JPH08196903A - Porous photocatalyst and manufacture thereof - Google Patents

Porous photocatalyst and manufacture thereof

Info

Publication number
JPH08196903A
JPH08196903A JP7027562A JP2756295A JPH08196903A JP H08196903 A JPH08196903 A JP H08196903A JP 7027562 A JP7027562 A JP 7027562A JP 2756295 A JP2756295 A JP 2756295A JP H08196903 A JPH08196903 A JP H08196903A
Authority
JP
Japan
Prior art keywords
porous
porous photocatalyst
photocatalyst
titanium oxide
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7027562A
Other languages
Japanese (ja)
Other versions
JP2775399B2 (en
Inventor
Hiroshi Tougeda
博史 垰田
Kazumi Kato
一実 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7027562A priority Critical patent/JP2775399B2/en
Publication of JPH08196903A publication Critical patent/JPH08196903A/en
Application granted granted Critical
Publication of JP2775399B2 publication Critical patent/JP2775399B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Physical Water Treatments (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To provide a porous photocatalyst having fine pores with a uniform pore size in the surface, having high environment polluting substance decomposing and removing effects and sustainability of the effects as an environment purifying material to continuously carry out water treatment and malodor removal, and also having excellent properties from the view points of economic properies, safety, water resistance, heat resistance, light resistance, stability, etc., and provide a producing method for the catalyst. CONSTITUTION: A porous optical catalyst is produced by adding polyethylene glycol or polyethylene oxide to a titania sol produced from titanium alkoxides and alcohol amines, applying the obtained mixture to a porous body of such as activated carbon, silica gel, activated alumina, etc., and then heating the resulting body and the crystal structure of a titanium oxide film formed on the surface of the catalyst is anatase. The catalyst adsorbs environment polluting substances efficiently and decomposes and removes the substances quickly, effectively, and even continuously by being rediated with light.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、悪臭や空気中の有害物
質除去あるいは廃水処理や浄水処理などを行うための環
境浄化材料として用いられる多孔質光触媒及びその製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porous photocatalyst used as an environmental purification material for removing odors, harmful substances in the air, wastewater treatment, water purification treatment and the like, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、居住空間や作業空間での悪臭や自
動車の排気ガスなどの有害物質による汚染が深刻な問題
となっている。また、生活排水や産業廃水などによる水
質汚染、特に、現在行われている活性汚泥法などの水処
理法では処理が難しい有機塩素系の溶剤やゴルフ場の農
薬などによる水源の汚染なども広範囲に進んでおり、環
境の汚染が重大な社会問題となっている。
2. Description of the Related Art In recent years, foul odors in living spaces and work spaces and pollution by harmful substances such as automobile exhaust gas have become serious problems. In addition, water pollution due to domestic wastewater and industrial wastewater, especially water source pollution due to organic chlorine-based solvents and pesticides at golf courses, which are difficult to treat with currently used water treatment methods such as activated sludge method, etc. Progress is being made and environmental pollution has become a serious social problem.

【0003】従来、悪臭防止法あるいは空気中の有害物
質の除去法として、酸やアルカリなどの吸収液や、吸着
剤、土壌などに吸収あるいは吸着させる方法がよく行わ
れているが、この方法は廃液や使用済みの吸着剤や土壌
の処理が問題で、二次公害を起こす恐れがある。また、
芳香剤を使用して悪臭を隠ぺいする方法や、活性汚泥や
オゾンで分解する方法もあるが、芳香剤の場合には芳香
剤自体の臭いによる汚染の問題があり、活性汚泥の場合
には処理能力が低く、かつ汚泥臭の発散が避けられず、
オゾンの場合には有毒でコストがかかるという欠点を持
っている(例えば、西田耕之助、平凡社「大百科事典」
1巻、p136 (1984))。
Conventionally, as a method for preventing malodor or a method for removing harmful substances in the air, a method of absorbing or adsorbing to an absorbent such as acid or alkali, an adsorbent, or soil has been often used. Treatment of waste liquid, used adsorbent and soil may cause secondary pollution. Also,
There are also methods to mask offensive odors by using air fresheners and methods to decompose with activated sludge or ozone.However, in the case of air fresheners, there is a problem of pollution due to the smell of the air fresheners, and in the case of active sludge, treatment The ability is low, and the emission of sludge odor is unavoidable,
Ozone has the drawback of being toxic and costly (eg Konosuke Nishida, Heibonsha "Encyclopedia")
Volume 1, p136 (1984)).

【0004】半導体に光を照射すると強い還元作用を持
つ電子と強い酸化作用を持つ正孔が生成し、半導体に接
触した分子種を酸化還元作用により分解する。半導体の
このような作用、すなわち光触媒作用を利用することに
よって、水中に溶解している有機溶剤や農薬、界面活性
剤などの環境汚染物質や空気中の有害物質の分解除去を
行うことができる。この方法は半導体と光を利用するだ
けであり、微生物を用いる生物処理などの方法に比べ
て、温度、pH、ガス雰囲気、毒性などの反応条件の制
約が少なく、しかも生物処理法では処理しにくい有機ハ
ロゲン化合物や有機リン化合物のようなものでも容易に
分解・除去できるという長所を持っている。しかし、こ
れまで行われてきた光触媒による有機物の分解除去の研
究では、光触媒として半導体粉末が用いられていた(例
えば、A. L. Pruden and D. F. Ollis, Journal of Cat
alysis, Vol.82, 404 (1983)、H. Hidaka, H. Jou, K.
Nohara, J. Zhao, Chemosphere, Vol.25, 1589 (199
2)、久永輝明、原田賢二、田中啓一、工業用水、第379
号、12 (1990))。そのため、光触媒としての取扱いや
使用が難しく、水処理の場合、光触媒粉末を回収するた
め、処理した水を濾過しなければならないが、光触媒が
微粉末であるため目詰まりを起こしたりして、濾過が容
易でなく、処理物と光触媒との分離や回収が困難で、連
続的に水処理できないなどの問題があった。
When the semiconductor is irradiated with light, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and the molecular species in contact with the semiconductor are decomposed by the redox action. By utilizing such an action of the semiconductor, that is, a photocatalytic action, it is possible to decompose and remove environmental pollutants such as organic solvents, pesticides and surfactants dissolved in water and harmful substances in the air. This method uses only semiconductors and light, and has less restrictions on reaction conditions such as temperature, pH, gas atmosphere, and toxicity as compared with methods such as biological treatment using microorganisms, and is difficult to treat with biological treatment methods. It has the advantage that even compounds such as organic halogen compounds and organic phosphorus compounds can be easily decomposed and removed. However, in the past research on decomposition and removal of organic substances by photocatalyst, semiconductor powder was used as a photocatalyst (for example, AL Pruden and DF Ollis, Journal of Cat.
alysis, Vol.82, 404 (1983), H. Hidaka, H. Jou, K.
Nohara, J. Zhao, Chemosphere, Vol. 25, 1589 (199
2), Teruaki Kuninaga, Kenji Harada, Keiichi Tanaka, Industrial Water, No. 379
Issue, 12 (1990)). Therefore, it is difficult to handle and use as a photocatalyst, and in the case of water treatment, it is necessary to filter the treated water in order to recover the photocatalyst powder, but since the photocatalyst is a fine powder, it causes clogging and filtration. However, it is difficult to separate and collect the treated product and the photocatalyst, and there is a problem that continuous water treatment cannot be performed.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、悪臭や空気中の有害物質除去あるいは廃水処理や浄
水処理などを連続的に行うことができ、環境浄化材料と
して環境汚染物質の分解除去効果とその持続性に優れ、
しかも経済性、安全性、耐候性、安定性という面からも
優れた特性を有する多孔質光触媒及びその製造方法の提
供を目的とするものである。
SUMMARY OF THE INVENTION In view of the above, the present invention enables continuous removal of odors and harmful substances in the air, wastewater treatment, water purification treatment, and the like. Excellent decomposition removal effect and its persistence,
Moreover, it is an object of the present invention to provide a porous photocatalyst having excellent properties in terms of economy, safety, weather resistance, and stability, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者は上記の目的を
達成するため、鋭意研究を重ねた結果、ポリエチレング
リコールまたはポリエチレンオキサイドを添加したチタ
ニアゾルを多孔体の表面にコーティングした後、加熱焼
成することによって製造した多孔質光触媒が、表面に孔
径の揃った細孔を有し、水中に溶解している有機溶剤や
農薬などの環境を汚染している有機化合物を効率良く吸
着し、光の照射によって生成した電子と正孔の酸化還元
作用により、迅速に分解除去し、しかもメンテナンスフ
リーでその効果を持続させることができることを見い出
し、本発明をなすに至った。
Means for Solving the Problems The present inventor has conducted extensive studies in order to achieve the above object. As a result, polyethylene glycol or polyethylene oxide-added titania sol is coated on the surface of a porous body and then heated and baked. The porous photocatalyst produced by this method has fine pores with uniform pore size on the surface, and efficiently adsorbs organic compounds that pollute the environment such as organic solvents and pesticides dissolved in water, and irradiates light. The inventors have found that the redox action of electrons and holes generated by the method enables rapid decomposition and removal, and the effect can be maintained without maintenance, and the present invention has been completed.

