid-Open No. 2004-253618 まてりあ,第44巻,第8号,629(2005)Materia, Vol. 44, No. 8, 629 (2005)

このような状況の中で、本発明者らは、上記従来技術に鑑みて、熱伝導率を低減し、高い熱電変換効率を有する高熱伝導性材料を開発することを目標として鋭意研究を積み重ねて来た。その結果、熱電変換材料に熱伝導率のより低い添加物質を適当な割合で複合させることにより、熱電特性の電気的な成分である熱起電力と導電性を損なわずに、熱伝導率を低減させ、熱電変換材料の特性を向上させることができることを見出し、ここに、本発明を完成するに至った。本発明は、上記した従来技術の現状に鑑みてなされたものであり、その主な目的は、熱電変換材料と添加物質との複合化により熱伝導率を低減し、高い熱電変換効率を有する、優れた新規な熱電変換材料を提供することである。また、本発明の他の目的は、上記の複合熱電変換材料からなる熱電変換素子、及び熱電発電モジュールを提供するものである。   Under such circumstances, the present inventors have conducted intensive research with the goal of developing a highly thermally conductive material having a low thermoconductivity and high thermoelectric conversion efficiency in view of the above prior art. I came. As a result, the thermal conductivity is reduced without compromising the thermoelectromotive force and conductivity, which are electrical components of thermoelectric properties, by combining the thermoelectric conversion material with an additive having a lower thermal conductivity at an appropriate ratio. And found that the characteristics of the thermoelectric conversion material can be improved, and the present invention has been completed here. The present invention has been made in view of the current state of the prior art described above, and its main purpose is to reduce the thermal conductivity by combining the thermoelectric conversion material and the additive substance and to have a high thermoelectric conversion efficiency. It is to provide an excellent novel thermoelectric conversion material. Moreover, the other objective of this invention is to provide the thermoelectric conversion element and thermoelectric power generation module which consist of said composite thermoelectric conversion material.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)ホイスラー構造を主相とし、一般式(Fe1−x1−yAl1−z(但し、式中、Mは、Co、Ni、Pd、Ir及びPtからなる群から選ばれた少なくとも一種の元素、Lは、Ti、Cr、Mn、Zr及びMoからなる群から選ばれた少なくとも一種の元素、Rは、Mg、Si、P、S、Ca、Ge、Sn、Sb及びBiからなる群から選ばれた少なくとも一種の元素であり、0≦x≦0.2;0≦y≦0.2;0≦z≦0.2である。)で表される組成を有する熱電変換材料を主成分とする熱電変換材料において、その主成分に対して、体積比率で多くても10vol%の割合で、周期表における第4〜6周期の12〜16族からなる群から選ばれた少なくとも1種の元素、及びその化合物から選択される物質を少なくとも1種添加して複合化した複合化熱電変換材料であって、
上記添加成分が、10μm以下の粒子の状態で主成分と混在すること又は上記添加成分が、主成分の粒子間に5μm以下の厚さの粒界層の状態で存在することを特徴とする上記複合化熱電変換材料。
(2)上記一般式で表される組成を有する熱電変換材料を主成分とする熱電変換材料において、その主成分に対して体積比率で多くても10vol%の割合で、S、Zn、Se、Sb、Te、Pb及びBiからなる群から選ばれた少なくとも1種の元素、及びその化合物から選択される物質を少なくとも1種添加して複合化した、前記(1)に記載の複合化熱電変換材料。
)上記熱電変換材料が、多結晶体からなる、前記(1)又は(2)に記載の複合化熱電変換材料。
)上記添加物の複合割合が、2〜8重量%である、前記(1)又は(2)に記載の複合化熱電変換材料。
)前記(1)から()のいずれかに記載の複合化熱電変換材料を含むことを特徴とする熱電変換素子。
)前記(1)から()のいずれかに記載の複合化熱電変換材料を含むことを特徴とする熱電変換モジュール。
The present invention for solving the above-described problems comprises the following technical means.
(1) a Heusler structure as the main phase, the general formula (Fe 1-x M x) 2 V 1-y L y Al 1-z R z ( In the formula, M represents, Co, Ni, Pd, Ir and At least one element selected from the group consisting of Pt, L is at least one element selected from the group consisting of Ti, Cr, Mn, Zr and Mo, and R is Mg, Si, P, S, Ca, And at least one element selected from the group consisting of Ge, Sn, Sb and Bi, 0 ≦ x ≦ 0.2; 0 ≦ y ≦ 0.2; 0 ≦ z ≦ 0.2. In the thermoelectric conversion material whose main component is a thermoelectric conversion material having a composition as described above, the volume ratio of at most 10 vol% with respect to the main component, the 12th to 16th groups of the 4th to 6th periods in the periodic table Selected from the group consisting of at least one element selected from the group consisting of A substance comprising at least one double Goka thermoelectric material complexed with the addition,
The additive component is mixed with a main component in a state of particles of 10 μm or less, or the additive component is present in a state of a grain boundary layer having a thickness of 5 μm or less between the particles of the main component. Composite thermoelectric conversion material.
(2) In the thermoelectric conversion material mainly composed of the thermoelectric conversion material having the composition represented by the above general formula, S, Zn, Se, at a volume ratio of at most 10 vol% with respect to the main component The composite thermoelectric conversion according to (1), wherein at least one element selected from the group consisting of Sb, Te, Pb, and Bi and at least one substance selected from the compounds are added and combined. material.
( 3 ) The composite thermoelectric conversion material according to (1) or (2) , wherein the thermoelectric conversion material is made of a polycrystal.
( 4 ) The composite thermoelectric conversion material according to (1) or (2), wherein the composite ratio of the additive is 2 to 8% by weight.
( 5 ) A thermoelectric conversion element comprising the composite thermoelectric conversion material according to any one of (1) to ( 4 ).
( 6 ) A thermoelectric conversion module comprising the composite thermoelectric conversion material according to any one of (1) to ( 4 ).

