KR100615515B1 - Method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method - Google Patents

Method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method Download PDF

Info

Publication number
KR100615515B1
KR100615515B1 KR1020050022125A KR20050022125A KR100615515B1 KR 100615515 B1 KR100615515 B1 KR 100615515B1 KR 1020050022125 A KR1020050022125 A KR 1020050022125A KR 20050022125 A KR20050022125 A KR 20050022125A KR 100615515 B1 KR100615515 B1 KR 100615515B1
Authority
KR
South Korea
Prior art keywords
photocatalyst
adsorbent
titanium dioxide
tio
hours
Prior art date
Application number
KR1020050022125A
Other languages
Korean (ko)
Inventor
이종대
Original Assignee
이종대
주식회사 카본텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이종대, 주식회사 카본텍 filed Critical 이종대
Priority to KR1020050022125A priority Critical patent/KR100615515B1/en
Application granted granted Critical
Publication of KR100615515B1 publication Critical patent/KR100615515B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

광촉매로 잘 알려진 광물질인 아나타제(anatase)의 이산화 티타늄(TiO2)를 비표면적이 넓은 활성탄, 카본블랙등의 흡착제에 담지하는 방법이 개시된다. 본 발명은 0.5~2 몰(M)의 질산(HNO3) 용액에 티타늄 테트라이소프로포사이드(Titanium Tetraisopropoxide(Ti(OCH(CH3)2)4))를 2:1~5:1의 중량비로 첨가하여 1~3시간 동안 교반하여 졸(sol)상태의 이산화티탄(TiO2)광촉매 용액(suspension)을 제조하는 단계; 제조된 졸 상태의 이산화티탄(TiO2)광촉매 용액을 20℃~60℃로 유지시켜, 흡착제에 투입하여 1시간~4시간동안 담지하여 광촉매를 흡착제에 고정시키는 단계; 및 광촉매가 고정된 흡착제를 2~3회 원심분리기를 이용한 원심분리 및 증류수를 이용한 세척을 수행하고, 광촉매가 고정된 흡착제를 전기로를 이용해 300℃-450℃에서 30분~2시간 동안 소성하는 단계를 포함한다. Disclosed is a method of supporting titanium dioxide (TiO 2) of anatase, a mineral well known as a photocatalyst, on an adsorbent such as activated carbon and carbon black having a large specific surface area. In the present invention, titanium tetraisopropoxide (Ti (OCH (CH3) 2) 4)) is added to a 0.5-2 mol (M) nitric acid (HNO3) solution in a weight ratio of 2: 1-5: 1. Preparing a sol titanium dioxide (TiO 2) photocatalyst solution by stirring for 1 to 3 hours; Maintaining the prepared sol titanium dioxide (TiO 2) photocatalyst solution at 20 ° C. to 60 ° C., adding the adsorbent to it for 1 hour to 4 hours, and fixing the photocatalyst to the adsorbent; And performing centrifugation and washing with distilled water by using an adsorbent fixed with a photocatalyst two to three times, and calcining the adsorbent fixed with a photocatalyst at 300 ° C.-450 ° C. for 30 minutes to 2 hours using an electric furnace. It includes.

Description

광촉매의 고정화 방법 및 이 방법을 이용한 광촉매 흡착제{method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method}Method for immobilizing photocatalyst and photocatalyst adsorbent using this method {method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method}

도 1은 본 발명에 따른 광촉매의 고정화 방법을 설명하기 위한 흐름도이다. 1 is a flowchart illustrating a method of immobilizing a photocatalyst according to the present invention.

도 2 a 및 b는 본 발명에 따른 광촉매의 고정화 방법을 이용하여 활성탄에 이산화 티탄이 고정되기 전과 후의 상태를 보여주기 위한 SEM 사진이다. 2a and b are SEM images for showing the state before and after the titanium dioxide is fixed to the activated carbon using the method of immobilizing the photocatalyst according to the present invention.

본 발명은 광촉매의 고정화 방법 및 이 방법을 이용한 광촉매 흡착제에 관한 것으로, 특히 광촉매로 잘 알려진 광물질인 아나타제(anatase)의 이산화 티타늄(TiO2)를 비표면적이 넓은 활성탄, 카본블랙등의 흡착제에 담지하는 방법에 관한 것이다. The present invention relates to a method for immobilizing a photocatalyst and a photocatalyst adsorbent using the same, and particularly, to support anatase titanium dioxide (TiO2), a mineral well known as a photocatalyst, on an adsorbent such as activated carbon and carbon black having a large specific surface area. It is about a method.