【0007】本発明に用いられる多孔体は、多孔質のセ
ラミックスやガラス、金属など、いろいろなものが挙げ
られるが、比表面積の大きさとコストの面から活性炭、
活性アルミナ、シリカゲルが特に好ましい。
The porous material used in the present invention includes various materials such as porous ceramics, glass and metal. Activated carbon is used in view of the specific surface area and cost.
Activated alumina and silica gel are particularly preferable.

【0008】本発明に用いられる多孔体の形状は、粒
状、板状、円筒状、角柱状、円錐状、球状、瓢箪型、ラ
グビーボール型など、どのような形であっても良い。
The shape of the porous material used in the present invention may be any shape such as granular, plate-shaped, cylindrical, prismatic, conical, spherical, gourd-shaped, rugby ball-shaped.

【0009】本発明に用いられるチタニアゾルは、超微
粒子の酸化チタンを水に懸濁させたり、アルコールと四
塩化チタンや金属チタンとの反応などによって得られる
チタンのアルコキシドを加水分解したりすることによっ
て調製される。その際、モノエタノールアミンやジエタ
ノールアミン、トリエタノールアミン、N−メチルジエ
タノールアミン、N−エチルジエタノールアミン、N,
N−ジメチルジアミノエタノール、ジイソプロパノール
アミンなどのアルコールアミン類やジエチレングリコー
ルなどのグリコール類を添加すると均一で透明なチタニ
アゾルが得られ、それを用いることによって高性能の多
孔質光触媒を製造することができる。
The titania sol used in the present invention is prepared by suspending ultrafine particles of titanium oxide in water or hydrolyzing an alkoxide of titanium obtained by a reaction between alcohol and titanium tetrachloride or titanium metal. Is prepared. At that time, monoethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N,
When alcohol amines such as N-dimethyldiaminoethanol and diisopropanolamine and glycols such as diethylene glycol are added, a uniform and transparent titania sol is obtained, and by using it, a high performance porous photocatalyst can be produced.

【0010】本発明の多孔質光触媒は、こうして得られ
たチタニアゾルにポリエチレングリコールまたはポリエ
チレンオキサイドを添加し、ディップコーティング法や
滴下法、塗布法、スプレー法などによって多孔体の表面
にコーティングした後、加熱焼成することによって得ら
れる。ここで、チタニアゾルにポリエチレングリコール
またはポリエチレンオキサイドを添加しない場合には、
多孔体の表面の細孔が酸化チタンで覆われてしまい、比
表面積の大きな多孔質の光触媒が得られない。チタニア
ゾルにポリエチレングリコールまたはポリエチレンオキ
サイドを添加することにより、加熱焼成でポリエチレン
グリコールやポリエチレンオキサイドが燃焼・消失する
ため、多孔体の表面に孔が開いて細孔とつながり、比表
面積の大きな多孔質の光触媒が得られる。
The porous photocatalyst of the present invention is prepared by adding polyethylene glycol or polyethylene oxide to the titania sol thus obtained, coating the surface of the porous body by a dip coating method, a dropping method, a coating method, a spray method or the like, and then heating. It is obtained by firing. Here, when polyethylene glycol or polyethylene oxide is not added to the titania sol,
Since the pores on the surface of the porous body are covered with titanium oxide, a porous photocatalyst with a large specific surface area cannot be obtained. By adding polyethylene glycol or polyethylene oxide to titania sol, polyethylene glycol or polyethylene oxide burns and disappears by heating and firing, so pores are formed on the surface of the porous body and connect with the pores, which is a porous photocatalyst with a large specific surface area. Is obtained.

【0011】また、その際の焼成の仕方は、室温から徐
々に600℃から700℃の最終温度にまで加熱昇温し
て焼成するか、400℃から600℃の温度で加熱して
焼成することが望ましい。この操作によって、多孔体の
表面にコーティングされたチタニアゾルは、光触媒とし
て高性能の、結晶形がアナターゼである酸化チタンに変
わる。この時、直接、600℃から700℃の温度で焼
成したり、焼成温度が400℃より低かったり、700
℃より高かったりした場合には、光触媒として低活性な
ルチルや非晶質の混じった酸化チタンしか得られない。
The firing method at that time is that the temperature is gradually raised from room temperature to a final temperature of 600 ° C. to 700 ° C., or firing is performed at a temperature of 400 ° C. to 600 ° C. Is desirable. By this operation, the titania sol coated on the surface of the porous body is changed to titanium oxide whose crystal form is anatase, which has high performance as a photocatalyst. At this time, the firing temperature may be directly 600 ° C. to 700 ° C., or the firing temperature may be lower than 400 ° C.
If the temperature is higher than 0 ° C, only rutile or amorphous titanium oxide having low activity as a photocatalyst can be obtained.

【0012】本発明の多孔質光触媒において、酸化チタ
ン膜が多孔体と強く密着した丈夫で高性能のものを得る
ためには、ポリエチレングリコールまたはポリエチレン
オキサイドを添加したチタニアゾルを多孔体に薄く塗布
あるいはスプレーあるいはコートした後、それを加熱焼
成することによって、多孔体の表面に酸化チタンの薄膜
を作り、この作業を繰り返すことによって多孔体の表面
に多層膜を作製することが望ましい。また、多孔体が活
性炭などの場合には、予め硝酸や硫酸、塩酸などの酸で
多孔体を酸処理して表面を親水性に変えたものを使用す
ることが望ましい。そうすることにより、酸化チタン膜
が表面にしっかり結合して付き、丈夫で耐久性に優れた
高性能の多孔質光触媒を得ることができる。
In the porous photocatalyst of the present invention, in order to obtain a strong and high performance titanium oxide film strongly adhered to the porous body, titania sol containing polyethylene glycol or polyethylene oxide is thinly applied or sprayed on the porous body. Alternatively, it is desirable to form a thin film of titanium oxide on the surface of the porous body by coating and then heating and baking it, and repeat this operation to form a multilayer film on the surface of the porous body. Further, when the porous body is activated carbon or the like, it is desirable to use the one in which the surface is made hydrophilic by previously treating the porous body with an acid such as nitric acid, sulfuric acid or hydrochloric acid. By doing so, the titanium oxide film is firmly bonded to the surface, and a high performance porous photocatalyst that is durable and has excellent durability can be obtained.

【0013】本発明に用いられるチタニアゾルに添加す
るポリエチレングリコールまたはポリエチレンオキサイ
ドは、分子量が1000以上のものが好ましく、その中
でも特に、分子量が1000、1500、2000、3
000、6000、8000、11000、1300
0、2万、10万、30万、200万、250万のもの
等が好ましい。分子量が1000未満のものを用いた場
合には、多孔体の表面に形成された酸化チタン膜が多孔
体から剥離しやすくなり、丈夫で耐久性に優れた高性能
の多孔質光触媒を得ることができない。
The polyethylene glycol or polyethylene oxide to be added to the titania sol used in the present invention preferably has a molecular weight of 1,000 or more, and among them, the molecular weight is particularly 1000, 1500, 2000, 3
000, 6000, 8000, 11000, 1300
Those of 0, 20,000, 100,000, 300,000, 2 million, 2.5 million and the like are preferable. When a polymer having a molecular weight of less than 1000 is used, the titanium oxide film formed on the surface of the porous body is easily peeled off from the porous body, and a high performance porous photocatalyst that is durable and has excellent durability can be obtained. Can not.

【0014】本発明に用いられるチタニアゾルに添加す
るポリエチレングリコールまたはポリエチレンオキサイ
ドの量は、その溶解度以下であることが好ましい。溶解
度以上に添加した場合には、孔径の揃った細孔ができ
ず、また、丈夫で耐久性に優れた酸化チタン膜ができな
い。
The amount of polyethylene glycol or polyethylene oxide added to the titania sol used in the present invention is preferably less than its solubility. When it is added at a solubility or higher, pores having a uniform pore size cannot be formed, and a durable and durable titanium oxide film cannot be formed.

【0015】本発明の多孔質光触媒の表面の細孔径の大
きさや細孔分布の密度は、ポリエチレングリコールまた
はポリエチレンオキサイドの添加量や分子量を変えるこ
とによって制御することができる。添加量を少なくした
り、分子量の小さいものを使用した場合には表面に小さ
な細孔を持った多孔質光触媒が、添加量を多くしたり、
分子量の大きなものを使用した場合には大きな細孔を持
った多孔質光触媒が得られる。そして、添加量が少ない
場合には細孔の分布の密度のまばらな多孔質光触媒が、
添加量が多い場合には細孔の分布が密な多孔質光触媒が
得られる。また、分子量分布の広いポリエチレングリコ
ールまたはポリエチレンオキサイドを添加した場合に
は、表面に色々な孔径の細孔を持った多孔質光触媒が得
られる。さらに、薄膜を積層することにより、特異な三
次元構造を持った多孔質光触媒を得ることができる。
The size of the pore diameter and the density of the pore distribution on the surface of the porous photocatalyst of the present invention can be controlled by changing the addition amount or molecular weight of polyethylene glycol or polyethylene oxide. If the amount added is small, or if one with a small molecular weight is used, the porous photocatalyst with small pores on the surface increases the amount added,
When a polymer having a large molecular weight is used, a porous photocatalyst having large pores can be obtained. And, when the addition amount is small, the porous photocatalyst with a sparse distribution of pores has a
When the addition amount is large, a porous photocatalyst with a fine pore distribution is obtained. Moreover, when polyethylene glycol or polyethylene oxide having a wide molecular weight distribution is added, a porous photocatalyst having pores of various pore sizes on the surface can be obtained. Furthermore, by stacking thin films, a porous photocatalyst having a unique three-dimensional structure can be obtained.

