JP2001259435A - Photocatalyst-supporting body - Google Patents

Photocatalyst-supporting body

Info

Publication number
JP2001259435A
JP2001259435A JP2000083505A JP2000083505A JP2001259435A JP 2001259435 A JP2001259435 A JP 2001259435A JP 2000083505 A JP2000083505 A JP 2000083505A JP 2000083505 A JP2000083505 A JP 2000083505A JP 2001259435 A JP2001259435 A JP 2001259435A
Authority
JP
Japan
Prior art keywords
photocatalyst carrier
carrier according
alkoxide
photocatalyst
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000083505A
Other languages
Japanese (ja)
Inventor
Nobuki Kuriyano
伸樹 栗屋野
Sakae Ishikawa
栄 石川
Shozo Takase
昭三 高瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Seiwa Kogyo KK
Original Assignee
Seiwa Kogyo KK
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiwa Kogyo KK, Japan Science and Technology Corp filed Critical Seiwa Kogyo KK
Priority to JP2000083505A priority Critical patent/JP2001259435A/en
Publication of JP2001259435A publication Critical patent/JP2001259435A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a photocatalyst-supporting body that has many minute pores, high film strength and fixed high active photo-reactive semiconductor. SOLUTION: This photocatalyst-supporting body is obtained by stacking a minute porous sintered film on the other several times which is obtained by applying the photo-reactive semiconductor containing metal alkoxide to a ceramic porous substrate such as alumina, alumina-silica and silicon carbide, drying and solidifying the obtained substrate to obtain a film and sintering the obtained film at 250-600 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する分野】この発明は、空気中の臭気物質や
有害物質を分解除去する光触媒担持体に関する。
The present invention relates to a photocatalyst carrier for decomposing and removing odorous substances and harmful substances in the air.

【0002】[0002]

【従来の技術】従来、異臭物質、有害物質を含んだ空気
を二酸化チタン等の光反応性半導体に接触させて、紫外
光を照射し、半導体表面において悪臭物質、有害物質を
分解、除去する装置は公知であり、空気清浄機やルーム
エアコンに利用されている。これらの装置に使用される
光反応性半導体を担持した光触媒フィルターには、主と
して二酸化チタンが光反応性半導体として採用され、二
酸化チタンの微粒子を漉き込んだ酸化チタン含有紙をコ
ルゲート加工して通気性を有する蜂の巣(ハニカム)状
に形成したものが一般的である。
2. Description of the Related Art Conventionally, an apparatus which decomposes and removes malodorous substances and harmful substances on a semiconductor surface by contacting air containing an off-odor substance and harmful substances with a photoreactive semiconductor such as titanium dioxide and irradiating the semiconductor with ultraviolet light. Is known and is used for air purifiers and room air conditioners. Titanium dioxide is mainly used as the photoreactive semiconductor in the photocatalytic filter supporting the photoreactive semiconductor used in these devices, and titanium oxide-containing paper into which titanium dioxide fine particles have been formed is corrugated to provide air permeability. Generally, it is formed in a honeycomb shape having a honeycomb structure.

【0003】しかしながら、かかる酸化チタン含有紙か
らなる紙質コルゲートハニカムフィルターは、活性炭等
の吸着助剤を酸化チタンと共に含浸させて初期吸着力を
増大させ得る利点はあるが、基質が脆弱で吸着飽和後の
水洗による再賦活処理が出来ない欠点を有している。
又、ベンゼン、トルエン等の芳香族化合物の分解能が低
く、これらのガスは未分解のままフィルターを通過して
しまう。芳香族化合物を含めて、VOC対策は環境浄化
の重要問題であり、これらの難分解性物質に対する分解
能の改善、改良は重要な課題となっている。
[0003] However, the paper corrugated honeycomb filter made of the titanium oxide-containing paper has an advantage that the initial adsorbing force can be increased by impregnating an adsorbent such as activated carbon with titanium oxide, but the substrate is weak and the adsorbent becomes saturated after adsorption. Has the drawback that reactivation by water washing cannot be performed.
Also, the resolution of aromatic compounds such as benzene and toluene is low, and these gases pass through the filter without decomposition. VOC countermeasures, including aromatic compounds, are an important issue in environmental purification, and improving and improving the resolution of these hardly decomposable substances is an important issue.

【0004】紙質ハニカムの脆弱な基質の改善として
は、耐久性のあるセラミック質若しくは金属質の剛性基
材の利用が考えられる。これら剛性基材への酸化チタン
の担持は、焼付による触媒成膜を必要とし、漉き込みの
如き安易な手段で酸化チタンを担持可能な紙質ハニカム
に比して酸化チタンの担持は困難となるが、水洗による
再賦活処理を容易に行い得る利点を有している。
[0004] To improve the fragile substrate of paper honeycomb, the use of a durable ceramic or metal rigid base material can be considered. The loading of titanium oxide on these rigid substrates requires the formation of a catalyst by baking, and the loading of titanium oxide is more difficult than that of paper honeycombs that can support titanium oxide by simple means such as staking. This has the advantage that the reactivation treatment by washing with water can be easily performed.

