KR20010075751A - porous material contained titanium dioxide photo-catalyst and its processing method - Google Patents

porous material contained titanium dioxide photo-catalyst and its processing method Download PDF

Info

Publication number
KR20010075751A
KR20010075751A KR1020000002060A KR20000002060A KR20010075751A KR 20010075751 A KR20010075751 A KR 20010075751A KR 1020000002060 A KR1020000002060 A KR 1020000002060A KR 20000002060 A KR20000002060 A KR 20000002060A KR 20010075751 A KR20010075751 A KR 20010075751A
Authority
KR
South Korea
Prior art keywords
titanium oxide
porous material
photocatalyst
oxide photocatalyst
porous
Prior art date
Application number
KR1020000002060A
Other languages
Korean (ko)
Inventor
윤태경
김철
김성희
Original Assignee
김영웅
(주)이씨테크
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영웅, (주)이씨테크 filed Critical 김영웅
Priority to KR1020000002060A priority Critical patent/KR20010075751A/en
Publication of KR20010075751A publication Critical patent/KR20010075751A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • B01J35/39
    • B01J35/643

Abstract

PURPOSE: A porous material containing anatase titanium oxide photocatalyst and a manufacturing method thereof are provided to increase efficiency of air pollution control, enable long-term use and remove hazardous germs and viruses by optimizing rigidity and photoactivity of the material. CONSTITUTION: A fixing solution comprising ethanol or isopropanol solvent, titanium isopropoxide and hydrochloric acid or nitric acid is prepared. After adding water glass to the fixing solution, it is mixed by stirring. Then, it is calcined for about 20 min at 500 deg.C, the alcoholic component and moisture are vaporized and the volume is expanded to give a microporous structure.

Description

산화티탄 광촉매가 함유된 다공성 물질 및 그 제조방법{porous material contained titanium dioxide photo-catalyst and its processing method}Porous material contained titanium dioxide photo-catalyst and its processing method

본 발명은 산화티탄 광촉매에 관한 것으로, 보다 상세하게는 산화티탄 광촉매가 함유되고, 다공성으로 이루어지도록 하여 비표면적이 보다 넓어져 촉매활성 능력의 향상 및 장시간 사용이 가능한 산화티탄 광촉매가 함유된 다공성 물질 및 그 제조방법에 관한 것이다.The present invention relates to a titanium oxide photocatalyst, and more particularly, a titanium oxide photocatalyst is contained, and a porous material containing a titanium oxide photocatalyst, which has a specific surface area that is made to be porous to increase the catalytic activity ability and can be used for a long time. And to a method for producing the same.

일반적으로 산업이 발달함에 따라 강이나 호수 등의 수질 및 대기중에는 각종 인체에 유해한 유기물질이 존재하고 있으며, 그 양은 점차 증가하고 있는 실정이다. 그리고 이러한 유해 유기화합물 및 각종 세균들은 자연이 본래 지니고 있는 자정능력을 벗어나 인위적으로 제거하고 있으며, 더욱이 난분해성 유기물은 각종 처리에도 불구하고 쉽게 분해가 이루어 지지 않아 수질 및 대기중에 존재하는 이러한 유해물질들은 인체에 치명적인 영향을 끼치고 있다.In general, as the industry develops, organic substances harmful to various human bodies exist in the water and the air, such as rivers and lakes, and the amount thereof is gradually increasing. And these harmful organic compounds and various bacteria are artificially removed beyond the self-cleaning ability of nature, and furthermore, the hardly decomposable organic materials are not easily decomposed despite various treatments, so these harmful substances present in water and air It has a fatal effect on the human body.

따라서 이러한 유기화합물들의 처리에 대한 광범위한 연구들이 세계각국에서 진행되고 있으며, 그 중의 하나의 방법으로 최근에는 조사되는 적정 파장수에 의해 반응하는 광분해반응을 이용한 광촉매에 많은 연구결과들이 발표되고 있다. 상기한 광분해반응은, 유기화합물에 일정한 광강도 이상의 자외선 등의 빛을 조사함으로써 이루어지는데, 산화티탄과 같은 광촉매의 존재하에서 비약적으로 촉진되며, 현재까지의 연구결과에 따르면, 광촉매들을 이용함으로써 다양한 종류의 유기화합물뿐만 아니라 인체에 무익한 각종 세균들까지 분해 사멸할 수 있음이 확인된다.Therefore, extensive researches on the treatment of such organic compounds have been conducted in various countries around the world, and one of the methods has recently been published in photocatalysts using photolysis reactions that react with the appropriate wavelength. The photodegradation reaction is carried out by irradiating organic compounds with light such as ultraviolet rays having a predetermined light intensity or more, and is greatly accelerated in the presence of a photocatalyst such as titanium oxide. According to the results of research to date, various types of photocatalysts are used. It is confirmed that not only organic compounds but also various bacteria that are not beneficial to the human body can be destroyed and killed.

