JP2636158B2 - Titanium oxide porous thin film photocatalyst and method for producing the same - Google Patents

Titanium oxide porous thin film photocatalyst and method for producing the same

Info

Publication number
JP2636158B2
JP2636158B2 JP5341563A JP34156393A JP2636158B2 JP 2636158 B2 JP2636158 B2 JP 2636158B2 JP 5341563 A JP5341563 A JP 5341563A JP 34156393 A JP34156393 A JP 34156393A JP 2636158 B2 JP2636158 B2 JP 2636158B2
Authority
JP
Japan
Prior art keywords
titanium oxide
thin film
porous thin
oxide porous
photocatalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5341563A
Other languages
Japanese (ja)
Other versions
JPH0899041A (en
Inventor
一実 加藤
博史 垰田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP5341563A priority Critical patent/JP2636158B2/en
Priority to US08/351,697 priority patent/US6284314B1/en
Publication of JPH0899041A publication Critical patent/JPH0899041A/en
Application granted granted Critical
Publication of JP2636158B2 publication Critical patent/JP2636158B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Catalysts (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、悪臭や空気中の有害物
質除去あるいは廃水処理や浄水処理などの環境浄化材料
として用いられる酸化チタン多孔質薄膜光触媒及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a titanium oxide porous thin-film photocatalyst which is used as an environmental purification material for removing bad smells and harmful substances in the air or for treating wastewater and water, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、居住空間や作業空間での悪臭や自
動車の排気ガスなどの有害物質による汚染が深刻な問題
となっている。また、生活排水や産業廃水などによる水
質汚染、特に、現在行われている活性汚泥法などの水処
理法では処理が難しい有機塩素系の溶剤やゴルフ場の農
薬などによる水源の汚染なども広範囲に進んでおり、環
境の汚染が重大な社会問題となっている。
2. Description of the Related Art In recent years, odors in living and working spaces and pollution by harmful substances such as exhaust gas from automobiles have become serious problems. Water pollution from domestic wastewater and industrial wastewater, especially water pollution from organic chlorine-based solvents and pesticides at golf courses, etc., which are difficult to treat with the current water treatment methods such as activated sludge, is widespread. Environmental pollution is becoming a serious social problem.

【0003】従来、悪臭防止法あるいは空気中の有害物
質の除去法として、酸やアルカリなどの吸収液や、吸着
剤、土壌などに吸収あるいは吸着させる方法がよく行わ
れているが、この方法は廃液や使用済みの吸着剤や土壌
の処理が問題で、二次公害を起こす恐れがある。また、
芳香剤を使用して悪臭を隠ぺいする方法や、活性汚泥や
オゾンで分解する方法もあるが、芳香剤の場合には芳香
剤自体の臭いによる汚染の問題があり、活性汚泥の場合
には処理能力が低く、かつ汚泥臭の発散が避けられず、
オゾンの場合には有毒でコストがかかるという欠点を持
っている(例えば、西田耕之助、平凡社「大百科事典」
1巻、p136 (1984))。
Hitherto, as a method of preventing odors or a method of removing harmful substances in the air, a method of absorbing or adsorbing to an absorbing solution such as an acid or an alkali, an adsorbent, soil, etc. is often performed. Treatment of waste liquor, used adsorbents and soil can cause secondary pollution. Also,
There are methods to mask odors using fragrances and methods to decompose with activated sludge or ozone.However, in the case of fragrances, there is a problem of contamination due to the odor of the fragrance itself. The ability is low, and the emission of sludge odor is inevitable,
Ozone has the disadvantage that it is toxic and costly (for example, Konosuke Nishida, Heibonsha "Large Encyclopedia")
Volume 1, p136 (1984)).

【0004】半導体に光を照射すると強い還元作用を持
つ電子と強い酸化作用を持つ正孔が生成し、半導体に接
触した分子種を酸化還元作用により分解する。半導体の
このような作用、すなわち光触媒作用を利用することに
よって、水中に溶解している有機溶剤や農薬、界面活性
剤などの環境汚染物質や空気中の有害物質の分解除去を
行うことができる。この方法は半導体と光を利用するだ
けであり、微生物を用いる生物処理などの方法に比べ
て、温度、pH、ガス雰囲気、毒性などの反応条件の制
約が少なく、しかも生物処理法では処理しにくい有機ハ
ロゲン化合物や有機リン化合物のようなものでも容易に
分解・除去できるという長所を持っている。しかし、こ
れまで行われてきた光触媒による有機物の分解除去の研
究では、光触媒として半導体粉末が用いられていた(例
えば、A. L. Pruden and D. F. Ollis, Journal of Cat
alysis, Vol.82, 404 (1983)、H. Hidaka, H. Jou, K.
Nohara, J. Zhao, Chemosphere, Vol.25, 1589 (199
2)、久永輝明、原田賢二、田中啓一、工業用水、第379
号、12 (1990))。そのため、光触媒としての取扱いや
使用が難しく、水処理の場合、光触媒粉末を回収するた
め、処理した水を濾過しなければならないが、光触媒が
微粉末であるため目詰まりを起こしたりして、濾過が容
易でなく、処理物と光触媒との分離や回収が困難で、連
続的に水処理できないなどの問題があった。
When a semiconductor is irradiated with light, electrons having a strong reducing action and holes having a strong oxidizing action are generated, and molecular species in contact with the semiconductor are decomposed by the redox action. By utilizing such an action of a semiconductor, that is, a photocatalytic action, it is possible to decompose and remove environmental pollutants such as organic solvents, pesticides, and surfactants dissolved in water and harmful substances in the air. This method only utilizes semiconductors and light, and has less restrictions on reaction conditions such as temperature, pH, gas atmosphere, toxicity, and the like, and is difficult to process using a biological treatment method, as compared to methods such as biological treatment using microorganisms. It has the advantage of being able to easily decompose and remove even compounds such as organic halogen compounds and organic phosphorus compounds. However, semiconductor powders have been used as a photocatalyst in research on decomposition and removal of organic substances by a photocatalyst (for example, see AL Pruden and DF Ollis, Journal of Cat.
alysis, Vol. 82, 404 (1983), H. Hidaka, H. Jou, K.
Nohara, J. Zhao, Chemosphere, Vol. 25, 1589 (199
2), Kusunaga Teruaki, Harada Kenji, Tanaka Keiichi, Industrial Water, No. 379
No. 12, (1990)). Therefore, it is difficult to handle and use as a photocatalyst.In the case of water treatment, the treated water must be filtered to recover the photocatalyst powder.However, since the photocatalyst is a fine powder, clogging may occur. However, there is a problem that it is difficult to separate and recover the treated product and the photocatalyst, and it is not possible to continuously treat water.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の点に鑑
み、悪臭や空気中の有害物質除去あるいは廃水処理や浄
水処理などを連続的に行うことができ、環境浄化材料と
して環境汚染物質の分解除去効果とその持続性に優れ、
しかも経済性、安全性、耐水性、耐熱性、耐光性、耐候
性、安定性という面からも優れた特性を有する酸化チタ
ン多孔質薄膜光触媒及びその製造方法の提供を目的とす
るものである。
SUMMARY OF THE INVENTION In view of the above, the present invention enables continuous removal of odors and harmful substances in the air, wastewater treatment, water purification treatment, and the like. Excellent decomposition removal effect and its persistence,
Moreover, it is an object of the present invention to provide a titanium oxide porous thin film photocatalyst having excellent properties in terms of economy, safety, water resistance, heat resistance, light resistance, weather resistance, and stability, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者は上記の目的を
達成するため、鋭意研究を重ねた結果、ポリエチレング
リコールまたはポリエチレンオキサイドを添加したチタ
ニアゾルを基板にコーティングした後、加熱焼成するこ
とによって製造した酸化チタン薄膜が、表面に孔径の揃
った細孔を有し、光の照射によって生成した電子と正孔
の酸化還元作用により、悪臭や空気中の有害物質あるい
は水中に溶解している有機溶剤や農薬などの環境を汚染
している有機化合物を迅速に分解除去し、しかもメンテ
ナンスフリーでその効果を持続できることを見い出し、
本発明をなすに至った。
Means for Solving the Problems To achieve the above object, the present inventors have conducted intensive studies. As a result, a titania sol to which polyethylene glycol or polyethylene oxide has been added is coated on a substrate and then heated and fired. The titanium oxide thin film has pores with uniform pore diameters on the surface, and the redox action of electrons and holes generated by light irradiation causes odor and harmful substances in the air or organic solvents dissolved in water. Quickly decomposes and removes organic compounds contaminating the environment such as food and agricultural chemicals, and finds that the effect can be maintained without maintenance.
The present invention has been made.

