JP2517874B2 - Method for producing titanium oxide thin film photocatalyst - Google Patents

Method for producing titanium oxide thin film photocatalyst

Info

Publication number
JP2517874B2
JP2517874B2 JP5269637A JP26963793A JP2517874B2 JP 2517874 B2 JP2517874 B2 JP 2517874B2 JP 5269637 A JP5269637 A JP 5269637A JP 26963793 A JP26963793 A JP 26963793A JP 2517874 B2 JP2517874 B2 JP 2517874B2
Authority
JP
Japan
Prior art keywords
titanium oxide
thin film
oxide thin
photocatalyst
film photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5269637A
Other languages
Japanese (ja)
Other versions
JPH07100378A (en
Inventor
加藤一実
垰田博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5269637A priority Critical patent/JP2517874B2/en
Publication of JPH07100378A publication Critical patent/JPH07100378A/en
Application granted granted Critical
Publication of JP2517874B2 publication Critical patent/JP2517874B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、廃水処理や浄水処理な
どの環境浄化材料として用いられる酸化チタン薄膜光触
媒の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a titanium oxide thin film photocatalyst used as an environmental purification material for wastewater treatment, water purification treatment and the like.

【0002】[0002]

【従来の技術】近年、生活排水や産業廃水などによる水
質汚染、特に、現在行われている活性汚泥法などの水処
理法では処理が難しい有機塩素系の溶剤やゴルフ場の農
薬などによる水源の汚染が深刻な問題となっている。ま
た、居住空間や作業空間での悪臭やMRSAに代表され
る耐性菌やカビによる汚染なども広範囲に進んでおり、
環境の汚染が重大な社会問題となっている。
2. Description of the Related Art In recent years, water pollution caused by domestic wastewater, industrial wastewater, etc., especially water sources such as organic chlorine solvents and golf course pesticides, which are difficult to treat with the currently used water treatment methods such as activated sludge method, Pollution is a serious problem. In addition, odors in living spaces and work spaces and contamination by resistant bacteria and mold represented by MRSA are also widespread.
Environmental pollution has become a serious social problem.

【0003】半導体に光を照射すると強い還元作用を持
つ電子と強い酸化作用を持つ正孔が生成し、半導体に接
触した分子種を酸化還元作用により分解する。半導体の
このような作用、すなわち光触媒作用を利用することに
よって、水中に溶解している有機溶剤や農薬、界面活性
剤などの環境汚染物質の分解除去を行うことができる。
この方法は半導体と光を利用するだけであり、微生物を
用いる生物処理などの方法に比べて、温度、PH、ガス
雰囲気、毒性などの反応条件の制約が少なく、しかも生
物処理法では処理しにくい有機ハロゲン化合物や有機リ
ン化合物のようなものでも容易に分解・除去できるとい
う長所を持っている。しかし、これまで行われてきた光
触媒による有機物の分解除去の研究では、光触媒として
半導体粉末が用いられていた(例えば、A.L.Pru
den and D.F.Ollis,Journal
of Catalysis,Vol.82,404
(1983)、H.Hidaka,H.Jou,K.N
ohara,J.Zhao,Chemosphere,
Vol.25,1589(1992)、久永輝明、原田
賢二、田中啓一、工業用水、第379号、12(199
0))。そのため、被処理物と光触媒との分離や回収が
困難で、光触媒としての取扱いや使用が難しいという欠
点を持っていた。水処理の楊合、光触媒粉末を回収する
ため、処理した水を濾過しなければならないが、光触媒
が微粉末であるため目詰まりを起こしたりして、濾過が
容易でなく、連続的に水処理できないという問題があっ
た。
When the semiconductor is irradiated with light, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and the molecular species in contact with the semiconductor are decomposed by the redox action. By utilizing such an action of the semiconductor, that is, a photocatalytic action, it is possible to decompose and remove environmental pollutants such as organic solvents, pesticides, and surfactants dissolved in water.
This method uses only semiconductors and light, and has less restrictions on reaction conditions such as temperature, PH, gas atmosphere, and toxicity as compared with methods such as biological treatment using microorganisms, and is difficult to treat with biological treatment methods. It has the advantage that even compounds such as organic halogen compounds and organic phosphorus compounds can be easily decomposed and removed. However, in the past research on decomposition and removal of organic substances by photocatalysts, semiconductor powders have been used as photocatalysts (for example, AL Pru).
den and D.D. F. Ollis, Journal
of Catalysis, Vol. 82,404
(1983), H .; Hidaka, H .; Jou, K .; N
ohara, J .; Zhao, Chemosphere,
Vol. 25, 1589 (1992), Teruaki Kuninaga, Kenji Harada, Keiichi Tanaka, Industrial Water, No. 379, 12 (199).
0)). Therefore, there is a drawback that it is difficult to separate and collect the object to be treated and the photocatalyst, and it is difficult to handle and use the photocatalyst. In order to collect the photocatalyst powder in the water treatment process, the treated water must be filtered, but since the photocatalyst is a fine powder, it causes clogging, and filtration is not easy and continuous water treatment is required. There was a problem that I could not.