특히 대기중에 존재하는 유해화합물들로는 황화수소, 및 질소화합물들을 들 수 있으며, 이러한 물질들 역시 광촉매 반응에 의한 높은 에너지밴드에 의하여 황화수소는 황산과 물로 분해되어 제거될 수 있으며, 또한 질소화합물 역시 분해될 수 있음이 각종 논문 및 연구자료에 나타나 있다. 그리고, 대기중에 존재하는 유해세균 및 각종 바이러스 등도 광촉매반응에 의한 에너지로 사멸 및 분해시킬 수 있다는 것이 널리 알려져 있으나, 실지 대기오염을 일으키는 이러한 유해화합물 및 유해세균 등의 제거를 위해 산화티탄 광촉매가 널리 사용되고 있지는 않으며 소규모적으로 사용되고 있을뿐이다.In particular, the harmful compounds present in the atmosphere include hydrogen sulfide and nitrogen compounds. Hydrogen sulfide can be decomposed into sulfuric acid and water by a high energy band by photocatalytic reaction, and nitrogen compounds can also be decomposed. Yes, it is shown in various papers and research. In addition, although it is widely known that harmful bacteria and various viruses present in the atmosphere can be killed and decomposed by energy due to photocatalytic reaction, titanium oxide photocatalysts are widely used to remove such harmful compounds and harmful bacteria that cause actual air pollution. It is not used, but only on a small scale.

일반적으로 대기오염정화를 위해 사용되는 활성탄 등은 단순히 오염물질들을 흡착, 포집할 뿐이며 분해할 수는 없다. 따라서 이러한 정화장치는 일정시간 사용 후, 교체해 주거나 또는 흡착포집된 이물질들을 분리해주어야 하는 번거로움이 있다. 이에 반하여 산화티탄광촉매의 사용시에는 오염물질들의 흡착이 아니라 분해를 일으키므로 교체없이 영구적으로 사용할 수 있는 잇점이 있다.Generally, activated carbon used for air pollution purification simply adsorbs and collects pollutants and cannot be decomposed. Therefore, such a purification device is troublesome to replace or separate the adsorption-collected foreign substances after a certain time of use. On the contrary, when the titanium oxide photocatalyst is used, since it causes decomposition rather than adsorption of contaminants, it can be used permanently without replacement.

상기와 같은 잇점에도 불구하고 실지 대기오염정화용으로 산화티탄광촉매가 널리 사용되지 못하는 이유는 산화티탄 광촉매의 구조에 기인한다. 즉, 산화티탄 광촉매는 고정담체상에 코팅방법에 의하여 제조되며, 광활성을 통해 오염물질들의 분해를 일으키는 부분은 광촉매가 코팅된 고정담체 표면에서 일어나게 된다. 따라서 대개는 판상형태로 제작되며, 이러한 구조로는 대기오염정화에 부적합한 구조를 이루게 된다. 즉, 판상의 비표면적이 적어 충분히 대기와의 접촉이 이루어질 수 없으며, 또한 접촉후 정화된 공기는 통과되어야 하나 판상구조로는 이러한 역활을 수행할 수 없기 때문이다.Despite the above advantages, the reason why the titanium oxide photocatalyst is not widely used for air pollution purification is due to the structure of the titanium oxide photocatalyst. That is, the titanium oxide photocatalyst is prepared by the coating method on the fixed carrier, and the portion causing decomposition of contaminants through photoactivity occurs on the surface of the fixed carrier coated with the photocatalyst. Therefore, it is usually manufactured in the form of a plate, and such a structure forms an unsuitable structure for air pollution purification. That is, since the specific surface area of the plate is small, the contact with the atmosphere cannot be made sufficiently, and the purified air must pass through the contact, but the plate-like structure cannot perform this role.

