JP2007152221A - Photocatalytic material and method for preparing the same - Google Patents

Photocatalytic material and method for preparing the same Download PDF

Info

Publication number
JP2007152221A
JP2007152221A JP2005350567A JP2005350567A JP2007152221A JP 2007152221 A JP2007152221 A JP 2007152221A JP 2005350567 A JP2005350567 A JP 2005350567A JP 2005350567 A JP2005350567 A JP 2005350567A JP 2007152221 A JP2007152221 A JP 2007152221A
Authority
JP
Japan
Prior art keywords
heat treatment
photocatalytic material
titanium
columnar
drying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005350567A
Other languages
Japanese (ja)
Inventor
Toshiki Akazawa
敏樹 赤澤
Michio Naeshirozawa
教夫 苗代澤
Takeshi Kudo
武志 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Andes Electric Co Ltd
Original Assignee
Andes Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Andes Electric Co Ltd filed Critical Andes Electric Co Ltd
Priority to JP2005350567A priority Critical patent/JP2007152221A/en
Publication of JP2007152221A publication Critical patent/JP2007152221A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalytic material capable of effectively suppressing discharge of intermediate products formed upon decomposing an organic material which are the cause of odor and deterioration of catalyst activity and a method for preparing the photocatalytic material. <P>SOLUTION: The photocatalytic material M is prepared by a method comprising a step step 1 of preparing titanium sol using a raw material R, a step (step 2) of depositing the titanium sol onto a silica filter, a step (step 3) of drying and solidifying the deposited sol, and a step (step 4) of heat-treating the dried and solidified titanium sol. The heat treatment is carried out at a temperature of not lower than 700°C and not higher than 800°C, preferably not lower than 740°C and not higher than 760°C, and most preferably not lower than 745°C and not higher than 755°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は光触媒材料およびその製造方法に係り、特に、異臭や触媒の性能低下原因となる分解時の中間生成物の放出を、効果的に抑制可能な光触媒材料、およびその製造方法に関する。   The present invention relates to a photocatalyst material and a method for producing the photocatalyst material, and more particularly to a photocatalyst material and a method for producing the photocatalyst material that can effectively suppress the release of an intermediate product at the time of decomposition, which causes a bad odor and catalyst performance deterioration.

本願出願人らはこれまで、独自開発による画期的な光触媒材料である「柱状結晶」構造の光触媒材料の発明について開示してきた(後掲特許文献、他)。該光触媒材料は、極めて高い分解性能を始めとして、取り扱い上の便利さ、応用の広さでも優れた特長を有する。   The applicants of the present application have so far disclosed an invention of a photocatalyst material having a “columnar crystal” structure, which is an epoch-making photocatalyst material developed independently (Patent Documents and others). The photocatalyst material has excellent features such as extremely high decomposition performance, convenience in handling, and wide application.

この柱状柱状結晶光触媒材料とは、結晶核から成長させた柱状構造、または柱状中空構造を有する光触媒材料であり、柱状中空の酸化チタン結晶がその典型である。すなわち、結晶核上に一つ以上の柱状結晶を成長させ、結晶核とその上に成長させる柱状結晶が同一方位に成長し、典型的なものでは柱状結晶の内部は中空構造を有している。   The columnar columnar crystal photocatalyst material is a photocatalyst material having a columnar structure grown from a crystal nucleus or a columnar hollow structure, and a columnar hollow titanium oxide crystal is typical. That is, one or more columnar crystals are grown on the crystal nucleus, and the crystal nucleus and the columnar crystal grown on the crystal nucleus grow in the same orientation. Typically, the inside of the columnar crystal has a hollow structure. .

ここで光触媒結晶の形状が柱状とは、角柱状のものを始めとして、円柱状、棒状、その他柱状の立体構造をとるものをすべて含み、また該柱状結晶は鉛直方向に真っ直ぐに伸びるもの、傾斜状に伸びるもの、湾曲しながら伸びるもの、枝状に分岐して伸びるもの、柱状結晶が複数本成長し途中で融合したもの等を含む。また、結晶核はスパッタリング法、PVD法、またはCVD法で作製した結晶核のみならず、その種類は単結晶、多結晶体、その他を広く用いることができる。また結晶核としては、通常の化学反応に見られる様に明らかには核と認められないようなもの、たとえば基板上の傷等を核の代替物とすることも可能である(特許文献2)。   Here, the shape of the photocatalytic crystal is a columnar shape, including a prismatic one, a columnar shape, a rod shape, and any other columnar three-dimensional structure, and the columnar crystals extend straight in the vertical direction. And those that extend in a curved shape, those that extend while curving, those that branch and extend, and those in which a plurality of columnar crystals are grown and fused in the middle. Further, the crystal nucleus is not limited to a crystal nucleus produced by a sputtering method, a PVD method, or a CVD method, and a single crystal, a polycrystal, or the like can be widely used. Further, as a crystal nucleus, it is possible to substitute a nucleus that is not clearly recognized as a nucleus as seen in a normal chemical reaction, for example, a scratch on a substrate (Patent Document 2). .

特開2002−253975JP2002-253975 特開2005−161259JP2005-161259

ところで一般的に、光触媒により有機化合物を二酸化炭素まで分解する際、生成する中間生成物は異臭や触媒の性能低下原因となる。また、これら中間生成物の放出は空気中の水分量(湿度)に依存し、湿度により酸化チタン表面の吸着水の密度が変化することによって、中間生成物の放出挙動は著しく変化する。本願出願人らによる柱状の光触媒材料においても、この点は同様である。   By the way, generally, when an organic compound is decomposed to carbon dioxide by a photocatalyst, an intermediate product to be generated causes a bad odor and a decrease in catalyst performance. In addition, the release of these intermediate products depends on the amount of moisture (humidity) in the air, and the release behavior of the intermediate products changes remarkably as the density of adsorbed water on the titanium oxide surface changes with humidity. The same applies to the columnar photocatalyst material by the present applicants.

そこで本発明が解決しようとする課題は、上記従来技術の問題点を除き、異臭や触媒の性能低下原因となる有機化合物分解時の中間生成物の放出を、効果的に抑制することのできる光触媒材料、およびその製造方法を提供することである。   Therefore, the problem to be solved by the present invention is a photocatalyst capable of effectively suppressing the release of an intermediate product at the time of decomposition of an organic compound that causes a bad odor and a catalyst performance deterioration, excluding the problems of the above-mentioned conventional technology. It is to provide a material and a manufacturing method thereof.