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、廃水処理や浄水処理などを連続的に行うことがで
き、環境浄化材料として、環境汚染物質の分解除去効果
とその持続性に優れ、しかも経済性、安全性、耐水性、
耐熱性、酎光性、耐候性、安定性という面からも優れた
特性を有する酸化チタン薄膜光触媒の製造方法の提供を
目的とするものである。
SUMMARY OF THE INVENTION In view of the above points, the present invention is capable of continuously performing wastewater treatment, water purification treatment, and the like, and has an effect of decomposing and removing environmental pollutants and its sustainability as an environmental purification material. Excellent, economical, safe, water resistant,
It is an object of the present invention to provide a method for producing a titanium oxide thin film photocatalyst having excellent properties in terms of heat resistance, light resistance, weather resistance and stability.

【0005】[0005]

【課題を解決するための手段】本発明者は上記の目的を
達成するため、鋭意研究を重ねた結果、チタニアゾルを
基板にコーティングした後、室温から徐々に600℃か
ら700℃の最終温度にまで加熱昇温して焼成すること
によって製造した酸化チタン薄膜が、光の照射によって
生成した電子と正孔の酸化還元作用により、水中に溶解
している有機溶剤や農薬などの環境を汚染している有機
化合物を効果的に分解除去し、しかもメンテナンスフリ
ーでその効果を持続させることができることを見い出
し、本発明をなすに至った。
Means for Solving the Problems The present inventor has conducted extensive studies in order to achieve the above object. As a result, after coating a substrate with titania sol, the temperature is gradually increased from room temperature to a final temperature of 600 ° C. to 700 ° C. Titanium oxide thin film produced by heating and heating and heating contaminates the environment such as organic solvents and pesticides dissolved in water by the redox action of electrons and holes generated by light irradiation. The inventors have found that the organic compound can be effectively decomposed and removed, and that the effect can be maintained without maintenance, and the present invention has been completed.

【0006】すなわち、本発明は、チタンのアルコキシ
ドとアルコールアミン類などから調製されたチタニアゾ
ルを基板にコーティングした後、室温から徐々に600
℃から700℃の最終温度にまで加熱昇温して焼成する
ことを特徴とする酸化チタン薄膜光触媒の製造方法であ
る。
That is, according to the present invention, after coating a substrate with a titania sol prepared from titanium alkoxide and alcohol amines, the temperature is gradually increased from room temperature to 600.
In the method for producing a titanium oxide thin film photocatalyst, the temperature is raised to 750 ° C. to a final temperature of 700 ° C. and baked.

【0007】本発明に用いられるチタニアゾルは、超微
粒子の酸化チタンを水に懸濁させたり、アルコールと四
塩化チタンや金属チタンとの反応などによって得られる
チタンのアルコキシドを加水分解したりすることによっ
て調製される。その際、ジエタノールアミンやトリエタ
ノールアミンなどのアルコールアミン類を添加すると均
一で透明なチタニアゾルが得られ、それを用いることに
よって高性能の酸化チタン薄膜光触媒を製造することが
できる。
The titania sol used in the present invention is obtained by suspending ultrafine titanium oxide in water or hydrolyzing an alkoxide of titanium obtained by a reaction between alcohol, titanium tetrachloride, and titanium metal. Prepared. At that time, by adding alcohol amines such as diethanolamine and triethanolamine, a uniform and transparent titania sol can be obtained, and by using it, a high performance titanium oxide thin film photocatalyst can be manufactured.

【0008】本発明の酸化チタン薄膜光触媒は、こうし
て得られたチタニアゾルを、ディップコーティング法や
スピンコーティング法、塗布法、スプレー法などによっ
て基板にコーティングした後、室温から徐々に加熱昇温
して焼成することによって得られる。この時の昇温の最
終温度、つまり焼成温度は600℃から700℃が好ま
しい。この操作によって、基板にコーティングされたチ
タニアゾルは、光触媒として高性能の、結晶形がアナタ
ーゼである酸化チタン薄膜に変わる。この時、直接、6
00℃から700℃の温度で焼成したり、焼成温度が6
00℃より低かつたり、700℃より高かったりした場
合には、光触媒として低活性なルチルや非晶質の混じっ
た酸化チタン薄膜しか得られない。また、丈夫で高性能
の酸化チタン薄膜を得るためには、チタニアゾルを薄く
均一に塗布あるいはスプレーあるいはスピンコートした
り、ディップコーティングで引き上げ速度を遅くして引
き上げたりすることによって、酸化チタン膜の薄膜を作
り、それを加熱焼成し、この作業を繰り返すことによっ
て多層膜を作製することが望ましい。それにより、厚く
て丈夫で光触媒作用の大きな透明で多孔質の酸化チタン
膜を得ることができる。
In the titanium oxide thin film photocatalyst of the present invention, the titania sol thus obtained is coated on a substrate by a dip coating method, a spin coating method, a coating method, a spray method or the like, and then gradually heated and heated from room temperature to calcination. It is obtained by doing. The final temperature of the heating at this time, that is, the firing temperature is preferably 600 ° C to 700 ° C. By this operation, the titania sol coated on the substrate is converted into a titanium oxide thin film having a high performance as a photocatalyst and a crystalline form of anatase. At this time, directly 6
Baking at a temperature of 00 ° C to 700 ° C or a baking temperature of 6
When the temperature is lower than 00 ° C. or higher than 700 ° C., only a titanium oxide thin film containing rutile or amorphous having low activity as a photocatalyst can be obtained. In order to obtain a strong and high-performance titanium oxide thin film, the titanium oxide sol can be thinly and evenly applied or sprayed or spin-coated, or the dip coating can be used to slow down the pulling speed and pull up the titanium oxide thin film. It is desirable to prepare a multi-layered film by heating, calcining it, and repeating this operation. This makes it possible to obtain a thick and durable transparent and porous titanium oxide film having a large photocatalytic action.

