JPH08332378A - Deodorizing photocatalytical activated carbon and production thereof - Google Patents

Deodorizing photocatalytical activated carbon and production thereof

Info

Publication number
JPH08332378A
JPH08332378A JP7140717A JP14071795A JPH08332378A JP H08332378 A JPH08332378 A JP H08332378A JP 7140717 A JP7140717 A JP 7140717A JP 14071795 A JP14071795 A JP 14071795A JP H08332378 A JPH08332378 A JP H08332378A
Authority
JP
Japan
Prior art keywords
activated carbon
deodorizing
titanium oxide
org
photocatalytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7140717A
Other languages
Japanese (ja)
Inventor
Asao Otani
朝男 大谷
Ryohei Imamura
良平 今村
Sakae Iizuka
栄 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP7140717A priority Critical patent/JPH08332378A/en
Publication of JPH08332378A publication Critical patent/JPH08332378A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE: To obtain deodorizing photocatalytical activated carbon having high gas adsorbing capacity and a wide adsorption spectrum, also equipped photocatalytical function and excellent in processability by uniformly mixing activated carbon precursor org. matter and a Ti-containing soln. and subsequently baking the resulting mixture to carbonize and activate the same to form titanium oxide supported activated carbon. CONSTITUTION: Deodorizing photocatalitical activated carbon based on titanium oxide supported activated carbon by uniformly mixing activated carbon precursor org. matter and a Ti-containing soln. and subsequently baking the resulting mixture to carbonize and activate the same. As the activated carbon precursor org. matter, any org. substance used as an activated carbon material can be adapted. As a Ti compd., thereis no special limit even if a material capable of being converted to TiO2 is used but titanium tetrachloride is industrially pref. Since supported titanium oxide is uniformly dispersed in activated carbon, this deodorizing photocatalyst has the original high specific surface area of activated carbon and, since this photocatalyst is strongly fixed to an adsorbent, it is excellent in processability even if a binder is not used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な脱臭性光触媒活
性炭およびその製造方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a novel deodorizing photocatalytic activated carbon and a method for producing the same.

【0002】[0002]

【従来の技術】従来、冷蔵庫の脱臭方法としては、例え
ば、活性炭により吸着除去する方法、オゾン発生装置と
オゾン反応装置を備え、発生するオゾンにより悪臭成分
を酸化分解する方法(特開昭61−93381号公報、
特開昭61−205381号公報)、二酸化チタン等の
光触媒を用い、紫外線を照射して悪臭成分を酸化分解す
る方法等が知られている。その中でも、活性炭による悪
臭成分の吸着除去方法は、現在広く用いられているが、
活性炭が吸着できる臭気成分量には限界があり、例え
ば、高濃度の臭気成分中では、すぐに吸着能力が飽和
し、脱臭効果を短時間しか維持できない等の問題があ
る。また、オゾンによる悪臭成分の酸化法は、高電圧を
必要とし、更に、脱臭後にオゾン臭が残るという問題が
ある。
2. Description of the Related Art Conventionally, as a deodorizing method for a refrigerator, for example, a method of adsorbing and removing with active carbon, a method of oxidatively decomposing a malodorous component with ozone generated by an ozone generator and an ozone reactor (Japanese Patent Laid-Open No. 61- No. 93381,
Japanese Patent Laid-Open No. 61-205381), a method of oxidatively decomposing a malodorous component by irradiating it with ultraviolet rays using a photocatalyst such as titanium dioxide is known. Among them, the method of adsorptive removal of malodorous components by activated carbon is widely used at present,
There is a limit to the amount of odorous components that can be adsorbed by activated carbon. For example, in a high-concentration odorous component, the adsorption capacity is saturated immediately, and the deodorizing effect can be maintained for a short time. Further, the method of oxidizing a malodorous component by ozone requires a high voltage, and further has a problem that an ozone odor remains after deodorization.