本願発明者は上記課題について検討した結果、柱状酸化チタン光触媒材料の調製時の焼成温度を制御することにより、柱状結晶内の物理的構造を改質し、表面吸着水密度を制御することによって上記課題の解決が可能であることを見出し、本発明に至った。すなわち、上記課題を解決するための手段として本願で特許請求される発明、もしくは少なくとも開示される発明は、以下のとおりである。   As a result of examining the above problems, the inventors of the present application have modified the physical structure in the columnar crystals by controlling the firing temperature at the time of preparing the columnar titanium oxide photocatalyst material, and controlling the surface adsorbed water density. The present inventors have found that the problem can be solved and have reached the present invention. That is, the invention claimed in the present application, or at least the disclosed invention, as means for solving the above-described problems is as follows.

(1) チタンゾル溶液をシリカフィルター上に担持し、乾燥固化処理、ついで熱処理を施すことからなる光触媒材料製造方法であって、該熱処理は、700℃以上800℃以下にて行う処理であることを特徴とする、光触媒材料製造方法。
(2) チタンゾル溶液をシリカフィルター上に担持し、乾燥固化処理、ついで熱処理を施すことからなる光触媒材料製造方法であって、該熱処理は、700℃以上800℃以下にて1時間以上保持する処理であることを特徴とする、光触媒材料製造方法。
(3) 前記熱処理の温度は、740℃以上760℃以下であることを特徴とする、(1)または(2)に記載の光触媒材料製造方法。
(4) 前記熱処理の温度は、745℃以上755℃以下であることを特徴とする、(1)または(2)に記載の光触媒材料製造方法。
(5) 1,3−ブタンジオール、水、硝酸ならびにチタンテトライソプロポキシドからなるチタンゾル溶液を得、これをシリカフィルター上に担持し、乾燥固化処理、ついで熱処理を施すことからなる光触媒材料製造方法であって、該熱処理は、700℃以上800℃以下にて行う処理であることを特徴とする、光触媒材料製造方法。
(6) チタンテトライソプロポキシドを用いたチタンゾル溶液を担持したシリカフィルターに乾燥固化処理、ついで熱処理を施すことにより製造される柱状の光触媒材料であって、チタンテトライソプロポキシド5gを用いてなる該光触媒材料により、20L反応容器中の濃度30ppmのエタノールから生成される中間生成物たるアセトアルデヒドの放出濃度を11ppm以下に抑制可能であることを特徴とする、光触媒材料。
(7) チタンテトライソプロポキシドを用いたチタンゾル溶液を担持したシリカフィルターに乾燥固化処理、ついで熱処理を施すことにより製造される柱状の光触媒材料であって、チタンテトライソプロポキシド5gを用いてなる該光触媒材料により、20L反応容器中の濃度20ppmのトルエンを70分以内に1ppm以下にまで分解可能であることを特徴とする、光触媒材料。
(1) A photocatalyst material manufacturing method comprising supporting a titanium sol solution on a silica filter, drying and solidifying, and then performing heat treatment, wherein the heat treatment is performed at 700 ° C. or more and 800 ° C. or less. A method for producing a photocatalytic material.
(2) A photocatalyst material manufacturing method comprising carrying a titanium sol solution on a silica filter, drying and solidifying, and then performing a heat treatment, the heat treatment being performed at 700 ° C. or higher and 800 ° C. or lower for 1 hour or longer. A method for producing a photocatalytic material, wherein
(3) The method for producing a photocatalytic material according to (1) or (2), wherein the temperature of the heat treatment is 740 ° C. or higher and 760 ° C. or lower.
(4) The method for producing a photocatalytic material according to (1) or (2), wherein the temperature of the heat treatment is 745 ° C. or higher and 755 ° C. or lower.
(5) A method for producing a photocatalytic material comprising obtaining a titanium sol solution comprising 1,3-butanediol, water, nitric acid and titanium tetraisopropoxide, carrying the solution on a silica filter, drying and solidifying, and then heat-treating. The method for producing a photocatalyst material is characterized in that the heat treatment is a treatment performed at 700 ° C. or higher and 800 ° C. or lower.
(6) A columnar photocatalyst material produced by drying and solidifying a silica filter carrying a titanium sol solution using titanium tetraisopropoxide, followed by heat treatment, using 5 g of titanium tetraisopropoxide. A photocatalyst material characterized in that the photocatalyst material can suppress the release concentration of acetaldehyde, which is an intermediate product produced from ethanol at a concentration of 30 ppm in a 20 L reaction vessel, to 11 ppm or less.
(7) A columnar photocatalytic material produced by drying and solidifying a silica filter carrying a titanium sol solution using titanium tetraisopropoxide, followed by heat treatment, using 5 g of titanium tetraisopropoxide. A photocatalyst material, wherein the photocatalyst material can decompose toluene having a concentration of 20 ppm in a 20 L reaction vessel to 1 ppm or less within 70 minutes.

(8) チタンゾル溶液をシリカフィルター上に担持し、乾燥固化処理、ついで700℃以上800℃以下にて行う熱処理を施すことにより得られる柱状の光触媒材料であって、該光触媒材料は、前記熱処理温度を500℃以上550℃未満とする場合と比較して表面吸着水密度を約70%減少させる、もしくは70%以上減少させる表面構造を有するものであることを特徴とする、光触媒材料。
(9) チタンゾル溶液をシリカフィルター上に担持し、乾燥固化処理、ついで熱処理を施すことにより得られる柱状の光触媒材料であって、該光触媒材料は、一次粒子間隙からなる微細孔が閉塞した角柱状多結晶体を備えた表面構造を有するものであり、これにより、前記熱処理温度を500℃以上550℃未満とする場合と比較して表面吸着水密度を約70%減少させる、もしくは70%以上減少させるものであることを特徴とする、光触媒材料。
(10) チタンゾル溶液をシリカフィルター上に担持し、乾燥固化処理、ついで熱処理を施すことにより得られる柱状の光触媒材料であって、該光触媒材料は、一次粒子間隙からなる細孔内の表面積が3.9m/g以上10.2m/g以下であることを特徴とする、光触媒材料。
(8) A columnar photocatalyst material obtained by carrying a titanium sol solution on a silica filter and subjecting it to a drying and solidification treatment, followed by a heat treatment carried out at 700 ° C. or higher and 800 ° C. or lower. A photocatalytic material characterized by having a surface structure that reduces the surface adsorbed water density by about 70%, or 70% or more, as compared with a case where the temperature is 500 ° C. or higher and lower than 550 ° C.
(9) A columnar photocatalyst material obtained by supporting a titanium sol solution on a silica filter, drying and solidifying, and then heat-treating the column, and the photocatalyst material has a prismatic shape in which fine pores composed of primary particle gaps are closed. It has a surface structure provided with a polycrystal, and thereby reduces the surface adsorbed water density by about 70% or 70% or more compared with the case where the heat treatment temperature is 500 ° C. or higher and lower than 550 ° C. A photocatalytic material, characterized in that
(10) A columnar photocatalyst material obtained by supporting a titanium sol solution on a silica filter, drying and solidifying, and then heat-treating the photocatalyst material with a surface area of 3 pores composed of primary particle gaps. wherein the .9m 2 / g or more 10.2 m 2 / g or less, the photocatalytic material.