【0009】本発明の酸化チタン薄膜光触媒を製造する
際に使用される基板はガラスやセラミックス、コンクリ
ート、金属など、600℃から700℃の温度での焼成
に耐えられるものであれば、どの様な材質であっても良
い。また、その形状も板状、円筒状、角柱状、円錐状、
球状、瓢箪型、ラグビーボール型など、どのような形で
あっても良い。また。基板が閉じた形であっても、蓋が
あってもなくてもよく、円管状や角管状、ファイバー
状、さらにはマイクロバルーンのような中空の球状であ
っても良い。
Any substrate can be used for producing the titanium oxide thin film photocatalyst of the present invention, such as glass, ceramics, concrete or metal, as long as it can withstand firing at a temperature of 600 ° C to 700 ° C. It may be a material. Also, its shape is plate, cylindrical, prismatic, conical,
It may have any shape such as a spherical shape, a gourd shape, or a rugby ball shape. Also. The substrate may have a closed shape, may or may not have a lid, and may have a circular or square tubular shape, a fiber shape, or a hollow spherical shape such as a microballoon.

【0010】本発明の酸化チタン薄膜光触媒の性能をさ
らに上げるため、その表面に白金やロジウム、ルテニウ
ム、パラジウム、銀、銅、亜鉛などの金属皮膜を被覆し
ても良い。これらの金属皮膜を表面に被覆する方法とし
ては、光電着法やCVD法、スパッタリングや真空蒸着
などのPVD法などが挙げられる。この場合、金属皮膜
の厚さを厚くし過ぎるとコストもかかり、酸化チタン薄
膜に光が到達し難くなるので、金属皮膜の厚さはできる
だけ薄い方が好ましい。
In order to further improve the performance of the titanium oxide thin film photocatalyst of the present invention, its surface may be coated with a metal film of platinum, rhodium, ruthenium, palladium, silver, copper, zinc or the like. Examples of the method for coating the surface with these metal films include a photoelectric deposition method, a CVD method, and a PVD method such as sputtering and vacuum deposition. In this case, if the thickness of the metal film is too thick, it will be costly and it will be difficult for light to reach the titanium oxide thin film. Therefore, it is preferable that the thickness of the metal film is as thin as possible.

【0011】こうして得られた本発明による酸化チタン
薄膜光触媒は、太陽光や、蛍光灯、ブラックライト、U
Vランプ、水銀灯、キセノンランプ、ハロゲンランプ、
メタルハライドランプなどからの人工光の照射によって
酸化チタン薄膜に生成した電子と正孔の酸化還元作用に
より、水中に溶解している有機溶剤や農薬などの環境を
汚染している有機化合物を容易にしかも連続的に分解除
去することができる。しかも、光を照射するだけで、低
コスト・省エネルギー的でかつメンテナンスフリーで使
用できるという多くの利点を持つ。そして、その酸化チ
タン膜の上に白金あるいはロジウム、ルテニウム、パラ
ジウム、銀、銅、亜鉛の金属皮膜を被覆した場合には、
その触媒作用により有機化合物の分解除去効果が一層増
大する。
The titanium oxide thin film photocatalyst according to the present invention thus obtained is used for sunlight, fluorescent lamps, black lights, U
V lamp, mercury lamp, xenon lamp, halogen lamp,
By the redox action of electrons and holes generated in the titanium oxide thin film by irradiation of artificial light from a metal halide lamp, etc., organic compounds that are polluting the environment such as organic solvents and pesticides dissolved in water can be easily It can be continuously decomposed and removed. Moreover, it has many advantages that it can be used at low cost, energy saving, and maintenance-free simply by irradiating light. Then, when a metal film of platinum or rhodium, ruthenium, palladium, silver, copper, zinc is coated on the titanium oxide film,
The catalytic action further increases the effect of decomposing and removing the organic compound.

【0012】さらに、本発明による酸化チタン薄膜光触
媒は、光の照射によって酸化チタン薄膜に生成した電子
と正孔の酸化還元作用により、水中に溶解している有機
化合物だけでなく、空気中の悪臭物質などの環境汚染物
質の分解除去や菌やカビの繁殖防止を効果的に行うこと
ができる。そして、酸化チタン膜の上に白金やロジウ
ム、ルテニウム、パラジウム、銀、銅、亜鉛などの金属
皮膜を被覆した場合には、その触媒作用により金属皮膜
が抗菌抗カビ作用を持っているため、膜上の雑菌及びカ
ビの繁殖を効果的に防止することができる。
Further, the titanium oxide thin film photocatalyst according to the present invention has a redox effect of electrons and holes generated in the titanium oxide thin film by irradiation of light, not only the organic compounds dissolved in water but also the bad odor in the air. It is possible to effectively decompose and remove environmental pollutants such as substances and prevent the reproduction of fungi and mold. When a metal film of platinum, rhodium, ruthenium, palladium, silver, copper, zinc, etc. is coated on the titanium oxide film, the metal film has an antibacterial and antifungal action due to its catalytic action. It is possible to effectively prevent the above-mentioned various bacteria and mold from propagating.