【0005】[0005]

【発明が解決しようとする課題】この発明は、セラミッ
ク質の剛性基材に、細孔性気孔に富み且高い膜強度を有
する高活性の光反応性半導体を定着した光触媒担持体を
得ることを課題とする。
An object of the present invention is to provide a photocatalyst carrier in which a highly active photoreactive semiconductor rich in porous pores and having high film strength is fixed on a ceramic base material. Make it an issue.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
にこの発明が採った手段は、金属アルコキシドを含有す
る光反応性半導体を、アルミナ、アルミナシリカ、炭化
珪素等のセラミック質の多孔性基材に塗工し乾燥、凝固
させた膜を、250℃から600℃の高温で焼成して得
られる微細多孔性焼成膜を数次積層することを特徴とす
る。
In order to solve the above-mentioned problems, the present invention employs a method in which a photoreactive semiconductor containing a metal alkoxide is converted into a ceramic porous substrate such as alumina, alumina silica or silicon carbide. It is characterized in that a microporous fired film obtained by firing a film coated on a material, dried and solidified at a high temperature of 250 ° C. to 600 ° C. is laminated several times.

【0007】又、金属アルコキシドを含有する光反応性
半導体をセラミック質の多孔性基材に塗工し、乾燥凝固
させた膜を焼成して、微細孔性の膜を形成したことを特
徴とする。
Further, a photoreactive semiconductor containing a metal alkoxide is applied to a ceramic porous substrate, and a dried and solidified film is fired to form a microporous film. .

【0008】更に、光反応性半導体の微細孔性の膜を複
数次積層したことを特徴とする。
[0008] Furthermore, a plurality of microporous films of a photoreactive semiconductor are laminated.

【0009】更に、光触媒性半導体を吹付手段により塗
工し乾燥凝固させ焼成した成膜に、浸漬手段により塗工
し乾燥凝固させ焼成した成膜を積層したことを特徴とす
る。
Further, the present invention is characterized in that a photocatalytic semiconductor is applied by spraying means, dried and solidified and fired, and a film formed by applying, drying and solidifying and firing by immersion means is laminated.

【0010】更に、吹付手段による塗工、乾燥、焼成の
成膜を複数次繰り返すことを特徴とする。
Further, the invention is characterized in that a plurality of coating, drying and firing film formations by spraying means are repeated.

【0011】更に、金属アルコキシドが、室温において
比較的安定な金属のエーテルであることを特徴とする。
Further, the metal alkoxide is an ether of a metal which is relatively stable at room temperature.

【0012】更に、金属アルコキシドが、シリコンアル
コキシド、アルミニウムアルコキシド、チタンアルコキ
シド及びジルコニウムアルコキシドのいずれかであるこ
とを特徴とする。
Further, the metal alkoxide is one of a silicon alkoxide, an aluminum alkoxide, a titanium alkoxide and a zirconium alkoxide.

【0013】更に、光反応性半導体が、二酸化チタンで
あることを特徴とする。
Further, the photoreactive semiconductor is titanium dioxide.

【0014】更に、金属アルコキシドを含有する光反応
性半導体が、アナターゼ型の酸化チタンを金属アルコキ
シドとアルコールの存在下でゾル液に調整されているこ
とを特徴とする。
Further, the photoreactive semiconductor containing a metal alkoxide is characterized in that an anatase type titanium oxide is prepared into a sol solution in the presence of a metal alkoxide and an alcohol.

【0015】更に、ゾル液は、酸化チタン3〜10%、
アルコキシド分1〜3%含有されていることを特徴とす
る。
Further, the sol solution contains 3 to 10% of titanium oxide,
The alkoxide content is 1 to 3%.

【0016】更に、塗工された光反応性半導体を、10
0℃前後の温度で乾燥することを特徴とする。
Further, the coated photoreactive semiconductor is
It is characterized by drying at a temperature of about 0 ° C.

【0017】更に、乾燥した光反応性半導体を、250
〜600℃で焼成することを特徴とする。
Furthermore, the dried photoreactive semiconductor is
It is characterized by firing at ~ 600 ° C.

【0018】更に、セラミック質の基材が、80〜90
%の空孔率を有することを特徴とする。
Further, the ceramic base material is 80 to 90%.
% Porosity.

【0019】更に、セラミック質の基材が、アルミナ
質、アルミナシリカ質、コージライト質のいずれかであ
ることを特徴とする。
Further, the ceramic base material is one of alumina, alumina-silica and cordierite.

【0020】更に、セラミック質の基材が、炭化珪素質
であることを特徴とする。
Further, the ceramic base material is made of silicon carbide.