つまり本発明は、柱状酸化チタンを調整する際、乾燥条件・熱処理条件の制御により、角柱結晶内の微細孔が閉塞した結晶を作製することによって柱状結晶内の物理的構造、すなわち酸化チタン表面の物理構造を改質し、もって表面吸着水密度を制御することで、異種元素ドープや化学的表面処理をすることなく、従来の分解活性を維持したまま、中間生成物の生成抑制を図るものである。   In other words, in the present invention, when adjusting the columnar titanium oxide, the physical structure in the columnar crystal, that is, the surface of the titanium oxide surface, is prepared by producing a crystal in which the micropores in the prismatic crystal are closed by controlling the drying conditions and heat treatment conditions. By modifying the physical structure and controlling the surface adsorbed water density, it is possible to suppress the formation of intermediate products while maintaining the conventional decomposition activity without doping with different elements or chemical surface treatment. is there.

本発明の光触媒材料およびその製造方法は上述のように構成されるため、これによれば、有機化合物分解時における異臭や触媒の性能低下原因となる中間生成物の放出を、効果的に抑制することができる。さらにまた、トルエン等の疎水性有機化合物の分解速度も向上させることができる。   Since the photocatalyst material and the method for producing the same according to the present invention are configured as described above, according to this, it is possible to effectively suppress the release of an intermediate product that causes an unpleasant odor and a deterioration in the performance of the catalyst during decomposition of the organic compound. be able to. Furthermore, the decomposition rate of hydrophobic organic compounds such as toluene can be improved.

以下、本発明を図面により詳細に説明する。なお、以下、「柱状」結晶構造の主要例として、角柱状のものを主として説明する。
図1は、本発明の光触媒材料製造方法の構成を示すフロー図である。図示するように本製造方法は、光触媒材料の原料Rを用いて過程P1により調製されたチタンゾル溶液をシリカフィルター上に担持し(過程P2)、乾燥固化処理(過程P3)、ついで熱処理(過程P4)を施して、最終的に光触媒材料Mを得るという手順からなり、該熱処理は、700℃以上800℃以下にて行うこととするものである。
Hereinafter, the present invention will be described in detail with reference to the drawings. In the following, as a main example of the “columnar” crystal structure, a prismatic one will be mainly described.
FIG. 1 is a flowchart showing the configuration of the photocatalyst material manufacturing method of the present invention. As shown in the figure, in this production method, the titanium sol solution prepared in the process P1 using the raw material R of the photocatalytic material is supported on a silica filter (process P2), dried and solidified (process P3), and then heat treated (process P4). ) To finally obtain the photocatalytic material M, and the heat treatment is performed at 700 ° C. or higher and 800 ° C. or lower.

図中に示すように、該熱処理P4における加熱温度保持時間は、1時間以上とすることが望ましい。また加熱温度は、より望ましくは740℃以上760℃以下、つまり750±10℃の範囲が最適である。とりわけ、745℃以上755℃以下、つまり750±5℃の範囲に保持することによって、本発明における最も高い結果を得ることができる。   As shown in the figure, the heating temperature holding time in the heat treatment P4 is desirably 1 hour or longer. The heating temperature is more preferably in the range of 740 ° C. or higher and 760 ° C. or lower, that is, 750 ± 10 ° C. In particular, the highest result in the present invention can be obtained by maintaining the temperature in the range of 745 ° C. or higher and 755 ° C. or lower, that is, 750 ± 5 ° C.

なお原料Rとしては、実施例に詳述するように、1,3−ブタンジオール、水、硝酸ならびにチタンテトライソプロポキシドを好適に用いることができるが、これに限定はされない。   As the raw material R, 1,3-butanediol, water, nitric acid, and titanium tetraisopropoxide can be suitably used as described in detail in the examples, but are not limited thereto.

本法により得られる光触媒材料は、従来の光触媒材料と比較して、エタノールから生成される中間生成物たるアセトアルデヒドの放出濃度を約1/2程度にまで抑制することができる。つまり、光触媒により有機化合物を二酸化炭素まで分解する際に生成する中間生成物による異臭発生や触媒の性能低下を有効に防止することができる。   The photocatalyst material obtained by this method can suppress the release concentration of acetaldehyde, which is an intermediate product produced from ethanol, to about ½ compared to conventional photocatalyst materials. That is, it is possible to effectively prevent the generation of a strange odor due to the intermediate product generated when the organic compound is decomposed to carbon dioxide by the photocatalyst and the catalyst performance deterioration.

本法により得られる光触媒材料はまた、従来の光触媒材料と比較して、トルエン分解時間を約2/3に短縮し、分解効率を約1.5倍に高めることができる。つまり、疎水性有機化合物の分解速度向上作用も有するものである。   The photocatalytic material obtained by this method can also reduce the toluene decomposition time to about 2/3 and increase the decomposition efficiency by about 1.5 times compared with the conventional photocatalytic material. That is, it also has an effect of improving the decomposition rate of the hydrophobic organic compound.