【0003】光触媒を用いる脱臭法は、脱臭効果を長期
にわたり維持できるため、近年、冷蔵庫、空気調整等の
冷凍サイクル装置の脱臭剤として、特に注目されている
脱臭方法である。一般的に、光触媒を脱臭剤として単独
で用いた場合には、吸着キャパシティーが不充分であ
り、かつ吸着スペクトルが限定されることから、活性炭
やゼオライト等の幅広い吸着スペクトルを有する吸着剤
と共に用いられている。現在知られている光触媒を用い
た脱臭方法としては、例えば、特開平1−189321
号公報及び特開平1−218635号公報等が挙げられ
る。前者は、二酸化チタン系溶液中にハニカム状活性炭
を浸漬する光触媒浸漬添着法により、吸着剤表面に光触
媒層を形成させる脱臭剤、或いは吸着剤中に光触媒を練
り込んだ脱臭剤が開示され、後者には、活性炭、アルミ
ナ、シリカの吸着剤と光触媒とを含んだ混合物を焼結し
て多孔状に形成した脱臭剤を用いる方法が開示されてい
る。
Since the deodorizing method using a photocatalyst can maintain the deodorizing effect for a long period of time, in recent years, it is a deodorizing method which has been particularly attracting attention as a deodorizing agent for refrigerating cycle devices such as refrigerators and air conditioners. Generally, when a photocatalyst is used alone as a deodorant, it is used with an adsorbent having a wide adsorption spectrum such as activated carbon or zeolite because the adsorption capacity is insufficient and the adsorption spectrum is limited. Has been. Examples of the currently known deodorizing method using a photocatalyst include, for example, JP-A-1-189321.
Japanese Patent Laid-Open No. 1-218635 and Japanese Patent Laid-Open No. 1-218635 can be cited. The former discloses a deodorant that forms a photocatalyst layer on the surface of an adsorbent by a photocatalyst immersion impregnation method in which a honeycomb-shaped activated carbon is immersed in a titanium dioxide-based solution, or a deodorant in which a photocatalyst is kneaded in the adsorbent is disclosed. Discloses a method of using a deodorant formed by sintering a mixture containing an adsorbent of activated carbon, alumina and silica and a photocatalyst.

【0004】しかしながら、何れの脱臭剤も、光触媒粒
子の吸着剤への固定強度に問題があり、そのため、一般
的にバインダーによる固定が考えられるが、バインダー
の使用は吸着剤の細孔を塞ぐと共に、光触媒自体が光触
媒作用によりバインダーを分解するという欠点がある。
However, any deodorant has a problem in the fixing strength of the photocatalyst particles to the adsorbent. Therefore, fixing with a binder is generally considered, but the use of the binder closes the pores of the adsorbent. However, there is a drawback that the photocatalyst itself decomposes the binder by the photocatalytic action.

【0005】また、最近、粒状活性炭、粉末活性炭に次
ぐ活性炭として繊維状活性炭(Activated C
arbon Fiber)が工業化されている。これは
直径10〜30μmの繊維状をしており、粒状活性炭と
の大きな相違点はミクロポアが主体であることで、この
ことが被吸着分子に対する吸着速度が速いことに起因す
る。比表面積は2500m2/gの物もあるが一般的には
1000〜2000m2/gの高比表面積を有し、そし
て、弾性率や強度といった機械的特性を兼ね備えた細い
繊維状という形態から加工性に優れ、従来の活性炭と比
較し、様々な形態への加工を可能にしている。
In addition, recently, fibrous activated carbon (Activated C) has been used as activated carbon next to granular activated carbon and powdered activated carbon.
arbon Fiber) has been industrialized. It has a fibrous shape with a diameter of 10 to 30 μm, and is largely different from the granular activated carbon in that it is mainly composed of micropores, and this is because the adsorption rate for the adsorbed molecule is fast. The specific surface area has also has high specific surface area of typically 1000 to 2000 2 / g things 2500 m 2 / g, and, working from the form of a thin fibrous combines the mechanical properties such as elastic modulus and strength It excels in properties and enables processing into various forms compared to conventional activated carbon.