【0021】金属アルコキシドは、シリコンアルコキシ
ド、アルミニウムアルコキシド、チタンアルコキシド及
びジルコニウムアルコキシドのような室温で比較的安定
なものがよい。光反応性半導体は、二酸化チタンであり
アナターゼ型が光活性が高くこれを金属アルコキシドと
アルコール及び水の共存下でゾル液として調整する。二
酸化チタンは3〜10%、アルコキシド分は1〜3%の
含量が塗工性が良好である。このような光反応性半導体
と金属アルコキシドからなる光反応性有害物質除去剤
は、例えば特許第2618287号公報に開示されてい
る。金属アルコキシド・二酸化チタン液は、乾燥、高温
焼成により細孔性気孔に富み且つ高い膜強度を有する高
活性光触媒をもたらすものであり、この発明による適切
な基材の選択と有効な塗工焼成方法により高性能の光触
媒担持体を得ることが可能となった。
The metal alkoxide is preferably one which is relatively stable at room temperature, such as silicon alkoxide, aluminum alkoxide, titanium alkoxide and zirconium alkoxide. The photoreactive semiconductor is titanium dioxide, the anatase type of which has high photoactivity, and is prepared as a sol in the presence of metal alkoxide, alcohol and water. Titanium dioxide content of 3 to 10% and alkoxide content of 1 to 3% give good coatability. Such a photoreactive harmful substance remover comprising a photoreactive semiconductor and a metal alkoxide is disclosed in, for example, Japanese Patent No. 2618287. The metal alkoxide / titanium dioxide solution is dried and baked at high temperature to provide a highly active photocatalyst rich in porous pores and high film strength. As a result, a high-performance photocatalyst carrier can be obtained.

【0022】酸化チタンの目付量は、好ましくは100
〜300g/m2を目安とし、1回で30〜100g/
2/回に分けて複数回塗工するのが好ましい。塗工方
法として、先ずスプレーコーティング吹付け塗工で下地
を形成し、その後ディップコーティング含浸塗工する。
スプレーコーティングのみでは、成膜厚が十分でなく触
媒性能が劣るため、ディップコーティングによる塗工が
必要とされる。焼成温度は、高温度が必要であり、25
0℃〜600℃、好ましくは400〜600℃である。
焼成炉内では、温度の偏りがないように留意しつつ30
分以上一定の温度を保持する。
The basis weight of titanium oxide is preferably 100
300300 g / m 2 as a guide, 30 to 100 g / m
It is preferred to apply a plurality of times at m 2 / time. As a coating method, first, a base is formed by spray coating spray coating, followed by dip coating impregnation coating.
With spray coating alone, the film thickness is not sufficient and the catalytic performance is inferior, so that dip coating is required. The sintering temperature requires a high temperature, 25
It is 0 to 600 ° C, preferably 400 to 600 ° C.
In the firing furnace, 30
Maintain a constant temperature for at least a minute.

【0023】セラミック質の基材は、80〜90%の空
孔率を有し、ガス接触面積及び光反応性半導体の担持量
が大きく、洗浄が容易で圧力損失が低いことが望まし
い。基材は、アルミナ質、アルミナシリカ質、コージラ
イト質或は炭化珪素質の多孔体若しくはハニカム構造体
があげられる。これらの表面性状は、粗で塗工性が良く
表面積が大であり、ガスとの接触面が大きいほど光触媒
反応性が向上する。軟質ポリウレタン発泡体を裁断し、
これに粉体セラミックススラリーを含浸させ、乾燥焼成
したセラミック骨格多孔体は連続気孔で通気性が高く、
耐熱性、耐薬品性に優れている。又、粉体セラミックス
スラリーを押し出し成形焼成したハニカム構造体は、機
械的強度は高いが骨格表面積は発泡多孔体よりも少な
い。
It is desirable that the ceramic base material has a porosity of 80 to 90%, a large gas contact area and a large amount of a photoreactive semiconductor, easy cleaning, and low pressure loss. Examples of the substrate include a porous body or a honeycomb structure made of alumina, alumina-silica, cordierite, or silicon carbide. These surface properties are rough, have good coatability and a large surface area, and the larger the contact surface with the gas, the higher the photocatalytic reactivity. Cutting flexible polyurethane foam,
This is impregnated with a powdered ceramic slurry, and the dried and fired ceramic skeleton porous body has continuous pores and high air permeability,
Excellent heat and chemical resistance. Further, the honeycomb structure obtained by extruding and firing the powder ceramic slurry has a high mechanical strength, but has a smaller skeleton surface area than that of the foamed porous body.

【0024】[0024]

【発明の実施の形態】この発明の好ましい実施の形態
を、以下に詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described in detail below.

【実施例1】金属アルコキシド・二酸化チタンコート液
〔多木化学株式会社製、タイノック(商標)、TiO2
=5%、金属アルコキシド=1.25%〕を、アルミナ
シリカセラミック多孔体(Al23=76%、SiO2
=19%、空孔率85%)の両面にスプレーガンにより
TiO2を目付量60g/m2吹付けて塗工し、100℃
前後の温度で1時間乾燥後、焼成炉において450℃で
1時間焼成して成膜を得た。その後再度、同様にスプレ
ーガンによる吹付け、乾燥、焼成を行って成膜を得、光
触媒フィルターAを作成した。このフィルターAを前記
金属アルコキシド・二酸化チタンコート液に更に20分
間浸漬した後液切りを行って、TiO2を目付量90g
/m2含浸塗工させた後、前記と同様に100℃前後で
1時間乾燥後、450℃で1時間焼成して成膜を行い、
光触媒フィルターBを得た。TiO 2の目付量は、合計
で210g/m2であった。
Example 1 Metal alkoxide / titanium dioxide coating liquid
[Taiki Chemical Co., Ltd., Taynock (trademark), TiOTwo
= 5%, metal alkoxide = 1.25%]
Porous silica ceramic (AlTwoOThree= 76%, SiOTwo
= 19%, porosity 85%)
TiOTwo60 g / mTwoSpray and apply, 100 ℃
After drying for 1 hour at the temperature before and after, at 450 ° C in a firing furnace
The film was fired for 1 hour to obtain a film. Then again, spray
-A film is formed by spraying, drying and firing with a gun,
A catalyst filter A was prepared. Filter A
20 minutes in metal alkoxide / titanium dioxide coating solution
After immersion for a while, drain the solutionTwo90g
/ MTwoAfter the impregnation coating, at about 100 ℃ as above
After drying for 1 hour, baking at 450 ° C. for 1 hour to form a film,
Photocatalyst filter B was obtained. TiO TwoIs the total
210g / mTwoMet.