일반적으로, 광촉매(Photo-catalyst)는 빛을 에너지원으로 촉매 반응을 진행시키는 물질을 말하는데, 광촉매는 1972년 후지시마와 혼다가 이산화티타늄 단결정 전극에 빛을 조사하면 광산화반응과 광환원 반응에 의하여 물이 수소와 산소로 분리됨을 발표한 이후 급속히 연구가 진행 되어 이후 다양한 응융분야가 밝혀지면서 이에 따른 연구가 활발히 진행되고 있다. 광촉매중 널리 알려진 광물질인 아나타제(anatase)(이산화티탄(TiO2 Titanuim Dioxide)은 태양광이나 자외선 빛에 강력히 반응하여 유해물질을 분해하는 작용을 한다. In general, photo-catalyst refers to a material that catalyzes light as an energy source. The photocatalyst is water reacted by a photooxidation reaction and a photoreduction reaction when Fujishima and Honda irradiate light on a titanium dioxide single crystal electrode in 1972. Since the announcement of the separation of hydrogen and oxygen, the research has been rapidly progressed, and since various solidification fields have been revealed, the research is being actively conducted. Anatase (TiO2 Titanuim Dioxide), a widely known mineral in photocatalysts, reacts strongly with sunlight or ultraviolet light to decompose harmful substances.

최근의 산업의 고도화 및 공업의 발달에 따라 자연 자정작용의 범위를 넘어서는 유해 물질 및 난분해성 물질 등이 폐수 속에서 다량 유입되어 방류되고 있다. 이에 따른 규제 또한 강화되고 있어 오염물질을 제거하기 위한 여러 가지 처리 방법들이 강구되고 있다. With the recent industrial advancement and industrial development, a large amount of harmful substances and hardly decomposable substances, etc., exceeding the range of natural self-cleaning action, are introduced and discharged in wastewater. In addition, regulations are being tightened, and various treatment methods for removing pollutants are being devised.

일반적인 수처리를 살펴보면 처리 속도가 느리거나 고가의 처리시설을 필요로 하는 어려움이 있었다. 특히 최근의 산업 폐수중에는 종래의 미생물을 이용한 생물학적 처리로는 분해가 되지 않는 난분해성 물질들을 다량 함유하고 있어서 분해가 용이하지 않을 뿐만 아니라 생태계에 심각한 문제가 될 수 있다. Looking at general water treatment, there was a difficulty in requiring a slow treatment rate or an expensive treatment facility. In particular, the recent industrial wastewater contains a large amount of hardly decomposable substances that are not decomposed by biological treatment using conventional microorganisms, and thus may not be easily degraded and may cause serious problems to the ecosystem.

이러한 난분해성물질을 함유한 폐수를 처리하는데 물리화학적인 여러 방안들이 연구되고 있지만 물리적 장치의 초기 시설비와 운전 비용의 증가, 화학약품의 사용에 따른 2차적인 오염 문제와 그에 따른 경비 등의 부가적인 문제가 뒤따른다. 이 때문에 현재 고도산화공정(Advanced Oxidation Process, AOP) 기술의 적용이 활발히 연구되고 있다.Although physicochemical methods have been studied to treat these wastewaters containing hardly decomposable substances, additional physical costs such as increased initial installation and operating costs of physical devices, secondary pollution problems resulting from the use of chemicals, and the associated costs. The problem follows. For this reason, the application of Advanced Oxidation Process (AOP) technology is being actively studied.

특히 광촉매를 이용한 산화기술이 이러한 문제를 해결해주는 대표적인 청정 환경 기술로써 각광을 받고 있다. 광촉매는 인체에 무해하고, 유해한 부산물이 생성되지 않으며, 뛰어난 살균 및 독소 제거 능력이 있고, 유기화합물에 대해서도 탁월한 분해능력을 가지며, 태양광 등의 자외선을 이용하여 에너지 소비를 감소할 수 있으며, 지속적인 내구성을 가지고 있다는 장점이 있는 데, 광촉매 물질로는 가격이 저렴하고 내마모성이 우수하며, 화학적으로 안전한 이산화티탄이 주로 사용된다.In particular, the oxidation technology using a photocatalyst is spotlighted as a representative clean environment technology that solves this problem. The photocatalyst is harmless to the human body, does not produce harmful by-products, has excellent sterilization and toxin removal ability, has an excellent decomposition ability for organic compounds, and can reduce energy consumption by using ultraviolet light such as sunlight. It has the advantage of being durable, the photocatalyst material is mainly used in the low cost, excellent wear resistance, chemically safe titanium dioxide.