【0016】本発明の多孔質光触媒の性能をさらに上げ
るため、その表面に白金やロジウム、ルテニウム、パラ
ジウム、銀、銅、亜鉛などの金属皮膜を被覆しても良
い。これらの金属皮膜を表面に被覆する方法としては、
光電着法やCVD法、スパッタリングや真空蒸着などの
PVD法などが挙げられる。この場合、金属皮膜の厚さ
を厚くし過ぎるとコストもかかり、酸化チタン薄膜に光
が到達し難くなるので、金属皮膜の厚さはできるだけ薄
い方が好ましい。
In order to further improve the performance of the porous photocatalyst of the present invention, its surface may be coated with a metal film of platinum, rhodium, ruthenium, palladium, silver, copper, zinc or the like. As a method for coating the surface of these metal films,
Photoelectric deposition method, CVD method, PVD method such as sputtering or vacuum deposition, and the like can be mentioned. In this case, if the thickness of the metal film is too thick, it will be costly and it will be difficult for light to reach the titanium oxide thin film. Therefore, it is preferable that the thickness of the metal film is as thin as possible.

【0017】こうして得られた本発明による多孔質光触
媒は多孔質で比表面積が大きいため、悪臭やNOx、S
Oxなどの空気中の有害物質あるいは水中に溶解してい
る有機溶剤や農薬などの環境を汚染している有機化合物
を効率良く吸着し、太陽光や蛍光灯、白熱灯、ブラック
ライト、UVランプ、水銀灯、キセノンランプ、ハロゲ
ンランプ、メタルハライドランプなどからの人工光の照
射によって表面の酸化チタン薄膜に生成した電子と正孔
の酸化還元作用によって迅速に、かつ連続的に分解除去
することができる。しかも、多孔質光触媒の表面の細孔
の孔径を環境汚染物質の分子の大きさに適合させること
により、さらに効率良く吸着し、分解除去することがで
きる。本発明による多孔質光触媒は、光を照射するだけ
で、低コスト・省エネルギー的でかつメンテナンスフリ
ーで使用でき、その酸化チタン膜の上に白金あるいはロ
ジウム、ルテニウム、パラジウム、銀、銅、亜鉛の金属
皮膜を被覆した場合には、その触媒作用により有機化合
物の分解除去効果が一層増大する。この場合、光触媒が
多孔質であるため、金属がうまく分散して光触媒を被覆
するので、金属の触媒作用を特に効果的に引き出すこと
ができる。
The thus obtained porous photocatalyst according to the present invention is porous and has a large specific surface area.
Efficiently adsorbs harmful substances in the air such as Ox, organic solvents dissolved in water, and organic compounds polluting the environment such as pesticides, and sunlight, fluorescent lights, incandescent lights, black lights, UV lamps, It can be decomposed and removed rapidly and continuously by the redox action of electrons and holes generated in the titanium oxide thin film on the surface by irradiation of artificial light from a mercury lamp, a xenon lamp, a halogen lamp, a metal halide lamp or the like. Moreover, by adapting the pore size of the pores on the surface of the porous photocatalyst to the size of the molecule of the environmental pollutant, it can be more efficiently adsorbed and decomposed and removed. The porous photocatalyst according to the present invention can be used at low cost, energy saving, and maintenance-free simply by irradiating light, and platinum or rhodium, ruthenium, palladium, silver, copper, zinc metal on the titanium oxide film. When the film is coated, its catalytic action further enhances the effect of decomposing and removing the organic compound. In this case, since the photocatalyst is porous, the metal is well dispersed and coats the photocatalyst, so that the catalytic action of the metal can be particularly effectively derived.

【0018】[0018]

【実施例】本発明の実施例の内で特に代表的なものを以
下に示す。
EXAMPLES Among the examples of the present invention, particularly representative ones are shown below.

【0019】実施例1 チタンテトライソプロポキシド60gを500mlの無
水エタノールで希釈し、攪拌しながら、ジエタノールア
ミン20gと水5gを添加し、さらに分子量1000の
ポリエチレングリコール5gを添加して透明なゾル液を
調製し、ディップコーティング法により8cm角で厚さ
2cmの活性炭ハニカムの表面に酸化チタン膜をコーテ
ィングした。すなわち、このゾル液に活性炭ハニカムを
浸漬して引き上げ、乾燥した後、450℃の温度で加熱
焼成し、これを5回繰り返して活性炭ハニカムの表面に
酸化チタン膜を作った。得られた酸化チタン膜の結晶構
造をX線回折によって調べた結果、アナターゼ100%
であった。また、その表面を電子顕微鏡で観察したとこ
ろ、約10nmの大きさの細孔で覆われていた。この多
孔質光触媒を用いて、NOxの分解除去を行った。ま
ず、内部に市販の100Wの白熱灯をセットした内容積
40lの密閉容器の中に得られた多孔質光触媒を置き、
10ppmのNOxを注射器で導入した後、白熱灯を点
灯した。1時間後、密閉容器内の空気中に含まれるNO
xの濃度をガスクロマトグラフを用いて測定し、減少し
た分のNOxを注入した。この作業を1時間毎に繰り返
した結果、多孔質光触媒を用いた場合にはNOxが除去
されて濃度が毎回ほぼ0ppmに減少していた。これに
対して、多孔質光触媒の代わりに活性炭ハニカムを用い
た場合には1回目はNOxの濃度がほぼ0ppmであっ
たが、回数を重ねるにつれ、しだいにその濃度が増大
し、8回後には10ppmと開始時の値になっていた。
Example 1 60 g of titanium tetraisopropoxide was diluted with 500 ml of absolute ethanol, 20 g of diethanolamine and 5 g of water were added with stirring, and 5 g of polyethylene glycol having a molecular weight of 1000 was added to obtain a transparent sol solution. It was prepared, and a titanium oxide film was coated on the surface of an activated carbon honeycomb having an 8 cm square and a thickness of 2 cm by the dip coating method. That is, an activated carbon honeycomb was dipped in this sol solution, pulled up, dried, and heated and baked at a temperature of 450 ° C. This was repeated 5 times to form a titanium oxide film on the surface of the activated carbon honeycomb. As a result of investigating the crystal structure of the obtained titanium oxide film by X-ray diffraction, 100% of anatase was obtained.
Met. Also, when the surface was observed with an electron microscope, it was found to be covered with pores having a size of about 10 nm. Using this porous photocatalyst, NOx was decomposed and removed. First, the obtained porous photocatalyst was placed in a closed container having an internal volume of 40 l in which a commercially available 100 W incandescent lamp was set.
After introducing 10 ppm of NOx with a syringe, the incandescent lamp was turned on. After 1 hour, NO contained in the air in the closed container
The concentration of x was measured using a gas chromatograph, and the reduced amount of NOx was injected. As a result of repeating this operation every one hour, when the porous photocatalyst was used, NOx was removed and the concentration was reduced to almost 0 ppm each time. On the other hand, when the activated carbon honeycomb was used instead of the porous photocatalyst, the concentration of NOx was almost 0 ppm at the first time, but as the number of times was increased, the concentration gradually increased, and after 8 times, The value was 10 ppm at the start.