대기오염 정화를 위해서 바람직하기로 산화티탄 광촉매는 다공성을 가진 필터구조로 제작되어야 한다. 실지 다공성고정담체의 표면에 산화티탄 광촉매를 코팅한 다공성 구조가 제작되기는 하나, 코팅막의 부착력이 견고하지 못하여 쉽게 탈락되므로 장시간 사용이 곤란해질 뿐 아니라 최적의 광활성을 나타내는 코팅막의 두께를 가지도록 제작하기가 힘들다는 문제점이 있다. 즉, 광촉매의 최적활성을 위해서는 산화티탄의 두께가 0.4㎛이상이 되어야 하나, 다공성 고정담체상에 상기두께를 가지는 코팅막의 제조가 매우 힘들며, 설사 상기 두께로 제작하게 되는 경우에는 백탁현상에 의해 광활성이 오히려 저하되는 문제점이 있다.Titanium oxide photocatalysts, preferably for air pollution purification, should be fabricated with a porous filter structure. Although a porous structure coated with a titanium oxide photocatalyst is manufactured on the surface of the actual porous carrier, it is difficult to use for a long time because the adhesion of the coating film is not strong, making it difficult to use for a long time, and to have a thickness of the coating film exhibiting optimal photoactivity. There is a problem that is difficult. That is, in order to optimize the activity of the photocatalyst, the thickness of the titanium oxide should be 0.4 μm or more. However, it is very difficult to manufacture the coating film having the thickness on the porous fixed carrier, and even if the thickness is produced in the above-mentioned thickness, the photoactivity is caused by the turbidity phenomenon. There is a problem that this rather deterioration.

따라서 본 발명은 상기의 문제점을 해결하기 위한 것으로, 적정 두께에 의해 충분한 광활성을 가지되 견고한 부착력을 가지는 산화티탄 다공성물질 및 그 제조방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a titanium oxide porous material and a method for producing the same, having sufficient photoactivity by a suitable thickness but having a firm adhesion.

도 1 - 본 발명에 의해 제조된 다공성물질의 실물사진.1-a real picture of the porous material produced by the present invention.

도 2 - 본 발명에 의한 다공성물질의 유해가스 제거효율을 실험하기 위한 장치 구성도.Figure 2 is a block diagram of an apparatus for experimenting the removal efficiency of harmful gas of the porous material according to the present invention.

도 3 - 도 2의 장치에 의한 유해가스 분해효율 그래프.3-graph of harmful gas decomposition efficiency by the apparatus of FIG.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

1 : 가스유입구 3 : 가스유출구1: gas inlet 3: gas outlet

10 : 사각함체 20 : 다공성물질10: rectangular housing 20: porous material

30 : 유브이램프30: UV lamp

상기와 같은 목적을 달성하기 위한 본 발명의 제1특징에 따르면, 에탄올 또는 이소프로파놀로 이루어지는 알코올성 용매 : 티타늄이소프로폭사이드 : 염산 또는 질산이 100 : 10 내지 20 : 1 내지 5의 중량비로 이루어지는 고정화용액과, 상기 고정화용액에 대하여 중량비로 1 : 1.5의 비율로 첨가되는 물유리를 혼합 교반하고 약 500℃에서 약 20분간 소성함으로써 알코올성분과 수분의 증발로 인하여 다공성이 이루어지고, 산화티탄이 아나타스형으로 이루어지는 산화티탄 광촉매가 함유된 다공성 물질 제조방법을 제공하는 것을 기술적 요지로 하고 있다.According to a first aspect of the present invention for achieving the above object, an alcoholic solvent consisting of ethanol or isopropanol: titanium isopropoxide: hydrochloric acid or nitric acid is composed of a weight ratio of 100: 10 to 20: 1-5. The immobilization solution and the water glass added in a weight ratio of 1.5 to the immobilization solution are mixed and stirred and calcined at about 500 ° C. for about 20 minutes to achieve porosity due to the evaporation of alcohol components and moisture, and titanium oxide is anatas. It is a technical point of the invention to provide a method for producing a porous material containing a titanium oxide photocatalyst.

한편, 본 발명의 제2특징에 따르면, 전체적으로 산화티탄과 규소의 결합으로 이루어지고, 약 5 내지 10㎛ 크기의 미세세공이 다수개 형성되는 것을 특징으로 하는 산화티탄 광촉매가 함유된 다공성 물질을 제공하는 것이다.On the other hand, according to the second aspect of the present invention, a titanium oxide photocatalyst containing porous material, characterized in that a total of made of a combination of titanium oxide and silicon, a plurality of fine pores of about 5 to 10㎛ size is formed It is.