【0007】本発明に用いられるチタニアゾルは、超微
粒子の酸化チタンを水に懸濁させたり、アルコールと四
塩化チタンや金属チタンとの反応などによって得られる
チタンのアルコキシドを加水分解したりすることによっ
て調製される。その際、モノエタノールアミンやジエタ
ノールアミン、トリエタノールアミン、N−メチルジエ
タノールアミン、N−エチルジエタノールアミン、N,
N−ジメチルジアミノエタノール、ジイソプロパノール
アミンなどのアルコールアミン類やジエチレングリコー
ルなどのグリコール類を添加すると均一で透明なチタニ
アゾルが得られ、それを用いることによって高性能の酸
化チタン多孔質薄膜光触媒を製造することができる。
The titania sol used in the present invention is obtained by suspending ultrafine titanium oxide in water or hydrolyzing an alkoxide of titanium obtained by a reaction between alcohol, titanium tetrachloride, and titanium metal. Prepared. At that time, monoethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N-ethyldiethanolamine, N,
Addition of alcohol amines such as N-dimethyldiaminoethanol and diisopropanolamine, and glycols such as diethylene glycol can provide a uniform and transparent titania sol, and by using the same, produce a high performance titanium oxide porous thin film photocatalyst. Can be.

【0008】本発明の酸化チタン多孔質薄膜光触媒は、
こうして得られたチタニアゾルにポリエチレングリコー
ルまたはポリエチレンオキサイドを添加し、ディップコ
ーティング法やスピンコーティング法、塗布法、スプレ
ー法などによって基板にコーティングした後、加熱焼成
することによって得られる。この際、室温から徐々に加
熱昇温して焼成することが望ましい。また、この時の昇
温の最終温度、つまり焼成温度は600℃から700℃
が好ましい。この操作によって、基板にコーティングさ
れたチタニアゾルは、光触媒として高性能の、結晶形が
アナターゼである酸化チタン薄膜に変わる。この時、直
接、600℃から700℃の温度で焼成したり、焼成温
度が600℃より低かったり、700℃より高かったり
した場合には、光触媒として低活性なルチルや非晶質の
混じった酸化チタン薄膜しか得られない。また、丈夫で
高性能の酸化チタン薄膜を得るためには、ポリエチレン
グリコールまたはポリエチレンオキサイドを添加したチ
タニアゾルを薄く均一に塗布あるいはスプレーあるいは
スピンコートしたり、ディップコーティングで引き上げ
速度を遅くして引き上げたりした後、それを加熱焼成す
ることによって、酸化チタンの薄膜を作り、この作業を
繰り返すことによって多層膜を作製することが望まし
い。それにより、厚くて丈夫で光触媒作用の大きな透明
で多孔質の酸化チタン膜を得ることができる。
The titanium oxide porous thin film photocatalyst of the present invention comprises:
Polyethylene glycol or polyethylene oxide is added to the thus obtained titania sol, coated on a substrate by a dip coating method, a spin coating method, a coating method, a spray method, or the like, and then heated and fired. At this time, it is desirable to heat and gradually raise the temperature from room temperature to fire. In addition, the final temperature of the heating, that is, the firing temperature is from 600 ° C. to 700 ° C.
Is preferred. By this operation, the titania sol coated on the substrate is converted into a titanium oxide thin film having a high performance as a photocatalyst and a crystalline form of anatase. At this time, when calcination is directly performed at a temperature of 600 ° C. to 700 ° C., or when the calcination temperature is lower than 600 ° C. or higher than 700 ° C., oxidation with low activity of rutile or amorphous as a photocatalyst is performed. Only a titanium thin film can be obtained. In addition, in order to obtain a durable and high-performance titanium oxide thin film, titania sol to which polyethylene glycol or polyethylene oxide was added was thinly and uniformly applied, sprayed or spin-coated, or pulled up by dip coating at a lower pulling speed. Thereafter, it is desirable to form a titanium oxide thin film by heating and firing it, and to repeat this operation to produce a multilayer film. This makes it possible to obtain a thick and durable transparent and porous titanium oxide film having a large photocatalytic action.

【0009】本発明に用いられるチタニアゾルに添加す
るポリエチレングリコールまたはポリエチレンオキサイ
ドは、分子量が1000以上のものが好ましく、その中
でも特に、分子量が1000、1500、2000、3
000、6000、8000、11000、1300
0、2万、10万、30万、200万、250万のもの
等が好ましい。分子量が1000未満のものを用いた場
合には、出来上がった酸化チタン多孔質薄膜が基板から
剥離しやすくなり、きれいで丈夫な膜ができない。
[0009] The polyethylene glycol or polyethylene oxide to be added to the titania sol used in the present invention preferably has a molecular weight of 1,000 or more.
000, 6000, 8000, 11000, 1300
Those having 0, 20,000, 100,000, 300,000, 2,000,000, and 2.5 million are preferable. If the molecular weight is less than 1,000, the resulting porous titanium oxide film is easily peeled off the substrate, and a clean and durable film cannot be obtained.

【0010】本発明に用いられるチタニアゾルに添加す
るポリエチレングリコールまたはポリエチレンオキサイ
ドの量は、その溶解度以下であることが好ましい。溶解
度以上に添加した場合には、孔径の揃った細孔になら
ず、また、きれいな膜ができない。
[0010] The amount of polyethylene glycol or polyethylene oxide added to the titania sol used in the present invention is preferably not more than its solubility. When added in excess of the solubility, the pores do not become uniform in size and a clean film cannot be formed.