【0020】実施例2 チタンテトライソプロポキシド45gを400mlの無
水エタノールで希釈し、攪拌しながら、トリエタノール
アミン15gと水4gを添加し、さらに分子量1500
のポリエチレングリコール4gを添加して透明なゾル液
を調製し、滴下法により直径約3mmの球状シリカゲル
の表面に酸化チタン膜をコーティングした。すなわち、
このゾル液を少量、球状シリカゲルの表面に滴下し、余
分な液を落として乾燥した後、室温から徐々に600℃
の温度にまで加熱昇温して焼成し、これを5回繰り返し
て球状シリカゲルの表面に酸化チタン膜を作った。得ら
れた酸化チタン膜の結晶構造をX線回折によって調べた
結果、アナターゼ100%であった。また、その表面を
電子顕微鏡で観察したところ、約20nmの大きさの細
孔で覆われていた。この多孔質光触媒を用いて、悪臭物
質の分解除去を行った。まず、内部に市販の100Wの
ブラックライトをセットした内容積30lの密閉容器の
中に、得られた多孔質光触媒50gを敷き詰め、悪臭物
質としてトリメチルアミン80ppmを注射器で導入し
た後、ブラックライトを点灯した。30分後、密閉容器
の中の空気中に含まれるトリメチルアミンの濃度をガス
クロマトグラフを用いて測定し、減少した分のトリメチ
ルアミンを注入した。この作業を30分毎に繰り返した
結果、多孔質光触媒を用いた場合にはトリメチルアミン
が分解されて濃度が毎回ほぼ0ppmに減少していた。
これに対して、多孔質光触媒の代わりに球状シリカゲル
を用いた場合には1回目はトリメチルアミンの濃度が0
ppmに近かったが、回数を重ねるにつれ、しだいにそ
の濃度が増大し、10回後には80ppmと開始時の値
になっていた。
Example 2 45 g of titanium tetraisopropoxide was diluted with 400 ml of absolute ethanol, 15 g of triethanolamine and 4 g of water were added with stirring, and a molecular weight of 1500 was further added.
Was added to prepare a transparent sol solution, and a titanium oxide film was coated on the surface of spherical silica gel having a diameter of about 3 mm by a dropping method. That is,
A small amount of this sol solution was dropped on the surface of the spherical silica gel, the excess solution was dropped and dried, and the temperature was gradually increased from room temperature to 600 ° C.
The temperature was raised up to the temperature of 4 and baked, and this was repeated 5 times to form a titanium oxide film on the surface of the spherical silica gel. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. When the surface was observed with an electron microscope, it was found to be covered with pores having a size of about 20 nm. This porous photocatalyst was used to decompose and remove odorous substances. First, 50 g of the obtained porous photocatalyst was spread in a closed container having an internal volume of 30 l in which a commercially available 100 W black light was set, and 80 ppm of trimethylamine as a malodorous substance was introduced by a syringe, and then the black light was turned on. . After 30 minutes, the concentration of trimethylamine contained in the air in the closed container was measured using a gas chromatograph, and the reduced amount of trimethylamine was injected. As a result of repeating this operation every 30 minutes, when the porous photocatalyst was used, trimethylamine was decomposed and the concentration was reduced to almost 0 ppm each time.
On the other hand, when spherical silica gel was used instead of the porous photocatalyst, the concentration of trimethylamine was 0 at the first time.
Although it was close to ppm, the concentration gradually increased as the number of times was increased, and after 10 times, the concentration was 80 ppm, which was the value at the start.

【0021】実施例3 チタンテトラブトキシド20gを150mlのt−ブチ
ルアルコールで希釈し、攪拌しながら、トリエタノール
アミン7gと水1.5gを添加し、さらに分子量200
万のポリエチレンオキサイド0.1gを添加して透明な
ゾル液を調製し、塗布法により直径6mmの球状活性ア
ルミナの表面に酸化チタン膜をコーティングした。すな
わち、球状活性アルミナの表面にこのゾル液を刷毛で薄
く塗布し、乾燥した後、室温から徐々に700℃の温度
にまで加熱昇温して焼成し、これを6回繰り返して球状
活性アルミナの表面に酸化チタン膜を作った。得られた
酸化チタン膜の表面を電子顕微鏡で観察したところ、約
1200nmの大きさの細孔で覆われていた。得られた
多孔質光触媒を用いて、悪臭物質である酢酸の分解除去
を行った。まず、内部に市販の20Wの蛍光灯10本を
セットした内容積60lの密閉容器の中に得られた多孔
質光触媒40gを敷き詰め、酢酸90ppmを注射器で
導入した後、蛍光灯灯を点灯した。1時間後、密閉容器
内の空気中に含まれる酢酸の濃度をガスクロマトグラフ
ィーを用いて測定し、減少した分の酢酸を注入した。こ
の作業を1時間毎に繰り返した結果、多孔質光触媒を用
いた場合には酢酸が分解されて濃度が毎回ほぼ0ppm
に減少していた。これに対して、多孔質光触媒の代わり
に球状活性アルミナを用いた場合には1回目は酢酸の濃
度が0ppmに近かったが、回数を重ねるにつれ、しだ
いにその濃度が増大し、15回後には90ppmと開始
時の値になっていた。
Example 3 20 g of titanium tetrabutoxide was diluted with 150 ml of t-butyl alcohol, 7 g of triethanolamine and 1.5 g of water were added with stirring, and a molecular weight of 200 was further added.
0.1 g of polyethylene oxide was added to prepare a transparent sol solution, and a titanium oxide film was coated on the surface of spherical activated alumina having a diameter of 6 mm by a coating method. That is, this sol solution was thinly applied to the surface of spherical activated alumina with a brush, dried, and then gradually heated from room temperature to a temperature of 700 ° C. and fired, and this was repeated 6 times to obtain spherical activated alumina. A titanium oxide film was formed on the surface. When the surface of the obtained titanium oxide film was observed with an electron microscope, it was found to be covered with pores having a size of about 1200 nm. The obtained porous photocatalyst was used to decompose and remove acetic acid, which is a malodorous substance. First, 40 g of the obtained porous photocatalyst was spread in a sealed container having an internal volume of 60 l in which ten commercially available 20 W fluorescent lamps were set, 90 ppm of acetic acid was introduced by a syringe, and then the fluorescent lamp was turned on. One hour later, the concentration of acetic acid contained in the air in the closed container was measured by gas chromatography, and the reduced amount of acetic acid was injected. As a result of repeating this operation every hour, acetic acid was decomposed when the porous photocatalyst was used, and the concentration was almost 0 ppm each time.
Had decreased to. On the other hand, when spherical activated alumina was used instead of the porous photocatalyst, the concentration of acetic acid was close to 0 ppm at the first time, but as the number of times increased, the concentration gradually increased, and after 15 times, The value was 90 ppm at the start.

【0022】実施例4 チタンテトラエトキシド25gを200mlをメタノー
ルで希釈し、攪拌しながら、N−メチルジエタノールア
ミン8gと水2gを添加し、さらに分子量10万のポリ
エチレンオキサイド0.1gを添加して透明なゾル液を
調製し、塗布法により幅5cm、長さ10cm、厚さ4
mmの活性炭の布の表面に酸化チタン膜をコーティング
した。すなわち、70℃に加熱した15%の塩酸水溶液
で処理した活性炭の布の表面にこのゾル液を薄く塗布
し、乾燥した後、470℃の温度にまで加熱焼成し、こ
れを7回繰り返して活性炭の布の表面に酸化チタン膜を
作った。得られた酸化チタン膜の結晶構造をX線回折に
よって調べた結果、アナターゼ100%であった。ま
た、その表面を電子顕微鏡で観察したところ、約600
nmの大きさの細孔で覆われていた。得られた多孔質光
触媒を用いて、ハイテク産業やクリーニング業で溶剤や
洗浄剤として広く使用され、地下水や土壌を汚染して問
題となっているトリクロロエチレンの分解を行った。1
0ppmの濃度のトリクロロエチレンの水溶液15ml
を石英ガラス製試験管に入れ、その中に多孔質光触媒1
0gを浸し、酸素をバブリングした後、500Wの高圧
水銀ランプの光を照射した。1時間後、反応液に含まれ
るトリクロロエチレンの量をガスクロマトグラフを用い
て測定し、減少した分のトリクロロエチレンの水溶液を
加えた。この作業を1時間毎に繰り返した結果、多孔質
光触媒を用いた場合には、トリクロロエチレンが分解さ
れて濃度が毎回ほぼ0ppmに減少していた。これに対
して、多孔質光触媒の代わりに活性炭の布を用いた場合
には1回目はトリクロロエチレンの濃度がほぼ0ppm
であったが、回数を重ねるにつれ、しだいにその濃度が
増大し、11回後には10ppmと開始時の値になって
いた。
Example 4 Titanium tetraethoxide (25 g) was diluted with methanol (200 ml) and stirred, 8 g of N-methyldiethanolamine and 2 g of water were added, and 0.1 g of polyethylene oxide having a molecular weight of 100,000 was added to give a transparent solution. A sol solution is prepared, and the width is 5 cm, the length is 10 cm, and the thickness is 4 by the coating method.
The surface of the mm activated carbon cloth was coated with a titanium oxide film. That is, a thin coating of this sol solution was applied to the surface of a cloth of activated carbon treated with a 15% hydrochloric acid aqueous solution heated to 70 ° C., dried, and then baked by heating to a temperature of 470 ° C. This was repeated 7 times to activate carbon. A titanium oxide film was formed on the surface of the cloth. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. In addition, when the surface was observed with an electron microscope, it was about 600
It was covered with nanometer-sized pores. The obtained porous photocatalyst was used to decompose trichlorethylene, which is widely used as a solvent and a cleaning agent in the high-tech industry and the cleaning industry and contaminates groundwater and soil, which is a problem. 1
15 ml of an aqueous solution of trichlorethylene with a concentration of 0 ppm
In a test tube made of quartz glass, and the porous photocatalyst 1
After immersing 0 g and bubbling oxygen, the light of a 500 W high-pressure mercury lamp was irradiated. After 1 hour, the amount of trichlorethylene contained in the reaction solution was measured using a gas chromatograph, and a reduced amount of an aqueous solution of trichlorethylene was added. As a result of repeating this operation every one hour, when the porous photocatalyst was used, trichlorethylene was decomposed and the concentration was reduced to almost 0 ppm each time. On the other hand, when the cloth of activated carbon was used instead of the porous photocatalyst, the concentration of trichlorethylene was almost 0 ppm at the first time.
However, as the number of times was increased, the concentration gradually increased, and after 11 times, it was 10 ppm, which was the value at the start.