종래의 광촉매는 단순히 TiO2분말을 현탁액 상태로 만든 후 오염물에 투입하거나, 이산화티탄(TiO2)용액을 반응기의 표면에 얇은 막으로 도포하여 자외선(UV)을 조사하여 유기물을 분해하는 방법들이 대부분이었다. Conventional photocatalysts are mostly made of TiO 2 powder in suspension and then added to contaminants, or by applying a thin film of titanium dioxide (TiO 2) to the surface of the reactor by irradiating ultraviolet (UV) to decompose organic matter.

그러나 종래의 광촉매는 유기물이 산화, 분해되는 기본적인 현상 연구와 반응속도 및 메카니즘에 대한 연구에는 적합할지 모르지만, 이산화티탄(TiO2)분말을 현탁액 상태로 투입하는 경우 직경이 약 0.1㎛이하 정도로 매우 작은 이산화티탄을 사용하는 경우 분리 및 회수가 어려워 상업화에 필요한 연속식 운전에는 부적합하며 광촉매 시스템을 큰 용량으로 확장하는데 어려움이 있었다. 또한 반응기의 표면에 이산화티탄(TiO2)용액을 도포하는 경우에는 반응성이 떨어지고 큰 용량으로 확장하는 것이 어려운 문제점이 있었다. Conventional photocatalysts, however, may be suitable for basic phenomena in which organic matter is oxidized and decomposed, as well as for reaction rates and mechanisms.However, when titanium dioxide (TiO2) powder is added as a suspension, the diameter is very small, about 0.1 μm or less. Titanium is difficult to separate and recover, making it unsuitable for the continuous operation required for commercialization and the difficulty of expanding photocatalyst systems to large capacities. In addition, when the titanium dioxide (TiO 2) solution is applied to the surface of the reactor, there is a problem that the reactivity is difficult to expand to a large capacity.

본 발명은 상기의 문제점을 해소하기 위하여 발명된 것으로, 광활성이 높은 것으로 알려진 아나타제(anatase)결정상의 이산화티탄을 제조하여 비표면적이 크고 오염물질의 흡착 능력이 뛰어난 활성탄과 카본블랙에 담지하는 방법을 제시하여 폐수등에 포함된 오염물질을 흡착제에 의해 흡착함과 동시에 흡착제에 담지된 광촉매의 산화화원작용에 의해 분해하는 방식으로 오염물질의 제거효율을 극대화시킬 수 있고, 분리 및 회수가 용이하고 연속식 운전에 적합한 광촉매의 고정화 방법 및 이 방법을 이용한 광촉매 활성탄을 제공하는 데 그 목적이 있다. The present invention has been invented to solve the above problems, to prepare anatase (anatase) crystalline titanium dioxide known to have high photoactivity to support the activated carbon and carbon black having a specific surface area and excellent adsorption capacity of contaminants. It is possible to maximize the removal efficiency of contaminants by releasing the contaminants contained in the waste water by the adsorbent and decomposing by the oxidation reaction of the photocatalyst supported on the adsorbent. An object of the present invention is to provide a method for immobilizing a photocatalyst suitable for operation and to provide a photocatalytic activated carbon using the method.

이와 같은 목적을 달성하기 위한 본 발명은The present invention for achieving the above object

0.5~2 몰(M)의 질산(HNO3) 용액에 티타늄 테트라이소프로포사이드(Titanium Tetraisopropoxide(Ti(OCH(CH3)2)4))를 2:1~5:1의 중량비로 첨가하여 1~3시간 동안 교반하여 졸(sol)상태의 이산화티탄(TiO2)광촉매 용액(suspension)을 제조하는 단계;Titanium Tetraisopropoxide (Ti (OCH (CH3) 2) 4) was added to a solution of 0.5-2 mol (M) nitric acid (HNO3) in a weight ratio of 2: 1-5: 1 to 1-3 Stirring for a time to prepare a sol titanium dioxide (TiO 2) photocatalyst solution;

제조된 졸 상태의 이산화티탄(TiO2)광촉매 용액을 20℃~60℃로 유지시켜, 흡착제에 투입하여 1시간~4시간동안 담지하여 광촉매를 흡착제에 고정시키는 단계; 및 Maintaining the prepared sol titanium dioxide (TiO 2) photocatalyst solution at 20 ° C. to 60 ° C., adding the adsorbent to it for 1 hour to 4 hours, and fixing the photocatalyst to the adsorbent; And

광촉매가 고정된 흡착제를 2~3회 원심분리기를 이용한 원심분리 및 증류수를 이용한 세척을 수행하고, 광촉매가 고정된 흡착제를 전기로를 이용해 300℃-450℃에서 30분~2시간 동안 소성하는 단계를 포함한다. Centrifugation using a centrifugal separator and washing with distilled water two to three times, and the photocatalyst immobilized with the photocatalyst was calcined at 300 ° C.-450 ° C. for 30 minutes to 2 hours using an electric furnace. Include.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하면 다음과 같다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명에 따른 광촉매의 고정화 방법을 설명하기 위한 흐름도이고, 도 2 a와 b는 본 발명에 따른 광촉매의 고정화 방법을 이용하여 활성탄에 이산화 티탄이 고정되기 전과 후의 상태를 보여주기 위한 SEM 사진이다. 1 is a flowchart illustrating a method for immobilizing a photocatalyst according to the present invention, and FIGS. 2 a and b are SEM for showing a state before and after titanium dioxide is fixed to activated carbon using the method for immobilizing a photocatalyst according to the present invention. It is a photograph.