【0011】本発明の酸化チタン多孔質薄膜光触媒の表
面の細孔径の大きさや細孔分布の密度は、ポリエチレン
グリコールまたはポリエチレンオキサイドの添加量や分
子量を変えることによって制御することができる。添加
量を少なくしたり、分子量の小さいものを使用した場合
には小さな細孔が揃った酸化チタン多孔質薄膜光触媒
が、添加量を多くしたり、分子量の大きなものを使用し
た場合には大きな細孔が揃った酸化チタン多孔質薄膜光
触媒が得られる。そして、添加量が少ない場合には細孔
の分布の密度のまばらな酸化チタン多孔質薄膜光触媒
が、添加量が多い場合には細孔の分布が密な多孔質薄膜
光触媒が得られる。また、分子量分布の広いポリエチレ
ングリコールまたはポリエチレンオキサイドを添加した
場合には、色々な孔径の細孔を持った多孔質薄膜光触媒
が得られる。さらに、薄膜を積層することにより、特異
な三次元構造を持った酸化チタン多孔質薄膜光触媒を得
ることができる。
The size of the pore diameter and the density of the pore distribution on the surface of the titanium oxide porous thin film photocatalyst of the present invention can be controlled by changing the amount of addition or molecular weight of polyethylene glycol or polyethylene oxide. A titanium oxide porous thin-film photocatalyst with small pores is used when the addition amount is small or a small molecular weight is used, and a large fine particle is used when the addition amount is large or a large molecular weight is used. A titanium oxide porous thin film photocatalyst with uniform pores is obtained. When the addition amount is small, a titanium oxide porous thin film photocatalyst having a sparse distribution of pores is obtained, and when the addition amount is large, a porous thin film photocatalyst having a fine pore distribution is obtained. When polyethylene glycol or polyethylene oxide having a wide molecular weight distribution is added, a porous thin-film photocatalyst having pores of various pore sizes can be obtained. Further, by laminating the thin films, a titanium oxide porous thin film photocatalyst having a unique three-dimensional structure can be obtained.

【0012】本発明の酸化チタン多孔質薄膜光触媒を製
造する際に使用される基板はガラスやセラミックス、コ
ンクリート、金属など、600℃から700℃の温度で
の焼成に耐えられるものであれば、どの様な材質であっ
ても良い。また、その形状も板状、円筒状、角柱状、円
錐状、球状、瓢箪型、ラグビーボール型など、どのよう
な形であっても良い。また。基板が閉じた形であって
も、蓋があってもなくてもよく、円管状や角管状、ファ
イバー状、さらにはマイクロバルーンのような中空の球
状であっても良い。
The substrate used for producing the titanium oxide porous thin film photocatalyst of the present invention is made of any material, such as glass, ceramics, concrete, and metal, as long as it can withstand firing at a temperature of 600 ° C. to 700 ° C. Various materials may be used. The shape may be any shape such as a plate, a cylinder, a prism, a cone, a sphere, a gourd, and a rugby ball. Also. The substrate may have a closed shape, may or may not have a lid, and may have a circular or square tubular shape, a fiber shape, or a hollow spherical shape such as a microballoon.

【0013】本発明の酸化チタン多孔質薄膜光触媒の性
能をさらに上げるため、その表面に白金やロジウム、ル
テニウム、パラジウム、銀、銅、鉄、亜鉛などの金属皮
膜を被覆しても良い。これらの金属皮膜を表面に被覆す
る方法としては、光電着法やCVD法、スパッタリング
や真空蒸着などのPVD法などが挙げられる。この場
合、金属皮膜の厚さを厚くし過ぎるとコストもかかり、
酸化チタン薄膜に光が到達し難くなるので、金属皮膜の
厚さはできるだけ薄い方が好ましい。
In order to further enhance the performance of the titanium oxide porous thin film photocatalyst of the present invention, the surface thereof may be coated with a metal film of platinum, rhodium, ruthenium, palladium, silver, copper, iron, zinc or the like. Examples of a method for coating the surface with these metal films include a photoelectrodeposition method, a CVD method, and a PVD method such as sputtering or vacuum deposition. In this case, if the thickness of the metal film is too thick, it costs too much,
Since light hardly reaches the titanium oxide thin film, the thickness of the metal film is preferably as thin as possible.

【0014】こうして得られた本発明による酸化チタン
多孔質薄膜光触媒は多孔質であるため、悪臭やNOx、
SOxなどの空気中の有害物質あるいは水中に溶解して
いる有機溶剤や農薬などの環境を汚染している有機化合
物を吸着し、太陽光や蛍光灯、白熱灯、ブラックライ
ト、UVランプ、水銀灯、キセノンランプ、ハロゲンラ
ンプ、メタルハライドランプなどからの人工光の照射に
よって酸化チタン薄膜に生成した電子と正孔の酸化還元
作用によって迅速に、かつ連続的に分解除去することが
できる。しかも、光を照射するだけで、低コスト・省エ
ネルギー的でかつメンテナンスフリーで使用できる。そ
して、その酸化チタン膜の上に白金あるいはロジウム、
ルテニウム、パラジウム、銀、銅、鉄、亜鉛の金属皮膜
を被覆した場合には、その触媒作用により有機化合物の
分解除去効果が一層増大する。この場合、酸化チタン薄
膜光触媒が多孔質であるため、金属がうまく分散して光
触媒を被覆するので、金属の触媒作用を特に効果的に引
き出すことができる。
Since the titanium oxide porous thin film photocatalyst according to the present invention thus obtained is porous, it has a bad odor, NOx,
Adsorbs harmful substances in the air such as SOx, organic solvents dissolved in water, and organic compounds contaminating the environment such as pesticides, sunlight, fluorescent lights, incandescent lights, black lights, UV lamps, mercury lamps, It can be rapidly and continuously decomposed and removed by the redox action of electrons and holes generated in the titanium oxide thin film by irradiation of artificial light from a xenon lamp, a halogen lamp, a metal halide lamp, or the like. In addition, only by irradiating light, it can be used at low cost, energy saving and maintenance-free. Then, platinum or rhodium on the titanium oxide film,
When a metal film of ruthenium, palladium, silver, copper, iron, or zinc is coated, its catalytic action further enhances the effect of decomposing and removing organic compounds. In this case, since the titanium oxide thin film photocatalyst is porous, the metal is well dispersed and covers the photocatalyst, so that the catalytic action of the metal can be particularly effectively brought out.

【0015】[0015]

【実施例】本発明の実施例の内で特に代表的なものを以
下に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Among the embodiments of the present invention, particularly representative ones will be described below.