【0023】実施例5 チタンテトライソプロポキシド30gを200mlのイ
ソプロパノールで希釈し、攪拌しながら、ジイソプロパ
ノールアミン10gと水2gを添加し、さらに分子量2
万のポリエチレングリコール0.4gを添加して透明な
ゾル液を調製し、スプレー法により直径2mm、長さ3
mmの粒状シリカゲルの表面に酸化チタン膜をコーティ
ングした。すなわち、粒状シリカゲルを微細な金網の上
で揺すりながらゾル液をスプレーし、乾燥した後、室温
から徐々に620℃にまで加熱昇温して焼成し、これを
5回繰り返して粒状シリカゲルの表面に酸化チタン膜を
作った。得られた酸化チタン膜の結晶構造をX線回折に
よって調べた結果、アナターゼ100%であった。ま
た、その表面を電子顕微鏡で観察したところ、約350
nmの大きさの細孔で覆われていた。この多孔質光触媒
を用いて、現在、ハイテク産業やクリーニング業で溶剤
や洗浄剤として広く使用され、地下水や土壌を汚染して
問題となっているテトラクロロエチレンの分解を行っ
た。10ppmの濃度のテトラクロロエチレンの水溶液
10mlを硬質ガラス製試験管に入れ、その中に得られ
た多孔質光触媒12gを浸し、酸素をバブリングした
後、300Wのキセノンランプの光を照射した。2時間
後、反応液に含まれるテトラクロロエチレンの量をガス
クロマトグラフを用いて測定し、減少した分のテトラク
ロロエチレンの水溶液を加えた。この作業を2時間毎に
繰り返した結果、多孔質光触媒を用いた場合には、テト
ラクロロエチレンが分解されて濃度が毎回ほぼ0ppm
に減少していた。これに対して、多孔質光触媒の代わり
に粒状シリカゲルを用いた場合には粒状シリカゲルが粉
々に割れてしまい、テトラクロロエチレンの濃度が開始
時の値からほとんど変わらなかった。
Example 5 30 g of titanium tetraisopropoxide was diluted with 200 ml of isopropanol, 10 g of diisopropanolamine and 2 g of water were added with stirring, and a molecular weight of 2 was further added.
A transparent sol solution was prepared by adding 0.4 g of polyethylene glycol, and the diameter was 2 mm and the length was 3 by the spray method.
A titanium oxide film was coated on the surface of mm granular silica gel. That is, while spraying the sol liquid while shaking the granular silica gel on a fine wire net, and drying it, the temperature is gradually raised from room temperature to 620 ° C. and fired, and this is repeated 5 times to form the surface of the granular silica gel. A titanium oxide film was made. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. In addition, when the surface was observed with an electron microscope, it was about 350
It was covered with nanometer-sized pores. This porous photocatalyst was used to decompose tetrachlorethylene, which is widely used as a solvent and a cleaning agent in the high-tech industry and the cleaning industry and contaminates groundwater and soil. 10 ml of an aqueous solution of tetrachloroethylene having a concentration of 10 ppm was placed in a test tube made of hard glass, 12 g of the obtained porous photocatalyst was immersed in the test tube, oxygen was bubbled through the tube, and then the light of a 300 W xenon lamp was irradiated. Two hours later, the amount of tetrachloroethylene contained in the reaction solution was measured by using a gas chromatograph, and the reduced amount of tetrachloroethylene aqueous solution was added. As a result of repeating this operation every 2 hours, when the porous photocatalyst was used, tetrachloroethylene was decomposed and the concentration was almost 0 ppm each time.
Had decreased to. On the other hand, when the granular silica gel was used instead of the porous photocatalyst, the granular silica gel was broken into pieces, and the concentration of tetrachloroethylene remained almost unchanged from the initial value.

【0024】実施例6 チタンテトライソプロポキシド14gを100mlの無
水エタノールで希釈し、攪拌しながら、N−エチルジエ
タノールアミン5gと水1gを添加し、さらに分子量2
000のポリエチレングリコール1gを添加して透明な
ゾル液を調製し、滴下法により直径2mm、長さ3mm
の粒状活性炭の表面に酸化チタン膜をコーティングし
た。すなわち、80℃に加熱した10%の硝酸水溶液で
処理した粒状活性炭の表面にこのゾル液を少量、滴下
し、余分な液を落として乾燥した後、480℃の温度で
加熱焼成し、これを6回繰り返して粒状活性炭の表面に
酸化チタン膜を作った。得られた酸化チタン膜の結晶構
造をX線回折によって調べた結果、アナターゼ100%
であった。また、その表面を電子顕微鏡で観察したとこ
ろ、約50nmの大きさの細孔で覆われていた。この多
孔質光触媒を用いて、酢酸の分解を行った。20ppm
の濃度の酢酸の水溶液10mlを石英容器に入れ、その
中に得られた多孔質光触媒5gを浸し、酸素をバブリン
グした後、200Wの水銀ランプの光を照射した。1時
間半後、得られた反応液に含まれる酢酸の量をガスクロ
マトグラフを用いて測定し、減少した分の酢酸の水溶液
を加えた。この作業を1時間半毎に繰り返した結果、多
孔質光触媒を用いた場合には、酢酸が分解されて濃度が
毎回ほぼ0%に減少していた。これに対して、多孔質光
触媒の代わりに粒状活性炭を用いた場合には、1回目は
酢酸の濃度がほぼ0ppmであったが、回数を重ねるに
つれ、しだいにその濃度が増大し、9回後には20pp
mと開始時の値になっていた。
Example 6 14 g of titanium tetraisopropoxide was diluted with 100 ml of absolute ethanol, 5 g of N-ethyldiethanolamine and 1 g of water were added with stirring, and a molecular weight of 2 was further added.
1g of polyethylene glycol is added to prepare a transparent sol solution, and the diameter is 2mm and the length is 3mm by the dropping method.
The surface of the granular activated carbon of was coated with a titanium oxide film. That is, a small amount of this sol solution was dropped on the surface of granular activated carbon treated with a 10% nitric acid aqueous solution heated to 80 ° C., excess liquid was dropped and dried, and then heated and baked at a temperature of 480 ° C. A titanium oxide film was formed on the surface of the granular activated carbon by repeating 6 times. As a result of investigating the crystal structure of the obtained titanium oxide film by X-ray diffraction, 100% of anatase was obtained.
Met. Also, when the surface was observed with an electron microscope, it was found to be covered with pores having a size of about 50 nm. Acetic acid was decomposed using this porous photocatalyst. 20 ppm
10 ml of an aqueous solution of acetic acid having the above concentration was placed in a quartz container, 5 g of the obtained porous photocatalyst was immersed in the quartz container, oxygen was bubbled, and then the light of a 200 W mercury lamp was irradiated. After one and a half hours, the amount of acetic acid contained in the obtained reaction solution was measured using a gas chromatograph, and an aqueous solution of acetic acid in a reduced amount was added. As a result of repeating this operation every one and a half hours, when the porous photocatalyst was used, acetic acid was decomposed and the concentration was reduced to almost 0% each time. On the other hand, when granular activated carbon was used instead of the porous photocatalyst, the concentration of acetic acid was almost 0 ppm at the first time, but as the number of times increased, the concentration gradually increased, and after 9 times, Is 20pp
It was the value at the start of m.