次に、本発明について更に詳細に説明する。
本発明は、複合化熱電変換材料であって、ホイスラー構造を主相とし、一般式(Fe1−x1−yAl1−z(但し、式中、Mは、Co、Ni、Pd、Ir及びPtからなる群から選ばれた少なくとも一種の元素であり、Lは、Ti、Cr、Mn、Zr及びMoからなる群から選ばれた少なくとも一種の元素であり、Rは、Mg、Si、P、S、Ca、Ge、Sn、Sb及びBiからなる群から選ばれた少なくとも一種の元素であり、0≦x≦0.2;0≦y≦0.2;0≦z≦0.2である。)で表される組成を有する熱電変換材料を主成分とし、その主成分に対して、体積比率で多くても10vol%の割合で、周期表における第4〜6周期の12〜16族からなる群から選ばれた少なくとも1種の元素、及びその化合物からなる物質を少なくとも1種添加したことを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a composite thermoelectric conversion material having a Heusler structure as a main phase and a general formula (Fe 1-x M x ) 2 V 1-y L y Al 1-z R z (where, M Is at least one element selected from the group consisting of Co, Ni, Pd, Ir and Pt, and L is at least one element selected from the group consisting of Ti, Cr, Mn, Zr and Mo , R is at least one element selected from the group consisting of Mg, Si, P, S, Ca, Ge, Sn, Sb and Bi, and 0 ≦ x ≦ 0.2; 0 ≦ y ≦ 0.2 0 ≦ z ≦ 0.2.) The main component is a thermoelectric conversion material having a composition represented by the following formula, and the volume ratio is at most 10 vol% with respect to the main component. At least one element selected from the group consisting of 12 to 16 groups of 4 to 6 cycles, A substance comprising a compound of the prime mover is characterized in that the addition of at least one.

本発明の複合熱電変換材料は、熱電変換材料に熱伝導のより低い物質を少なくとも1種以上複合させたものである。上記添加物質は、10μm以下の微小粒子の状態で熱電変換材料中に分散するか、もしくは5μm以下の粒界層の状態で熱電変換材料の粒子間に存在することが好ましい。それにより熱電変換材料中において上記添加物質が微細に分散し、異種物質界面や添加物質の微小粒子点で熱の伝導が散乱される回数が大幅に増加し、熱伝導率が飛躍的に低減させられる。   The composite thermoelectric conversion material of the present invention is obtained by combining at least one material having a lower thermal conductivity with a thermoelectric conversion material. The additive substance is preferably dispersed in the thermoelectric conversion material in a state of fine particles of 10 μm or less, or is present between the particles of the thermoelectric conversion material in a state of a grain boundary layer of 5 μm or less. As a result, the above-mentioned additive substances are finely dispersed in the thermoelectric conversion material, and the number of times the heat conduction is scattered at the interface between different substances and the fine particle points of the additive substances is greatly increased, and the thermal conductivity is drastically reduced. It is done.

上記熱電変換材料は、一般式(Fe1−x1−yAl1−z、で表わされる組成を有するホイスラー構造を主相とする熱電変換材料において、添加される物質は、周期表における第4〜6周期の12〜16族からなる群から選ばれた少なくとも1種の元素、及びその化合物からなることが好ましい。 The thermoelectric conversion material, in the general formula (Fe 1-x M x) 2 V 1-y L y Al 1-z R z thermoelectric material a Heusler structure as a main phase having a composition represented in, is added The substance is preferably composed of at least one element selected from the group consisting of groups 12 to 16 of the 4th to 6th periods in the periodic table, and a compound thereof.

上記の式中、Mは、Co、Ni、Pd、Ir及びPtからなる群から選ばれた少なくとも一種の元素であり、Lは、Ti、Cr、Mn、Zr及びMoからなる群から選ばれた少なくとも一種の元素であり、Rは、Mg、Si、P、S、Ca、Ge、Sn、Sb及びBiからなる群から選ばれた少なくとも一種の元素である。   In the above formula, M is at least one element selected from the group consisting of Co, Ni, Pd, Ir and Pt, and L is selected from the group consisting of Ti, Cr, Mn, Zr and Mo. It is at least one element, and R is at least one element selected from the group consisting of Mg, Si, P, S, Ca, Ge, Sn, Sb, and Bi.