다음, 상기와 같이 구성되는 본 발명의 바람직한 실시예를 통하여 본 발명을 보다 자세하게 설명하기로 한다. 하기에서 설명되는 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것이며, 본 발명을 한정하는 것이 아님을 본 발명이 속한기술분야의 당업자에게 있어서는 자명할 것이다.Next, the present invention will be described in more detail through preferred embodiments of the present invention configured as described above. The embodiments described below are intended to explain the present invention in more detail, and it will be apparent to those skilled in the art that the present invention is not limited thereto.

먼저, 고정화용액을 준비한다. 고정화용액은 산화티탄형성의 기재가 되는 것으로, 에탄올 또는 이소프로파놀로 이루어진 알코올성용매와 티타늄프로폭사이드 그리고 반응조절제로서 염산 또는 질산이 중량비로 100 : 10 내지 20 : 1 내지 5의 비율로 이루어지도록 한다. 상기와 같은 고정화용액은 종래에 사용되는 일반적인 산화티탄 박막제조용 고정화 용액이므로 더 이상 자세한 설명은 생략하기로 한다.First, an immobilization solution is prepared. The immobilization solution serves as a base for forming titanium oxide, and an alcoholic solvent composed of ethanol or isopropanol, titanium propoxide, and hydrochloric acid or nitric acid as a reaction regulator in a ratio of 100: 10 to 20: 1 to 5 by weight. do. Since the immobilization solution as described above is a conventional immobilization solution for manufacturing a conventional titanium oxide thin film, a detailed description thereof will be omitted.

다음, 상기 고정화용액과 반응하여 다공성물질을 이루는 기재로써 물유리를 이용한다. 물유리에 함유된 산화규소의 양은 약 31 내지 33% 정도 그리고 수분의 함량은 약 50 내지 55% 정도가 되는 구성으로 이루어지는 물유리가 가장 적당함을 알 수 있었다. 현재 시중에서 판매되고 있는 물유리는 조성성분중 산화규소의 양과 수분의 함량에 따라 조금씩 다르며, 상기와 같은 구성으로 이루어지는 물유리의 조성이 가장 적합함을 알 수 있었다. 즉, 산화규소의 양이 적은 물유리를 이용하여 제조시 전체적인 강도가 약함을 알 수 있었으며, 산화규소의 양이 많을 경우 탄화가 이루어졌다.Next, water glass is used as a substrate forming a porous material by reacting with the immobilization solution. The amount of silicon oxide contained in the water glass was about 31 to 33% and the water content was found to be the most suitable water glass consisting of about 50 to 55%. Water glass currently on the market is slightly different depending on the amount of silicon oxide and water content of the composition, it was found that the composition of the water glass composed of the above configuration is most suitable. That is, it was found that the overall strength is weak during the production using water glass having a small amount of silicon oxide, and carbonization was performed when the amount of silicon oxide was large.

그리고, 상기 고정화용액과 상기 물유리를 충분히 교반하여 겔화시킨 용액을 적정온도와 적정시간 동안 소성시켜 다공성물질로 이루어지도록 하며, 본 발명자들의 반복된 실험끝에 약 500℃로 약 20분간 소성시켜 다공성물질을 제조하는 것이 가장 바람직함을 알 수 있었다. 상기 과정에 의해 생성되는 다공성물질은 충분한 광활성이 있음을 알 수 있었고, 후술하는 실험결과에 나타내도록 하며, 이하에서는 상기 다공성물질이 제조되는 과정을 좀 더 상세히 설명하기로 한다.Then, the immobilized solution and the water glass were sufficiently stirred to calcinate the gelled solution for a suitable temperature and for a predetermined time to be made of a porous material, and then fired at about 500 ° C. for about 20 minutes at the end of repeated experiments of the present inventors. It was found that manufacturing is most preferable. It can be seen that the porous material produced by the above process has sufficient photoactivity, which will be shown in the experimental results described below, and in the following, the process of producing the porous material will be described in more detail.

상기 온도로 소성가열시 전체 용액이 고화됨과 동시에 약 20%의 부피팽창이 이루어졌다. 그리고, 약 5 내지 10㎛ 정도의 미세기공을 가지는 다공성 물질이 이루어졌다. 상기 미세기공은 소성온도로 가열시 물유리중 수분성분과 고정화용액의 알코올성분의 증발이 이루어지며, 또한 고정화용액의 티타늄테트라이소프로폭사이드가 물유리의 산화규소와 반응하여 규소와 산화티탄의 결합으로 변하게 되는 것으로추정된다. 상기의 과정에서 수분과 알콜성분이 증발한 공간과 또한 소성시 팽창에 의해 발생되는 공극들이 미세기공을 이루는 것으로 추정된다.When the plastic was heated to the temperature, the total solution was solidified and volume expansion of about 20% was achieved. Then, a porous material having micropores of about 5 to 10 ㎛ was made. When the micropores are heated to a calcination temperature, the water component of the water glass and the alcohol component of the immobilized solution are evaporated, and the titanium tetraisopropoxide of the immobilized solution reacts with the silicon oxide of the water glass to combine silicon and titanium oxide. It is estimated to change. In the above process, it is estimated that the space in which the water and alcohol components evaporate and the pores generated by expansion during firing form micropores.