【0013】[0013]

【実施例】本発明の実施例の内で特に代表的なものを以
下に示す。
EXAMPLES Among the examples of the present invention, particularly representative ones are shown below.

【0014】実施例1 チタンテトライソプロポキシドをイソプロパノールで希
釈し、攪拌しながら、塩酸とジイソプロパノールアミン
を添加して透明なゾル液を調製し、ディップコーティン
グ法により直径8mm、長さ60mm、厚さ1mmの石
英ガラス管の表面に酸化チタン膜をコーティングした。
すなわち、このゾル液に石英ガラス板を浸漬して引き上
げ、乾燥した後、室温から徐々に630℃にまで加熱昇
温して焼成した。これを7回繰り返して石英ガラス板の
表面に0.2μmの酸化チタン膜を作った。得られた酸
化チタン膜の結晶構造をX線回折によって調べた結果、
アナターゼ100%であった。この酸化チタン薄膜光触
媒を用いて、現在、ハイテク産業やクリーニング業で溶
剤や洗浄剤として広く使用され、地下水や土壌を汚染し
て問題となっているテトラクロロエチレンの分解を行っ
た。100ppm(0.01重量%)の濃度のテトラク
ロロエチレンの水溶液18mlを硬質ガラス製試験管に
入れ、その中に得られた酸化チタン薄膜光触媒を浸し、
酸素をバブリングした後、300Wのキセノンランプの
光を1時間15分間照射した。得られた反応液に含まれ
るテトラクロロエチレンの量をガスクロマトグラフを用
いて分析した結果、テトラクロロエチレンの量は95%
減少していた。酸化チタン薄膜光触媒を用いなかった場
合には、反応液に含まれるテトラクロロエチレンの量は
ほとんど減少しなかった。
Example 1 Titanium tetraisopropoxide was diluted with isopropanol, hydrochloric acid and diisopropanolamine were added with stirring to prepare a transparent sol solution, which was prepared by dip coating to have a diameter of 8 mm, a length of 60 mm and a thickness of 60 mm. The surface of a 1 mm thick quartz glass tube was coated with a titanium oxide film.
That is, a quartz glass plate was immersed in this sol solution, pulled up, dried, and then heated and gradually heated from room temperature to 630 ° C. and fired. This was repeated 7 times to form a titanium oxide film of 0.2 μm on the surface of the quartz glass plate. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction,
It was 100% anatase. This titanium oxide thin film photocatalyst was used to decompose tetrachlorethylene, which is now widely used as a solvent and a cleaning agent in the high-tech industry and cleaning industry and contaminates groundwater and soil. 18 ml of an aqueous solution of tetrachloroethylene having a concentration of 100 ppm (0.01% by weight) was put into a test tube made of hard glass, and the titanium oxide thin film photocatalyst obtained was immersed therein,
After bubbling oxygen, light from a 300 W xenon lamp was irradiated for 1 hour and 15 minutes. As a result of analyzing the amount of tetrachlorethylene contained in the obtained reaction liquid using a gas chromatograph, the amount of tetrachlorethylene was 95%.
It was decreasing. When the titanium oxide thin film photocatalyst was not used, the amount of tetrachloroethylene contained in the reaction solution was hardly reduced.

【0015】比較例 チタンテトライソプロポキシドをイソプロパノールで希
釈し、攪拌しながら、塩酸とジイソプロパノールアミン
を添加して透明なゾル液を調製し、ディップコーティン
グ法により直径8mm、長さ60mm、厚さ1mmの石
英ガラス管の表面に酸化チタン膜をコーティングした。
すなわち、このゾル液に石英ガラス板を浸漬して引き上
げ、乾燥した後、室温から徐々に400℃にまで加熱昇
温して焼成した。これを7回繰り返して石英ガラス板の
表面に0.2μmの酸化チタン膜を作った。得られた酸
化チタン膜の結晶構造をX線回折によって調べた結果、
アナターゼが20%で残りは非晶質であった。この酸化
チタン薄膜光触媒を用いて、実施例1と同様にしてテト
ラクロロエチレンの分解を行った。300Wのキセノン
ランプの光を1時間15分間照射した結果、テトラクロ
ロエチレンの量は10%しか減少していなかった。
Comparative Example Titanium tetraisopropoxide was diluted with isopropanol, hydrochloric acid and diisopropanolamine were added with stirring to prepare a transparent sol solution, which was prepared by dip coating to have a diameter of 8 mm, a length of 60 mm and a thickness of 60 mm. The surface of a 1 mm quartz glass tube was coated with a titanium oxide film.
That is, a quartz glass plate was immersed in this sol liquid, pulled up, dried, and then heated and gradually heated from room temperature to 400 ° C. to be fired. This was repeated 7 times to form a titanium oxide film of 0.2 μm on the surface of the quartz glass plate. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction,
Anatase was 20% and the rest was amorphous. Using this titanium oxide thin film photocatalyst, tetrachloroethylene was decomposed in the same manner as in Example 1. As a result of irradiating the light of a 300 W xenon lamp for 1 hour and 15 minutes, the amount of tetrachloroethylene was reduced by only 10%.