본 발명은 광물질인 아나타제(anatase)에서 광촉매의 역할을 하는 이산화티탄(TiO2)을 졸-겔(sol-gel)법을 이용하여 제조한 후, 활성탄 또는 카본블랙과 같은 흡착제에 담지하여 광촉매를 흡착제에 고정화한다. The present invention is prepared by using a sol-gel method of titanium dioxide (TiO2) that acts as a photocatalyst in the mineral anatase, and then supported on an adsorbent such as activated carbon or carbon black to adsorb the photocatalyst Immobilize to

먼저, 본 발명에 따른 광촉매를 흡착제에 고정화시키는 방법은 도 1에서 보는 바와 같이, 0.5~2 몰(M)의 질산(HNO3) 용액에 티타늄 테트라이소프로포사이드(Titanium Tetraisopropoxide(Ti(OCH(CH3)2)4))를 2:1~5:1의 중량비로 첨가하여 2시간 동안 교반하여 졸(sol)상태의 이산화티탄(TiO2)광촉매 용액(suspension)을 제조한다. 제조된 졸 상태의 이산화티탄(TiO2)광촉매 용액에 활성탄 또는 카본블랙과 같은 흡착제에 투입하여 일정 온도에서 일정시간 담지하여 광촉매를 흡착제에 고정시킨 다음, 광촉매가 고정된 흡착제를 2~3회 원심분리기를 이용한 원심분리 및 증류수를 이용한 세척을 수행한다. 세척이 종료되면 광촉매가 고정된 흡착제를 전기로를 이용해 300℃-450℃에서 1시간 동안 소성한다. First, the method of immobilizing the photocatalyst according to the present invention on the adsorbent is as follows, titanium tetraisopropoxide (Ti (OCH (CH3)) in 0.5-2 mol (M) nitric acid (HNO 3) solution. 2) 4)) is added in a weight ratio of 2: 1-5: 1 and stirred for 2 hours to prepare a sol titanium dioxide (TiO2) photocatalyst solution. Into the prepared sol state titanium dioxide (TiO2) photocatalyst solution into an adsorbent such as activated carbon or carbon black, it is fixed at a certain temperature for a certain time to fix the photocatalyst to the adsorbent, and then the adsorbent to which the photocatalyst is fixed is centrifuged two or three times. Centrifugation and washing with distilled water are performed. After the washing is finished, the adsorbent to which the photocatalyst is fixed is fired at 300 ° C.-450 ° C. for 1 hour using an electric furnace.

이와 같은 방법으로 제조된 이산화티탄(TiO2)광촉매가 담지된 흡착제의 특성을 엑스레이 회절법(X-ray Diffraction; 이하 XRD라함)를 이용하여 확인한 결과, 광물질인 아나타제(anatase)의 이산화티탄(TiO2)의 피크치인 26.3에서 동일한 피크치가 나타난 것으로 확인되었다. 본 발명에 따른 광촉매를 고정화시키는 방법에 의하여 담지시킨 광촉매의 표면 특성을 SEM 사진을 통해 확인하면 도 2b에서 보는 바와 같이 흡착제 표면에 미세한 크기의 이산화 티탄(TiO2)이 부착되었음을 확인하였다. The characteristics of the adsorbent on which the titanium dioxide (TiO2) photocatalyst prepared in this way was supported by X-ray diffraction (hereinafter referred to as XRD) was found. It was confirmed that the same peak value appeared at 26.3, the peak value of. Checking the surface characteristics of the photocatalyst supported by the method of immobilizing the photocatalyst according to the present invention through SEM photographs, it was confirmed that fine size titanium dioxide (TiO2) was attached to the surface of the adsorbent as shown in FIG. 2B.

하기의 표는 졸상태의 이산화티탄(TiO2)광촉매 용액을 활성탄으로 구성된 흡착제에 담지할 경우 담지 시간과 온도의 제조 변수에 따른 담지량을 나타낸 것으로 담지 시간 및 온도가 증가할수록 담지량이 많아지는 것을 알 수 있다.The following table shows the amount of sol-based titanium dioxide (TiO2) photocatalyst solution supported on the adsorbent consisting of activated carbon according to the production time and temperature, and the amount of loading increased as the time and temperature increased. have.