【0025】[0025]

【試験例1】前記光触媒フィルターA及びBを、図1の
構造を有する小型空気清浄機(フィルター0.024m2
3段、紫外線ランプ10W 2本搭載)にセットし、
4立方メートルの試験室に設置し、予め充填したホルム
アルデヒドガスの分解残留濃度経過を測定した。表1は
その結果を示し、フィルターAは90分で33%の分解
除去率であったが、フィルターBは90分で94%の高
い分解除去率であり、スプレー塗工後ディップ塗工を行
い多層化処理することが非常に効果的であることが分か
った。
[Test Example 1] The photocatalytic filter A and B, a small air cleaner having the structure of FIG. 1 (Filter 0.024 2
3 steps, two UV lamps 10W mounted)
It was set in a test room of 4 cubic meters, and the progress of the decomposition residual concentration of the formaldehyde gas filled in advance was measured. Table 1 shows the results. The filter A had a decomposition removal rate of 33% in 90 minutes, while the filter B had a high decomposition removal rate of 94% in 90 minutes. Dip coating was performed after spray coating. It has been found that multi-layer processing is very effective.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【実施例2】金属アルコキシド・酸化チタンコート液
(前記製品)を、炭化珪素セラミック多孔体(SiC=
67%、Al23=12%、SiO2=19%、空孔率
85%)の両面にスプレーガンによりTiO2目付量6
0g/m2を吹付け塗工し、100℃前後の温度で1時
間乾燥後、焼成炉において450℃で1時間焼付け成膜
を再度繰り返した後、金属アルコキシド・二酸化チタン
コート液に20分間浸漬し液切りし、TiO2目付量9
0g/m2を含浸塗工後、前記と同様に100℃で1時
間乾燥後、450℃で1時間焼付成膜を行い光触媒フィ
ルターCを得た。TiO2の目付量合計は、210g/
2であった。
Example 2 A metal alkoxide / titanium oxide coating liquid (the above product) was applied to a silicon carbide ceramic porous body (SiC =
67%, Al 2 O 3 = 12%, SiO 2 = 19%, TiO 2 basis weight by a spray gun on both surfaces of the porosity 85%) 6
After spray coating at 0 g / m 2 and drying at a temperature of about 100 ° C. for 1 hour, baking was repeated at 450 ° C. for 1 hour in a firing furnace, and then immersed in a metal alkoxide / titanium dioxide coating liquid for 20 minutes. Drain and drain, TiO 2 basis weight 9
After impregnation coating with 0 g / m 2 , the film was dried at 100 ° C. for 1 hour and baked at 450 ° C. for 1 hour to obtain a photocatalyst filter C. The total basis weight of TiO 2 is 210 g /
m 2 .

【0028】[0028]