700℃以上800℃以下にて行う熱処理過程を含む本発明方法によれば、熱処理過程を500℃以上550℃未満とする従来方法と比較して、分解性能を維持しつつ、表面吸着水密度を約70%も減少させる表面構造を有する光触媒材料を得ることができる。かかる作用は、追って詳述するように、本発明製法によって製造される光触媒材料が、一次粒子間隙からなる微細孔が閉塞した角柱状多結晶体を備えた表面構造を有することによるものである。   According to the method of the present invention including the heat treatment process performed at 700 ° C. or more and 800 ° C. or less, the surface adsorbed water density is reduced while maintaining the decomposition performance as compared with the conventional method in which the heat treatment process is 500 ° C. or more and less than 550 ° C. A photocatalytic material having a surface structure that reduces by about 70% can be obtained. As described later in detail, the photocatalyst material produced by the production method of the present invention has a surface structure including a prismatic polycrystalline body in which fine pores composed of primary particle gaps are closed.

以下、本発明の実施例を説明するが、本発明はかかる実施例に限定されるものではない。
<1 光触媒材料の基本的な製造(作製)方法>
1,3−ブタンジオール35g、水0.4g、硝酸0.5gを混合して溶液とし、この溶液にチタンテトライソプロポキシド5gを撹拌しながら滴下し、その後4時間常温にて撹拌し含チタンゾル溶液を得た。この溶液をシリカフィルター上に塗布し、乾燥固化、熱処理を施すことにより、フィルター上に酸化チタンを形成した。酸化チタンは柱状構造を有しており、固化は乾燥機中で到達温度150〜200℃、保持時間2時間の条件で行った。熱処理は電気炉中で昇温速度10℃/min、到達温度500〜800℃、保持時間1時間の条件で行った。
Examples of the present invention will be described below, but the present invention is not limited to such examples.
<1 Basic production (production) method of photocatalytic material>
35 g of 1,3-butanediol, 0.4 g of water, and 0.5 g of nitric acid were mixed to form a solution. To this solution, 5 g of titanium tetraisopropoxide was added dropwise with stirring, and then stirred at room temperature for 4 hours. A solution was obtained. This solution was applied on a silica filter, dried and solidified, and subjected to heat treatment to form titanium oxide on the filter. Titanium oxide has a columnar structure, and solidification was performed in a dryer under conditions of an ultimate temperature of 150 to 200 ° C. and a holding time of 2 hours. The heat treatment was performed in an electric furnace under the conditions of a heating rate of 10 ° C./min, an ultimate temperature of 500 to 800 ° C., and a holding time of 1 hour.

<2 特性評価方法>
2.1 エタノール分解時のアセトアルデヒド放出抑制効果
エタノールを酸化分解する場合、アセトアルデヒド、酢酸を経由してCOに至る。そこで、20Lの反応容器内にエタノール約30ppmを注入し、濃度が安定した後、ブラックライトを照射し、中間生成物であるアセトアルデヒドの放出量を測定、評価した。
<2 Characteristic evaluation method>
2.1 Effect of inhibiting acetaldehyde release during ethanol decomposition When ethanol is oxidized and decomposed, it reaches CO 2 via acetaldehyde and acetic acid. Therefore, about 30 ppm of ethanol was injected into a 20 L reaction vessel, and after the concentration was stabilized, irradiation with black light was performed to measure and evaluate the amount of acetaldehyde released as an intermediate product.

2.2 トルエン分解性能評価
トルエン濃度を20ppmとし、エタノール分解と同様の測定、評価を行った。この際、トルエン濃度が20ppmから1ppm以下になるまでにかかる時間を測定し、触媒性能として評価した。
2.2 Evaluation of Toluene Decomposition Performance The toluene concentration was 20 ppm, and the same measurement and evaluation as in ethanol decomposition were performed. At this time, the time taken for the toluene concentration to be reduced from 20 ppm to 1 ppm or less was measured and evaluated as catalyst performance.

2.3 吸着水密度等の評価方法
熱処理制御した酸化チタン表面の吸着水密度の評価には、TPD(昇温脱離法)、BET法およびBJH法(細孔分布測定)を用いた。まず、任意量の試料を30℃で1h真空排気した後、昇温速度10℃/minで30〜600℃の温度範囲でTPD測定を行った。得られた質量数18(HO)のスペクトルから波形乖離解析により、スペクトル面積を表面吸着水の量的数値として算出した。
2.3 Evaluation Method for Adsorbed Water Density TPD (Temperature Desorption Method), BET Method, and BJH Method (Measurement of Pore Distribution) were used for evaluation of the adsorbed water density on the surface of titanium oxide that was heat-treated. First, an arbitrary amount of the sample was evacuated at 30 ° C. for 1 h, and TPD measurement was performed at a temperature rising rate of 10 ° C./min in a temperature range of 30 to 600 ° C. The spectrum area was calculated as a quantitative numerical value of the surface adsorbed water from the obtained spectrum of mass number 18 (H 2 O) by waveform deviation analysis.

ついで、この数値と測定に供した試料重量から、試料1g当たりのHO(HO/g)を算出した。得られた値を、別途BET法から得られた試料の比表面積(m/g)で除することにより、単位表面積あたりのHO量(HO/m)として評価した。また、BJH法により角柱酸化チタン内に存在する細孔内の表面積を評価した。なお、TPDでは絶対量の評価は不可能であるため、得られる結果は相対的評価である。 Then, H 2 O (H 2 O / g) per 1 g of the sample was calculated from this value and the sample weight used for the measurement. By dividing the obtained value by the specific surface area (m 2 / g) of a sample obtained separately from the BET method, it was evaluated as the amount of H 2 O per unit surface area (H 2 O / m 2 ). Further, the surface area in the pores present in the prismatic titanium oxide was evaluated by the BJH method. In addition, since the absolute amount cannot be evaluated with TPD, the obtained result is a relative evaluation.