<표 1> TGA법에 의하여 측정된 제조 변수에 따른 이산화 티탄(TiO2)의 담지량 <Table 1> Supported amount of titanium dioxide (TiO2) according to the manufacturing parameters measured by the TGA method

샘플Sample 담지 시간Support time 담지 온도Supported temperature 담지량 (wt%)Support amount (wt%) AC#1AC # 1 1시간1 hours 20℃20 ℃ 4.04%4.04% AC#2AC # 2 2시간2 hours 20℃20 ℃ 5.24%5.24% AC#3AC # 3 4시간4 hours 20℃20 ℃ 8.87%8.87% AC#4AC # 4 1시간1 hours 60℃60 ℃ 5.65%5.65%

상기의 표에서와 같은 담지 온도 및 담지 시간을 다르게 설정한 다양한 샘플의 액상의 오염물질 및 기상의 오염물질(휘발성 유기 화합물)의 오염물질 제거 효과는 상기 표의 AC#2가 가장 뛰어났다. 이는 광촉매가 활성탄 표면에 너무 많이 담지되면 흡착제의 기공를 막아 흡착하는데 방해가 되어 오히려 오염 물질 제거 효과가 저하됨을 알 수 있었다. The contaminant removal effect of liquid contaminants and gaseous contaminants (volatile organic compounds) of various samples having different supporting temperatures and supporting times as shown in the above table was the best in AC # 2. This can be seen that if the photocatalyst is supported on the surface of activated carbon too much, it blocks the pores of the adsorbent and prevents it from adsorbing, thus reducing the effect of removing pollutants.

이산화티탄(TiO2)광촉매 용액을 흡착제에 담지할 경우 광분해 특성이 최대로 나타날 수 있는 적정 담지량은 5.24 중량%이며, 이는 20℃의 이산화티탄(TiO2)광촉매 용액에 흡착제를 2시간동안 담지하는 것이 가장 바람직하며, 광촉매가 담지된 흡착제의 구조변화를 최소화 할 수 있는 소성온도 및 시간으로는 300℃-450℃에서 1시간 동안 소성하는 것이 바람직하다. 본 발명에 따라 광촉매를 흡착제에 담지시킨 결과 광촉매를 최대 30%까지 담지할 수 있으며, 소성후 흡착능력을 나타내는 비표면적 감소도 5%미만으로 조절되었다.When the titanium dioxide (TiO2) photocatalyst solution is supported on the adsorbent, the maximum supported amount of the photodegradation property is 5.24% by weight. Preferably, the firing temperature and time to minimize the structural change of the adsorbent on which the photocatalyst is supported is preferably baked for 1 hour at 300 ℃-450 ℃. According to the present invention, when the photocatalyst was supported on the adsorbent, the photocatalyst could be supported up to 30%, and the reduction of specific surface area indicating adsorption capacity after firing was also controlled to less than 5%.

본 발명에 따라 광촉매가 담지된 흡착제(활성탄)의 특성을 확인하기 위하여 액상과 기상에서의 광활성 효과를 측정하였다. 액상의 경우 실험에 사용된 실험 장치는 회분식 반응조를 이용하였다. 오염물질로는 염소소독부산물과 염색폐수를 사용하여 공정변수(온도, 농도, 광촉매 투입량, 교반속도)등에 따른 제거특성을 조사하였다. 특수 제작된 자외선 조사장치는 UV-A, UV-B, UV-C 램프(lamp)를 사용하였 으며 자외선 조사량을 변화시켰으며 반응조는 자외선 조사에 방해가 없도록 상부를 개방시켰다. 광촉매의 제거특성은 염소소독부산물의 경우 ECD가 장착된 GC로, 염색폐수는 UV 스펙트로-포토메터(spectro -photometer)를 사용하여 측정하였다.According to the present invention, in order to confirm the properties of the adsorbent (activated carbon) supported on the photocatalyst, the photoactive effect in the liquid phase and the gas phase was measured. In the case of the liquid phase, the experimental apparatus used for the experiment used a batch reactor. As the pollutants, chlorine disinfection by-product and dyeing wastewater were used to investigate the removal characteristics according to process variables (temperature, concentration, photocatalyst input, stirring speed). Specially designed UV irradiation device used UV-A, UV-B, and UV-C lamps, and changed the amount of UV irradiation, and the reactor opened the upper part so as not to interfere with UV irradiation. The removal characteristics of the photocatalyst were GC equipped with ECD in the case of chlorine by-products, and the dyeing wastewater was measured using a UV spectro-photometer.