【試験例2】前記光触媒フィルターA及びB(アルミナ
シリカセラミック多孔体)、フィルターC(炭化珪素セ
ラミック多孔体)及びペーパーハニカムフィルターD、
アルミ箔ハニカムフィルターE、アルミ繊維マットフィ
ルターFを図1の構造を有する中型空気清浄機(フィル
ター0.144m2 5段、紫外線ランプ20W 8本搭
載)を30立方メートルの試験室に設置し、予めアセト
アルデヒドガスを充填し分解除去残留濃度経過から分解
除去速度(ml/min)を求めた。表2はその結果であ
る。分解除去速度はフィルターB、A、C、D、E、F
の順であった。本発明にかかるセラミック多孔体フィル
ターが高い性能を示しているのに対し、非セラミック対
のフィルターD、E、Fの性能は低く、本発明のセラミ
ック多孔体フィルターの優位性が理解される。フィルタ
ーA或はBとCの差は、アルミナシリカ粉体粒度が炭化
珪素の粉体粒度より細かく骨格表面が良く、塗工性が良
好であることによると考えられる。フィルターD、E、
Fのコルゲート化或は堆積マット化したものでは、比表
面積が少なく酸化チタンの担持量を大きくとれないこと
によるものと推測される。
Test Example 2 Photocatalyst filters A and B (porous alumina-silica ceramic), filter C (porous silicon carbide ceramic) and paper honeycomb filter D
Aluminum foil honeycomb filter E, established the aluminum fiber mat filter F Medium air cleaner having the structure of FIG. 1 (filter 0.144 m 2 5-stage ultraviolet lamp 20W 8 present mounted) to the test chamber 30 cu.m., Pre-acetaldehyde The gas was charged and the decomposition removal rate (ml / min) was determined from the progress of the residual concentration for decomposition removal. Table 2 shows the results. Decomposition and removal rates are shown for filters B, A, C, D, E, F
It was in order. While the porous ceramic filter according to the present invention shows high performance, the performance of the non-ceramic pair filters D, E, and F is low, which indicates the superiority of the porous ceramic filter of the present invention. It is considered that the difference between filters A or B and C is due to the fact that the alumina silica powder particle size is finer than the silicon carbide powder particle size, the skeleton surface is good, and the coatability is good. Filters D, E,
It is presumed that when F is formed into a corrugated or deposited mat, the specific surface area is small and the amount of titanium oxide carried cannot be increased.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【試験例3】前記光触媒フィルターB(アルミナシリカ
セラミック多孔体)の有機性ガスの分解性のテストを図
1の構造を有する高照射強度空気清浄機(フィルター
0.144m2 5段、紫外線ランプ20W 12本搭
載)を30立方メートルの試験室に設置し、予め充填し
た目標ガスの分解残留濃度経過から分解除去速度(ml/
min)を求めた。表3はその結果である。酢酸、アセト
アルデヒド、ホルムアルデヒドの分解除去速度は比較的
大であった。従来トルエンの分解反応はホルムアルデヒ
ドに比して非常に遅いと言われていたが、本発明にかか
るフィルターでは、トルエンの分解反応はホルムアルデ
ヒドのそれに近く、又ベンゼンは難分解性とされていた
が分解可能であり、十分実用性のあることが分かった。
Test Example 3 A test for decomposing organic gas of the photocatalyst filter B (porous alumina-silica ceramic) was conducted using a high irradiation intensity air cleaner having a structure shown in FIG. 1 (filter 0.144 m 2, 5-stage, ultraviolet lamp 20 W). 12 tubes) were installed in a 30 cubic meter test room, and the decomposition removal rate (ml /
min). Table 3 shows the results. The removal rates of acetic acid, acetaldehyde and formaldehyde were relatively high. Conventionally, it was said that the decomposition reaction of toluene was much slower than that of formaldehyde.However, in the filter according to the present invention, the decomposition reaction of toluene was close to that of formaldehyde, and benzene was considered to be hardly decomposable. It was found to be possible and practical.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【試験例4】近年、生活環境における揮発性有機性ガス
(VOC)の毒性が指摘されている。そこで、本発明の
アルミナシリカセラミック多孔体の光触媒フィルターに
よる生活環境クラスの低濃度(ppb)レベルの有機性
ガスの分解性能テストを図1の構造を有する小型空気清
浄機(フィルター0.024m2 3段、紫外線ランプ1
0W 2本搭載)において行った。テストは上流及び下
流のガスをサンプリングし、ガスクロマトグラフ法で行
った。表4,5はその結果である。難分解性とされてい
るトルエン、ベンゼン共に充分に分解され、高い除去率
(ワンバスカット率)の高性能フィルターであることが
分かった。
Test Example 4 In recent years, the toxicity of volatile organic gas (VOC) in the living environment has been pointed out. Therefore, the decomposition performance test of the low concentration (ppb) levels of organic gases living environment class by the photocatalyst filter of alumina-silica ceramic porous body of the present invention a small air cleaner having the structure of FIG. 1 (Filter 0.024 2 3 Step, UV lamp 1
0W with two wires). In the test, upstream and downstream gases were sampled, and the test was performed by gas chromatography. Tables 4 and 5 show the results. Both toluene and benzene, which are considered to be hardly decomposable, were sufficiently decomposed, indicating that the filter was a high-performance filter with a high removal rate (one bath cut rate).

【0033】[0033]

【表4】 [Table 4]

【0034】[0034]

【表5】 [Table 5]

【0035】[0035]

【試験例5】アンモニア、メチルメルカプタン等のガス
を処理した場合、副生成物によりフィルターが汚染され
性能が劣化することは良く知られており、ペーパーハニ
カムは劣化後廃棄するほかなかった。これに対し、本願
のセラミック多孔体フィルターは耐久性があり再生可能
である。図1の構造を有する小型空気清浄機(フィルタ
ー0.024m2 3段、紫外線ランプ10W 2本搭
載)を4立方メートルの試験室に設置し、予め充填した
アンモニアガスの分解除去残留濃度経過を測定した。表
6はその結果である。初回のテスト1では60分で93
%を除去し、次回のテスト2では93%の除去に70分
を要し、三回目のテスト3では120分後7%除去と逐
次能力の低下が認められた。第4回目のテスト4では劣
化したフィルターを80℃の湯槽に20分間浸漬後水洗
乾燥して再度アンモニアテストを行った結果であり、性
能が完全に復活し、再使用可能となっている。
Test Example 5 It is well known that when a gas such as ammonia or methyl mercaptan is treated, the filter is contaminated with by-products and the performance is deteriorated, and the paper honeycomb has to be discarded after the deterioration. On the other hand, the ceramic porous filter of the present application is durable and reproducible. A small air purifier having the structure shown in FIG. 1 (with a filter of 0.024 m 2, three stages and two ultraviolet lamps of 10 W) was installed in a test room of 4 cubic meters, and the progress of decomposition and removal of ammonia gas previously filled was measured. . Table 6 shows the results. 93 in 60 minutes for the first test 1
% Was removed, the next test 2 required 70 minutes to remove 93%, and the third test 3 showed a 7% removal after 120 minutes, a sequential decrease in performance. In the fourth test 4, the deteriorated filter was immersed in a water bath at 80 ° C. for 20 minutes, washed with water and dried, and then subjected to the ammonia test again. The performance was completely restored and the filter can be reused.