【0006】[0006]

【発明が解決しようとする課題】本研究者らは、叙上の
事実を鑑み、新規な活性炭系の光触媒の開発につき鋭意
研究した結果、活性炭前駆体有機物とTi含有溶液とを
混合処理した後、焼成により炭素化し、賦活化処理した
酸化チタン担持活性炭が、広範囲な吸着スペクトル、優
れた吸着性能及び高度な光触媒機能を保持することを知
見し本発明を完成させた。すなわち、本発明は新規な脱
臭性光触媒活性炭およびその製造方法を提供することを
目的とする。
In view of the above facts, the present inventors have earnestly studied the development of a novel activated carbon photocatalyst, and as a result, after the activated carbon precursor organic substance and the Ti-containing solution were mixed and treated, The inventors have completed the present invention by discovering that titanium oxide-supported activated carbon that has been carbonized by calcination and activated has a wide adsorption spectrum, excellent adsorption performance, and high photocatalytic function. That is, an object of the present invention is to provide a novel deodorizing photocatalytic activated carbon and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明が提供しようとす
る脱臭性光触媒活性炭はTi成分の存在下で炭素化及び
賦活された酸化チタン担持活性炭を有効成分とすること
を構成上の特徴とする。更に、本発明が提供しようとす
る脱臭性光触媒活性炭の製造方法は、活性炭前駆体有機
物とTi含有溶液とを均一に混合処理した後、次いで焼
成により炭素化し、賦活処理することを構成上の特徴と
する。
The deodorizing photocatalytic activated carbon to be provided by the present invention is characterized in that it contains titanium oxide-supported activated carbon carbonized and activated in the presence of a Ti component as an active ingredient. . Further, the method for producing a deodorizing photocatalytic activated carbon to be provided by the present invention is characterized in that the activated carbon precursor organic substance and the Ti-containing solution are uniformly mixed and treated, then carbonized by firing and activated. And

【0008】本発明の脱臭性光触媒の特徴とするところ
は、担持された酸化チタンが活性炭中に均一に分散され
ているため、活性炭本来の高比表面積を有すること、更
に光触媒が吸着剤に強度に固定されているためバインダ
ーを用いなくても加工性に優れているところである。特
に、繊維状の活性炭にあっては種々の形態への加工を容
易にし、多くの用途展開が可能である。本発明に係る脱
臭性光触媒活性炭は、酸化チタンを担持した活性炭では
あるが、従来のような活性炭に酸化チタンを吸着させて
含有するいわゆる添着担持したものとは基本的に異な
る。
The deodorizing photocatalyst of the present invention is characterized in that since the supported titanium oxide is uniformly dispersed in the activated carbon, it has a high specific surface area inherent to the activated carbon, and the photocatalyst has high strength as an adsorbent. Since it is fixed to the base, it has excellent workability without using a binder. In particular, in the case of fibrous activated carbon, it can be easily processed into various forms, and many applications can be developed. The deodorizing photocatalytic activated carbon according to the present invention is an activated carbon supporting titanium oxide, but is fundamentally different from the conventional so-called impregnated supporting activated carbon containing adsorbed titanium oxide.

【0009】すなわち、本発明における酸化チタン担持
活性炭はTi成分の存在下で炭素化及び賦活されたもの
である。ここで、Ti成分の存在下で、炭素化及び賦活
するとは、後述するように活性炭の前駆体である有機化
合物とTi化合物との混合物を常法により炭素化及び賦
活処理を施したものであって、その過程で生成する酸化
チタンが活性炭中で均一に存在しているものである。換
言すれば、活性炭の製造段階で酸化チタンを担持させた
ものということができる。
That is, the titanium oxide-supporting activated carbon in the present invention is carbonized and activated in the presence of a Ti component. Here, carbonizing and activating in the presence of a Ti component means that a mixture of an organic compound, which is a precursor of activated carbon, and a Ti compound is carbonized and activated by a conventional method as described below. The titanium oxide produced in the process is evenly present in the activated carbon. In other words, it can be said that titanium oxide is supported at the production stage of activated carbon.