また、式中、x値は0≦x≦0.2、y値は0≦y≦0.2、z値は0≦z≦0.2であり、大きな熱起電力と低い電気抵抗率を同時に併せ持つ、高い熱電効果を発揮する物質とすることができる。また、添加される物質は、低い熱伝導率に加えて、熱起電力と導電率がともに高い、S、Zn、Se、Sb、Te、Pb及びBiからなる群から選ばれた少なくとも1種の元素、及びその化合物からなることがより好ましい。   Further, in the formula, the x value is 0 ≦ x ≦ 0.2, the y value is 0 ≦ y ≦ 0.2, the z value is 0 ≦ z ≦ 0.2, and a large thermoelectromotive force and low electrical resistivity are obtained. At the same time, it can be a substance that exhibits a high thermoelectric effect. In addition to the low thermal conductivity, the substance to be added is at least one selected from the group consisting of S, Zn, Se, Sb, Te, Pb, and Bi, both having high thermoelectromotive force and conductivity. More preferably, it consists of an element and its compound.

本発明の複合熱電変換材料は、主成分となる熱電変換材料と副成分となる低熱伝導率物質を複合することにより製造される。製造過程は、熱電変換材料と低熱伝導率物質を、それぞれ焼結、溶融固化、結晶化などにより準備する過程と、それらの主・副成分を混合する過程、更に、得られた混合物を焼結や溶融した後に、固化する過程、に分けられる。熱電変換材料と低熱伝導率物質の化学的な反応性が低い場合は、熱電変換材料の作製段階で、あらかじめ低熱伝導率物質を混合し、上記3つの過程を同時に進行させることができる。   The composite thermoelectric conversion material of the present invention is produced by combining a thermoelectric conversion material as a main component and a low thermal conductivity material as a subcomponent. The manufacturing process consists of preparing thermoelectric conversion materials and low thermal conductivity materials by sintering, melting, solidification, crystallization, etc., mixing their main and subcomponents, and sintering the resulting mixture. And the process of solidifying after melting. In the case where the chemical reactivity between the thermoelectric conversion material and the low thermal conductivity material is low, the low thermal conductivity material can be mixed in advance at the production stage of the thermoelectric conversion material, and the above three processes can proceed simultaneously.

本発明の複合熱電変換材料は、主成分となる熱電変換材料に副成分となる低熱伝導率物質が均一、且つ微細に分散して存在することが重要であるが、そのような複合化の方法としては、例えば、熱電変換材料と低熱伝導率物質をそれぞれ固体の粉末の状態で用意し、ボールミリングやスタンプミル、ミキサーなどの任意の方法で粉砕・混合を行い、その後に焼結するなどの手段を用いることができる。   In the composite thermoelectric conversion material of the present invention, it is important that a low thermal conductivity substance as a subcomponent is present uniformly and finely dispersed in the thermoelectric conversion material as a main component. For example, a thermoelectric conversion material and a low thermal conductivity material are each prepared in a solid powder state, pulverized and mixed by an arbitrary method such as ball milling, a stamp mill, or a mixer, and then sintered. Means can be used.

更に、副成分である低熱伝導率物質を主成分である熱電変換材料中に微細に分散させるために、例えば、熱電変換材料と低熱伝導率物質の混合物の焼結時に、熱電変換材料が固相であり、且つ低熱伝導率物質が液相である温度において、十分な加圧を行い、低融点物質を熱電変換材料の粒子間に浸透させるなどの手段を用いることができる。   Furthermore, in order to finely disperse the low thermal conductivity material as a subcomponent in the thermoelectric conversion material as the main component, for example, when the mixture of the thermoelectric conversion material and the low thermal conductivity material is sintered, the thermoelectric conversion material is in a solid phase. In addition, sufficient pressure can be applied at a temperature at which the low thermal conductivity substance is in a liquid phase, and a low melting point substance can penetrate between the particles of the thermoelectric conversion material.

本発明の複合熱電変換材料の内で、後述する実施例1〜4及び比較例1〜2で得られた複合熱電変換材料の熱伝導率を測定した結果を図1に示す。比較例1は、低熱伝導率物質が複合されていない主成分の熱電変換材料のみのアーク溶解材で、結晶粒が数百μmと大きい場合であり、比較例2は、同様に、主成分の熱電変換材料のみの焼結体で、結晶粒が数百nmと細かい場合である。   The result of having measured the thermal conductivity of the composite thermoelectric conversion material obtained in Examples 1-4 and Comparative Examples 1-2 mentioned later among the composite thermoelectric conversion materials of this invention is shown in FIG. Comparative Example 1 is an arc melting material composed only of a main component thermoelectric conversion material that is not combined with a low thermal conductivity material, and the crystal grains are as large as several hundred μm. This is a case where the sintered body is only a thermoelectric conversion material and the crystal grains are as fine as several hundred nm.

実施例1〜4は、主成分の熱電変換材料の粒子の大きさが、比較例2と同程度であるにもかかわらず、低熱伝導率物質を複合させることにより、いずれも15〜50%程度、熱伝導率が低減されていることが認められる。更に、表1に示すように、熱伝導率以外の熱電特性である熱起電力と電気抵抗率は、主成分の熱電変換材料とほぼ同程度であり、最終的な熱電特性が向上していることが認められる。   In Examples 1 to 4, the particle size of the thermoelectric conversion material as the main component is about the same as that in Comparative Example 2, but by combining a low thermal conductivity material, all are about 15 to 50%. It can be seen that the thermal conductivity is reduced. Furthermore, as shown in Table 1, the thermoelectric power and electrical resistivity, which are thermoelectric properties other than thermal conductivity, are almost the same as those of the main component thermoelectric conversion material, and the final thermoelectric properties are improved. It is recognized that

上記した複合熱電変換材料は、熱電変換材料と低熱伝導率物質間の異種物質界面や低熱伝導率物質の微小粒子点でのフォノン散乱などの、低熱伝導率物質との複合化の効果により、熱伝導率が低減され、エネルギー変換効率が向上する。その結果として、得られる電力量の増加による発電コストの低減など、実用性が向上されることにより、熱電変換材料として有効に利用することが期待される。   The above-mentioned composite thermoelectric conversion material is effective due to the effect of compounding with a low thermal conductivity material such as phonon scattering at the interface between dissimilar materials between the thermoelectric conversion material and the low thermal conductivity material or at the fine particle point of the low thermal conductivity material. Conductivity is reduced and energy conversion efficiency is improved. As a result, it is expected to be effectively used as a thermoelectric conversion material by improving practicality such as reduction in power generation cost by increasing the amount of electric power obtained.