한편, 본 발명에 의해 형성된 다공성 물질의 산화티탄 광촉매의 결합양식은 종래의 산화티탄 광촉매를 이루는 물질과는 완전히 다른 구조를 이룬다. 즉, 종래에는 산화티탄 광촉매가 단순히 고정담체상의 표면에 코팅되는 구조를 이루고 있고, 상기 코팅의 반복횟수에 따라 광촉매 막의 두께가 증대하였으며, 이러한 코팅막의 두께가 약 0.4㎛이상이 되어야 최적활성을 나타내었다. 그리고, 이러한 일정한 두께를 유지하기 위해서는 코팅과 소성작업 반복이 필요하였다. 또한, 다공성물질 역시 고정담체 자체가 다공성으로 이루어지고, 다만 산화티탄 광촉매의 코팅이 상기 다공성물질의 각 기공의 외면에 코팅이 이루어지는 구조로 이루어졌다. 상기 다공성물질의 외면에 이루어지는 코팅 역시 반복 코팅 및 소성을 통하여 일정한 두께를 유지할 수 있었다.On the other hand, the bonding mode of the titanium oxide photocatalyst of the porous material formed by the present invention has a completely different structure from the material of the conventional titanium oxide photocatalyst. That is, conventionally, the titanium oxide photocatalyst was simply coated on the surface of the fixed carrier, and the thickness of the photocatalyst film was increased according to the number of repetitions of the coating. It was. And, in order to maintain this constant thickness it was necessary to repeat the coating and firing operation. In addition, the porous material is also made of a fixed carrier itself is porous, but the coating of the titanium oxide photocatalyst was made of a structure in which the coating on the outer surface of each pore of the porous material. The coating made on the outer surface of the porous material was also able to maintain a constant thickness through repeated coating and firing.

그러나, 본 발명에서 이루어 지는 산화티탄 광촉매가 함유된 다공성물질은 전혀 그 구조를 달리하고 있음을 알 수 있다. 도 1에 도시된 바와 같이 자체가 산화티탄광촉매로 이루어지고, 비표면적이 넓은 다공성으로 이루어져 있다. 즉, 종래와 같은 코팅에 의한 박막형성구조가 아니라 자체가 산화티탄과 규소의 결합으로 인한 구조로 이루어져 전체가 산화티탄 광촉매로 이루어져 있다. 따라서 별도의 광촉매 활성을 위한 두께조절이 불필요하며, 반복코팅작업이 아닌 한번의 작업으로 광촉매제조가 가능해지게 되는 것이다. 또한, 코팅방법이 아니라 자체 구조에 의한 다공성 형성으로 인하여 종래에서와 달리 산화티탄 박막층이 쉽게 탈락되지 않게 되는 것이다.However, it can be seen that the porous material containing the titanium oxide photocatalyst made in the present invention has a completely different structure. As shown in FIG. 1, the catalyst itself is composed of a titanium oxide photocatalyst, and has a large specific surface area. That is, instead of the conventional thin film formation structure by coating, the structure itself is formed by the combination of titanium oxide and silicon, and the whole is made of a titanium oxide photocatalyst. Therefore, it is not necessary to adjust the thickness for a separate photocatalytic activity, and the photocatalyst can be manufactured by one operation instead of a repetitive coating operation. In addition, unlike the conventional method, the titanium oxide thin film layer is not easily dropped due to the porous formation by its own structure rather than the coating method.

다음, 본 발명자들은 상기와 같은 방법으로 이루어지는 산화티탄 광촉매가 함유된 다공성물질이 충분한 활성을 나타내는지 실험해 본 결과 광촉매활성이 탁월함을 알 수 있었다. 이하 도시한 도 2를 참조하여 설명하기로 한다.Next, the present inventors have tested whether the porous material containing the titanium oxide photocatalyst made by the above method exhibits sufficient activity and found that the photocatalytic activity is excellent. Hereinafter, a description will be given with reference to FIG. 2.