【0010】また、酸化チタンの活性炭中の含有量は、
活性炭の製造条件や脱臭用途等によって一様ではないけ
れどもTiとして0.1〜30wt%、好ましくは0.5
〜20wt%の範囲にある。この理由は、約0.1wt
%以下では光触媒作用の効果が不十分であり、一方、約
30wt%以上では活性炭の物性劣化、例えば、比表面
積の減少、また、繊維状にあっては弾性、強度の劣化な
ど好ましくない傾向を示すからである。なお、本発明に
おいて、Ti成分のほかに各用途に応じて、所望によ
り、Cu、Mn、Fe、Co、Ni、Zn、Ag、P
t、Pd等の一種又は2種以上を担持させることも可能
である。また、本発明に係る活性炭はTi成分の光触媒
作用により、それ自体で抗菌性を有するがAg成分を担
持することによって、より抗菌性を発揮させることが出
来る。
The content of titanium oxide in activated carbon is
Although it is not uniform depending on the production conditions of activated carbon and deodorizing use, etc., it is 0.1 to 30 wt% as Ti, preferably 0.5.
It is in the range of ˜20 wt%. The reason for this is about 0.1 wt.
% Or less, the effect of the photocatalytic action is insufficient. On the other hand, when it is about 30 wt% or more, the physical properties of the activated carbon are deteriorated, for example, the specific surface area is decreased, and when it is fibrous, the elasticity and strength are deteriorated. It is because it shows. In the present invention, in addition to the Ti component, if desired, Cu, Mn, Fe, Co, Ni, Zn, Ag, P may be used according to each application.
It is also possible to support one or more of t, Pd and the like. Further, the activated carbon according to the present invention has an antibacterial property by itself due to the photocatalytic action of the Ti component, but can further exhibit the antibacterial property by supporting the Ag component.

【0011】本発明に係る脱臭性光触媒活性炭は、使用
目的によって、粉体、又は成型体のいずれであってもよ
い。粉体の粒度は特に限定するものではなく、また、成
型体にあっても顆粒状、繊維状、ハニカム体など任意の
形態を採りうる。しかし、経済的な面を除けば繊維状活
性炭が最も好ましいと言える。
The deodorizing photocatalytic activated carbon according to the present invention may be either a powder or a molded body depending on the purpose of use. The particle size of the powder is not particularly limited, and the molded body may have any shape such as granular, fibrous, and honeycomb body. However, fibrous activated carbon can be said to be the most preferable from the economical point of view.

【0012】脱臭性光触媒活性炭が対象とする被吸着分
子は、特に限定されないが、例えば、アンモニア、モノ
メチルアミン、ジメチルアミン、トリメチルアミン、窒
素酸化物等の窒素化合物、硫化水素、ジメチルスルフィ
ド、ジメチルジスルフィド、メチルメルカプタン、エチ
ルメルカプタン硫黄酸化物等の各種硫黄化合物、ホルム
アルデヒド、アセトアルデヒド、プロピルアルデヒド等
のアルデヒド類、酢酸、酪酸、吉草酸、イソ吉草酸等の
脂肪族炭化水素、インド−ル、スカト−ル等のインド−
ル類、フェノ−ル類、エチレン類の不飽和炭化水素、イ
ソプロピルアルコ−ル等のアルコ−ル類、下水臭、動物
臭、その他有機系ガス等が挙げられ、これらのガスに対
し、吸着と光触媒作用に基づく分解によって効果的に脱
臭能を発揮する。
The adsorbed molecules targeted by the deodorizing photocatalytic activated carbon are not particularly limited, but examples thereof include ammonia, monomethylamine, dimethylamine, trimethylamine, nitrogen compounds such as nitrogen oxides, hydrogen sulfide, dimethyl sulfide, dimethyl disulfide, Various sulfur compounds such as methyl mercaptan and ethyl mercaptan sulfur oxides, aldehydes such as formaldehyde, acetaldehyde and propyl aldehyde, aliphatic hydrocarbons such as acetic acid, butyric acid, valeric acid and isovaleric acid, indoles, skatole, etc. India-
Examples thereof include alcohols such as phenols, phenols, unsaturated hydrocarbons of ethylene, alcohols such as isopropyl alcohol, sewage odor, animal odor, and other organic gases. Deodorization is effectively exerted by decomposition based on photocatalysis.