【0016】実施例2 チタンテトラエトキシドをメタノールで希釈し、攪拌し
ながら、硝酸とトリエタノールアミンを添加して透明な
ゾル液を調製し、ディップコーティング法により直径1
0mm、長さ60mm、厚さ1mmの石英ガラス管の表
面に酸化チタン膜をコーティングした。すなわち、この
ゾル液に石英ガラス管を浸漬して引き上げ、乾燥した
後、室温から徐々に670℃の温度にまで加熱昇温して
焼成した。これを13回繰り返して石英ガラス板の表面
に0.4μmの酸化チタン膜を作った。得られた酸化チ
タン膜の結晶構造をX線回折によって調べた結果、アナ
ターゼ100%であった。この酸化チタン薄膜光触媒を
用いて、ハイテク産業やクリーニング業で溶剤や洗浄剤
として広く使用され、地下水や土壌を汚染して問題とな
っているトリクロロエチレンの分解を行った。500p
pm(0.05重量%)の濃度のトリクロロエチレンの
水溶液18mlを石英ガラス製試験管に入れ、その中に
得られた酸化チタン薄膜光触媒を浸し、酸素をバブリン
グした後、500Wの高圧水銀ランプの光を30分間照
射した。得られた反応液に含まれるトリクロロエチレン
の量をガスクロマトグラフを用いて分析した結果、トリ
クロロエチレンの量は99%減少していた。酸化チタン
薄膜光触媒を用いなかった場合には、反応液に含まれる
トリクロロエチレンの量はほとんど減少しなかった。
Example 2 Titanium tetraethoxide was diluted with methanol, nitric acid and triethanolamine were added with stirring to prepare a transparent sol solution, and a diameter of 1 was obtained by dip coating.
The surface of a quartz glass tube having a length of 0 mm, a length of 60 mm and a thickness of 1 mm was coated with a titanium oxide film. That is, a quartz glass tube was immersed in this sol solution, pulled up, dried, and then heated and gradually heated from room temperature to a temperature of 670 ° C. and fired. This was repeated 13 times to form a 0.4 μm titanium oxide film on the surface of the quartz glass plate. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. Using this titanium oxide thin film photocatalyst, trichlorethylene, which is widely used as a solvent and a cleaning agent in the high-tech industry and cleaning industry and contaminates groundwater and soil, has been decomposed. 500p
18 ml of an aqueous solution of trichlorethylene having a concentration of pm (0.05% by weight) was placed in a quartz glass test tube, the titanium oxide thin film photocatalyst obtained was immersed therein, and oxygen was bubbled through it. Was irradiated for 30 minutes. As a result of analyzing the amount of trichlorethylene contained in the obtained reaction solution using a gas chromatograph, the amount of trichlorethylene was reduced by 99%. When the titanium oxide thin film photocatalyst was not used, the amount of trichlorethylene contained in the reaction solution hardly decreased.

【0017】比較例 チタンテトラエトキシドをメタノールで希釈し、攪拌し
ながら、硝酸とトリエタノールアミンを添加して透明な
ゾル液を調製し、ディップコーティング法により直径1
0mm、長さ60mm、厚さ1mmの石英ガラス管の表
面に酸化チタン膜をコーティングした。すなわち、この
ゾル液に石英ガラス管を浸漬して引き上げ、乾燥した
後、室温から徐々に750℃にまで加熱昇温して焼成し
た。これを13回繰り返して石英ガラス管の表面に0.
4μmの酸化チタン膜を作った。得られた酸化チタン膜
の結晶構造をX線回折によって調べた結果、アナターゼ
50%、ルチル50%の膜であった。この酸化チタン薄
膜光触媒を用いて、実施例2と同様にしてトリクロロエ
チレンの分解を行った。500Wの高圧水銀ランプの光
を30分間照射した結果、トリクロロエチレンの量は2
0%しか減少していなかった。
Comparative Example Titanium tetraethoxide was diluted with methanol, nitric acid and triethanolamine were added with stirring to prepare a transparent sol solution, and a diameter of 1 was obtained by a dip coating method.
The surface of a quartz glass tube having a length of 0 mm, a length of 60 mm and a thickness of 1 mm was coated with a titanium oxide film. That is, a quartz glass tube was immersed in this sol liquid, pulled up, dried, and then heated and gradually heated from room temperature to 750 ° C. and fired. This was repeated 13 times and the surface of the quartz glass tube was exposed to 0.
A 4 μm titanium oxide film was made. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found that the film was anatase 50% and rutile 50%. Using this titanium oxide thin film photocatalyst, trichlorethylene was decomposed in the same manner as in Example 2. As a result of irradiating light from a high-pressure mercury lamp of 500 W for 30 minutes, the amount of trichlorethylene was 2
There was only a 0% reduction.