本発明の複合熱電変換材料からなる熱電変換材料を、p型及びn型熱電変換素子のいずれか、もしくはp型、n型のいずれにも用いた熱電発電モジュールの一例の模式図を、図2に示す。該熱電発電モジュールの構造は、公知の熱電発電モジュールと同様であり、高温部用基板、低温部用基板、p型熱電変換材料、n型熱電変換材料、電極、導線等により構成される熱電発電モジュールであり、本発明の複合熱電変換材料は、p型及びn型熱電変換材料として使用される。   FIG. 2 is a schematic diagram of an example of a thermoelectric power generation module in which the thermoelectric conversion material composed of the composite thermoelectric conversion material of the present invention is used for either p-type or n-type thermoelectric conversion elements, or for both p-type and n-type. Shown in The structure of the thermoelectric power generation module is the same as that of a known thermoelectric power generation module, and is composed of a high-temperature part substrate, a low-temperature part substrate, a p-type thermoelectric conversion material, an n-type thermoelectric conversion material, an electrode, a conductor, and the like. The module and the composite thermoelectric conversion material of the present invention are used as p-type and n-type thermoelectric conversion materials.

従来、室温付近の低温域で高い発電性能を有する熱電変換材料として、Fe、Alなどから構成されるホイスラー合金系材料が報告されている。これらのホイスラー合金系材料は、高い発電性能を実現しているが、熱伝導率が大きいために、熱を電気に変換する効率が低く、その変換効率は1%未満であった。これに対し、本発明は、主成分となるホイスラー構造を主相とする熱電変換材料に副成分となる低熱伝導率物質を微細に分散させて複合化することにより熱伝導率低減と従来材よりも高いエネルギー変換効率を持った熱電変換材料を提供することを実現したものである。本発明において、上記副成分の複合割合は、図1に示されるように、10重量%以下、特に2〜8重量%で有効であることが分かった。   Conventionally, a Heusler alloy-based material composed of Fe, Al, etc. has been reported as a thermoelectric conversion material having high power generation performance in a low temperature region near room temperature. These Heusler alloy-based materials have achieved high power generation performance, but because of their high thermal conductivity, the efficiency of converting heat into electricity was low, and the conversion efficiency was less than 1%. On the other hand, the present invention reduces thermal conductivity and lowers the conventional material by finely dispersing and compounding a low thermal conductivity material as a subcomponent in a thermoelectric conversion material having a Heusler structure as a main component as a main phase. It is also possible to provide thermoelectric conversion materials with high energy conversion efficiency. In the present invention, as shown in FIG. 1, the composite ratio of the subcomponents was found to be effective at 10% by weight or less, particularly 2 to 8% by weight.

本発明により、次のような効果が奏される。
(1)本発明により、元の熱電変換材料に比べて低い熱伝導率を有し、エネルギー変換効率が高い複合熱電変換材料を提供することができる。
(2)該複合熱電変換材料は、この様な特性を利用して、従来の熱電変換材料よりも高いエネルギー変換効率を持った熱電変換材料として有効に利用することができる。
(3)該複合熱電変換材料を熱電発電モジュールの熱電変換素子としてシステム中に組み込むことにより、これまで廃棄されていた熱エネルギーを有効に利用することが可能となる。
(4)該複合熱電変換材料を熱電変換素子としてシステム中に組み込み、熱電変換モジュールの変換効率を向上させることにより、電力あたりの発電コストを下げることが可能となる。
The present invention has the following effects.
(1) According to the present invention, it is possible to provide a composite thermoelectric conversion material having low thermal conductivity and high energy conversion efficiency compared to the original thermoelectric conversion material.
(2) The composite thermoelectric conversion material can be effectively used as a thermoelectric conversion material having higher energy conversion efficiency than conventional thermoelectric conversion materials by utilizing such characteristics.
(3) By incorporating the composite thermoelectric conversion material into the system as a thermoelectric conversion element of a thermoelectric power generation module, it becomes possible to effectively use the thermal energy that has been discarded so far.
(4) By incorporating the composite thermoelectric conversion material into the system as a thermoelectric conversion element and improving the conversion efficiency of the thermoelectric conversion module, the power generation cost per electric power can be reduced.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

熱電変換材料として、FeVAl0.9Si0.1、低熱伝導率物質として、Biを用いた。まず、純度99.99質量%のFeと純度99.99質量%のAl、純度99.9質量%のV、及び純度99.99質量%のSiを、FeVAl0.9Si0.1の組成となるように秤量し、メカニカルアロイングにより混合及び合金化を十分に行った。 Fe 2 VAl 0.9 Si 0.1 was used as the thermoelectric conversion material, and Bi was used as the low thermal conductivity material. First, Fe having a purity of 99.99% by mass, Al having a purity of 99.99% by mass, V having a purity of 99.9% by mass, and Si having a purity of 99.99% by mass are obtained by adding Fe 2 VAl 0.9 Si 0.1. The mixture was weighed so as to have the following composition and sufficiently mixed and alloyed by mechanical alloying.