【0013】かかる脱臭性光触媒活性炭の製造方法は、
活性炭前駆体有機物とTi含有溶液とを均一に混合処理
する原料調製工程と得られる原料混合物を焼成炭素化及
び賦活処理する工程より基本的に成る。
The method for producing such deodorizing photocatalytic activated carbon is as follows:
It basically consists of a raw material preparation step of uniformly mixing an activated carbon precursor organic substance and a Ti-containing solution, and a step of calcining and activating the raw material mixture thus obtained.

【0014】活性炭前駆体有機物は特に限定はなく従来
より公知の活性炭素材として用いられる有機物質であれ
ば、いずれも適用することができる。例えば、フェノ−
ル樹脂、エポキシ樹脂、メラミン樹脂、尿素樹脂の如き
熱硬化性樹脂、ポリアクリロニトリル、ポリオレフィ
ン、ポリエステル、ポリアミド、ポリビニルアルコ−
ル、澱粉、セルロ−ス、メチルセルロ−ス、モミガラ、
ヤシガラ、タ−ル成分、石炭、木材チップ、廃タイヤ等
の1種又は2種が挙げられる。
The activated carbon precursor organic substance is not particularly limited, and any organic substance used as a conventionally known activated carbon material can be applied. For example, pheno
Resin, epoxy resin, melamine resin, thermosetting resin such as urea resin, polyacrylonitrile, polyolefin, polyester, polyamide, polyvinyl alcohol
, Starch, cellulose, methylcellulose, rice husk,
One or two kinds of coconut husks, tar ingredients, coal, wood chips, waste tires and the like can be mentioned.

【0015】次に、Ti化合物としては、熱分解により
TiO2に転換できるものであれば特に限定するもので
はない。例えば、塩化チタン、臭化チタン、フッ化チタ
ン、ヨウ化チタン等のハロゲン化チタン、メチル、エチ
ル、プロピル、ブチル等のチタニウムアルコラート、そ
の他有機チタニウム化合物等が挙げられる。その中でも
四塩化チタンが工業的に好ましく、その水溶液又は、メ
タノ−ル、エタノ−ル、アセトン、ベンゼンの如き有機
溶媒を用いた溶液状態で使用する。なお必要に応じ、C
u、Mn、Fe、Co、Ni、Zn、Pt、Pd、Ag
等の金属イオンを含有する溶液を併用しても差し支えな
い。これら化合物としては、硝酸塩、塩化物、酢酸塩等
が好ましく、その水溶液、または、有機溶媒を用いた溶
液状態で使用する。
Next, the Ti compound is not particularly limited as long as it can be converted into TiO 2 by thermal decomposition. Examples thereof include titanium halides such as titanium chloride, titanium bromide, titanium fluoride and titanium iodide, titanium alcoholates such as methyl, ethyl, propyl and butyl, and other organic titanium compounds. Among them, titanium tetrachloride is industrially preferable, and its aqueous solution or a solution state using an organic solvent such as methanol, ethanol, acetone or benzene is used. If necessary, C
u, Mn, Fe, Co, Ni, Zn, Pt, Pd, Ag
There is no problem even if a solution containing a metal ion such as As these compounds, nitrates, chlorides, acetates and the like are preferable, and they are used as an aqueous solution thereof or in a solution state using an organic solvent.