【0018】実施例3 チタンテトライソプロポキシドを無水エタノールで希釈
し、攪拌しながら、塩酸とジエタノールアミンを添加し
て透明なゾル液を調製し、ディップコーティング法によ
り20mm角で厚さ1mmの石英ガラス板の表面に酸化
チタン膜をコーティングした。すなわち、このゾル液に
石英ガラス板を浸漬して引き上げ、乾燥した後、室温か
ら徐々に650℃の温度にまで加熱昇温して焼成した。
これを10回繰り返して石英ガラス板の表面に0.3μ
mの酸化チタン膜を作った。得られた酸化チタン膜の結
晶構造をX線回折によって調べた結果、アナターゼ10
0%であった。この酸化チタン薄膜光触媒を用いて、酢
酸の分解を行った。120ppm(0.012重量%)
の濃度の酢酸の水溶液1mlを幅20mm、長さ30m
m、厚さ3mmの石英セルに入れ、その中に得られた酸
化チタン薄膜光触媒を浸し、酸素をバブリングした後、
100Wの高圧水銀ランプの光を1時間30分間照射し
た。得られた反応液に含まれる酢酸の量をガスクロマト
グラフを用いて分析した結果、酢酸の量は80%減少し
ていた。酸化チタン薄膜光触媒を用いなかった場合に
は、反応液に含まれる酢酸の量はほとんど減少しなかっ
た。
Example 3 Titanium tetraisopropoxide was diluted with absolute ethanol, hydrochloric acid and diethanolamine were added with stirring to prepare a transparent sol solution, and a quartz glass having a 20 mm square and a thickness of 1 mm was prepared by a dip coating method. The surface of the plate was coated with a titanium oxide film. That is, a quartz glass plate was immersed in this sol solution, pulled up, dried, and then heated and gradually heated from room temperature to a temperature of 650 ° C. and fired.
Repeat this 10 times to make 0.3μ on the surface of the quartz glass plate.
m titanium oxide film was made. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, anatase 10
It was 0%. Using this titanium oxide thin film photocatalyst, acetic acid was decomposed. 120 ppm (0.012% by weight)
20 ml in width and 30 m in length with 1 ml of aqueous solution of acetic acid
m into a quartz cell with a thickness of 3 mm, and the titanium oxide thin film photocatalyst obtained was immersed in the quartz cell and bubbled with oxygen.
The light of a 100 W high pressure mercury lamp was irradiated for 1 hour and 30 minutes. As a result of analyzing the amount of acetic acid contained in the obtained reaction liquid using a gas chromatograph, the amount of acetic acid was reduced by 80%. When the titanium oxide thin film photocatalyst was not used, the amount of acetic acid contained in the reaction solution hardly decreased.

【0019】比較例 チタンテトライソプロポキシドを無水エタノールで希釈
し、攪拌しながら、塩酸とジエタノールアミンを添加し
て透明なゾル液を調製し、ディップコーティング法によ
り20mm角で厚さ1mmの石英ガラス板の表面に酸化
チタン膜をコーティングした。すなわち、このゾル液に
石英ガラス板を浸漬して引き上げ、乾燥した後、直ちに
650℃の温度で加熱焼成した。これを10回繰り返し
て石英ガラス板の表面に0.3μmの酸化チタン膜を作
った。得られた酸化チタン膜の結晶構造をX線回折によ
って調べた結果、アナターゼ60%、ルチル40%であ
った。この酸化チタン薄膜光触媒を用いて、実施例3と
同様にして酢酸の分解を行った。100Wの高圧水銀ラ
ンプの光を1時間30分間照射した結果、酢酸の量は3
0%しか減少していなかった。
Comparative Example Titanium tetraisopropoxide was diluted with absolute ethanol, hydrochloric acid and diethanolamine were added with stirring to prepare a transparent sol solution, and a quartz glass plate 20 mm square and 1 mm thick was prepared by the dip coating method. The surface of the was coated with a titanium oxide film. That is, a quartz glass plate was immersed in this sol solution, pulled up, dried, and immediately heated and baked at a temperature of 650 ° C. This was repeated 10 times to form a 0.3 μm titanium oxide film on the surface of the quartz glass plate. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, the anatase was 60% and the rutile was 40%. Using this titanium oxide thin film photocatalyst, acetic acid was decomposed in the same manner as in Example 3. As a result of irradiating the light of a 100 W high pressure mercury lamp for 1 hour and 30 minutes, the amount of acetic acid was 3
There was only a 0% reduction.

【0020】[0020]