更に、純度99.99質量%のBiを、FeVAl0.9Si0.1合金粉末に対して4質量%の割合で秤量し、先に用意したFeVAl0.9Si0.1合金粉末と十分に混合を行った。得られた混合粉末を、外径30mm、内径10mm、高さ30mmの黒鉛製の型に充填し、40MPaの加圧下にて通電焼結を行った。焼結の雰囲気は10Pa程度の真空中とし、1000℃まで加熱した。 Further, Bi having a purity of 99.99% by mass was weighed at a ratio of 4% by mass with respect to the Fe 2 VAl 0.9 Si 0.1 alloy powder, and the Fe 2 VAl 0.9 Si 0.1 prepared earlier was measured. Thorough mixing with the alloy powder was performed. The obtained mixed powder was filled into a graphite mold having an outer diameter of 30 mm, an inner diameter of 10 mm, and a height of 30 mm, and was subjected to current sintering under a pressure of 40 MPa. The sintering atmosphere was in a vacuum of about 10 Pa and heated to 1000 ° C.

図3に、作製した焼結体の微細構造について、走査電子顕微鏡を用いて撮影した反射電子像を示す。図3において、白色の部分はBi粒子であり、その他の灰色の部分がFeVAl0.9Si0.1合金である。図3から、Biが、2〜3μm、もしくは更に細かい大きさの粒子となって分散している様子が確認される。 FIG. 3 shows a backscattered electron image taken with a scanning electron microscope of the microstructure of the produced sintered body. In FIG. 3, the white part is Bi particles, and the other gray part is Fe 2 VAl 0.9 Si 0.1 alloy. From FIG. 3, it is confirmed that Bi is dispersed as particles having a size of 2 to 3 μm or finer.

また、図4に、図3の一部を拡大したものを示す。図4の左下部分では、FeVAl0.9Si0.1粒子を取り囲むようにBi層が複合化されている様子が観察される。更に、図4の右上部分では、100nm〜数十nmのBi粒子が分散している様子が観察される。このようなBi層とFeVAl0.9Si0.1粒子の界面やBi微小粒子は、熱の伝導を妨げる要因となり、熱伝導率の低減効果を発揮すると考えられる。 FIG. 4 shows an enlarged view of a part of FIG. In the lower left part of FIG. 4, it is observed that the Bi layer is compounded so as to surround the Fe 2 VAl 0.9 Si 0.1 particles. Furthermore, in the upper right part of FIG. 4, it is observed that Bi particles of 100 nm to several tens of nm are dispersed. Such an interface between the Bi layer and Fe 2 VAl 0.9 Si 0.1 particles and Bi microparticles are considered to be factors that impede heat conduction and exert an effect of reducing thermal conductivity.

表1に示すように、実施例1で得られた焼結体の熱伝導率は、7.2W/mKであり、比較例2に示すBiを含まないFeVAl0.9Si0.1焼結体の熱伝導率14.5W/mKに比べて、50%程度低減されていた。また、熱伝導率以外の熱電特性である熱起電力と電気抵抗率は、比較例2に示すBiを含まないFeVAl0.9Si0.1焼結体とほぼ同程度であり、最終的な熱電特性が向上していることが認められる。 As shown in Table 1, the thermal conductivity of the sintered body obtained in Example 1 is 7.2 W / mK, and Fe 2 VAl 0.9 Si 0.1 not containing Bi shown in Comparative Example 2 is used. The thermal conductivity of the sintered body was reduced by about 50% compared to 14.5 W / mK. Further, the thermoelectromotive force and the electrical resistivity, which are thermoelectric characteristics other than the thermal conductivity, are almost the same as those of the Fe 2 VAl 0.9 Si 0.1 sintered body containing no Bi shown in Comparative Example 2, and finally It can be seen that the general thermoelectric properties are improved.

実施例2〜4
FeVAl0.9Si0.1合金に対するBi混合割合を、2質量%、6質量%、10質量%として、実施例1と同様にして焼結体を作製した。得られた焼結体は、下記表1に示す通り、比較例2に示すBiを含まないFeVAl0.9Si0.1合金の熱伝導率14.5W/mKに比べて、15〜30%程度、低い熱伝導率を有するものであった。また、熱伝導率以外の熱電特性である熱起電力と電気抵抗率は、比較例2に示すBiを含まないFeVAl0.9Si0.1合金とほぼ同程度であり、最終的な熱電特性が向上していることが認められる。また、上述の一般式で表される組成を有する熱電変換材料において、添加物質を指定された他の元素に代えて同様の試験を実施した結果、同様の結果が得られた。これは、ホイスラー構造を主相とする熱電変換材料と化学的な反応性が乏しい物質を添加し、結晶学的に異なる相を複合させることにより、熱伝導の低減に寄与する異種物質間の異相界面や微小散乱点が導入されたためである。
Examples 2-4
Sintered bodies were produced in the same manner as in Example 1 with the Bi mixing ratio with respect to the Fe 2 VAl 0.9 Si 0.1 alloy being 2 mass%, 6 mass%, and 10 mass%. As shown in Table 1 below, the obtained sintered body is 15 to 15 times higher than the thermal conductivity 14.5 W / mK of the Fe 2 VAl 0.9 Si 0.1 alloy not containing Bi shown in Comparative Example 2. It had a low thermal conductivity of about 30%. Further, the thermoelectromotive force and electrical resistivity, which are thermoelectric characteristics other than thermal conductivity, are almost the same as those of the Fe 2 VAl 0.9 Si 0.1 alloy not containing Bi shown in Comparative Example 2, and the final It can be seen that the thermoelectric properties are improved. Further, in the thermoelectric conversion material having the composition represented by the above general formula, the same result was obtained as a result of performing the same test by replacing the additive substance with the other specified element. This is due to the addition of a substance with poor chemical reactivity to a thermoelectric conversion material with a Heusler structure as the main phase, and by combining different phases crystallographically, different phases between different substances that contribute to the reduction of heat conduction. This is because an interface and a minute scattering point are introduced.