【0016】実施例1 チタンテトライソプロポキシド45gを400mlの無
水エタノールで希釈し、攪拌しながら、トリエタノール
アミン15gと水4gを添加し、さらに分子量1500
のポリエチレングリコール4gを添加して透明なゾル液
を調製し、ディップコーティング法により7cm角で厚
さ1mmの石英ガラス管の表面に酸化チタン膜をコーテ
ィングした。すなわち、このゾル液に石英ガラス板を浸
漬して引き上げ、乾燥した後、室温から徐々に640℃
の温度にまで加熱昇温して焼成した。これを12回繰り
返して石英ガラス板の表面に0.5μmの酸化チタン膜
を作った。得られた酸化チタン膜の結晶構造をX線回折
によって調べた結果、アナターゼ100%であった。ま
た、その表面を電子顕微鏡で観察したところ、約20n
mの大きさの細孔で覆われていた。この酸化チタン多孔
質薄膜光触媒を用いて、悪臭物質の分解除去を行った。
まず、内部に市販の100Wのブラックライトをセット
した内容積30lの密閉容器の中に、得られた酸化チタ
ン多孔質薄膜光触媒をブラックライトに向けて置き、悪
臭物質としてトリメチルアミン80ppmを注射器で導
入した後、ブラックライトを点灯した。1時間後、密閉
容器の中の空気中に含まれるトリメチルアミンの濃度を
ガスクロマトグラフを用いて分析した結果、5ppmに
減少していた。酸化チタン薄膜光触媒を用いなかった場
合には、トリメチルアミンの濃度が73ppmにしか減
少しなかった。
Example 1 Titanium tetraisopropoxide (45 g) was diluted with 400 ml of absolute ethanol, and while stirring, 15 g of triethanolamine and 4 g of water were added.
Was added to prepare a transparent sol solution, and a titanium oxide film was coated on a surface of a 7 cm square quartz glass tube having a thickness of 1 mm by a dip coating method. That is, a quartz glass plate is immersed in this sol solution, pulled up, dried, and then gradually cooled to 640 ° C. from room temperature.
Then, the temperature was raised to the temperature described above, followed by firing. This was repeated 12 times to form a 0.5 μm titanium oxide film on the surface of the quartz glass plate. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. When the surface was observed with an electron microscope, about 20 n
m of pores. Using this titanium oxide porous thin film photocatalyst, the malodorous substances were decomposed and removed.
First, the obtained titanium oxide porous thin film photocatalyst was placed in a closed container having an internal volume of 30 l in which a commercially available 100 W black light was set, and the obtained titanium oxide porous thin film photocatalyst was introduced with a syringe at 80 ppm of trimethylamine as a malodorous substance. Later, the black light was turned on. One hour later, the concentration of trimethylamine contained in the air in the closed container was analyzed using a gas chromatograph, and as a result, it was found to be 5 ppm. When the titanium oxide thin film photocatalyst was not used, the concentration of trimethylamine was reduced to only 73 ppm.

【0017】実施例2 チタンテトライソプロポキシド60gを500mlの無
水エタノールで希釈し、攪拌しながら、ジエタノールア
ミン20gと水5gを添加し、さらに分子量1000の
ポリエチレングリコール5gを添加して透明なゾル液を
調製し、ディップコーティング法により8cm角で厚さ
1mmの石英ガラス板の表面に酸化チタン膜をコーティ
ングした。すなわち、このゾル液に石英ガラス板を浸漬
して引き上げ、乾燥した後、室温から徐々に680℃の
温度にまで加熱昇温して焼成した。これを9回繰り返し
て石英ガラス板の表面に0.4μmの酸化チタン膜を作
った。得られた酸化チタン膜の結晶構造をX線回折によ
って調べた結果、アナターゼ100%であった。また、
その表面を電子顕微鏡で観察したところ、約10nmの
大きさの細孔で覆われていた。この酸化チタン多孔質薄
膜光触媒を用いて、NOxの分解除去を行った。まず、
内部に市販の100Wの白熱灯をセットした内容積40
lの密閉容器の中に、得られた酸化チタン多孔質薄膜光
触媒を白熱灯に向けて置き、200ppmのNOxを注
射器で導入した後、白熱灯を点灯した。2時間後、密閉
容器内の空気中に含まれるNOxの濃度をガスクロマト
グラフを用いて分析した結果、10ppmに減少してい
た。酸化チタン多孔質薄膜光触媒を用いなかった場合に
は、NOxの濃度が187ppmにしか減少しなかっ
た。
Example 2 Titanium tetraisopropoxide (60 g) was diluted with 500 ml of absolute ethanol, and while stirring, 20 g of diethanolamine and 5 g of water were added, and 5 g of polyethylene glycol having a molecular weight of 1000 was further added to form a transparent sol solution. It was prepared and a titanium oxide film was coated on the surface of a quartz glass plate having a size of 8 cm square and a thickness of 1 mm by a dip coating method. That is, a quartz glass plate was immersed in this sol solution, pulled up, dried, and then heated and gradually heated from room temperature to a temperature of 680 ° C. and fired. This was repeated nine times to form a 0.4 μm titanium oxide film on the surface of the quartz glass plate. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. Also,
Observation of the surface with an electron microscope revealed that the surface was covered with pores having a size of about 10 nm. Using this titanium oxide porous thin film photocatalyst, NOx was decomposed and removed. First,
Internal volume 40 with a commercially available 100W incandescent lamp set inside
The obtained titanium oxide porous thin film photocatalyst was placed in an incandescent lamp of 1 l toward an incandescent lamp, and after 200 ppm of NOx was introduced by a syringe, the incandescent lamp was turned on. Two hours later, the concentration of NOx contained in the air in the closed container was analyzed using a gas chromatograph. As a result, the concentration was reduced to 10 ppm. When the titanium oxide porous thin film photocatalyst was not used, the concentration of NOx was reduced to only 187 ppm.

【0018】実施例3 チタンテトライソプロポキシド30gを200mlのイ
ソプロパノールで希釈し、攪拌しながら、ジイソプロパ
ノールアミン10gと水2gを添加し、さらに分子量2
万のポリエチレングリコール0.4gを添加して透明な
ゾル液を調製し、ディップコーティング法により直径8
mm、長さ60mm、厚さ1mmの石英ガラス管の表面
に酸化チタン膜をコーティングした。すなわち、このゾ
ル液に石英ガラス板を浸漬して引き上げ、乾燥した後、
室温から徐々に630℃にまで加熱昇温して焼成した。
これを7回繰り返して石英ガラス板の表面に0.3μm
の酸化チタン膜を作った。得られた酸化チタン膜の結晶
構造をX線回折によって調べた結果、アナターゼ100
%であった。また、その表面を電子顕微鏡で観察したと
ころ、約350nmの大きさの細孔で覆われていた。こ
の酸化チタン多孔質薄膜光触媒を用いて、現在、ハイテ
ク産業やクリーニング業で溶剤や洗浄剤として広く使用
され、地下水や土壌を汚染して問題となっているテトラ
クロロエチレンの分解を行った。100ppmの濃度の
テトラクロロエチレンの水溶液18mlを硬質ガラス製
試験管に入れ、その中に得られた酸化チタン多孔質薄膜
光触媒を浸し、酸素をバブリングした後、300Wのキ
セノンランプの光を45分間照射した。得られた反応液
に含まれるテトラクロロエチレンの量をガスクロマトグ
ラフを用いて分析した結果、テトラクロロエチレンの量
は96%減少していた。酸化チタン多孔質薄膜光触媒を
用いなかった場合には、反応液に含まれるテトラクロロ
エチレンの量はほとんど減少しなかった。
Example 3 30 g of titanium tetraisopropoxide was diluted with 200 ml of isopropanol, 10 g of diisopropanolamine and 2 g of water were added with stirring, and a molecular weight of 2 g was further added.
0.4 g of polyethylene glycol was added to prepare a transparent sol solution, and a diameter of 8 g was prepared by dip coating.
A surface of a quartz glass tube having a thickness of 60 mm, a length of 60 mm and a thickness of 1 mm was coated with a titanium oxide film. That is, a quartz glass plate is immersed in this sol solution, pulled up and dried,
It was heated and gradually heated from room temperature to 630 ° C. for firing.
This process was repeated seven times to make the surface of the quartz glass plate 0.3 μm
Made a titanium oxide film. The crystal structure of the obtained titanium oxide film was examined by X-ray diffraction.
%Met. When the surface was observed with an electron microscope, it was found to be covered with pores having a size of about 350 nm. This titanium oxide porous thin film photocatalyst was used to decompose tetrachloroethylene, which is widely used as a solvent and a cleaning agent in the high-tech industry and the cleaning industry, and has become a problem by contaminating groundwater and soil. 18 ml of a 100 ppm aqueous solution of tetrachloroethylene was placed in a hard glass test tube, and the obtained titanium oxide porous thin film photocatalyst was immersed in the tube and bubbled with oxygen, and then irradiated with a 300 W xenon lamp light for 45 minutes. As a result of analyzing the amount of tetrachloroethylene contained in the obtained reaction solution using a gas chromatograph, the amount of tetrachloroethylene was reduced by 96%. When the titanium oxide porous thin film photocatalyst was not used, the amount of tetrachloroethylene contained in the reaction solution hardly decreased.