【0025】実施例7 チタンテトラブトキシド20gを150mlのt−ブチ
ルアルコールで希釈し、攪拌しながら、トリエタノール
アミン7gと水1.5gを添加し、さらに分子量200
万のポリエチレンオキサイド0.1gを添加して透明な
ゾル液を調製し、スプレー法により直径5mmの球状活
性アルミナの表面に酸化チタン膜をコーティングした。
すなわち、このゾル液に球状活性アルミナを微細な金網
の上で揺すりながらゾル液をスプレーし、乾燥した後、
室温から徐々に650℃の温度にまで加熱昇温して焼成
し、これを6回繰り返して球状活性アルミナの表面に酸
化チタン膜を作った。得られた酸化チタン膜の結晶構造
をX線回折によって調べた結果、アナターゼ100%で
あった。また、その表面を電子顕微鏡で観察したとこ
ろ、約800nmの大きさの細孔で覆われていた。これ
を2g/lの塩化白金酸カリウムのエタノール水溶液に
漬け、マグネチックスターラーで攪拌しながら、100
Wの水銀ランプの光を1時間照射し、光電着法で酸化チ
タン膜の表面に白金をコートした。得られた多孔質光触
媒を用いて、有機リン系の農薬である4−ニトロフェニ
ルエチルフェニルホスフィナートの分解を行った。10
0ppmの濃度の4−ニトロフェニルエチルフェニルホ
スフィナートの水溶液200mlを300mlの石英ビ
ーカーに入れ、その中に得られた多孔質光触媒10gを
浸し、酸素をバブリングした後、200Wの水銀ランプ
の光を照射した。2時間後、得られた反応液に含まれる
4−ニトロフェニルエチルフェニルホスフィナートの量
をガスクロマトグラフを用いて測定し、減少した分の4
−ニトロフェニルエチルフェニルホスフィナートの水溶
液を加えた。この作業を2時間毎に繰り返した結果、多
孔質光触媒を用いた場合には、4−ニトロフェニルエチ
ルフェニルホスフィナートが分解されて濃度が毎回ほぼ
0%に減少していた。これに対して、多孔質光触媒の代
わりに球状活性アルミナを用いた場合には、1回目は4
−ニトロフェニルエチルフェニルホスフィナートの濃度
がほぼ0ppmであったが、回数を重ねるにつれ、しだ
いにその濃度が増大し、10回後には100ppmと開
始時の値になっていた。なお、白金の代わりにロジウ
ム、ルテニウム、パラジウム、銀、銅、亜鉛などの金属
皮膜を被覆した多孔質光触媒も高い分解活性を示した。
Example 7 20 g of titanium tetrabutoxide was diluted with 150 ml of t-butyl alcohol, 7 g of triethanolamine and 1.5 g of water were added with stirring, and a molecular weight of 200 was further added.
0.1 g of polyethylene oxide was added to prepare a transparent sol solution, and a titanium oxide film was coated on the surface of spherical activated alumina having a diameter of 5 mm by a spray method.
That is, the sol solution was sprayed onto the sol solution while shaking the spherical activated alumina on a fine wire net, and after drying,
The temperature was gradually raised from room temperature to 650 ° C. and baked, and this was repeated 6 times to form a titanium oxide film on the surface of the spherical activated alumina. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. Also, when the surface was observed with an electron microscope, it was found to be covered with pores having a size of about 800 nm. Soak this in an aqueous solution of 2 g / l potassium chloroplatinate in ethanol and stir with a magnetic stirrer to 100
The surface of the titanium oxide film was coated with platinum by photoelectric deposition by irradiating it with light from a W mercury lamp for 1 hour. Using the obtained porous photocatalyst, 4-nitrophenylethylphenyl phosphinate, which is an organophosphorus pesticide, was decomposed. 10
200 ml of an aqueous solution of 4-nitrophenylethylphenylphosphinate having a concentration of 0 ppm was placed in a 300 ml quartz beaker, 10 g of the obtained porous photocatalyst was immersed therein, and oxygen was bubbled, and then the light of a 200 W mercury lamp was irradiated. Irradiated. After 2 hours, the amount of 4-nitrophenylethylphenyl phosphinate contained in the obtained reaction solution was measured by using a gas chromatograph, and the amount decreased was 4
An aqueous solution of -nitrophenylethylphenylphosphinate was added. As a result of repeating this operation every 2 hours, when the porous photocatalyst was used, 4-nitrophenylethylphenylphosphinate was decomposed and the concentration was reduced to almost 0% each time. On the other hand, when spherical activated alumina is used instead of the porous photocatalyst,
The concentration of -nitrophenylethylphenylphosphinate was about 0 ppm, but as the number of times was increased, the concentration gradually increased, and after 10 times, it was 100 ppm, which is the value at the start. The porous photocatalyst coated with a metal film of rhodium, ruthenium, palladium, silver, copper, zinc or the like instead of platinum also showed high decomposition activity.

【0026】[0026]

【発明の効果】本発明は以上説明したように、空気中の
悪臭物質や水中に溶解している有機化合物などの環境汚
染物質の分解除去能力や菌やカビの繁殖防止効果とその
持続性に優れ、しかも経済性、安全性、耐水性、耐熱
性、耐光性、耐候性、安定性という面からも優れた特性
を有する多孔質光触媒及びその製造方法の提供を目的と
したものである。本発明に用いられる酸化チタンは塗料
や化粧品、歯磨き粉などにも使われており、耐候性や耐
久性に優れ、無毒かつ安全など、数多くの利点を持って
いる。そのため、多孔体を酸化チタンで被覆した本発明
による多孔質光触媒は、基板の多孔体がシリカゲルのよ
うに水に弱いものであってもその欠点が改善され、耐水
性や耐候性、耐久性などにおいて優れた特性を示す。そ
して、本発明による多孔質光触媒は、電灯あるいは太陽
光などの外部からの光を受けて酸化チタン膜に生成した
電子と正孔の酸化還元作用により、悪臭やNOx、SO
xなどの空気中の有害物質あるいは水中に溶解している
有機溶剤や農薬などの環境を汚染している有機化合物を
分解するが、光触媒が多孔質であるため、環境汚染物質
の濃度が薄い場合でも吸着することにより、迅速に、か
つ効果的に分解除去することができる。しかも、従来の
オゾン処理などの方法に比べ、オゾンのような有毒な物
質を使用せず、光を照射するだけでよく、電灯の光や自
然光でもよいため、低コスト・省エネルギー的、かつ安
全に、メンテナンスフリーで長期間使用できる。加え
て、多孔質光触媒に白金あるいはロジウム、ルテニウ
ム、パラジウム、銀、銅、亜鉛などを被覆すれば、その
触媒作用により分解除去効果がさらに増大し、メンテナ
ンスフリーでその効果が持続する。
INDUSTRIAL APPLICABILITY As described above, the present invention has the effect of decomposing and removing environmental pollutants such as malodorous substances in the air and organic compounds dissolved in water, and the effect of preventing the growth of fungi and mold and their sustainability. It is an object of the present invention to provide a porous photocatalyst having excellent properties in terms of economy, safety, water resistance, heat resistance, light resistance, weather resistance, and stability, and a method for producing the same. The titanium oxide used in the present invention is also used in paints, cosmetics, toothpaste and the like, and has many advantages such as excellent weather resistance and durability, nontoxicity and safety. Therefore, the porous photocatalyst according to the present invention in which the porous body is coated with titanium oxide has its drawbacks improved even if the porous body of the substrate is weak against water such as silica gel, such as water resistance, weather resistance and durability. Shows excellent characteristics. The porous photocatalyst according to the present invention receives malodor, NOx, SOx due to the redox action of electrons and holes generated in the titanium oxide film upon receiving light from the outside such as an electric lamp or sunlight.
Decomposes harmful substances in the air such as x or organic compounds that pollute the environment such as organic solvents and pesticides dissolved in water, but the concentration of environmental pollutants is low because the photocatalyst is porous However, by adsorbing, it can be decomposed and removed quickly and effectively. Moreover, compared to conventional methods such as ozone treatment, it does not use toxic substances such as ozone, it only needs to be irradiated with light, and light from an electric lamp or natural light can be used, so it is low cost, energy saving, and safe. It is maintenance-free and can be used for a long time. In addition, if the porous photocatalyst is coated with platinum or rhodium, ruthenium, palladium, silver, copper, zinc, etc., the catalytic action further increases the decomposition and removal effect, and the effect is maintained without maintenance.

【0027】さらに、本発明による多孔質光触媒は、自
動車の車内や居間や台所、トイレなどの脱臭、廃水処
理、プールや貯水の浄化だけでなく、菌やカビの繁殖防
止を効果的に行うことができるなど、幅広い用途に適用
できる。そして、酸化チタン膜の上に白金やロジウム、
ルテニウム、パラジウム、銀、銅、亜鉛などの金属皮膜
を被覆した場合には、その触媒作用により金属皮膜が抗
菌抗カビ作用を持っているため、膜上の雑菌及びカビの
繁殖を効果的に防止することができる。
Further, the porous photocatalyst according to the present invention is effective not only for deodorizing the interior of cars, living rooms, kitchens, toilets, etc., treating wastewater, purifying pools and stored water, but also effectively preventing the growth of bacteria and mold. It can be applied to a wide range of applications. And platinum or rhodium on the titanium oxide film,
When coated with a metal film of ruthenium, palladium, silver, copper, zinc, etc., the metal film has an antibacterial and antifungal action due to its catalytic action, effectively preventing the growth of bacteria and mold on the film. can do.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/86 ZAB 53/94 B01J 23/06 ZAB A 23/42 ZAB A 23/44 ZAB A 23/46 ZAB 301 A 311 A 23/50 ZAB A 23/72 ZAB A 35/02 ZAB J C02F 1/30 ZAB B01D 53/36 102 B Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location B01D 53/86 ZAB 53/94 B01J 23/06 ZAB A 23/42 ZAB A 23/44 ZAB A 23/46 ZAB 301 A 311 A 23/50 ZAB A 23/72 ZAB A 35/02 ZAB J C02F 1/30 ZAB B01D 53/36 102 B