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【発明の効果】この発明によれば、細孔性気孔に富み且
つ高い膜強度を有する高活性の光半導体を形成すること
が出来るため、空気中の悪臭物質や有害物質を効果的に
分解除去することが出来る。特に、難分解性物質である
ベンゼン、トルエン等の芳香族化合物の分解、除去が可
能であり、VOC対策を含めて環境浄化に適した光触媒
担持体を提供することが出来る。
According to the present invention, it is possible to form a highly active optical semiconductor which is rich in porous pores and has high film strength, so that malodorous substances and harmful substances in the air are effectively decomposed and removed. You can do it. In particular, it is possible to decompose and remove aromatic compounds such as benzene and toluene, which are hardly decomposable substances, and to provide a photocatalyst carrier suitable for environmental purification including VOC measures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試験例に用いられた空気清浄機の構造を示す図FIG. 1 is a diagram showing a structure of an air purifier used in a test example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗屋野 伸樹 神奈川県横浜市都筑区川向町957−7 盛 和工業株式会社内 (72)発明者 石川 栄 神奈川県横浜市都筑区川向町957−7 盛 和工業株式会社内 (72)発明者 高瀬 昭三 千葉県鎌ヶ谷市馬込沢13−5 Fターム(参考) 4D048 AA22 AB03 BA03X BA03Y BA06X BA06Y BA07X BA07Y BA08Y BA10X BA10Y BA41X BA41Y BA45X BA45Y BA50X BA50Y BB03 CA06 EA01 4G069 AA01 AA03 AA08 BA01A BA01B BA02A BA02B BA03A BA03B BA13A BA13B BA37 BA48A BA48C BB04A BB04B BB15A BB15B BB19A BB19B BC51A BE06A BE06B CA10 CA17 EA08 EB10 EC22X EC22Y EE06 FA03 FB23 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Nobuki Kuriyano 957-7 Kawamukai-cho, Tsuzuki-ku, Yokohama-shi, Kanagawa Prefecture Inside Moriwa Industry Co., Ltd. (72) Inventor Sakae Ishikawa 957-7 Kawamukai-cho, Tsuzuki-ku, Yokohama-shi, Kanagawa Seiwa Industry Co., Ltd. (72) Inventor Shozo Takase 13-5 Magomezawa, Kamagaya-shi, Chiba F-term (reference) AA08 BA01A BA01B BA02A BA02B BA03A BA03B BA13A BA13B BA37 BA48A BA48C BB04A BB04B BB15A BB15B BB19A BB19B BC51A BE06A BE06B CA10 CA17 EA08 EB10 EC22X EC22Y EE06 FA03 FB23