도시된 바와 같이, 가스 유입구(1)와 가스유출공(3)이 각각 구비된 유리로 이루어진 사각함체(10)상에 본 발명에 의해 제조된 다공성물질(20)을 격자구조로 설치하고, 상기 사각함체(10)의 상부면에 유브이 램프(30)를 설치하였다. 상기 유브이 램프(30)는 산화티탄 광촉매 활성을 유도하는 400nm 이하의 파장을 공급하는 광조사수단으로 사용되었다. 실험항목으로는 황화수소(SH2)와 암모니아(NH3)를 이용하였다. 상기 오염물질들을 가스유입구(1)를 통하여 주입하여 상기 다공성물질(10)들을 통과한 후, 가스유출구(3)로 빠져 나오게 한다. 상기 가스의 체류시간은 약 5분 정도로 되게 하였고, 유입되는 농도와 나중에 유출되는 농도를 측정하여 산화효율을 계산하였다.As shown, the porous material 20 prepared by the present invention is installed in a lattice structure on the rectangular box 10 made of glass, which is provided with the gas inlet 1 and the gas outlet hole 3, respectively. The UV lamp 30 is installed on the upper surface of the rectangular box 10. The UV lamp 30 was used as a light irradiation means for supplying a wavelength of less than 400nm to induce titanium oxide photocatalytic activity. Experimental items were hydrogen sulfide (SH 2 ) and ammonia (NH 3 ). The pollutants are injected through the gas inlet (1) to pass through the porous material (10), and then exits to the gas outlet (3). The residence time of the gas was about 5 minutes, and the oxidation efficiency was calculated by measuring the concentration of the inflow and the concentration of the outflow.

이러한 실험결과는 도시된 도 3에 나타내었다. 상기 도3에 도시된 바와같이, 충분한 제거가 이루어짐을 알 수 있었다. 상기 그래프를 좀 더 상세히 설명하기로 한다.The experimental results are shown in FIG. 3. As shown in FIG. 3, it can be seen that sufficient removal is achieved. The graph will be described in more detail.

(1) 황화수소 제거효율 : 전체적인 광분해 효율은 반응시간동안 96%를 나타내었고, 시간의 변화에 따라 황화수소 제거효율의 저하가 일어나지 않는 점으로 미루어 종래 일반적인 흡착제와는 달리 분해에 의한 이물질의 축적이 이루어지지 않는 것으로 사료된다.(1) Hydrogen sulfide removal efficiency: Overall photolysis efficiency was 96% during the reaction time, and deterioration of hydrogen sulfide removal efficiency does not occur with the change of time. Therefore, unlike other conventional adsorbents, foreign matters are accumulated by decomposition. It is not believed to be lost.

(2) 암모니아 가스 제거효율 :전체적인 광분해 효율은 반응시간동안 94%를 나타내었고, 시간의 변화에 따라 황화수소 제거효율의 저하가 일어나지 않는 점으로 미루어 종래 일반적인 흡착제와는 달리 분해에 의한 이물질의 축적이 이루어지지 않는 것으로 사료된다.(2) Ammonia gas removal efficiency: The overall photolysis efficiency was 94% during the reaction time, and deterioration of hydrogen sulfide removal efficiency did not occur with the change of time. It is not considered to be made.

상기 실험결과에서 나타난 바와 같이, 본 발명에 의한 산화티탄 광촉매가 함유된 다공성 물질들은 자체 내에 약 5 내지 10㎛ 크기를 가지는 많은 미세세공이 형성되어 있으며, 이 미세세공을 통하여 대기오염물질들이 통과하면서 분해 및 필터링되어 일반적인 대기정화용 장치에서의 활성탄 흡착이나 포집에 의한 일시적인 제거가 아닌 광산화에 의한 완전한 처리가 가능해 짐을 알 수 있다.As shown in the experimental results, the porous materials containing the titanium oxide photocatalyst according to the present invention have many micropores having a size of about 5 to 10 μm in themselves, and air pollutants pass through the micropores. It can be seen that it can be decomposed and filtered to allow for complete treatment by photo-oxidation rather than temporary removal by activated carbon adsorption or capture in general atmospheric purification equipment.