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 多孔体の表面を孔径の揃った細孔を有す
る酸化チタン膜で被覆したことを特徴とする多孔質光触
媒。
1. A porous photocatalyst characterized in that the surface of a porous body is coated with a titanium oxide film having fine pores of uniform pore size.
【請求項2】 多孔体の表面を孔径の揃った細孔を有す
る酸化チタン膜で被覆した後、その表面を白金、ロジウ
ム、ルテニウム、パラジウム、銀、銅、亜鉛の内から選
ばれた少なくとも一種の金属皮膜で被覆したことを特徴
とする多孔質光触媒。
2. The surface of a porous body is coated with a titanium oxide film having pores of uniform pore size, and the surface is at least one selected from platinum, rhodium, ruthenium, palladium, silver, copper and zinc. A porous photocatalyst characterized by being coated with the metal film of.
【請求項3】 多孔体が活性炭、活性アルミナ、シリカ
ゲルの内から選ばれた少なくとも一種であることを特徴
とする請求項1または2記載の多孔質光触媒。
3. The porous photocatalyst according to claim 1 or 2, wherein the porous body is at least one selected from activated carbon, activated alumina, and silica gel.
【請求項4】 細孔の孔径が1nm〜2μmであること
を特徴とする請求項1または2記載の多孔質光触媒。
4. The porous photocatalyst according to claim 1, wherein the pore diameter is 1 nm to 2 μm.
【請求項5】 酸化チタン多孔質薄膜の結晶形がアナタ
ーゼであることを特徴とする請求項1または2記載の多
孔質光触媒。
5. The porous photocatalyst according to claim 1, wherein the crystalline form of the titanium oxide porous thin film is anatase.
【請求項6】 ポリエチレングリコールまたはポリエチ
レンオキサイドを添加したチタニアゾルを多孔体の表面
にコーティングした後、加熱焼成することを特徴とする
多孔質光触媒の製造方法。
6. A method for producing a porous photocatalyst, which comprises coating the surface of a porous body with a titania sol to which polyethylene glycol or polyethylene oxide has been added, and then heating and baking the same.
【請求項7】 ポリエチレングリコールまたはポリエチ
レンオキサイドを添加したチタニアゾルを多孔体の表面
にコーティングして、加熱焼成した後、その表面を白
金、ロジウム、ルテニウム、パラジウム、銀、銅、亜鉛
の内から選ばれた少なくとも一種の金属皮膜で被覆する
ことを特徴とする多孔質光触媒の製造方法。
7. A surface of a porous body is coated with titania sol to which polyethylene glycol or polyethylene oxide is added, and after heating and firing, the surface is selected from platinum, rhodium, ruthenium, palladium, silver, copper and zinc. A method for producing a porous photocatalyst characterized by coating with at least one metal film.
【請求項8】 多孔体が活性炭、活性アルミナ、シリカ
ゲルの内から選ばれた少なくとも一種であることを特徴
とする請求項6または7記載の多孔質光触媒の製造方
法。
8. The method for producing a porous photocatalyst according to claim 6 or 7, wherein the porous body is at least one selected from activated carbon, activated alumina, and silica gel.
【請求項9】 ポリエチレングリコールまたはポリエチ
レンオキサイドとして分子量が1000以上のものを用
いることを特徴とする請求項6または7記載の多孔質光
触媒の製造方法。
9. The method for producing a porous photocatalyst according to claim 6 or 7, wherein polyethylene glycol or polyethylene oxide having a molecular weight of 1000 or more is used.
【請求項10】 チタニアゾルに対するポリエチレング
リコールまたはポリエチレンオキサイドの添加量がその
溶解度以下であることを特徴とする請求項6または7記
載の多孔質光触媒の製造方法。
10. The method for producing a porous photocatalyst according to claim 6, wherein the amount of polyethylene glycol or polyethylene oxide added to the titania sol is not more than its solubility.
【請求項11】 チタニアゾルがチタンのアルコキシド
とアルコールアミン類またはグリコール類から調製され
たものであることを特徴とする請求項6または7記載の
多孔質光触媒の製造方法。
11. The method for producing a porous photocatalyst according to claim 6, wherein the titania sol is prepared from titanium alkoxide and alcohol amines or glycols.
【請求項12】 多孔体の表面が酸により親水性に処理
されたものであることを特徴とする請求項6または7記
載の多孔質光触媒の製造方法。
12. The method for producing a porous photocatalyst according to claim 6, wherein the surface of the porous body is hydrophilically treated with an acid.
JP7027562A 1995-01-24 1995-01-24 Porous photocatalyst and method for producing the same Expired - Lifetime JP2775399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7027562A JP2775399B2 (en) 1995-01-24 1995-01-24 Porous photocatalyst and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7027562A JP2775399B2 (en) 1995-01-24 1995-01-24 Porous photocatalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08196903A true JPH08196903A (en) 1996-08-06
JP2775399B2 JP2775399B2 (en) 1998-07-16

Family

ID=12224484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7027562A Expired - Lifetime JP2775399B2 (en) 1995-01-24 1995-01-24 Porous photocatalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP2775399B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780158A1 (en) 1995-12-21 1997-06-25 Asahi Glass Company Ltd. Photocatalyst composition and process for its production, and photocatalyst composition attached substrate
WO1997035466A1 (en) * 1996-03-26 1997-10-02 Mitsubishi Chemical Corporation Sterilizer for circulation nutricultivating apparatus, nutrient solution sterilizing method using the same, and circulation nutricultivating apparatus
WO1998012048A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Thin photocatalytic film and articles provided with the same
JPH10167727A (en) * 1995-10-26 1998-06-23 Matsumoto Seiyaku Kogyo Kk Modified titanium oxide sol, photocatalyst composition and its forming agent
JPH11505760A (en) * 1995-05-26 1999-05-25 ユーニヴァースィティ テクノロヂィズ インタナショナル インク. Photocatalyst composition and method for producing the same
JPH11216365A (en) * 1997-10-20 1999-08-10 Tao:Kk Photocatalyst, photocatalyst device and housing apparatus
US6033459A (en) * 1997-07-15 2000-03-07 Nec Corporation Gas collection apparatus, gas analyzing apparatus using the same and gas analyzing method
JP2001259435A (en) * 2000-03-24 2001-09-25 Seiwa Kogyo Kk Photocatalyst-supporting body
JP2001286728A (en) * 2000-04-04 2001-10-16 Gifu Prefecture Method for manufacturing photocatalyst coated with film of porous ceramics
WO2001087478A1 (en) * 2000-05-15 2001-11-22 Ngk Insulators, Ltd. Adsorbent having capability of decomposing organic halogen compound and method for producing the same
JP2002085967A (en) * 2000-09-14 2002-03-26 Toshiba Corp Photocatalyst membrane and method of producing the same
US6531100B1 (en) 1997-10-20 2003-03-11 Hitachi Metals, Ltd. Photocatalyst-supporting body and photocatalytic apparatus
WO2003057364A1 (en) * 2001-12-28 2003-07-17 Japan Science And Technology Corporation Method and apparatus for treating liquid for use in agriculture
JP2005279366A (en) * 2004-03-29 2005-10-13 Mitsubishi Materials Corp Porous photocatalyst film
JP2007244974A (en) * 2006-03-15 2007-09-27 Ryukoku Univ Nox gas adsorbing/decomposing agent and method for manufacturing the same, and method for adsorbing and decomposing nox gas
JP2008080331A (en) * 2006-09-01 2008-04-10 Takehito Fujita Metal oxide-supporting porous body and its manufacturing method
JP2008161815A (en) * 2006-12-28 2008-07-17 Hitachi Plant Technologies Ltd Apparatus and method for cleaning ground water
WO2010030550A3 (en) * 2008-09-09 2010-06-03 Guardian Industries Corp. Titanium dioxide coatings and methods of forming titanium dioxide coatings having reduced crystallite size
JP2010274178A (en) * 2009-05-27 2010-12-09 Kri Inc Agent for removing volatile harmful material and method for manufacturing the same
JP2011016049A (en) * 2009-07-07 2011-01-27 Art Kagaku:Kk Photocatalyst fluidized layer type water purification module, highly efficient water purification system, and water purification method using the system
US8545899B2 (en) 2008-11-03 2013-10-01 Guardian Industries Corp. Titanium dioxide coatings having roughened surfaces and methods of forming titanium dioxide coatings having roughened surfaces
US8647652B2 (en) 2008-09-09 2014-02-11 Guardian Industries Corp. Stable silver colloids and silica-coated silver colloids, and methods of preparing stable silver colloids and silica-coated silver colloids
US8802589B2 (en) 2008-09-09 2014-08-12 Guardian Industries Corp. Porous titanium dioxide coatings and methods of forming porous titanium dioxide coatings having improved photocatalytic activity
KR20160080288A (en) * 2014-12-26 2016-07-08 전자부품연구원 Mufacturing method of activated carbon-titanium dioxide complex
US10265680B2 (en) 2016-03-04 2019-04-23 Fuji Xerox Co., Ltd. Silica particle comprising a titania coating and method for producing the same
CN110302820A (en) * 2019-06-18 2019-10-08 宁波诺丁汉大学 The preparation method of iron N doping catalyst for room temperature removal formaldehyde
CN114471735A (en) * 2022-02-15 2022-05-13 北京建筑材料科学研究总院有限公司 Nickel complex/TiO2Composite material and preparation method and application thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248443A (en) * 1987-04-01 1988-10-14 Agency Of Ind Science & Technol Photooxidation catalyst and its production
JPH03157125A (en) * 1989-11-16 1991-07-05 Matsushita Electric Ind Co Ltd Deodorizing method with photocatalyst
JPH03193679A (en) * 1989-10-23 1991-08-23 Wisconsin Alumni Res Found Porous ceramic membrane of metal oxide having fine pore size
JPH0483537A (en) * 1990-07-24 1992-03-17 Toyota Central Res & Dev Lab Inc Preparation of photocatalyst
JPH0558604A (en) * 1991-08-30 1993-03-09 Res Dev Corp Of Japan Production of metal oxide thin film
JPH0596180A (en) * 1991-10-03 1993-04-20 Agency Of Ind Science & Technol Production of fixed photocatalyst
JPH06102155A (en) * 1992-09-18 1994-04-15 Tokyo Gas Co Ltd Vaporizer for lng sampling device
JPH06293519A (en) * 1992-07-28 1994-10-21 Ishihara Sangyo Kaisha Ltd Production of titanium oxide particles and film
JPH0751646A (en) * 1993-08-12 1995-02-28 Ishihara Sangyo Kaisha Ltd Method for cleaning off contaminant on solid matter surface