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】金属アルコキシドを含有する光反応性半導
体をセラミック質の多孔性基材に塗工し、乾燥凝固させ
た膜を焼成して、微細孔性の膜を形成したことを特徴と
する光触媒担持体。
1. A microporous film is formed by applying a photoreactive semiconductor containing a metal alkoxide to a ceramic porous substrate, and baking the dried and solidified film. Photocatalyst carrier.
【請求項2】光反応性半導体の微細孔性の膜を複数次積
層したことを特徴とする請求項1記載の光触媒担持体。
2. The photocatalyst carrier according to claim 1, wherein a plurality of microporous films of a photoreactive semiconductor are laminated.
【請求項3】光触媒性半導体を吹付手段により塗工し乾
燥凝固させ焼成した成膜に、浸漬手段により塗工し乾燥
凝固させ焼成した成膜を積層したことを特徴とする請求
項1又は2記載の光触媒担持体。
3. A film formed by applying a photocatalytic semiconductor by spraying means, drying and coagulating and firing, and a film formed by applying, drying, coagulating and firing by means of immersion means is laminated. The photocatalyst carrier according to the above.
【請求項4】吹付手段による塗工、乾燥、焼成の成膜を
複数次繰り返すことを特徴とする請求項3記載の光触媒
担持体。
4. The photocatalyst carrier according to claim 3, wherein coating, drying and baking by spraying means are repeated a plurality of times.
【請求項5】金属アルコキシドが、室温において比較的
安定な金属のエーテルであることを特徴とする請求項1
記載の光触媒担持体。
5. The method according to claim 1, wherein the metal alkoxide is a metal ether which is relatively stable at room temperature.
The photocatalyst carrier according to the above.
【請求項6】金属アルコキシドが、シリコンアルコキシ
ド、アルミニウムアルコキシド、チタンアルコキシド及
びジルコニウムアルコキシドのいずれかであることを特
徴とする請求項1記載の光触媒担持体。
6. The photocatalyst carrier according to claim 1, wherein the metal alkoxide is any one of silicon alkoxide, aluminum alkoxide, titanium alkoxide and zirconium alkoxide.
【請求項7】光反応性半導体が、二酸化チタンであるこ
とを特徴とする請求項1乃至3のいずれかに記載の光触
媒担持体。
7. The photocatalyst carrier according to claim 1, wherein the photoreactive semiconductor is titanium dioxide.
【請求項8】金属アルコキシドを含有する光反応性半導
体が、アナターゼ型の酸化チタンを金属アルコキシドと
アルコールの存在下でゾル液に調整されていることを特
徴とする請求項1記載の光触媒担持体。
8. The photocatalyst carrier according to claim 1, wherein the photoreactive semiconductor containing a metal alkoxide is prepared by converting anatase-type titanium oxide into a sol solution in the presence of a metal alkoxide and an alcohol. .
【請求項9】ゾル液は、酸化チタン3〜10%、アルコ
キシド分1〜3%含有されていることを特徴とする請求
項8記載の光触媒担持体。
9. The photocatalyst carrier according to claim 8, wherein the sol solution contains 3 to 10% of titanium oxide and 1 to 3% of alkoxide.
【請求項10】塗工された光反応性半導体を、100℃
前後の温度で乾燥することを特徴とする請求項1乃至4
記載の光触媒担持体。
10. The coated photoreactive semiconductor is heated to 100 ° C.
5. The method according to claim 1, wherein the drying is performed at a temperature before or after the drying.
The photocatalyst carrier according to the above.
【請求項11】乾燥した光反応性半導体を、250〜6
00℃で焼成することを特徴とする請求項1乃至4記載
の光触媒担持体。
11. The method of claim 1, wherein the dried photoreactive semiconductor is 250 to 6
5. The photocatalyst carrier according to claim 1, wherein the photocatalyst carrier is calcined at 00.degree.
【請求項12】セラミック質の基材が、80〜90%の
空孔率を有することを特徴とする請求項1記載の光触媒
担持体。
12. The photocatalyst carrier according to claim 1, wherein the ceramic base material has a porosity of 80 to 90%.
【請求項13】セラミック質の基材が、アルミナ質、ア
ルミナシリカ質、コージライト質のいずれかであること
を特徴とする請求項1記載の光触媒担持体。
13. The photocatalyst carrier according to claim 1, wherein the ceramic substrate is one of alumina, alumina-silica, and cordierite.
【請求項14】セラミック質の基材が、炭化珪素質であ
ることを特徴とする請求項1記載の光触媒担持体。
14. The photocatalyst carrier according to claim 1, wherein the ceramic base is silicon carbide.
JP2000083505A 2000-03-24 2000-03-24 Photocatalyst-supporting body Pending JP2001259435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000083505A JP2001259435A (en) 2000-03-24 2000-03-24 Photocatalyst-supporting body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000083505A JP2001259435A (en) 2000-03-24 2000-03-24 Photocatalyst-supporting body

Publications (1)

Publication Number Publication Date
JP2001259435A true JP2001259435A (en) 2001-09-25

Family

ID=18600129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000083505A Pending JP2001259435A (en) 2000-03-24 2000-03-24 Photocatalyst-supporting body

Country Status (1)