【0019】実施例4 チタンテトラエトキシド25gを200mlをメタノー
ルで希釈し、攪拌しながら、N−メチルジエタノールア
ミン8gと水2gを添加し、さらに分子量10万のポリ
エチレンオキサイド0.1gを添加して透明なゾル液を
調製し、ディップコーティング法により直径10mm、
長さ60mm、厚さ1mmの石英ガラス管の表面に酸化
チタン膜をコーティングした。すなわち、このゾル液に
石英ガラス管を浸漬して引き上げ、乾燥した後、室温か
ら徐々に670℃の温度にまで加熱昇温して焼成した。
これを13回繰り返して石英ガラス板の表面に0.5μ
mの酸化チタン膜を作った。得られた酸化チタン膜の結
晶構造をX線回折によって調べた結果、アナターゼ10
0%であった。また、その表面を電子顕微鏡で観察した
ところ、約600nmの大きさの細孔で覆われていた。
この酸化チタン多孔質薄膜光触媒を用いて、ハイテク産
業やクリーニング業で溶剤や洗浄剤として広く使用さ
れ、地下水や土壌を汚染して問題となっているトリクロ
ロエチレンの分解を行った。500ppmの濃度のトリ
クロロエチレンの水溶液18mlを石英ガラス製試験管
に入れ、その中に得られた酸化チタン多孔質薄膜光触媒
を浸し、酸素をバブリングした後、500Wの高圧水銀
ランプの光を15分間照射した。得られた反応液に含ま
れるトリクロロエチレンの量をガスクロマトグラフを用
いて分析した結果、トリクロロエチレンの量は99%減
少していた。酸化チタン多孔質薄膜光触媒を用いなかっ
た場合には、反応液に含まれるトリクロロエチレンの量
はほとんど減少しなかった。
Example 4 200 g of titanium tetraethoxide (25 g) was diluted with methanol, and while stirring, 8 g of N-methyldiethanolamine and 2 g of water were added, and 0.1 g of polyethylene oxide having a molecular weight of 100,000 was further added. A sol solution is prepared, and the diameter is 10 mm by a dip coating method.
A surface of a 60 mm long, 1 mm thick quartz glass tube was coated with a titanium oxide film. That is, a quartz glass tube was immersed in this sol solution, pulled up, dried, and then heated and gradually heated from room temperature to a temperature of 670 ° C. and fired.
This was repeated 13 times, and 0.5 μm was applied to the surface of the quartz glass plate.
m of titanium oxide film. The crystal structure of the obtained titanium oxide film was examined by X-ray diffraction.
It was 0%. When the surface was observed with an electron microscope, it was found to be covered with pores having a size of about 600 nm.
This titanium oxide porous thin film photocatalyst was used to decompose trichlorethylene, which is widely used as a solvent and a cleaning agent in the high-tech industry and the cleaning industry, and has become a problem in polluting groundwater and soil. 18 ml of an aqueous solution of trichloroethylene having a concentration of 500 ppm was placed in a test tube made of quartz glass, and the obtained titanium oxide porous thin film photocatalyst was immersed therein, and oxygen was bubbled thereinto, followed by irradiation with light from a 500 W high-pressure mercury lamp for 15 minutes. . As a result of analyzing the amount of trichlorethylene contained in the obtained reaction solution using a gas chromatograph, the amount of trichlorethylene was reduced by 99%. When the titanium oxide porous thin film photocatalyst was not used, the amount of trichlorethylene contained in the reaction solution hardly decreased.

【0020】実施例5 チタンテトライソプロポキシド14gを100mlの無
水エタノールで希釈し、攪拌しながら、N−エチルジエ
タノールアミン5gと水1gを添加し、さらに分子量2
000のポリエチレングリコール1gを添加して透明な
ゾル液を調製し、ディップコーティング法により縦7c
m、横2cm、厚さ1mmの石英ガラス板の表面に酸化
チタン膜をコーティングした。すなわち、このゾル液に
石英ガラス板を浸漬して引き上げ、乾燥した後、室温か
ら徐々に650℃の温度にまで加熱昇温して焼成した。
これを10回繰り返して石英ガラス板の表面に0.4μ
mの酸化チタン膜を作った。得られた酸化チタン膜の結
晶構造をX線回折によって調べた結果、アナターゼ10
0%であった。また、その表面を電子顕微鏡で観察した
ところ、約50nmの大きさの細孔で覆われていた。こ
の酸化チタン多孔質薄膜光触媒を用いて、酢酸の分解を
行った。120ppmの濃度の酢酸の水溶液1mlを幅
20mm、長さ30mm、厚さ3mmの石英セルに入
れ、その中に得られた酸化チタン薄膜光触媒を浸し、酸
素をバブリングした後、100Wの水銀ランプの光を3
0分間照射した。得られた反応液に含まれる酢酸の量を
ガスクロマトグラフを用いて分析した結果、酢酸の量は
85%減少していた。酸化チタン多孔質薄膜光触媒を用
いなかった場合には、反応液に含まれる酢酸の量はほと
んど減少しなかった。
Example 5 14 g of titanium tetraisopropoxide was diluted with 100 ml of absolute ethanol, and while stirring, 5 g of N-ethyldiethanolamine and 1 g of water were added.
000 g of polyethylene glycol was added to prepare a transparent sol solution, and a vertical sol was prepared by dip coating.
A titanium oxide film was coated on the surface of a quartz glass plate having a width of 2 m, a width of 2 cm and a thickness of 1 mm. That is, a quartz glass plate was immersed in this sol solution, pulled up, dried, and then heated and gradually heated from room temperature to a temperature of 650 ° C. and fired.
This was repeated 10 times, and 0.4 μm was applied to the surface of the quartz glass plate.
m of titanium oxide film. The crystal structure of the obtained titanium oxide film was examined by X-ray diffraction.
It was 0%. When the surface was observed with an electron microscope, it was found to be covered with pores having a size of about 50 nm. Using this titanium oxide porous thin film photocatalyst, acetic acid was decomposed. 1 ml of an aqueous solution of acetic acid having a concentration of 120 ppm was placed in a quartz cell having a width of 20 mm, a length of 30 mm, and a thickness of 3 mm. The obtained titanium oxide thin-film photocatalyst was immersed therein, and oxygen was bubbled therein. 3
Irradiated for 0 minutes. As a result of analyzing the amount of acetic acid contained in the obtained reaction solution using a gas chromatograph, the amount of acetic acid was reduced by 85%. When the titanium oxide porous thin film photocatalyst was not used, the amount of acetic acid contained in the reaction solution hardly decreased.