【0016】これら原料を所望の容器内にて混合し、均
一な原料混合物を得る。従って、原料等を所望の溶媒に
溶かして混合することが均一化に特に望ましが、所望の
溶媒に溶けない不均一原料においては、例えば、炭素化
材料にTi溶液を浸漬又は添加した後、撹拌等を施しな
がらよく混合して吸着、含浸処理する。次いで、溶媒を
分離除去した後、得られる調合物を常法により炭素化及
び賦活処理を施して活性炭とする。この場合、活性炭素
繊維にあっては原料調合物を紡糸した後、炭素化及び賦
活することが好ましい。
These raw materials are mixed in a desired container to obtain a uniform raw material mixture. Therefore, it is particularly desirable to dissolve and mix the raw materials and the like in a desired solvent for homogenization, but in a heterogeneous raw material that does not dissolve in the desired solvent, for example, after dipping or adding a Ti solution to a carbonized material, Mix well while stirring and adsorb and impregnate. Then, after the solvent is separated and removed, the obtained formulation is subjected to carbonization and activation treatment by a conventional method to obtain activated carbon. In this case, the activated carbon fiber is preferably carbonized and activated after spinning the raw material mixture.

【0017】炭素化条件は、特に限定するものではな
く、例えば窒素ガスの如き非酸素ガス気流中で600〜
1000℃の温度下で焼成することにより行われ、本発
明において、特に常法と異なる手段をとる必要はない。
また、賦活化条件についても、特に限定するものではな
く常法と異なる方法を取る必要はない。例えば窒素ガス
をキャリアガスとする水蒸気や炭酸ガスの場合では70
0〜1000℃、酸素ガスの場合では400〜700℃
の温度下で処理することにより行われる。
The carbonization conditions are not particularly limited, and may be 600 to 600 in a non-oxygen gas stream such as nitrogen gas.
It is carried out by firing at a temperature of 1000 ° C., and in the present invention, it is not necessary to take a means different from the usual method.
Also, the activation conditions are not particularly limited, and it is not necessary to take a method different from the usual method. For example, in the case of water vapor or carbon dioxide gas using nitrogen gas as the carrier gas, 70
0-1000 ℃, 400-700 ℃ in case of oxygen gas
The treatment is carried out at the temperature of.

【0018】この賦活化工程により担持されたTiが、
どのような形態で存在すのか、その詳細な機構は明らか
でないが、二酸化チタンとして活性炭の細孔表面に出現
し、紫外線が照射されると荷電帯の電子が紫外線を吸収
して伝導帯に励起され、そこで生じた荷電帯の正孔は触
媒表面にある水酸基(OH基)と反応し、伝導帯に励起
された電子は酸素(O)と反応して高活性のOHラジカ
ル、Oラジカル、O-2が生じ、これが被酸化化合物を酸
化分解するものと推測される。
Ti supported by this activation step is
Although the detailed mechanism of what form it exists in is not clear, it appears as titanium dioxide on the pore surface of activated carbon, and when ultraviolet rays are irradiated, electrons in the charge band absorb the ultraviolet rays and are excited in the conduction band. The holes in the charge band generated there react with the hydroxyl groups (OH groups) on the catalyst surface, and the electrons excited in the conduction band react with oxygen (O) to obtain highly active OH radicals, O radicals, O -2 occurs, which is presumed to oxidatively decompose the compound to be oxidized.

【0019】本発明に係る脱臭性光触媒活性炭は、従来
の光触媒機構を利用した脱臭剤として用いられる分野へ
すべて用いることができるのは当然であるが、特に薄い
汚染ガスの除去あるいは高レベルの汚染ガスの除去に対
応できなかった分野へ効果的に適用することができる。
The deodorizing photocatalytic activated carbon according to the present invention can naturally be used in all fields used as a deodorizing agent utilizing a conventional photocatalytic mechanism, but particularly, removal of thin pollutant gas or high level pollution. It can be effectively applied to fields where gas removal cannot be dealt with.