吸着水密度等の特性評価には下記の装置を用いた。
表面積(BET法)、細孔分布測定(BJH法):日本ベル株式会社製BELSORP−mini高精度ガス吸着装置
(TPD)昇温脱離法:ULVAC製装置 SEPION
The following apparatus was used for characteristics evaluation such as the density of adsorbed water.
Surface area (BET method), pore distribution measurement (BJH method): BELSORP-mini high-precision gas adsorption device (TPD) by Nippon Bell Co., Ltd. Thermal desorption method: ULVAC device SEPION

<3 実施例・比較例の製造(作製)>
3.1 実施例1
上記1の作製方法により、酸化チタン光触媒材料を作製した。ここで、熱処理の温度条件は、700〜800℃(700℃以上800℃以下)で保持時間1時間とした。熱処理方法について、詳述する。150〜200℃、保持時間2時間で乾燥処理した試料を、予め250℃に予熱した電気炉内に投入し、昇温速度10℃/minで700℃まで到達させた。その後、昇温速度5℃/minで750℃まで昇温後、750±10℃で1時間保持した。そして、加熱を停止後50分間で750℃から350℃まで降温させた。
<Manufacturing (production) of 3 examples and comparative examples>
3.1 Example 1
A titanium oxide photocatalyst material was produced by the production method described in 1 above. Here, the temperature condition of the heat treatment was 700 to 800 ° C. (700 ° C. or more and 800 ° C. or less) and the holding time was 1 hour. The heat treatment method will be described in detail. The sample dried at 150 to 200 ° C. and holding time of 2 hours was put into an electric furnace preheated to 250 ° C. and allowed to reach 700 ° C. at a temperature rising rate of 10 ° C./min. Then, after heating up to 750 degreeC with the temperature increase rate of 5 degree-C / min, it hold | maintained at 750 +/- 10 degreeC for 1 hour. Then, the temperature was lowered from 750 ° C. to 350 ° C. in 50 minutes after stopping the heating.

3.2 実施例2
チタンテトライソプロポキシド5g、アセチルアセトン1.8g、イソプロピルアルコール93.2gを混合して含Ti溶液を得た。これをシリカフィルター上に塗布し、150℃にて1時間乾燥、500℃にて1時間焼成を行い、酸化チタンを形成した。その後、上記1の作製方法によってチタンゾルに浸漬し、150〜250℃にて1時間乾燥、700〜800℃(700℃以上800℃以下)にて1時間焼成を行い、酸化チタン光触媒材料を作製した。
3.2 Example 2
A titanium-containing solution was obtained by mixing 5 g of titanium tetraisopropoxide, 1.8 g of acetylacetone, and 93.2 g of isopropyl alcohol. This was applied onto a silica filter, dried at 150 ° C. for 1 hour, and baked at 500 ° C. for 1 hour to form titanium oxide. Then, it was immersed in a titanium sol by the production method 1 described above, dried at 150 to 250 ° C. for 1 hour, and fired at 700 to 800 ° C. (700 to 800 ° C.) for 1 hour to produce a titanium oxide photocatalyst material. .

3.3 実施例3
上記1の作製方法により、酸化チタン光触媒材料を作製した。ここで、熱処理の温度条件は、600〜700℃(600℃以上700℃未満)で保持時間1時間とした。
3.3 Example 3
A titanium oxide photocatalyst material was produced by the production method described in 1 above. Here, the temperature condition of the heat treatment was 600 to 700 ° C. (600 ° C. or more and less than 700 ° C.) and the holding time was 1 hour.

3.4 比較例1
チタンテトライソプロポキシド5g、アセチルアセトン1.8g、イソプロピルアルコール93.2gを混合して含Ti溶液を得た。これをシリカフィルター上に塗布し、150℃にて1時間乾燥、500℃にて1時間焼成を行い、酸化チタンを形成した。その後、上記1の作製方法と同様に含チタンゾルに浸漬し、150℃にて1時間乾燥、550℃にて1時間焼成を行い、酸化チタン光触媒材料を作製した。これを比較例1とした。
3.4 Comparative Example 1
A titanium-containing solution was obtained by mixing 5 g of titanium tetraisopropoxide, 1.8 g of acetylacetone, and 93.2 g of isopropyl alcohol. This was applied onto a silica filter, dried at 150 ° C. for 1 hour, and baked at 500 ° C. for 1 hour to form titanium oxide. Thereafter, it was immersed in a titanium-containing sol in the same manner as in Production Method 1 above, dried at 150 ° C. for 1 hour, and fired at 550 ° C. for 1 hour to produce a titanium oxide photocatalyst material. This was designated as Comparative Example 1.

3.5 比較例2
市販の粉末状光触媒材料(日本アエロジル製P−25)を比較例2とした。
表1に各実施例および比較例における光触媒材料の形態と熱処理温度を示す。また、
表2にはエタノール分解時のアセトアルデヒド放出抑制効果、
表3にはトルエン分解性能評価の各評価結果を示す。
3.5 Comparative Example 2
A commercially available powdered photocatalytic material (P-25, manufactured by Nippon Aerosil Co., Ltd.) was used as Comparative Example 2.
Table 1 shows the form of the photocatalytic material and the heat treatment temperature in each example and comparative example. Also,
Table 2 shows the effect of suppressing acetaldehyde release during ethanol decomposition,
Table 3 shows the evaluation results of the toluene decomposition performance evaluation.

Figure 2007152221
Figure 2007152221





Figure 2007152221
Figure 2007152221





Figure 2007152221
Figure 2007152221





<4 特性評価結果>
4.1 エタノール分解時のアセトアルデヒド放出抑制効果
乾燥150℃、焼成550℃で作製した比較例1、および市販粉体光触媒である比較例2では、エタノール分解時のアセトアルデヒド放出濃度が19ppmであり、エタノール濃度に対し約2/3の濃度で、光触媒による分解反応の中間生成物たるアセトアルデヒドを放出するという結果が得られた。
<4 Characterization results>
4.1 Effect of inhibiting acetaldehyde release during ethanol decomposition In Comparative Example 1 produced at 150 ° C. dry and calcined at 550 ° C. and Comparative Example 2 as a commercial powder photocatalyst, the concentration of acetaldehyde released during ethanol decomposition was 19 ppm. The result was that acetaldehyde, an intermediate product of the photocatalytic decomposition reaction, was released at a concentration of about 2/3 of the concentration.

これに対し、乾燥温度・焼成温度を制御した実施例1、2では、エタノール分解時のアセトアルデヒド放出濃度がそれぞれ10ppm、11ppmであり、比較例1、2と比較して、約1/2に抑制可能であるという結果が得られた。もちろんこの場合にも、エタノールの分解速度には何ら変化がなく、光触媒による分解性能を減じることなく、中間生成物の放出抑制効果が得られるものであった。   On the other hand, in Examples 1 and 2 in which the drying temperature and the baking temperature were controlled, the acetaldehyde release concentrations at the time of ethanol decomposition were 10 ppm and 11 ppm, respectively, and compared with Comparative Examples 1 and 2, it was suppressed to about 1/2. The result was possible. Of course, in this case as well, there was no change in the decomposition rate of ethanol, and the effect of suppressing the release of the intermediate product was obtained without reducing the decomposition performance by the photocatalyst.