比較例1
熱電変換材料として、FeVAl0.9Si0.1を、低熱伝導率物質を含まずに試料を作製した。試料の結晶粒径が数μmと粗大になるようにアーク溶解法を用いた。まず、99.99質量%のFeと99.99質量%のAl、99.9質量%のV、及び99.99質量%のSiを、FeVAl0.9Si0.1の組成となるように秤量し、乳鉢を用いて混合した。得られた混合粉末を、外径30mm、内径15mm、高さ30mmの黒鉛製の型に充填し、40MPaの加圧下にて通電焼結を行った。
Comparative Example 1
A sample was prepared by using Fe 2 VAl 0.9 Si 0.1 as a thermoelectric conversion material without containing a low thermal conductivity substance. The arc melting method was used so that the crystal grain size of the sample was as coarse as several μm. First, 99.99 mass% Fe, 99.99 mass% Al, 99.9 mass% V, and 99.99 mass% Si have a composition of Fe 2 VAl 0.9 Si 0.1. And weighed using a mortar. The obtained mixed powder was filled in a graphite mold having an outer diameter of 30 mm, an inner diameter of 15 mm, and a height of 30 mm, and was subjected to current sintering under a pressure of 40 MPa.

焼結の雰囲気は10Pa程度の真空中とし、1000℃まで加熱した。得られた焼結体をアーク溶解法により溶解・凝固し、ボタン状の塊とした。更に、1000℃で48時間、引き続き400℃で6時間の熱処理を行い、試料がホイスラー構造を主相とする状態とした。得られたアーク溶解材の熱電特性である、熱伝導率、熱起電力及び電気抵抗率は、それぞれ19.7W/mK、−116μV/K及び0.303mΩcmであった。   The sintering atmosphere was in a vacuum of about 10 Pa and heated to 1000 ° C. The obtained sintered body was melted and solidified by an arc melting method to form a button-like lump. Further, heat treatment was performed at 1000 ° C. for 48 hours, and subsequently at 400 ° C. for 6 hours, so that the sample had a Heusler structure as a main phase. The arc melting material thus obtained had thermoelectric properties of 19.7 W / mK, −116 μV / K and 0.303 mΩcm as thermal conductivity, thermoelectromotive force and electrical resistivity, respectively.

比較例2
熱電変換材料として、FeVAl0.9Si0.1を、低熱伝導率物質を含まずに試料を作製した。試料の結晶粒径が実施例1〜4と同程度になるように、実施例1〜4と同様の方法を用いた。まず、99.99質量%のFeと99.99質量%のAl、99.9質量%のV、及び99.99質量%のSiを、FeVAl0.9Si0.1の組成となるように秤量し、メカニカルアロイングにより混合及び合金化を十分に行った。
Comparative Example 2
A sample was prepared by using Fe 2 VAl 0.9 Si 0.1 as a thermoelectric conversion material without containing a low thermal conductivity substance. The same method as in Examples 1 to 4 was used so that the crystal grain size of the sample was approximately the same as in Examples 1 to 4. First, 99.99 mass% Fe, 99.99 mass% Al, 99.9 mass% V, and 99.99 mass% Si have a composition of Fe 2 VAl 0.9 Si 0.1. The mixture was weighed and mixed and alloyed sufficiently by mechanical alloying.

得られた粉末を、外径30mm、内径10mm、高さ30mmの黒鉛製の型に充填し、40MPaの加圧下にて通電焼結を行った。焼結の雰囲気は10Pa程度の真空中とし、1000℃まで加熱した。   The obtained powder was filled into a graphite mold having an outer diameter of 30 mm, an inner diameter of 10 mm, and a height of 30 mm, and subjected to current sintering under a pressure of 40 MPa. The sintering atmosphere was in a vacuum of about 10 Pa and heated to 1000 ° C.

得られた焼結体の熱電特性である、熱伝導率、熱起電力及び電気抵抗率は、それぞれ14.5W/mK、−125μV/K、0.481mΩcmであった。比較例1のアーク溶解材の結晶粒径が数百μmであるのに対して、比較例2の焼結体の結晶粒径は数百nmであり、結晶粒の微細化により熱伝導率が低減していることが分かる。   The thermal conductivity, thermoelectromotive force, and electrical resistivity, which are thermoelectric properties of the obtained sintered body, were 14.5 W / mK, -125 μV / K, and 0.481 mΩcm, respectively. Whereas the crystal grain size of the arc melting material of Comparative Example 1 is several hundred μm, the crystal grain size of the sintered body of Comparative Example 2 is several hundred nm, and the thermal conductivity is reduced by the refinement of the crystal grains. It can be seen that there is a reduction.