【発明の効果】本発明は以上説明したように、水中に溶
解している有機化合物や空気中の悪臭物質などの環境汚
染物質の分解除去や菌やカビの繁殖防止効果とその持続
性に優れ、しかも経済性、安全性、耐水性、耐熱性、耐
光性、耐候性、安定性という面からも優れた特性を有す
る酸化チタン薄膜光触媒の製造方法の提供を目的とした
ものである。本発明に用いられる酸化チタンは塗料や化
粧品、歯磨き粉などにも使われていて、耐候性や耐久性
に優れ、無毒かつ安全など、多くの利点を持っている。
チタンのアルコキシドとアルコールアミン類などから調
製されたチタニアゾルを基板にコーティングした後、室
温から徐々に600℃から700℃の最終温度にまで加
熱昇温して焼成して製造される、結晶形がアナターゼで
ある酸化チタン薄膜光触媒は、電灯あるいは太陽光など
の外部からの光を受けて酸化チタン薄膜に生成した電子
と正孔の酸化還元作用により、水中に溶解している有機
化合物だけでなく、空気中の悪臭物質などの環境汚染物
質の分解除去や菌やカビの繁殖防止を効果的にしかも連
続的に行うことができる。そして、その酸化チタン薄膜
に白金あるいはロジウム、ルテニウム、パラジウム、
銀、銅、亜鉛などを被覆すれば、その触媒作用により分
解除去や菌やカビの繁殖防止効果がさらに増大し、メン
テナンスフリーでその効果が持続する。本発明による酸
化チタン薄膜光触媒は、廃水処理だけでなくプールや貯
水の浄化にも適用でき、従来の塩素殺菌などの方法に比
べ、有毒な物質を使わないので安全で、しかも太陽光を
使うので、低コストでメンテナンスフリーで半永久的に
使用できる。さらに自動車の車内や居間や台所、トイレ
などの脱臭や防菌や防カビなど、色々な用途に適用でき
るため、波及効果が大きい。
INDUSTRIAL APPLICABILITY As described above, the present invention is excellent in the effect of decomposing and removing environmental pollutants such as organic compounds dissolved in water and malodorous substances in the air, and preventing the growth of fungi and mold and their sustainability. Moreover, it is an object of the present invention to provide a method for producing a titanium oxide thin film photocatalyst having excellent properties in terms of economy, safety, water resistance, heat resistance, light resistance, weather resistance, and stability. The titanium oxide used in the present invention is also used in paints, cosmetics, toothpaste, etc., and has many advantages such as excellent weather resistance and durability, nontoxicity, and safety.
The crystal form is anatase, which is produced by coating a substrate with titania sol prepared from titanium alkoxide and alcohol amines, and then gradually heating it from room temperature to a final temperature of 600 ° C. to 700 ° C. and firing it. The titanium oxide thin film photocatalyst is a redox effect of electrons and holes generated in the titanium oxide thin film upon receiving light from the outside such as an electric lamp or sunlight, and not only organic compounds dissolved in water but also air. It is possible to effectively and continuously prevent the decomposition and removal of environmental pollutants such as malodorous substances and the prevention of the growth of fungi and mold. Then, platinum or rhodium, ruthenium, palladium,
When coated with silver, copper, zinc, etc., its catalytic action further increases the effect of decomposing and removing and preventing the growth of bacteria and mold, and the effect is maintained without maintenance. The titanium oxide thin film photocatalyst according to the present invention can be applied not only to wastewater treatment but also to purification of pools and stored water, and is safer because it does not use toxic substances than conventional methods such as chlorine sterilization, and because it uses sunlight. Low cost, maintenance free and can be used semi-permanently. Furthermore, since it can be applied to various uses such as deodorization and antibacterial and antifungal in automobiles, living rooms, kitchens, toilets, etc., it has a great ripple effect.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 チタニアゾルを基板にコーティングした
後、室温から徐々に600℃から700℃の最終温度に
まで加熱昇温して焼成することを特徴とする酸化チタン
薄膜光触媒の製造方法。
1. A method for producing a titanium oxide thin film photocatalyst, which comprises coating a substrate with a titania sol and then gradually heating the temperature from a room temperature to a final temperature of 600 ° C. to 700 ° C. and firing the film.
【請求項2】 チタニアゾルがチタンのアルコキシドと
アルコールアミン類から調製されたものであることを特
徴とする請求項1記載の酸化チタン薄膜光触媒の製造方
法。
2. The method for producing a titanium oxide thin film photocatalyst according to claim 1, wherein the titania sol is prepared from a titanium alkoxide and an alcohol amine.
JP5269637A 1993-09-30 1993-09-30 Method for producing titanium oxide thin film photocatalyst Expired - Lifetime JP2517874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5269637A JP2517874B2 (en) 1993-09-30 1993-09-30 Method for producing titanium oxide thin film photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5269637A JP2517874B2 (en) 1993-09-30 1993-09-30 Method for producing titanium oxide thin film photocatalyst

Publications (2)

Publication Number Publication Date
JPH07100378A JPH07100378A (en) 1995-04-18
JP2517874B2 true JP2517874B2 (en) 1996-07-24

Family

ID=17475127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5269637A Expired - Lifetime JP2517874B2 (en) 1993-09-30 1993-09-30 Method for producing titanium oxide thin film photocatalyst

Country Status (1)

Country Link
JP (1) JP2517874B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525405A (en) * 2006-02-03 2009-07-09 コロロッビア イタリア ソシエタ ペル アチオニ Method and functionalized product for functionalizing titanium metal surfaces with titanium nanometer particles