4.2 トルエン分解性能
また、実施例1のトルエン分解性能は60分であり、比較例1と比較して分解時間を2/3に短縮し、分解効率を1.5倍にまで高めることができた。
4.2 Toluene decomposition performance In addition, the toluene decomposition performance of Example 1 is 60 minutes. Compared with Comparative Example 1, the decomposition time is shortened to 2/3, and the decomposition efficiency is increased to 1.5 times. did it.

つまり、本方法により作製された光触媒材料は、異種元素ドープや化学的表面処理をすることなく、従来技術の特性を大きく改良することができるとともに、完全酸化力に優れた高活性な光触媒であることが示された。   That is, the photocatalyst material produced by this method is a highly active photocatalyst that can greatly improve the characteristics of the prior art and does not have a different element doping or chemical surface treatment and is excellent in complete oxidizing power. It was shown that.

4.3 吸着水密度等の評価
表4に各実施例および比較例における吸着水密度等の評価結果を示す。
4.3 Evaluation of Adsorbed Water Density, etc. Table 4 shows the evaluation results of adsorbed water density and the like in each Example and Comparative Example.

Figure 2007152221
Figure 2007152221

表4より、実施例1における細孔内表面積は3.9m/g であり、比較例1および実施例3と比較して半分以下に減少していた。同様に、吸着水密度も比較例1に比べ約70%減少していた。以上より、実施例1と実施例3の処理条件の相違により、著しい特性変化が認められた。つまり、熱処理温度をより高温域に保持することによって、細孔内表面積、表面吸着水密度が減少し、そのことが光触媒反応中間生成物の放出抑制効果と関連することが示された。 From Table 4, the pore surface area in Example 1 was 3.9 m 2 / g, which was reduced to less than half compared to Comparative Example 1 and Example 3. Similarly, the density of adsorbed water was reduced by about 70% compared to Comparative Example 1. As mentioned above, the remarkable characteristic change was recognized by the difference in the process conditions of Example 1 and Example 3. FIG. In other words, it was shown that by maintaining the heat treatment temperature in a higher temperature range, the surface area within the pores and the surface adsorbed water density were reduced, which was related to the release suppression effect of the photocatalytic reaction intermediate product.

<5 熱処理による構造の変化>
以下、図を用いつつ、本発明による効果の要因となる角柱状酸化チタンの構造変化について説明する。
図2は実施例3による光触媒材料における物理的構造の特徴を示す模式図、
図3は実施例1による光触媒材料における物理的構造の特徴を示す模式図、
図4は比較例1による光触媒材料における物理的構造の特徴を示す模式図である。
<5 Change in structure due to heat treatment>
Hereinafter, the structural change of the prismatic titanium oxide that causes the effect of the present invention will be described with reference to the drawings.
FIG. 2 is a schematic diagram showing the characteristics of the physical structure of the photocatalytic material according to Example 3.
FIG. 3 is a schematic diagram showing the characteristics of the physical structure of the photocatalytic material according to Example 1.
FIG. 4 is a schematic diagram showing the characteristics of the physical structure of the photocatalytic material according to Comparative Example 1.

図4に示すように、比較例1においては処理温度が低いことにより、結晶粒子がより微細に形成される。したがって、粒子間隙からなる微細孔により、細孔内表面積は大きくなる。すなわち、表面に露出する酸化チタン粒子の割合が高いために吸着水密度は高くなる。   As shown in FIG. 4, in Comparative Example 1, the crystal grains are formed more finely due to the low processing temperature. Therefore, the pore internal surface area is increased by the fine pores formed by the interstices between the particles. That is, the density of adsorbed water increases because the ratio of titanium oxide particles exposed on the surface is high.

図2に示すように、600〜700℃で熱処理した実施例3では、一次粒子の成長による粒子間隙の増大により、細孔内部の表面積は僅かに減少し、それに伴い吸着水密度も減少し、上述した本発明の効果が得られるものである。   As shown in FIG. 2, in Example 3 that was heat-treated at 600 to 700 ° C., the surface area inside the pores slightly decreased due to the increase of the particle gap due to the growth of primary particles, and the density of adsorbed water also decreased accordingly. The effects of the present invention described above can be obtained.

図3に示すように、熱処理温度を実施例3よりも高くした実施例1では、一次粒子の成長および焼結により、一次粒子同士の空隙からなる微細孔が閉塞する。これにより細孔内表面積が急激に減少することで、酸化チタンの表面露出度が低下し、吸着水密度が著しく減少し、上述した本発明の効果、つまり分解反応の中間生成物の放出抑制効果、トルエン等の疎水性有機化合物の分解性能向上効果が大きく発揮されるものである。   As shown in FIG. 3, in Example 1 in which the heat treatment temperature is higher than that in Example 3, the micropores formed by the voids between the primary particles are closed by the growth and sintering of the primary particles. As a result, the surface area in the pores is rapidly reduced, so that the surface exposure of titanium oxide is lowered and the density of adsorbed water is remarkably reduced. The effect of the present invention described above, that is, the effect of suppressing the release of intermediate products of the decomposition reaction. The effect of improving the decomposition performance of hydrophobic organic compounds such as toluene is greatly exhibited.

本発明の光触媒材料およびその製造方法によれば、有機化合物分解時における異臭や触媒の性能低下原因となる中間生成物の放出を効果的に抑制し、トルエン等の疎水性有機化合物の分解速度の向上効果も得ることができる。したがって、特に光触媒を用いた空気浄化装置の分野においてそのさらなる利用拡大に大いに貢献することができ、極めて利用価値が高い発明である。 According to the photocatalyst material and the production method of the present invention, it is possible to effectively suppress the release of an intermediate product that causes a bad odor and a deterioration in the performance of the catalyst during the decomposition of the organic compound, and the degradation rate of the hydrophobic organic compound such as toluene. An improvement effect can also be obtained. Therefore, particularly in the field of the air purification apparatus using a photocatalyst, it can greatly contribute to further expansion of its use, and is an invention having extremely high utility value.