이와 같은 시험 결과 본 발명에 따라 광촉매가 담지된 흡착제와 일반 활성탄을 이용하여 염색폐수 분해 특성을 비교하면, 2시간 경과 후 광촉매 담지 활성탄이 일반 활성탄에 비하여 약 20%정도의 오염물질 제거특성이 우수함을 알 수 있었다. 이러한 결과는 일반 활성탄의 경우 흡착에 의해서만 염색폐수가 제거되지만 광촉매 담지 활성탄의 경우 활성탄에 의한 흡착과 동시에 광촉매에 의한 제거작용이 동시에 수행되므로 발생된 것이며, 시간이 지남에 따라 분해특성은 더 차이가 발생하였다. As a result of this test, when comparing the dye wastewater decomposition characteristics using the adsorbent loaded with a photocatalyst and general activated carbon according to the present invention, the photocatalyst-supported activated carbon had about 20% better removal of contaminants than the activated carbon after 2 hours. And it was found. The result is that dyeing wastewater is removed only by adsorption in general activated carbon, but in the case of activated carbon, photocatalytic removal is carried out simultaneously with adsorption by activated carbon. Occurred.

또한 일반 활성탄의 경우에는 일정량의 오염물질이 흡착되게 되면 흡착 포화를 일으켜 더 이상 흡착제로써의 역할을 할 수 없게 되지만 광촉매 담지 활성탄의 경우에는 흡착된 오염물질이 광촉매에 의해 분해가 되므로 지속적은 흡착 능력을 가질 수 있어 반영구적인 사용이 가능하다.In addition, in the case of general activated carbon, when a certain amount of pollutant is adsorbed, adsorption saturation occurs and it can no longer act as an adsorbent, but in the case of photocatalyst-supported activated carbon, since the adsorbed contaminants are decomposed by the photocatalyst, the adsorption capacity is continuously It can have a semi-permanent use.

기상의 경우는 반응조를 제작하여 선행 단계에서 조건별로 제조된 광촉매가 담지된 흡착제를 이용하여 휘발성 유기화합물의 제거 실험을 수행하였다. 장치는 UV조사가 그대로 투영될 수 있는 내열유리의 일종인 파이렉스(pyrex)유리를 이용하여 회부로 투입된 물질이 방출되지 않도록 밀봉하였다. 또한 반응기 전체적으로 휘발성 유기물질의 농도 분포가 일정하도록 팬(fan)을 장착한다. 자외선을 조사하면서, 공정변수에 따른 제거특성을 조사한 후, GC를 사용하여 측정하였다.In the case of gaseous phase, a reaction tank was fabricated to remove volatile organic compounds using a photocatalyst-supported adsorbent prepared in the preceding step. The device was sealed using pyrex glass, a kind of heat-resistant glass on which UV radiation can be projected as it is, so that the injected material is not released. In addition, a fan is installed so that the concentration distribution of volatile organic substances is constant throughout the reactor. While irradiating ultraviolet rays, the removal characteristics of the process variables were investigated and then measured using GC.

광촉매가 담지 되지 않은 활성탄과 이산화티탄(TiO2)이 담지된 활성탄, 그리고 TiO2 분말을 사용하여 휘발성 유기물의 분해율을 비교한 결과 광원은 UV-C(BL, 100W)를 사용하였을 때 TiO2 powder와 일반 활성탄보다 TiO2/AC의 경우가 180분 경과 후 약 20% 가량 더 효과적인 것을 확인할 수 있었다.The decomposition rate of volatile organic compounds was compared using activated carbon without photocatalyst, activated carbon with titanium dioxide (TiO2), and TiO2 powder, and the light source was TiO2 powder and ordinary activated carbon when UV-C (BL, 100W) was used. In the case of TiO 2 / AC was more effective about 20% after 180 minutes.

상술한 바와 같이, 본 발명에 따르면 활성탄, 카본블랙등의 흡착제에 이산화티탄(TiO2)을 담지하는 최적의 방법을 활용하여 고기능 고활성의 광촉매 흡착제를 제조하면, 오 폐수의 처리, 난분해성 물질, 비휘발성 유기물질을 완전 산화처리하여 환경적으로 안정적인 수준까지 처리할 수 있다. 즉, 광에 의하여 반응하는 이산화티탄(TiO2)광촉매가 고정된 흡착제의 흡착 및 광분해의 상호작용에 의해 생성된 OH 라디칼을 이용한 것으로 대상 처리물질을 CO2와 H2O로 전환시키는 것으로 2차적인 오염이 발생하지 않으며, 기존의 이산화 티탄(TiO2)촉매만을 이용했을 때와는 달리 촉매의 회수가 용이하여 촉매의 재활용이 쉬워지는 효과가 있다.As described above, according to the present invention, if a high-performance, high-activity photocatalyst adsorbent is prepared using an optimal method of supporting titanium dioxide (TiO2) on an adsorbent such as activated carbon, carbon black, etc., treatment of wastewater, hardly decomposable substances, Non-volatile organic materials can be completely oxidized to an environmentally stable level. That is, the secondary reaction occurs by converting the target material into CO2 and H2O by using OH radicals generated by interaction of photocatalysis and adsorption of fixed adsorbent to titanium dioxide (TiO2) photocatalyst reacted by light. Unlike the case where only the conventional titanium dioxide (TiO 2) catalyst is used, the catalyst is easily recovered and the catalyst is easily recycled.