따라서, 이러한 다공성물질들은 일반적인 대기오염 제거 뿐만 아니라 산업용유해가스 처리시 전처리 장치로 응용이 가능하며, 높은 충격부하에도 완충시설로서의 적용이 가능하다고 보여진다. 또한, 종래의 대기정화장치와 결합함으로써 후처리 공정으로 도입되는 활성탄 흡착장치에서의 활성탄 흡착수명을 연장시킬 수 있을 뿐만 아니라 보다 정화효율의 향상을 기할 수 있게 된다.Therefore, these porous materials can be applied as a pretreatment device in the treatment of industrial harmful gases as well as general air pollution removal, and can be applied as a buffer facility even at high impact loads. In addition, by combining with a conventional atmospheric purification apparatus, not only can the activated carbon adsorption life be extended in the activated carbon adsorption apparatus introduced into the post-treatment process, but also the purification efficiency can be improved.

이상의 설명에서와 같이 본 발명에 따르면, 산화티탄 광촉매가 함유된 다공성물질들을 제조하되 견고성 및 최적 광활성을 가지게 됨에 따라 보다 효율높은 대기오염 정화장치의 구성이 가능해지고, 또한 장시간 사용이 가능해지는 효과가 있다.As described above, according to the present invention, the porous oxide containing the titanium oxide photocatalyst is manufactured, but it has the robustness and the optimum photoactivity, thereby enabling the construction of a more efficient air pollution purification device, and the effect of being able to use for a long time. have.

그리고, 고정담체 표면에 박막에 의한 코팅방법이 아니므로 수회반복 작업이 필요없게 됨에 따라 제작작업의 간편화가 이루어지고, 백탁현상이 없어져 보다 나은 광활성을 나타내는 다른 효과도 있다.In addition, since it is not a coating method by a thin film on the surface of the fixed carrier, it is not necessary to repeat the operation several times, thereby simplifying the manufacturing work, and there is another effect of showing better light activity due to the disappearance of the whitening phenomenon.

또한, 기존의 대기오염정화장치와 연계하여 사용함으로써 기존장치의 부하를 줄이게 됨에 따라 전체 사용수명의 증가가 이루어지고, 기존장치에서 제거할 수 없었든 유해세균 및 바이러스까지 제거가 가능해짐에 따라 다양한 용도로 적용될 수 있는 또 다른 효과가 있다.In addition, by using it in connection with the existing air pollution purification device, the load of the existing device is reduced, thereby increasing the overall service life and removing harmful bacteria and viruses that could not be removed from the existing device. There is another effect that can be applied for use.

Claims (2)

에탄올 또는 이소프로파놀로 이루어지는 알코올성 용매 : 티타늄이소프로폭사이드 : 염산 또는 질산이 100 : 10 내지 20 : 1 내지 5의 중량비로 이루어지는 고정화용액과, 상기 고정화용액에 대하여 중량비로 1 : 1.5의 비율로 첨가되는 물유리를 혼합 교반하고 약 500℃에서 약 20분간 소성함으로써 알코올성분과 수분의 증발로 인하여 다공성이 이루어지고, 산화티탄이 아나타스형으로 이루어짐을 특징으로 하는 산화티탄 광촉매가 함유된 다공성 물질 제조방법.Alcoholic solvent consisting of ethanol or isopropanol: Titanium isopropoxide: hydrochloric acid or nitric acid in a ratio of 100: 10 to 20: 1 to 5 by weight and an immobilization solution in a weight ratio of 1: 1.5 by weight. Method of producing a porous material containing a titanium oxide photocatalyst, characterized in that the porous water by the evaporation of alcohol components and moisture by mixing and stirring the water glass to be added and calcining at about 500 ℃ for about 20 minutes, titanium oxide is made of anatase type . 전체적으로 산화티탄과 규소의 결합으로 이루어지고, 약 5 내지 10㎛ 크기의 미세세공이 다수개 형성됨을 특징으로 하는 산하티탄 광촉매가 함유된 다공성 물질.A porous material containing titanium oxide photocatalyst, characterized in that it is composed of titanium oxide and silicon as a whole, and a plurality of micropores having a size of about 5 to 10 μm is formed.
KR1020000002060A 2000-01-17 2000-01-17 porous material contained titanium dioxide photo-catalyst and its processing method KR20010075751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000002060A KR20010075751A (en) 2000-01-17 2000-01-17 porous material contained titanium dioxide photo-catalyst and its processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000002060A KR20010075751A (en) 2000-01-17 2000-01-17 porous material contained titanium dioxide photo-catalyst and its processing method

Publications (1)

Publication Number Publication Date
KR20010075751A true KR20010075751A (en) 2001-08-11

Family

ID=19639110

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000002060A KR20010075751A (en) 2000-01-17 2000-01-17 porous material contained titanium dioxide photo-catalyst and its processing method

Country Status (1)