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830785B1 (en) 1995-03-20 2004-12-14 Toto Ltd. Method for photocatalytically rendering a surface of a substrate superhydrophilic, a substrate with a superhydrophilic photocatalytic surface, and method of making thereof
JP3928744B2 (en) * 1995-04-28 2007-06-13 東芝ライテック株式会社 Lighting device
JP4295833B2 (en) * 1995-07-31 2009-07-15 東芝ライテック株式会社 Method for producing glass molded body
US5897958A (en) 1995-10-26 1999-04-27 Asahi Glass Company Ltd. Modified titanium oxide sol, photocatalyst composition and photocatalyst composition-forming agent
JPH09231821A (en) * 1995-12-22 1997-09-05 Toto Ltd Luminaire and method for maintaining illuminance
US6090489A (en) * 1995-12-22 2000-07-18 Toto, Ltd. Method for photocatalytically hydrophilifying surface and composite material with photocatalytically hydrophilifiable surface
JPH09186949A (en) * 1995-12-27 1997-07-15 Toshiba Lighting & Technol Corp Video equipment
CN1103802C (en) * 1996-05-24 2003-03-26 日本帕卡濑精株式会社 Titanium dioxide ceramic paint and method of producing same
DE69709508T2 (en) * 1996-08-22 2002-08-08 Hitachi Ltd Fluorescent lamp with thin film photocatalyst and manufacturing method thereof
JP3344256B2 (en) * 1997-01-23 2002-11-11 日産自動車株式会社 Coating liquid for forming hydrophilic film and method for producing the same
JP4163286B2 (en) * 1997-06-13 2008-10-08 インダストリアル リサーチ リミテッド Titanium amino alcohol complex and method for producing the same
KR20010000340A (en) * 2000-09-18 2001-01-05 김현용 Water treatment device using horizontal sand filtration and photocatalytic reaction
KR20010008265A (en) * 2000-11-20 2001-02-05 김현용 Energy saving photocatalysis water treatment system using solar light/UV/photocatalyst
CN100406094C (en) * 2004-07-15 2008-07-30 北京航空航天大学 Photo-catalytic water purification post
JP4620990B2 (en) * 2004-09-17 2011-01-26 国立大学法人京都大学 Metal oxide nanocrystal and method for producing the same
JP2007152221A (en) * 2005-12-05 2007-06-21 Andes Denki Kk Photocatalytic material and method for preparing the same
KR101025122B1 (en) 2006-07-13 2011-03-25 도오까이 료가구 데쓰도오 가부시끼가이샤 Coating solution, titanium oxide thin film formed using the coating solution, and method for formation of thin film
US7846866B2 (en) 2008-09-09 2010-12-07 Guardian Industries Corp. Porous titanium dioxide coatings and methods of forming porous titanium dioxide coatings having improved photocatalytic activity
US8545899B2 (en) 2008-11-03 2013-10-01 Guardian Industries Corp. Titanium dioxide coatings having roughened surfaces and methods of forming titanium dioxide coatings having roughened surfaces
KR100939165B1 (en) * 2009-08-10 2010-01-28 김정태 A anti-corrosion paint composition and method for manufacturing the same
CN103386300A (en) * 2013-07-23 2013-11-13 北京纳琦环保科技有限公司 Processing method of ceramic honeycomb plate air purifying agent
CN113044914A (en) * 2021-05-10 2021-06-29 苏州科技大学 Taylor vortex type photocatalytic water treatment test device and test method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1426365A (en) * 1973-06-04 1976-02-25 British Steel Corp Catalxst carrier
JPS63248443A (en) * 1987-04-01 1988-10-14 Agency Of Ind Science & Technol Photooxidation catalyst and its production
JPH01238867A (en) * 1988-03-18 1989-09-25 Matsushita Electric Ind Co Ltd Deodorizing method by photocatalyst
JPH03221146A (en) * 1990-01-29 1991-09-30 Mitsubishi Heavy Ind Ltd Catalyst filter base material for treating combustion exhaust gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009525405A (en) * 2006-02-03 2009-07-09 コロロッビア イタリア ソシエタ ペル アチオニ Method and functionalized product for functionalizing titanium metal surfaces with titanium nanometer particles

Also Published As

Publication number Publication date
JPH07100378A (en) 1995-04-18

Similar Documents

Publication Publication Date Title
JP2517874B2 (en) Method for producing titanium oxide thin film photocatalyst
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
JP2775399B2 (en) Porous photocatalyst and method for producing the same
US6284314B1 (en) Porous ceramic thin film and method for production thereof
JP2600103B2 (en) Photocatalytic filter and method for producing the same
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
Nickheslat et al. Phenol photocatalytic degradation by advanced oxidation process under ultraviolet radiation using titanium dioxide
JP3275032B2 (en) Environmental purification material and method for producing the same
WO2017192057A1 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
EP0766647B1 (en) Photoelectrochemical reactor
JP2945926B2 (en) Photocatalyst particles and method for producing the same
JP5544515B2 (en) Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
US8343282B2 (en) Photocatalytic auto-cleaning process of stains
JP3118558B2 (en) Water treatment catalyst and water treatment method
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
JP2001187346A (en) Photocatalyst coated material and manufacturing method thereof, and contaminant-containing material cleaning method and contaminant-containing material cleaning device using photocatalyst coated material
JP3312132B2 (en) Air purification fan and method of manufacturing the same
WO2016055900A1 (en) Method of applying nanometric titanium dioxide onto a glassy support for environmental use
RU2793180C1 (en) Composition for applying a photoactive coating on the surface of porous and non-porous materials and providing oxidative degradation of chemicals
JP3944152B2 (en) Method for removing water pollutant organic substances
JP3864223B2 (en) Manufacturing method of environmental materials
JPH11290696A (en) Photocatalyst base material
CN1458194A (en) Nano titanium dioxide collosol paint and its preparing method and use
Nickheslat et al. Research Article Phenol Photocatalytic Degradation by Advanced Oxidation Process under Ultraviolet Radiation Using Titanium Dioxide

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term