이상에서 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하였으나, 본 발명은 이에 한정되는 것이 아니며 본 발명의 기술적 사상의 범위내에서 당업자에 의해 그 개량이나 변형이 가능하다.Although the preferred embodiments of the present invention have been described in detail with reference to the accompanying drawings, the present invention is not limited thereto and may be improved or modified by those skilled in the art within the scope of the technical idea of the present invention.

Claims (3)

0.5~2 몰(M)의 질산(HNO3) 용액에 티타늄 테트라이소프로포사이드(Titanium Tetraisopropoxide(Ti(OCH(CH3)2)4))를 2:1~5:1의 중량비로 첨가하여 1~3시간 동안 교반하여 졸(sol)상태의 이산화티탄(TiO2)광촉매 용액(suspension)을 제조하는 단계;Titanium Tetraisopropoxide (Ti (OCH (CH3) 2) 4) was added to a solution of 0.5-2 mol (M) nitric acid (HNO3) in a weight ratio of 2: 1-5: 1 to 1-3 Stirring for a time to prepare a sol titanium dioxide (TiO 2) photocatalyst solution; 상기 제조된 졸 상태의 이산화티탄(TiO2)광촉매 용액을 20℃~60℃로 유지시켜, 흡착제에 투입하여 1시간~4시간동안 담지하여 광촉매를 흡착제에 고정시키는 단계; 및 Maintaining the prepared sol titanium dioxide (TiO 2) photocatalyst solution at 20 ° C. to 60 ° C., adding the adsorbent for 1 hour to 4 hours, and fixing the photocatalyst to the adsorbent; And 상기 단계에서 광촉매가 고정된 흡착제를 2~3회 원심분리기를 이용한 원심분리 및 증류수를 이용한 세척을 수행하고, 광촉매가 고정된 흡착제를 전기로를 이용해 300℃-450℃에서 30분~2시간 동안 소성하는 단계를 포함하는 광촉매의 고정화 방법.In this step, the adsorbent fixed with the photocatalyst is centrifuged and washed with distilled water using a centrifuge two or three times, and the adsorbent fixed with the photocatalyst is calcined at 300 ° C.-450 ° C. for 30 minutes to 2 hours using an electric furnace. Immobilizing the photocatalyst comprising the step of. 제 1 항에 있어서, 상기 흡착제는 활성탄 또는 카본 블랙임을 특징으로 하는 광촉매의 고정화 방법. The method of claim 1, wherein the adsorbent is activated carbon or carbon black. 제 1항의 방법을 이용하여 이산화티탄(TiO2) 광촉매가 4중량 %~9 중량%가 담지되어 광분해 특성을 지닌 광촉매 흡착제. A photocatalyst adsorbent having 4 wt% to 9 wt% of a titanium dioxide (TiO 2) photocatalyst supported by the method of claim 1, having photodegradation properties.
KR1020050022125A 2005-03-17 2005-03-17 Method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method KR100615515B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050022125A KR100615515B1 (en) 2005-03-17 2005-03-17 Method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050022125A KR100615515B1 (en) 2005-03-17 2005-03-17 Method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method

Publications (1)

Publication Number Publication Date
KR100615515B1 true KR100615515B1 (en) 2006-08-25

Family

ID=37601094

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050022125A KR100615515B1 (en) 2005-03-17 2005-03-17 Method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method

Country Status (1)