Country Link
KR (1) KR20010075751A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899041A (en) * 1993-12-09 1996-04-16 Agency Of Ind Science & Technol Photocatalyst of titanium oxide porous thin film and preparation of the same
JPH08155308A (en) * 1994-12-05 1996-06-18 Kansai Paint Co Ltd Method for fixing photooxidation catalyst and treatment of waste water using the same
JPH1085599A (en) * 1996-09-12 1998-04-07 Asahi Glass Co Ltd Photocatalyst composition and its manufacture
JPH10277403A (en) * 1998-04-06 1998-10-20 Toto Ltd Multifunctional material having photocatalytic function
JPH10277400A (en) * 1997-04-03 1998-10-20 Agency Of Ind Science & Technol Silica three-dimensional recticulated structure photocatalyst carrying titanium, oxide and its preparation
JPH11138017A (en) * 1997-11-05 1999-05-25 Agency Of Ind Science & Technol Photocatalytic silica gel and production thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899041A (en) * 1993-12-09 1996-04-16 Agency Of Ind Science & Technol Photocatalyst of titanium oxide porous thin film and preparation of the same
JPH08155308A (en) * 1994-12-05 1996-06-18 Kansai Paint Co Ltd Method for fixing photooxidation catalyst and treatment of waste water using the same
JPH1085599A (en) * 1996-09-12 1998-04-07 Asahi Glass Co Ltd Photocatalyst composition and its manufacture
JPH10277400A (en) * 1997-04-03 1998-10-20 Agency Of Ind Science & Technol Silica three-dimensional recticulated structure photocatalyst carrying titanium, oxide and its preparation
JPH11138017A (en) * 1997-11-05 1999-05-25 Agency Of Ind Science & Technol Photocatalytic silica gel and production thereof
JPH10277403A (en) * 1998-04-06 1998-10-20 Toto Ltd Multifunctional material having photocatalytic function

Similar Documents

Publication Publication Date Title
WO2017117861A1 (en) Catalyzer for sterilizing, disinfecting and purifying air, and preparation method thereof
AU764200B2 (en) Method for purifying gaseous effluents by means of photocatalysis, installation for carrying out said method
KR101319064B1 (en) Method of preparing platinum catalyst for removing formaldehyde, carbon dioxide, methanol and hydrogen
JP2007216223A (en) Photocatalytic material having semiconductor properties, and its manufacturing method and use
JPH07100378A (en) Photocatalyst of titanium oxide thin film and its production
WO2017192057A1 (en) Modified porous coatings and a modular device for air treatment containing modified porous coatings.
KR100842100B1 (en) Treatment Method Of Volatie Organic Compounds And Malodor By Hybrid System Of Ozone/Ultraviolet/Catalyst
CN110665531A (en) Pt/g-C3N4/CeO2Composite photocatalyst and preparation method and application thereof
JP5436399B2 (en) Decomposition and removal method using photocatalytic material
JP2945926B2 (en) Photocatalyst particles and method for producing the same
KR100925247B1 (en) Photocatalyst, synthetic method and its application for wastewater treatment
BRPI1002600A2 (en) transition metal or transition metal oxide catalyst supported on autoclaved cellular concrete
Nasr-Esfahani et al. Alumina/TiO 2/hydroxyapatite interface nanostructure composite filters as efficient photocatalysts for the purification of air
KR20010075751A (en) porous material contained titanium dioxide photo-catalyst and its processing method
Lee et al. Comparison of mercury removal efficiency from a simulated exhaust gas by several types of TiO2 under various light sources
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
KR100489219B1 (en) Manufacturing process of Titanium Dioxide Photocatalysts supporting Silicagel
KR100627972B1 (en) equipment for treatment of air using immobilized photocatalytic fiber filter
KR102442660B1 (en) Method for producing photoluminescent photocatalyst beads decomposing harmful substances and photocatalyst beads obtained therefrom
KR100615515B1 (en) Method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method
JP4147300B2 (en) Nitrogen-containing titanium oxide photocatalyst and method for purifying environmental pollutant gas using the same
KR100403097B1 (en) Photocatalyst Bodies Having a Photocatalyst Supported on a Metal Foam, Processes for Preparing The Same, and Processes for Treating Contaminants Using The Same
JP2000317315A (en) Phototransmittable porous film containing dispersed photocatalyst
Bayar Photocatalytic oxidation of NOX over TiO₂ containing cement based materials
KR20030084177A (en) Nano-fabricated TiO2 photocatalyst placed in zeolite framework and its manufacturing method and thereby removal method of ammonia-nitrogen

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E601 Decision to refuse application