【0021】実施例6 チタンテトラブトキシド20gを150mlのt−ブチ
ルアルコールで希釈し、攪拌しながら、トリエタノール
アミン7gと水1.5gを添加し、さらに分子量200
万のポリエチレンオキサイド0.1gを添加して透明な
ゾル液を調製し、ディップコーティング法により20m
m角で厚さ1mmの石英ガラス板の表面に酸化チタン膜
をコーティングした。すなわち、このゾル液に石英ガラ
ス板を浸漬して引き上げ、乾燥した後、室温から徐々に
690℃の温度にまで加熱昇温して焼成した。これを2
0回繰り返して石英ガラス板の表面に0.8μmの酸化
チタン膜を作った。得られた酸化チタン膜の結晶構造を
X線回折によって調べた結果、アナターゼ100%であ
った。また、その表面を電子顕微鏡で観察したところ、
約1200nmの大きさの細孔で覆われていた。この酸
化チタン膜を2g/lの塩化白金酸カリウムのエタノー
ル水溶液に漬け、マグネチックスターラーで攪拌しなが
ら、100Wの水銀ランプの光を1時間照射し、光電着
法で酸化チタン膜の表面に白金をコートした。得られた
酸化チタン多孔質薄膜光触媒を用いて、有機リン系の農
薬である4−ニトロフェニルエチルフェニルホスフィナ
ートの分解を行った。1000ppmの濃度の4−ニト
ロフェニルエチルフェニルホスフィナートの水溶液20
0mlを300mlの石英ビーカーに入れ、その中に得
られた酸化チタン薄膜光触媒を浸し、酸素をバブリング
した後、200Wの水銀ランプの光を20分間照射し
た。得られた反応液に含まれる4−ニトロフェニルエチ
ルフェニルホスフィナートの量をガスクロマトグラフを
用いて分析した結果、元の量の5%に減少していた。酸
化チタン多孔質薄膜光触媒を用いなかった場合には、反
応液に含まれる4−ニトロフェニルエチルフェニルホス
フィナートの量はほとんど減少しなかった。
Example 6 20 g of titanium tetrabutoxide was diluted with 150 ml of t-butyl alcohol, and while stirring, 7 g of triethanolamine and 1.5 g of water were added.
0.1 g of polyethylene oxide was added to prepare a transparent sol solution, and the solution was prepared for 20 m by dip coating.
A titanium oxide film was coated on the surface of a 1 mm thick quartz glass plate having an m square. That is, a quartz glass plate was immersed in the sol solution, pulled up, dried, and then heated and gradually heated from room temperature to a temperature of 690 ° C. and fired. This is 2
The process was repeated 0 times to form a 0.8 μm titanium oxide film on the surface of the quartz glass plate. As a result of examining the crystal structure of the obtained titanium oxide film by X-ray diffraction, it was found to be 100% anatase. When the surface was observed with an electron microscope,
It was covered with pores having a size of about 1200 nm. This titanium oxide film was immersed in a 2 g / l aqueous solution of potassium chloroplatinate in ethanol and irradiated with light from a 100 W mercury lamp for 1 hour while stirring with a magnetic stirrer. Was coated. Using the obtained titanium oxide porous thin film photocatalyst, 4-nitrophenylethylphenylphosphinate, which is an organic phosphorus-based pesticide, was decomposed. Aqueous solution of 4-nitrophenylethylphenylphosphinate at a concentration of 1000 ppm 20
0 ml was placed in a 300 ml quartz beaker, and the obtained titanium oxide thin film photocatalyst was immersed in the beaker. After bubbling oxygen, light from a 200 W mercury lamp was irradiated for 20 minutes. The amount of 4-nitrophenylethylphenylphosphinate contained in the obtained reaction solution was analyzed by gas chromatography, and as a result, it was reduced to 5% of the original amount. When the titanium oxide porous thin film photocatalyst was not used, the amount of 4-nitrophenylethylphenyl phosphinate contained in the reaction solution hardly decreased.

【0022】[0022]

【発明の効果】本発明は以上説明したように、空気中の
悪臭物質や水中に溶解している有機化合物などの環境汚
染物質の分解除去能力や菌やカビの繁殖防止効果とその
持続性に優れ、しかも経済性、安全性、耐水性、耐熱
性、耐光性、耐候性、安定性という面からも優れた特性
を有する酸化チタン多孔質薄膜光触媒及びその製造方法
の提供を目的としたものである。本発明に用いられる酸
化チタンは塗料や化粧品、歯磨き粉などにも使われてお
り、耐候性や耐久性に優れ、無毒かつ安全など、数多く
の利点を持っている。本発明による酸化チタン多孔質薄
膜光触媒は、電灯あるいは太陽光などの外部からの光を
受けて酸化チタン膜に生成した電子と正孔の酸化還元作
用により、悪臭やNOx、SOxなどの空気中の有害物
質あるいは水中に溶解している有機溶剤や農薬などの環
境を汚染している有機化合物を分解するが、酸化チタン
膜が多孔質であるため、環境汚染物質の濃度が薄い場合
でも吸着することにより、迅速に、かつ効果的に分解除
去することができる。しかも、従来のオゾン処理などの
方法に比べ、オゾンのような有毒な物質を使用せず、光
を照射するだけでよく、電灯の光や自然光でもよいた
め、低コスト・省エネルギー的、かつ安全に、メンテナ
ンスフリーで長期間使用できる。そして、その酸化チタ
ン薄膜に白金あるいはロジウム、ルテニウム、パラジウ
ム、銀、銅、鉄、亜鉛などを被覆すれば、その触媒作用
により分解除去効果がさらに増大し、メンテナンスフリ
ーでその効果が持続する。
As described above, the present invention has the ability to decompose and remove environmental pollutants such as malodorous substances in the air and organic compounds dissolved in water, as well as the effect of preventing the growth of bacteria and mold, and its sustainability. The purpose of the present invention is to provide a titanium oxide porous thin film photocatalyst having excellent properties and excellent properties in terms of economy, safety, water resistance, heat resistance, light resistance, weather resistance, and stability, and a method for producing the same. is there. The titanium oxide used in the present invention is also used in paints, cosmetics, toothpastes, etc., and has many advantages such as excellent weather resistance and durability, non-toxicity and safety. The titanium oxide porous thin film photocatalyst according to the present invention is capable of generating an odor, NOx, SOx and the like in the air due to the redox action of electrons and holes generated in the titanium oxide film by receiving external light such as an electric lamp or sunlight. Decomposes harmful substances or organic compounds that are polluting the environment, such as organic solvents or pesticides dissolved in water.Because the titanium oxide film is porous, it absorbs even when the concentration of environmental pollutants is low. Thereby, it can be quickly and effectively decomposed and removed. Moreover, compared to conventional methods such as ozone treatment, no toxic substances such as ozone are used, and only light irradiation is required, and light or natural light may be used. It is maintenance-free and can be used for a long time. If the titanium oxide thin film is coated with platinum or rhodium, ruthenium, palladium, silver, copper, iron, zinc, or the like, the catalytic action further increases the decomposition removal effect and maintains the effect without maintenance.