実施例1〜4及び比較例1〜2より得られた低熱伝導率物質Biの複合割合と熱伝導率との関係を示すグラフである。It is a graph which shows the relationship between the composite ratio of the low thermal conductivity substance Bi obtained from Examples 1-4 and Comparative Examples 1-2, and thermal conductivity. 本発明の複合熱電変換材料を用いて作製される一般的な熱電変換素子を模式的に示す図面である。It is drawing which shows typically the general thermoelectric conversion element produced using the composite thermoelectric conversion material of this invention. 実施例1で得られた複合熱電変換材料の微細構造を、走査電子顕微鏡を用いて撮影した反射電子像である。It is the reflected electron image which image | photographed the fine structure of the composite thermoelectric conversion material obtained in Example 1 using the scanning electron microscope. 実施例1で得られた複合熱電変換材料の微細構造を、走査電子顕微鏡を用いて撮影した反射電子像で、図3をより拡大した図である。It is the figure which expanded FIG. 3 more by the reflection electron image which image | photographed the fine structure of the composite thermoelectric conversion material obtained in Example 1 using the scanning electron microscope.

Claims (6)

ホイスラー構造を主相とし、一般式(Fe1−x1−yAl1−z(但し、式中、Mは、Co、Ni、Pd、Ir及びPtからなる群から選ばれた少なくとも一種の元素、Lは、Ti、Cr、Mn、Zr及びMoからなる群から選ばれた少なくとも一種の元素、Rは、Mg、Si、P、S、Ca、Ge、Sn、Sb及びBiからなる群から選ばれた少なくとも一種の元素であり、0≦x≦0.2;0≦y≦0.2;0≦z≦0.2である。)で表される組成を有する熱電変換材料を主成分とする熱電変換材料において、その主成分に対して、体積比率で多くても10vol%の割合で、周期表における第4〜6周期の12〜16族からなる群から選ばれた少なくとも1種の元素、及びその化合物から選択される物質を少なくとも1種添加して複合化した複合化熱電変換材料であって、
上記添加成分が、10μm以下の粒子の状態で主成分と混在すること又は上記添加成分が、主成分の粒子間に5μm以下の厚さの粒界層の状態で存在することを特徴とする上記複合化熱電変換材料。
A Heusler structure as the main phase, the general formula (Fe 1-x M x) 2 V 1-y L y Al 1-z R z ( In the formula, M is composed of Co, Ni, Pd, Ir and Pt At least one element selected from the group, L is at least one element selected from the group consisting of Ti, Cr, Mn, Zr and Mo, R is Mg, Si, P, S, Ca, Ge, Sn , Sb and Bi, at least one element selected from the group consisting of 0 ≦ x ≦ 0.2; 0 ≦ y ≦ 0.2; 0 ≦ z ≦ 0.2. In the thermoelectric conversion material whose main component is a thermoelectric conversion material having a volume, the group consisting of groups 12 to 16 of the fourth to sixth periods in the periodic table at a volume ratio of at most 10 vol% with respect to the main component Selected from at least one element selected from And at least one double Goka thermoelectric material complexed with the addition of quality,
The additive component is mixed with a main component in a state of particles of 10 μm or less, or the additive component is present in a state of a grain boundary layer having a thickness of 5 μm or less between the particles of the main component. Composite thermoelectric conversion material.
上記一般式で表される組成を有する熱電変換材料を主成分とする熱電変換材料において、その主成分に対して体積比率で多くても10vol%の割合で、S、Zn、Se、Sb、Te、Pb及びBiからなる群から選ばれた少なくとも1種の元素、及びその化合物から選択される物質を少なくとも1種添加して複合化した、請求項1に記載の複合化熱電変換材料。   In a thermoelectric conversion material mainly composed of a thermoelectric conversion material having a composition represented by the above general formula, S, Zn, Se, Sb, Te at a volume ratio of at most 10 vol% with respect to the main component. 2. The composite thermoelectric conversion material according to claim 1, wherein at least one element selected from the group consisting of Pb and Bi and at least one substance selected from the compound is added to form a composite. 上記熱電変換材料が、多結晶体からなる、請求項1又は2に記載の複合化熱電変換材料。 The composite thermoelectric conversion material according to claim 1 or 2 , wherein the thermoelectric conversion material comprises a polycrystal. 上記添加物の複合割合が、2〜8重量%である、請求項1又は2に記載の複合化熱電変換材料。   The composite thermoelectric conversion material according to claim 1 or 2, wherein a composite ratio of the additive is 2 to 8% by weight. 請求項1からのいずれかに記載の複合化熱電変換材料を含むことを特徴とする熱電変換素子。 Thermoelectric conversion elements, characterized in that it comprises a composite thermoelectric conversion material according to any one of claims 1 to 4. 請求項1からのいずれかに記載の複合化熱電変換材料を含むことを特徴とする熱電変換モジュール。 Thermoelectric conversion module, characterized in that it comprises a composite thermoelectric conversion material according to any one of claims 1 to 4.
JP2007022402A 2007-01-31 2007-01-31 Composite thermoelectric conversion material Active JP4858976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022402A JP4858976B2 (en) 2007-01-31 2007-01-31 Composite thermoelectric conversion material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022402A JP4858976B2 (en) 2007-01-31 2007-01-31 Composite thermoelectric conversion material