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248443A (en) * 1987-04-01 1988-10-14 Agency Of Ind Science & Technol Photooxidation catalyst and its production
JPH03193679A (en) * 1989-10-23 1991-08-23 Wisconsin Alumni Res Found Porous ceramic membrane of metal oxide having fine pore size
JPH03157125A (en) * 1989-11-16 1991-07-05 Matsushita Electric Ind Co Ltd Deodorizing method with photocatalyst
JPH0483537A (en) * 1990-07-24 1992-03-17 Toyota Central Res & Dev Lab Inc Preparation of photocatalyst
JPH0558604A (en) * 1991-08-30 1993-03-09 Res Dev Corp Of Japan Production of metal oxide thin film
JPH0596180A (en) * 1991-10-03 1993-04-20 Agency Of Ind Science & Technol Production of fixed photocatalyst
JPH06293519A (en) * 1992-07-28 1994-10-21 Ishihara Sangyo Kaisha Ltd Production of titanium oxide particles and film
JPH06102155A (en) * 1992-09-18 1994-04-15 Tokyo Gas Co Ltd Vaporizer for lng sampling device
JPH0751646A (en) * 1993-08-12 1995-02-28 Ishihara Sangyo Kaisha Ltd Method for cleaning off contaminant on solid matter surface

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11505760A (en) * 1995-05-26 1999-05-25 ユーニヴァースィティ テクノロヂィズ インタナショナル インク. Photocatalyst composition and method for producing the same
JPH10167727A (en) * 1995-10-26 1998-06-23 Matsumoto Seiyaku Kogyo Kk Modified titanium oxide sol, photocatalyst composition and its forming agent
EP0780158A1 (en) 1995-12-21 1997-06-25 Asahi Glass Company Ltd. Photocatalyst composition and process for its production, and photocatalyst composition attached substrate
WO1997035466A1 (en) * 1996-03-26 1997-10-02 Mitsubishi Chemical Corporation Sterilizer for circulation nutricultivating apparatus, nutrient solution sterilizing method using the same, and circulation nutricultivating apparatus
WO1998012048A1 (en) * 1996-09-20 1998-03-26 Hitachi, Ltd. Thin photocatalytic film and articles provided with the same
US6033459A (en) * 1997-07-15 2000-03-07 Nec Corporation Gas collection apparatus, gas analyzing apparatus using the same and gas analyzing method
US6531100B1 (en) 1997-10-20 2003-03-11 Hitachi Metals, Ltd. Photocatalyst-supporting body and photocatalytic apparatus
JPH11216365A (en) * 1997-10-20 1999-08-10 Tao:Kk Photocatalyst, photocatalyst device and housing apparatus
JP2001259435A (en) * 2000-03-24 2001-09-25 Seiwa Kogyo Kk Photocatalyst-supporting body
JP2001286728A (en) * 2000-04-04 2001-10-16 Gifu Prefecture Method for manufacturing photocatalyst coated with film of porous ceramics
JP4531920B2 (en) * 2000-04-04 2010-08-25 岐阜県 Method for producing photocatalyst coated with porous ceramic coating
WO2001087478A1 (en) * 2000-05-15 2001-11-22 Ngk Insulators, Ltd. Adsorbent having capability of decomposing organic halogen compound and method for producing the same
US6645902B2 (en) 2000-05-15 2003-11-11 Ngk Insulators, Ltd. Adsorbent having capability of decomposing organic halogen compounds and method for producing the same
JP4834274B2 (en) * 2000-05-15 2011-12-14 メタウォーター株式会社 Adsorbent having organic halogen compound decomposition function and method for producing the same
JP2002085967A (en) * 2000-09-14 2002-03-26 Toshiba Corp Photocatalyst membrane and method of producing the same
WO2003057364A1 (en) * 2001-12-28 2003-07-17 Japan Science And Technology Corporation Method and apparatus for treating liquid for use in agriculture
JP2005279366A (en) * 2004-03-29 2005-10-13 Mitsubishi Materials Corp Porous photocatalyst film
JP2007244974A (en) * 2006-03-15 2007-09-27 Ryukoku Univ Nox gas adsorbing/decomposing agent and method for manufacturing the same, and method for adsorbing and decomposing nox gas
JP4531797B2 (en) * 2006-09-01 2010-08-25 勇仁 藤田 Method for producing metal oxide-supported porous body
JP2008080331A (en) * 2006-09-01 2008-04-10 Takehito Fujita Metal oxide-supporting porous body and its manufacturing method
JP2008161815A (en) * 2006-12-28 2008-07-17 Hitachi Plant Technologies Ltd Apparatus and method for cleaning ground water
WO2010030550A3 (en) * 2008-09-09 2010-06-03 Guardian Industries Corp. Titanium dioxide coatings and methods of forming titanium dioxide coatings having reduced crystallite size
US8647652B2 (en) 2008-09-09 2014-02-11 Guardian Industries Corp. Stable silver colloids and silica-coated silver colloids, and methods of preparing stable silver colloids and silica-coated silver colloids
US8802589B2 (en) 2008-09-09 2014-08-12 Guardian Industries Corp. Porous titanium dioxide coatings and methods of forming porous titanium dioxide coatings having improved photocatalytic activity
US8545899B2 (en) 2008-11-03 2013-10-01 Guardian Industries Corp. Titanium dioxide coatings having roughened surfaces and methods of forming titanium dioxide coatings having roughened surfaces
JP2010274178A (en) * 2009-05-27 2010-12-09 Kri Inc Agent for removing volatile harmful material and method for manufacturing the same
JP2011016049A (en) * 2009-07-07 2011-01-27 Art Kagaku:Kk Photocatalyst fluidized layer type water purification module, highly efficient water purification system, and water purification method using the system
KR20160080288A (en) * 2014-12-26 2016-07-08 전자부품연구원 Mufacturing method of activated carbon-titanium dioxide complex
US10265680B2 (en) 2016-03-04 2019-04-23 Fuji Xerox Co., Ltd. Silica particle comprising a titania coating and method for producing the same
CN110302820A (en) * 2019-06-18 2019-10-08 宁波诺丁汉大学 The preparation method of iron N doping catalyst for room temperature removal formaldehyde
CN114471735A (en) * 2022-02-15 2022-05-13 北京建筑材料科学研究总院有限公司 Nickel complex/TiO2Composite material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2775399B2 (en) 1998-07-16

Similar Documents

Publication Publication Date Title
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
JP3275032B2 (en) Environmental purification material and method for producing the same
JP2600103B2 (en) Photocatalytic filter and method for producing the same
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
JP2517874B2 (en) Method for producing titanium oxide thin film photocatalyst
WO2017192057A1 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
JPH09111022A (en) Photocatalytic sheet and its production
JPH09225319A (en) Photocatalyst particle and preparation thereof
JP2945926B2 (en) Photocatalyst particles and method for producing the same
WO1999016548A1 (en) Photocatalysts for the degradation of organic pollutants
JP4621859B2 (en) Method for producing porous photocatalyst
JP3484470B2 (en) Film material with photocatalytic function
JP5544515B2 (en) Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film
JPH11169727A (en) Photocatalyst body and application thereof
JP5403584B2 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
JP3118558B2 (en) Water treatment catalyst and water treatment method
JP3292872B2 (en) Photocatalytic silica gel and method for producing the same
JP2010058994A (en) Silicate-coated titanium oxide material for decomposing volatile organic compound
JP3312132B2 (en) Air purification fan and method of manufacturing the same
JP3837517B2 (en) Functional adsorbent and method for producing the same
JP3521748B2 (en) Air purification filter and air purifier
JP4182210B2 (en) Process for producing titanium oxide composite coated with silicate
KR19990055877A (en) Deodorization method using photocatalyst and device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term