Country Link
KR (1) KR100615515B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109423B1 (en) * 2011-06-03 2012-01-31 주식회사 그린솔루션 A hybrid photocatalytic adsorbent using nano titanium dioxide with bottom ash and preparation of the same
KR20230032315A (en) * 2021-08-30 2023-03-07 한국산업기술시험원 Manufacturing method of polydopamine coating solution with photocatalyst, Surface treatment method of support using the coating solution, And Nanocomposite adhesive filter and Absorbent manufactured by the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332378A (en) * 1995-06-07 1996-12-17 Nippon Chem Ind Co Ltd Deodorizing photocatalytical activated carbon and production thereof
KR20000008326A (en) * 1998-07-13 2000-02-07 김명신 Fixing method of titanium dioxide used as air cleaner on activated carbon
JP2001096169A (en) 1999-09-29 2001-04-10 Toyoda Gosei Co Ltd Photocatalyst
KR20030028325A (en) * 2001-09-29 2003-04-08 엔바이로테크(주) Process for Preparing Activated Carbon Having Nano-structure Photocatalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08332378A (en) * 1995-06-07 1996-12-17 Nippon Chem Ind Co Ltd Deodorizing photocatalytical activated carbon and production thereof
KR20000008326A (en) * 1998-07-13 2000-02-07 김명신 Fixing method of titanium dioxide used as air cleaner on activated carbon
JP2001096169A (en) 1999-09-29 2001-04-10 Toyoda Gosei Co Ltd Photocatalyst
KR20030028325A (en) * 2001-09-29 2003-04-08 엔바이로테크(주) Process for Preparing Activated Carbon Having Nano-structure Photocatalyst

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101109423B1 (en) * 2011-06-03 2012-01-31 주식회사 그린솔루션 A hybrid photocatalytic adsorbent using nano titanium dioxide with bottom ash and preparation of the same
KR20230032315A (en) * 2021-08-30 2023-03-07 한국산업기술시험원 Manufacturing method of polydopamine coating solution with photocatalyst, Surface treatment method of support using the coating solution, And Nanocomposite adhesive filter and Absorbent manufactured by the same
KR102672138B1 (en) 2021-08-30 2024-06-03 한국산업기술시험원 Manufacturing method of polydopamine coating solution with photocatalyst, Surface treatment method of support using the coating solution, And Nanocomposite adhesive filter and Absorbent manufactured by the same

Similar Documents

Publication Publication Date Title
Belver et al. Zr-doped TiO2 supported on delaminated clay materials for solar photocatalytic treatment of emerging pollutants
Laoufi et al. The degradation of phenol in water solution by TiO2 photocatalysis in a helical reactor
Alalm et al. Enhancement of photocatalytic activity of TiO2 by immobilization on activated carbon for degradation of pharmaceuticals
Shavisi et al. Application of TiO2/perlite photocatalysis for degradation of ammonia in wastewater
Miranda-García et al. Regeneration approaches for TiO2 immobilized photocatalyst used in the elimination of emerging contaminants in water
Mogyorósi et al. TiO2-based photocatalytic degradation of 2-chlorophenol adsorbed on hydrophobic clay
KR101862989B1 (en) Photocatalyst containing active carbon fiber dispersed with titanium dioxde, and water treatment method using the same
Mondal et al. Photocatalytic oxidation of pollutant dyes in wastewater by TiO2 and ZnO nano-materials–a mini-review
Royaee et al. Application of photo-impinging streams reactor in degradation of phenol in aqueous phase
AU2015200952B2 (en) Photocatalyst comprising tio2 and activated carbon made from date pits
Shaban Effective photocatalytic reduction of Cr (VI) by carbon modified (CM)-n-TiO2 nanoparticles under solar irradiation
EP0766647B1 (en) Photoelectrochemical reactor
Laoufi et al. Removal of a persistent pharmaceutical micropollutant by UV/TiO2 process using an immobilized titanium dioxide catalyst: parametric study
US5182030A (en) Regeneration of adsorbents using advanced oxidation
Farzana et al. Photo-decolorization and detoxification of toxic dyes using titanium dioxide impregnated chitosan beads
Gupta et al. Photocatalytic mineralisation of perchloroethylene using titanium dioxide
Rezaee et al. Photocatalytic decomposition of gaseous toluene by TiO2 nanoparticles coated on activated carbon
Uesugi et al. Highly efficient photocatalytic degradation of hydrogen sulfide in the gas phase using anatase/TiO2 (B) nanotubes
WO2021067786A1 (en) System for degrading chemical contaminants in water
ul Haq et al. Photocatalytic applications of titanium dioxide (TiO2)
Royaee et al. Performance of a photo‐impinging streams reactor for the phenol degradation process
Wang et al. Effect of calcination temperature on light absorption and visible light photocatalytic activity of N doped TiO2 nano-crystalline
KR100615515B1 (en) Method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method
Das et al. Photocatalytic decolorisation of methylene blue (MB) over titania pillared zirconium phosphate (ZrP) and titanium phosphate (TiP) under solar radiation
Maddah Optimal operating conditions in designing photocatalytic reactor for removal of phenol from wastewater

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120807

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130814

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20150810

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160829

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170816

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180809

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190813

Year of fee payment: 14