【0023】さらに、本発明による酸化チタン多孔質薄
膜光触媒は、自動車の車内や居間や台所、トイレなどの
脱臭、廃水処理、プールや貯水の浄化だけでなく、菌や
カビの繁殖防止を効果的に行うことができるなど、幅広
い用途に適用できる。そして、酸化チタン膜の上に白金
やロジウム、ルテニウム、パラジウム、銀、銅、鉄、亜
鉛などの金属皮膜を被覆した場合には、その触媒作用に
より金属皮膜が抗菌抗カビ作用を持っているため、膜上
の雑菌及びカビの繁殖を効果的に防止することができ
る。
Further, the titanium oxide porous thin-film photocatalyst according to the present invention is effective not only for deodorization of interiors of cars, living rooms, kitchens, toilets, etc., treatment of wastewater, purification of pools and stored water, but also prevention of propagation of bacteria and mold. It can be applied to a wide range of applications. When a metal film such as platinum, rhodium, ruthenium, palladium, silver, copper, iron, or zinc is coated on a titanium oxide film, the metal film has an antibacterial and antifungal effect due to its catalytic action. In addition, propagation of various bacteria and mold on the membrane can be effectively prevented.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C02F 1/72 101 B01D 53/36 J ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location C02F 1/72 101 B01D 53/36 E

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 1nm〜2μmの任意の孔径で孔径の揃
った細孔を表面に有することを特徴とする酸化チタン多
孔質薄膜光触媒。
1. A titanium oxide porous thin-film photocatalyst having pores having an arbitrary pore diameter of 1 nm to 2 μm and a uniform pore diameter on its surface.
【請求項2】 酸化チタン多孔質薄膜の結晶形がアナタ
ーゼであることを特徴とする請求項1記載の酸化チタン
多孔質薄膜光触媒。
2. The photocatalyst of titanium oxide porous thin film according to claim 1, wherein the crystalline form of the titanium oxide porous thin film is anatase.
【請求項3】 ポリエチレングリコールまたはポリエチ
レンオキサイドを添加したチタニアゾルを基板にコーテ
ィングした後、加熱焼成することを特徴とする酸化チタ
ン多孔質薄膜光触媒の製造方法。
3. A method for producing a titanium oxide porous thin film photocatalyst, which comprises coating a substrate with a titania sol to which polyethylene glycol or polyethylene oxide has been added, followed by heating and firing.
【請求項4】 ポリエチレングリコールまたはポリエチ
レンオキサイドとして分子量が1000以上のものを用
いることを特徴とする請求項3記載の酸化チタン多孔質
薄膜光触媒の製造方法。
4. The method for producing a titanium oxide porous thin film photocatalyst according to claim 3, wherein a polyethylene glycol or polyethylene oxide having a molecular weight of 1,000 or more is used.
【請求項5】 チタニアゾルに対するポリエチレングリ
コールまたはポリエチレンオキサイドの添加量がその溶
解度以下であることを特徴とする請求項3記載の酸化チ
タン多孔質薄膜光触媒の製造方法。
5. The method for producing a titanium oxide porous thin film photocatalyst according to claim 3, wherein the amount of polyethylene glycol or polyethylene oxide added to the titania sol is not more than its solubility.
【請求項6】 室温から徐々に600℃から700℃の
最終温度にまで加熱昇温して焼成することを特徴とする
請求項3記載の酸化チタン多孔質薄膜光触媒の製造方
法。
6. The method for producing a titanium oxide porous thin film photocatalyst according to claim 3, wherein the temperature is gradually raised from room temperature to a final temperature of 600 ° C. to 700 ° C., followed by firing.
【請求項7】 チタニアゾルがチタンのアルコキシドと
アルコールアミン類またはグリコール類から調製された
ものであることを特徴とする請求項3記載の酸化チタン
多孔質薄膜光触媒の製造方法。
7. The method for producing a titanium oxide porous thin film photocatalyst according to claim 3, wherein the titania sol is prepared from an alkoxide of titanium and alcohol amines or glycols.
JP5341563A 1993-12-09 1993-12-09 Titanium oxide porous thin film photocatalyst and method for producing the same Expired - Lifetime JP2636158B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP5341563A JP2636158B2 (en) 1993-12-09 1993-12-09 Titanium oxide porous thin film photocatalyst and method for producing the same
US08/351,697 US6284314B1 (en) 1993-12-09 1994-12-08 Porous ceramic thin film and method for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5341563A JP2636158B2 (en) 1993-12-09 1993-12-09 Titanium oxide porous thin film photocatalyst and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0899041A JPH0899041A (en) 1996-04-16
JP2636158B2 true JP2636158B2 (en) 1997-07-30

Family

ID=18347040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5341563A Expired - Lifetime JP2636158B2 (en) 1993-12-09 1993-12-09 Titanium oxide porous thin film photocatalyst and method for producing the same

Country Status (1)

Country Link
JP (1) JP2636158B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095651A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Precursor sol for forming dielectric film, method for preparing precursor sol, dielectric film and method for forming dielectric film
US7476607B2 (en) 2003-12-08 2009-01-13 Panasonic Corporation Semiconductor electrode, production process thereof and photovoltaic cell using semiconductor electrode
WO2018110720A1 (en) * 2016-12-12 2018-06-21 대한민국(산림청 국립산림과학원장) Method for preparing porous titania thin film by using cellulose nanocrystal