本発明の光触媒材料製造方法の構成を示すフロー図である。It is a flowchart which shows the structure of the photocatalyst material manufacturing method of this invention. 実施例3による光触媒材料における物理的構造の特徴を示す模式図である。FIG. 4 is a schematic diagram showing the characteristics of the physical structure of the photocatalytic material according to Example 3. 実施例1による光触媒材料における物理的構造の特徴を示す模式図である。FIG. 3 is a schematic diagram showing the characteristics of the physical structure of the photocatalytic material according to Example 1. 比較例1による光触媒材料における物理的構造の特徴を示す模式図である。FIG. 5 is a schematic diagram showing characteristics of a physical structure in a photocatalytic material according to Comparative Example 1.

符号の説明Explanation of symbols

R…光触媒材料の原料
P1…チタンゾル溶液を得る過程
P2…担持過程
P3…乾燥固化処理の過程
P4…熱処理の過程
M…光触媒材料
R ... Raw material of photocatalytic material P1 ... Process of obtaining titanium sol solution P2 ... Supporting process P3 ... Drying solidification process P4 ... Heat treatment process M ... Photocatalytic material

Claims (10)

チタンゾル溶液をシリカフィルター上に担持し、乾燥固化処理、ついで熱処理を施すことからなる光触媒材料製造方法であって、該熱処理は、700℃以上800℃以下にて行う処理であることを特徴とする、光触媒材料製造方法。 A method for producing a photocatalyst material, comprising supporting a titanium sol solution on a silica filter, drying and solidifying, and then performing heat treatment, wherein the heat treatment is performed at 700 ° C. or more and 800 ° C. or less. The photocatalyst material manufacturing method. チタンゾル溶液をシリカフィルター上に担持し、乾燥固化処理、ついで熱処理を施すことからなる光触媒材料製造方法であって、該熱処理は、700℃以上800℃以下にて1時間以上保持する処理であることを特徴とする、光触媒材料製造方法。 A photocatalyst material manufacturing method comprising supporting a titanium sol solution on a silica filter, drying and solidifying, and then performing a heat treatment, wherein the heat treatment is a treatment of holding at 700 ° C. or higher and 800 ° C. or lower for 1 hour or longer. A method for producing a photocatalytic material. 前記熱処理の温度は、740℃以上760℃以下であることを特徴とする、請求項1または2に記載の光触媒材料製造方法。 The method for producing a photocatalytic material according to claim 1 or 2, wherein a temperature of the heat treatment is 740 ° C or higher and 760 ° C or lower. 前記熱処理の温度は、745℃以上755℃以下であることを特徴とする、請求項1または2に記載の光触媒材料製造方法。 The method for producing a photocatalytic material according to claim 1 or 2, wherein the temperature of the heat treatment is 745 ° C or higher and 755 ° C or lower. 1,3−ブタンジオール、水、硝酸ならびにチタンテトライソプロポキシドからなるチタンゾル溶液を得、これをシリカフィルター上に担持し、乾燥固化処理、ついで熱処理を施すことからなる光触媒材料製造方法であって、該熱処理は、700℃以上800℃以下にて行う処理であることを特徴とする、光触媒材料製造方法。 A method for producing a photocatalytic material comprising obtaining a titanium sol solution comprising 1,3-butanediol, water, nitric acid and titanium tetraisopropoxide, carrying the solution on a silica filter, drying and solidifying, and then heat-treating. The method for producing a photocatalyst material, wherein the heat treatment is a treatment performed at 700 ° C. or higher and 800 ° C. or lower. チタンテトライソプロポキシドを用いたチタンゾル溶液を担持したシリカフィルターに乾燥固化処理、ついで熱処理を施すことにより製造される柱状の光触媒材料であって、チタンテトライソプロポキシド5gを用いてなる該光触媒材料により、20L反応容器中の濃度30ppmのエタノールから生成される中間生成物たるアセトアルデヒドの放出濃度を11ppm以下に抑制可能であることを特徴とする、光触媒材料。 A columnar photocatalytic material produced by drying and solidifying a silica filter carrying a titanium sol solution using titanium tetraisopropoxide, followed by heat treatment, the photocatalytic material comprising 5 g of titanium tetraisopropoxide Thus, the photocatalytic material can suppress the release concentration of acetaldehyde, which is an intermediate product generated from ethanol having a concentration of 30 ppm in a 20 L reaction vessel, to 11 ppm or less. チタンテトライソプロポキシドを用いたチタンゾル溶液を担持したシリカフィルターに乾燥固化処理、ついで熱処理を施すことにより製造される柱状の光触媒材料であって、チタンテトライソプロポキシド5gを用いてなる該光触媒材料により、20L反応容器中の濃度20ppmのトルエンを70分以内に1ppm以下にまで分解可能であることを特徴とする、光触媒材料。 A columnar photocatalytic material produced by drying and solidifying a silica filter carrying a titanium sol solution using titanium tetraisopropoxide, followed by heat treatment, the photocatalytic material comprising 5 g of titanium tetraisopropoxide Thus, a photocatalytic material characterized by being capable of decomposing toluene having a concentration of 20 ppm in a 20 L reaction vessel to 1 ppm or less within 70 minutes. チタンゾル溶液をシリカフィルター上に担持し、乾燥固化処理、ついで700℃以上800℃以下にて行う熱処理を施すことにより得られる柱状の光触媒材料であって、該光触媒材料は、前記熱処理温度を500℃以上550℃未満とする場合と比較して表面吸着水密度を約70%減少させる、もしくは70%以上減少させる表面構造を有するものであることを特徴とする、光触媒材料。 A columnar photocatalyst material obtained by supporting a titanium sol solution on a silica filter and subjecting it to a solidification treatment followed by a heat treatment performed at 700 ° C. or higher and 800 ° C. or lower, wherein the photocatalytic material has a heat treatment temperature of 500 ° C. A photocatalytic material characterized by having a surface structure that reduces the surface adsorbed water density by about 70%, or by 70% or more, compared to the case of 550 ° C. or lower. チタンゾル溶液をシリカフィルター上に担持し、乾燥固化処理、ついで熱処理を施すことにより得られる柱状の光触媒材料であって、該光触媒材料は、一次粒子間隙からなる微細孔が閉塞した角柱状多結晶体を備えた表面構造を有するものであり、これにより、前記熱処理温度を500℃以上550℃未満とする場合と比較して表面吸着水密度を約70%減少させる、もしくは70%以上減少させるものであることを特徴とする、光触媒材料。 A columnar photocatalyst material obtained by supporting a titanium sol solution on a silica filter, drying and solidifying, and then heat-treating the columnar photocatalyst material. The surface adsorbed water density is reduced by about 70% compared to the case where the heat treatment temperature is set to 500 ° C. or more and less than 550 ° C., or 70% or more. A photocatalytic material characterized by being. チタンゾル溶液をシリカフィルター上に担持し、乾燥固化処理、ついで熱処理を施すことにより得られる柱状の光触媒材料であって、該光触媒材料は、一次粒子間隙からなる細孔内の表面積が3.9m/g以上10.2m/g以下であることを特徴とする、光触媒材料。
A columnar photocatalyst material obtained by carrying a titanium sol solution on a silica filter, drying and solidifying, and then heat-treating the photocatalyst material with a surface area in the pores composed of the primary particle gaps of 3.9 m 2. A photocatalytic material, wherein the photocatalytic material is at least 10.2 m 2 / g.
JP2005350567A 2005-12-05 2005-12-05 Photocatalytic material and method for preparing the same Pending JP2007152221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350567A JP2007152221A (en) 2005-12-05 2005-12-05 Photocatalytic material and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350567A JP2007152221A (en) 2005-12-05 2005-12-05 Photocatalytic material and method for preparing the same