Country Link
JP (1) JP2001259435A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053194A (en) * 2001-08-21 2003-02-25 Seiwa Kogyo Kk Photocatalyst supporting body and method of manufacturing porous base material for the same
JP2005246223A (en) * 2004-03-03 2005-09-15 Saga Prefecture Silica gel photocatalyst coated porous material and manufacturing method therefor
EP1656985A1 (en) * 2003-04-23 2006-05-17 National Institute of Advanced Industrial Science and Technology Three-dimensional fine cell structured photocatalyst filter responding to visible light and method for production thereof, and clarification device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174679A (en) * 1990-11-06 1992-06-22 Nippon Zeon Co Ltd Optically reactive harmful substance removing agent and harmful substance removal method using same
JPH08164334A (en) * 1994-12-13 1996-06-25 Colcoat Kk Titanium dioxide coating film forming composition for photocatalyst and its production
JPH08196903A (en) * 1995-01-24 1996-08-06 Agency Of Ind Science & Technol Porous photocatalyst and manufacture thereof
JPH09173775A (en) * 1995-12-22 1997-07-08 Sekisui Jushi Co Ltd Sound absorbing material
JPH10151453A (en) * 1996-11-22 1998-06-09 Nippon Steel Corp Ultraviolet irradiation water-treatment apparatus, ultraviolet lamp, and manufacture thereof
JPH10165811A (en) * 1996-12-16 1998-06-23 Asahi Glass Co Ltd Photocatalyst composition, forming agent thereof and base body with deposition of photocatalyst composition
JPH10305230A (en) * 1997-03-07 1998-11-17 Sumitomo Metal Ind Ltd Photocatalyst, its production and decomposing and removing method of harmful substance
JPH11197511A (en) * 1998-01-12 1999-07-27 Toshiba Lighting & Technology Corp Photocatalyst body, lamp and illuminator
JPH11253544A (en) * 1997-10-31 1999-09-21 Matsushita Electric Ind Co Ltd Multi-functional member and sheet
JPH11350434A (en) * 1998-06-08 1999-12-21 Nippon Light Metal Co Ltd Self stain-proof sound absorbing material, manufacture thereof, and sound absorbing structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04174679A (en) * 1990-11-06 1992-06-22 Nippon Zeon Co Ltd Optically reactive harmful substance removing agent and harmful substance removal method using same
JPH08164334A (en) * 1994-12-13 1996-06-25 Colcoat Kk Titanium dioxide coating film forming composition for photocatalyst and its production
JPH08196903A (en) * 1995-01-24 1996-08-06 Agency Of Ind Science & Technol Porous photocatalyst and manufacture thereof
JPH09173775A (en) * 1995-12-22 1997-07-08 Sekisui Jushi Co Ltd Sound absorbing material
JPH10151453A (en) * 1996-11-22 1998-06-09 Nippon Steel Corp Ultraviolet irradiation water-treatment apparatus, ultraviolet lamp, and manufacture thereof
JPH10165811A (en) * 1996-12-16 1998-06-23 Asahi Glass Co Ltd Photocatalyst composition, forming agent thereof and base body with deposition of photocatalyst composition
JPH10305230A (en) * 1997-03-07 1998-11-17 Sumitomo Metal Ind Ltd Photocatalyst, its production and decomposing and removing method of harmful substance
JPH11253544A (en) * 1997-10-31 1999-09-21 Matsushita Electric Ind Co Ltd Multi-functional member and sheet
JPH11197511A (en) * 1998-01-12 1999-07-27 Toshiba Lighting & Technology Corp Photocatalyst body, lamp and illuminator
JPH11350434A (en) * 1998-06-08 1999-12-21 Nippon Light Metal Co Ltd Self stain-proof sound absorbing material, manufacture thereof, and sound absorbing structure

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003053194A (en) * 2001-08-21 2003-02-25 Seiwa Kogyo Kk Photocatalyst supporting body and method of manufacturing porous base material for the same
JP4610135B2 (en) * 2001-08-21 2011-01-12 盛和工業株式会社 Photocatalyst carrier and method for producing porous substrate
EP1656985A1 (en) * 2003-04-23 2006-05-17 National Institute of Advanced Industrial Science and Technology Three-dimensional fine cell structured photocatalyst filter responding to visible light and method for production thereof, and clarification device
EP1656985A4 (en) * 2003-04-23 2008-10-29 Nat Inst Of Advanced Ind Scien Three-dimensional fine cell structured photocatalyst filter responding to visible light and method for production thereof, and clarification device
US7704913B2 (en) 2003-04-23 2010-04-27 National Institute Of Advanced Industrial Science And Technology Visible-light-responsive three-dimensional fine cell-structured photocatalytic filter, its manufacturing method and purifier device
JP2005246223A (en) * 2004-03-03 2005-09-15 Saga Prefecture Silica gel photocatalyst coated porous material and manufacturing method therefor

Similar Documents

Publication Publication Date Title
CN104941571B (en) Adsorption catalyst and its preparation method and application and a kind of air cleaning unit and air purification method and its application
US5888924A (en) Pollutant removal from air in closed spaces
US20040258581A1 (en) Bifunctional manganese oxide/titanium dioxide photocatalyst/thermocatalyst for improving indoor air quality
JP6078336B2 (en) Photocatalyst carrier and method for producing the same
CN102784633B (en) Photocatalyst TiO2supported body manufacture method and the manufacture of photocatalyst air purifying machine
KR960700809A (en) A porous material having selective adsorptivity and a production method
JP2001038218A (en) Photocatalyst filter and production thereof
JP2001259435A (en) Photocatalyst-supporting body
RU2151632C1 (en) Photocatalytic element and method for manufacture thereof
JP2005163243A (en) Photocatalyst-carrying fibrous formed body
JP2000254449A (en) Base material for decomposing harmful or odor gas and device therefor
JP4610135B2 (en) Photocatalyst carrier and method for producing porous substrate
JP2006217995A (en) Deodorant, method of manufacturing deodorant, and deodorizer using the deodrant
JPH1071331A (en) Zno-pd complex catalyst and preparation thereof
JP2000225349A (en) Filter
JP2004313844A (en) Harmful substance decomposing method
JP2005313161A (en) Method for manufacturing denitration catalyst
JP2002115176A (en) Porous fiber board supporting photocatalyst and method for producing the same
JP3521748B2 (en) Air purification filter and air purifier
JP2004121371A (en) Member and element for cleaning air
JP4711731B2 (en) Exhaust gas purification catalyst composition
JP2001259003A (en) Air cleaning filter and method of manufacturing the same
JP2000300957A (en) Photocatalytic device for vapor-phase and hazardous material-treating method
JPH06296874A (en) Ethylene decomposition sheet-like catalyst and ethylene decomposition device
JPH06170220A (en) Regenerable deodorizing material and production of the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090901