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3258023B2 (en) * 1994-10-31 2002-02-18 財団法人神奈川科学技術アカデミー Titanium oxide photocatalyst structure and method for producing the same
US6387844B1 (en) 1994-10-31 2002-05-14 Akira Fujishima Titanium dioxide photocatalyst
JPH10167727A (en) * 1995-10-26 1998-06-23 Matsumoto Seiyaku Kogyo Kk Modified titanium oxide sol, photocatalyst composition and its forming agent
US5897958A (en) * 1995-10-26 1999-04-27 Asahi Glass Company Ltd. Modified titanium oxide sol, photocatalyst composition and photocatalyst composition-forming agent
JP3726366B2 (en) * 1996-08-06 2005-12-14 昭和電工株式会社 Fluorescent lamp
JP3309785B2 (en) * 1997-11-06 2002-07-29 富士ゼロックス株式会社 Semiconductor electrode, method of manufacturing the same, and photovoltaic cell using the same
US6252156B1 (en) 1997-06-24 2001-06-26 Fuji Xerox Co., Ltd. Photosensitive semiconductor electrode, method of manufacturing photosensitive semiconductor electrode, and photoelectric converter using photosensitive semiconductor
US6033459A (en) * 1997-07-15 2000-03-07 Nec Corporation Gas collection apparatus, gas analyzing apparatus using the same and gas analyzing method
EP1008565A1 (en) * 1998-12-11 2000-06-14 Choshu Iwashita Process for the preparation of thread, string, rope or woven fabric with photocatalyst for decomposing organic compounds
EP1182169A4 (en) * 1999-02-04 2004-12-15 Japan Science & Tech Agency Process for producing anatase titania or composite oxide containing anatase titania
KR20010075752A (en) * 2000-01-17 2001-08-11 김영웅 coating solution and its preparing method for titanium dioxide photo-catalyst
KR20010075751A (en) * 2000-01-17 2001-08-11 김영웅 porous material contained titanium dioxide photo-catalyst and its processing method
JP3530896B2 (en) * 2000-02-21 2004-05-24 独立行政法人産業技術総合研究所 Mesoporous TiO2 thin film having three-dimensional structure and method for producing the same
JP3430254B2 (en) 2000-03-13 2003-07-28 独立行政法人産業技術総合研究所 Metal complex having β-diketonate, method for producing the same, photoelectric conversion element, and photochemical cell
JP4163374B2 (en) * 2000-09-14 2008-10-08 株式会社東芝 Photocatalytic membrane
KR20030021304A (en) * 2001-09-05 2003-03-15 (주)이앤비코리아 Manufacturing method on transparent anatase type TiO2 sol
JP4246943B2 (en) * 2001-10-31 2009-04-02 宇部日東化成株式会社 Method for producing article having photocatalyst-containing porous thin film
JP3817603B2 (en) * 2003-10-30 2006-09-06 敏夫 入江 Photocatalyst particle fixing coating agent and photocatalyst particle fixing method
JP2005279366A (en) * 2004-03-29 2005-10-13 Mitsubishi Materials Corp Porous photocatalyst film
JP2007105699A (en) * 2005-10-17 2007-04-26 Nippon Sheet Glass Co Ltd Noble metal fine particle-supporting material and its manufacturing method
JP2007152221A (en) * 2005-12-05 2007-06-21 Andes Denki Kk Photocatalytic material and method for preparing the same
US7846866B2 (en) 2008-09-09 2010-12-07 Guardian Industries Corp. Porous titanium dioxide coatings and methods of forming porous titanium dioxide coatings having improved photocatalytic activity
US8647652B2 (en) 2008-09-09 2014-02-11 Guardian Industries Corp. Stable silver colloids and silica-coated silver colloids, and methods of preparing stable silver colloids and silica-coated silver colloids
US20100062265A1 (en) * 2008-09-09 2010-03-11 Guardian Industries Corp. Titanium Dioxide Coatings and Methods of Forming Titanium Dioxide Coatings Having Reduced Crystallite Size
TWI382958B (en) * 2008-10-24 2013-01-21 Iner Aec Executive Yuan Method for making metal/titania pulp and photocatalyst
US8545899B2 (en) 2008-11-03 2013-10-01 Guardian Industries Corp. Titanium dioxide coatings having roughened surfaces and methods of forming titanium dioxide coatings having roughened surfaces
JP6614729B2 (en) * 2016-03-09 2019-12-04 国立大学法人名古屋大学 Sample collection device, analyzer including sample collection device, and method for producing sample collection device
FR3065650B1 (en) * 2017-04-28 2019-06-28 IFP Energies Nouvelles METHOD FOR PHOTOCATALYTIC REDUCTION OF CARBON DIOXIDE USING PHOTOCATALYST IN THE FORM OF POROUS MONOLITH
CN112569967B (en) * 2020-12-29 2022-09-13 河南农业大学 Film-shaped multilayer mesoporous TiO with cooperation of double crystals 2 /CdS photocatalyst and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2217321B (en) * 1987-07-27 1991-11-27 Wisconsin Alumni Res Found Degradation of organic chemicals with titanium ceramic membranes
JPH0596180A (en) * 1991-10-03 1993-04-20 Agency Of Ind Science & Technol Production of fixed photocatalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003095651A (en) * 2001-09-21 2003-04-03 Ricoh Co Ltd Precursor sol for forming dielectric film, method for preparing precursor sol, dielectric film and method for forming dielectric film
US7476607B2 (en) 2003-12-08 2009-01-13 Panasonic Corporation Semiconductor electrode, production process thereof and photovoltaic cell using semiconductor electrode
WO2018110720A1 (en) * 2016-12-12 2018-06-21 대한민국(산림청 국립산림과학원장) Method for preparing porous titania thin film by using cellulose nanocrystal

Also Published As

Publication number Publication date
JPH0899041A (en) 1996-04-16

Similar Documents

Publication Publication Date Title
JP2636158B2 (en) Titanium oxide porous thin film photocatalyst and method for producing the same
JP2775399B2 (en) Porous photocatalyst and method for producing the same
JP2600103B2 (en) Photocatalytic filter and method for producing the same
JP3275032B2 (en) Environmental purification material and method for producing the same
US6284314B1 (en) Porous ceramic thin film and method for production thereof
JP2517874B2 (en) Method for producing titanium oxide thin film photocatalyst
KR100518956B1 (en) Photocatalytic coating material having photocatalytic activity and adsorption property and method for preparing the same
KR100687560B1 (en) Cleaning agent and cleaning method
JP2939524B2 (en) Photocatalyst sheet and method for producing the same
JP2832342B2 (en) Photocatalyst particles and method for producing the same
WO2017192057A1 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
US5932111A (en) Photoelectrochemical reactor
JP2945926B2 (en) Photocatalyst particles and method for producing the same
WO1999016548A1 (en) Photocatalysts for the degradation of organic pollutants
JP5544515B2 (en) Method for producing emulsion paint for forming weather and stain resistant film, emulsion paint and weather and stain resistant paint film
JP2001232206A (en) Porous photocatalyst and method of manufacturing the same
JP3567693B2 (en) Method for producing immobilized photocatalyst and method for decomposing and removing harmful substances
JP2002036418A (en) Film material with photocatalytic function
JP3118558B2 (en) Water treatment catalyst and water treatment method
JPWO2008072747A1 (en) Stain resistant material synthesized by reprecipitation method and having weather resistance and method for producing the same
JP3312132B2 (en) Air purification fan and method of manufacturing the same
JP2001187346A (en) Photocatalyst coated material and manufacturing method thereof, and contaminant-containing material cleaning method and contaminant-containing material cleaning device using photocatalyst coated material
JP3837517B2 (en) Functional adsorbent and method for producing the same
JPH10151453A (en) Ultraviolet irradiation water-treatment apparatus, ultraviolet lamp, and manufacture thereof
JP3864223B2 (en) Manufacturing method of environmental materials

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term