Publications (1)

Publication Number Publication Date
JP2007152221A true JP2007152221A (en) 2007-06-21

Family

ID=38237244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350567A Pending JP2007152221A (en) 2005-12-05 2005-12-05 Photocatalytic material and method for preparing the same

Country Status (1)

Country Link
JP (1) JP2007152221A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150034A1 (en) 2007-06-08 2008-12-11 Canon Kabushiki Kaisha Image forming method, magnetic toner, and process unit
JP2013252501A (en) * 2012-06-08 2013-12-19 Institute Of National Colleges Of Technology Japan Method of producing oxide carrier, device for producing oxide carrier, oxide carrier and photocatalytic filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248443A (en) * 1987-04-01 1988-10-14 Agency Of Ind Science & Technol Photooxidation catalyst and its production
JPH07100378A (en) * 1993-09-30 1995-04-18 Agency Of Ind Science & Technol Photocatalyst of titanium oxide thin film and its production
JPH0899041A (en) * 1993-12-09 1996-04-16 Agency Of Ind Science & Technol Photocatalyst of titanium oxide porous thin film and preparation of the same
JP2002253975A (en) * 2001-03-02 2002-09-10 Hachinohe National College Of Technology Oxide photocatalytic material using organometallic compound and its application article
JP2005161259A (en) * 2003-12-04 2005-06-23 Andes Denki Kk Optical catalyst material and manufacturing method for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248443A (en) * 1987-04-01 1988-10-14 Agency Of Ind Science & Technol Photooxidation catalyst and its production
JPH07100378A (en) * 1993-09-30 1995-04-18 Agency Of Ind Science & Technol Photocatalyst of titanium oxide thin film and its production
JPH0899041A (en) * 1993-12-09 1996-04-16 Agency Of Ind Science & Technol Photocatalyst of titanium oxide porous thin film and preparation of the same
JP2002253975A (en) * 2001-03-02 2002-09-10 Hachinohe National College Of Technology Oxide photocatalytic material using organometallic compound and its application article
JP2005161259A (en) * 2003-12-04 2005-06-23 Andes Denki Kk Optical catalyst material and manufacturing method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008150034A1 (en) 2007-06-08 2008-12-11 Canon Kabushiki Kaisha Image forming method, magnetic toner, and process unit
JP2013252501A (en) * 2012-06-08 2013-12-19 Institute Of National Colleges Of Technology Japan Method of producing oxide carrier, device for producing oxide carrier, oxide carrier and photocatalytic filter

Similar Documents

Publication Publication Date Title
TW201302608A (en) Porous carbon and method for producing same
JP4145923B2 (en) Titanium oxide particles, manufacturing method thereof, manufacturing apparatus, and processing method using the titanium oxide
KR20050067150A (en) Photocatalyst material and process for producing the same
JP2002370034A (en) Oxide photocatalyst material using inorganic metallic compound and applied article thereof
JP5002864B2 (en) Oxide photocatalyst materials using organometallic compounds and their applications
Ohya et al. Crystallization and Microstructure Development of Sol–Gel‐Derived Titanium Dioxide Thin Films with Single and Multiple Layers
JP2007152221A (en) Photocatalytic material and method for preparing the same
JP4163374B2 (en) Photocatalytic membrane
CN104619415A (en) Catalyst for exhaust gas purification, and method for producing same
KR102058629B1 (en) Photocatalytic Structure Having Catalytic Ingredients Immobilized on Substrate Using Lattice Matching and Method for Preparing the Same
KR101606794B1 (en) ZnS-ZnO COMPOSITE FORMING METHOD USING THERMAL TREATMENT AND ZnS-ZnO COMPOSITE PRODUCED THEREOF
Liu et al. Relationship between N-doping induced point defects by annealing in ammonia and enhanced thermal stability for anodized titania nanotube arrays
JP2003299965A (en) Photocatalyst material and production method of the same
KR20230167939A (en) Ozone decomposing catalyst and method for fabricating the same
JP2002253964A (en) Oxide photocatalytic material using organometallic compound and application article thereof
JP2000126613A (en) Production of photocatalyst
CN109225290B (en) Intercalation and delamination of Ti with hydrazine hydrate3C2In-situ synthesis of TiO2@Ti3C2Method and product of
JPH02184511A (en) Production of porous graphite
JP3685365B2 (en) Refined silicon carbide powder for semiconductor device member, purification method thereof, and method for producing sintered body for semiconductor device member obtained from the powder
KR20030028325A (en) Process for Preparing Activated Carbon Having Nano-structure Photocatalyst
JP7125290B2 (en) photocatalyst
KR101914160B1 (en) Mesoporous silica composite powder coated with titanium dioxide and method for preparing the same
KR101562559B1 (en) Method of manufacturing of porous metal oxide and the porous metal oxide thereby
CN110560028B (en) Preparation method of rutile phase titanium dioxide/graphene film
JP2008142659A (en) Method of manufacturing photocatalyst coating film and photocatalyst member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120419