Publications (2)

Publication Number Publication Date
JP2008192652A JP2008192652A (en) 2008-08-21
JP4858976B2 true JP4858976B2 (en) 2012-01-18

Family

ID=39752505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022402A Active JP4858976B2 (en) 2007-01-31 2007-01-31 Composite thermoelectric conversion material

Country Status (1)

Country Link
JP (1) JP4858976B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5671985B2 (en) * 2010-12-03 2015-02-18 株式会社豊田中央研究所 Composite thermoelectric material and method for producing the same
JP5723591B2 (en) 2010-12-28 2015-05-27 株式会社日立製作所 Thermoelectric conversion materials and electric field applied thermoelectric conversion elements
KR20130126035A (en) * 2012-05-10 2013-11-20 삼성전자주식회사 Thermoelectric material having distortion of electronic density of states, thermoelectric module and thermoelectric apparatus comprising same
CN105051925B (en) * 2013-03-27 2018-07-17 株式会社日立制作所 High-efficiency thermal electrical switching device
JP6192015B2 (en) * 2014-03-28 2017-09-06 国立研究開発法人産業技術総合研究所 Compact for thermoelectric conversion material, sintered compact, and manufacturing method thereof
US10658562B2 (en) 2015-10-13 2020-05-19 Hitachi Metals, Ltd. Thermoelectric conversion material, method for producing same, and thermoelectric conversion module
JP6816384B2 (en) * 2016-05-27 2021-01-20 大同特殊鋼株式会社 Whisler-type iron-based thermoelectric material
JP7087383B2 (en) * 2017-12-28 2022-06-21 日立金属株式会社 Thermoelectric conversion materials, thermoelectric conversion modules, and methods for manufacturing thermoelectric conversion materials.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000261048A (en) * 1999-03-05 2000-09-22 Ngk Insulators Ltd Semiconductor material for thermoelectric conversion and manufacture of the same
JP3607249B2 (en) * 2001-12-28 2005-01-05 株式会社東芝 Thermoelectric conversion material and thermoelectric conversion element using the same
JP2004119647A (en) * 2002-09-26 2004-04-15 Toshiba Corp Thermoelectric conversion material and thermoelectric conversion element using it
JP2004119648A (en) * 2002-09-26 2004-04-15 Toshiba Corp p-TYPE THERMOELECTRIC CONVERSION MATERIAL AND THERMOELECTRIC CONVERSION ELEMENT USING IT
JP4750349B2 (en) * 2003-02-20 2011-08-17 国立大学法人 名古屋工業大学 Method for producing thermoelectric conversion material
JP4496333B2 (en) * 2006-02-24 2010-07-07 ヤンマー株式会社 Thermoelectric material

Also Published As

Publication number Publication date
JP2008192652A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
Li et al. Enhanced thermoelectric performance of Yb-single-filled skutterudite by ultralow thermal conductivity
Rull-Bravo et al. Skutterudites as thermoelectric materials: revisited
JP4858976B2 (en) Composite thermoelectric conversion material
JP5636419B2 (en) Self-organized thermoelectric material
Toprak et al. The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3
US8716589B2 (en) Doped lead tellurides for thermoelectric applications
Li et al. Significant enhancement of the thermoelectric performance of higher manganese silicide by incorporating MnTe nanophase derived from Te nanowire
JP2009277735A (en) Method of manufacturing thermoelectric material
Karati et al. Simultaneous increase in thermopower and electrical conductivity through Ta-doping and nanostructuring in half-Heusler TiNiSn alloys
JP5686417B2 (en) Thermoelectric conversion module manufacturing method and thermoelectric conversion module
JP5201691B2 (en) Oxygen-containing intermetallic compound thermoelectric conversion material and thermoelectric conversion element to thermoelectric conversion module
WO2004001864A1 (en) β-IRON DISILICATE THERMOELECTRIC TRANSDUCING MATERIAL AND THERMOELECTRIC TRANSDUCER
JP2012174849A (en) Thermoelectric material
JP2006253291A (en) Thermoelectric material
JP2002368291A (en) Thermoelectric material
JP5949347B2 (en) Metal material having n-type thermoelectric conversion performance
JP6632218B2 (en) Clathrate compound, thermoelectric conversion material and method for producing the same
JP6560061B2 (en) Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion material
JP2008016610A (en) Zinc-antimony system thermoelectric conversion material and method for manufacturing the same
JP4900819B2 (en) Thermoelectric material and manufacturing method thereof
JP4809691B2 (en) Iron alloy thermoelectric material
JP4496333B2 (en) Thermoelectric material
JP6588194B2 (en) Thermoelectric materials and thermoelectric modules
KR101405364B1 (en) SYNTHESIZING METHOD FOR Al-DOPED Mn-Si THERMOELECTRIC MATERIAL AND THERMOELECTRIC MATERIAL SYNTHESIZED BY THE METHOD
JP6695932B2 (en) High manganese silicon-based telluride composite material for thermoelectric conversion and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

R150 Certificate of patent or registration of utility model

Ref document number: 4858976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250