【0020】[0020]

【作用】本発明に係る脱臭性光触媒活性炭はTi化合物
を含有する有機物を炭素化及び賦活して得られるTi担
持活性炭を有効成分とする。従って、従来のように活性
炭にTi化合物を添着させたものと本質的に異なり、担
持されたTi成分は活性炭中に均一に存在し、かつ活性
炭本来の特徴である高比表面積を有している。すなわ
ち、活性炭前駆体とTi化合物とを特に好ましくは液−
液混合した均一原料化合物をもって、活性炭を調製する
ことに基づいている。焼成による炭素化段階でTi化合
物は、TiO2へ転化し、その微粒子が炭素中に存在
し、次いで、賦活処理によって、活性炭化しても、添着
型と異なって、該微粒子が活性炭特有の細孔を閉塞する
ことはない。特に繊維状にあっては様々な形態への加工
が可能で、その高機能性故に多様な用途展開することが
できる。本発明に係る活性炭は、二酸化チタン等の光触
媒を単独で使用した場合と比較し、高度な吸着キャパシ
ティ−と幅広い吸着スペクトルを有すると同時に、担持
した微細なTiO2粒子に基づく光触媒機能を兼ね備え
ているため、優れた脱臭能力を有するものである。な
お、Tiの他にCu、Mn等の金属元素成分を併用担持
することにより、各目的のものが調製でき、アンモニ
ア、硫化水素といった活性炭単独では吸着性能の劣る被
吸着分子に対しても優れた吸着性能が発現する。
The deodorizing photocatalytic activated carbon according to the present invention contains Ti-supporting activated carbon obtained by carbonizing and activating an organic substance containing a Ti compound as an active ingredient. Therefore, unlike the conventional method in which a Ti compound is impregnated on activated carbon, the supported Ti component is uniformly present in the activated carbon and has a high specific surface area which is a characteristic of activated carbon. . That is, the activated carbon precursor and the Ti compound are particularly preferably liquid-
It is based on preparing activated carbon with a liquid-mixed homogeneous starting compound. At the carbonization stage by calcination, the Ti compound is converted into TiO 2 , and its fine particles are present in carbon. Then, even if activated carbon is activated by activation treatment, the fine particles are different from the impregnated type and have fine pores unique to activated carbon. Does not block. In particular, the fibrous form can be processed into various forms, and due to its high functionality, it can be used for various purposes. The activated carbon according to the present invention has a high adsorption capacity and a wide adsorption spectrum as compared with the case where a photocatalyst such as titanium dioxide is used alone, and at the same time, has a photocatalytic function based on the supported fine TiO 2 particles. Therefore, it has an excellent deodorizing ability. It should be noted that by supporting metal element components such as Cu and Mn in addition to Ti in combination, it is possible to prepare those for each purpose, and it is excellent even for adsorbed molecules such as ammonia and hydrogen sulfide, which have poor adsorption performance with activated carbon alone. Adsorption performance is developed.

【0021】[0021]

【実施例】以下、本発明につき、更に具体的に説明する
ために実施例及び比較例を挙げるが、これに限定される
ものではない。 実施例1〜2 ノボラック型フェノ−ル樹脂(群栄化学工業(株)社製
品)100重量部をエタノ−ル400重量部に溶解して
フェノ−ル樹脂のエタノ−ル溶液を得た。一方、四塩化
チタン(TiCl4)のエタノ−ル溶液を調製し、その所
定量を各フェノ−ルエタノ−ル溶液に混合し、十分撹拌
した。次いで、ロ−タリ−エバポレ−タ−減圧乾燥によ
って、エタノ−ルを除去してTi含有フェノ−ル樹脂を
得る。次いで、得られた各Ti含有フェノ−ル樹脂を常
法により遠心紡糸(直径14μm)してフェノ−ル樹脂
繊維を得た。得られた上記繊維をホルムアルデヒドに2
0分間浸漬させた後、昇温速度0.5℃/分で95℃ま
で加熱し、8時間保持して硬化させた。得られた硬化繊
維をカ−ボンクロスに包み、横型管状炉にて窒素気流
中、昇温速度5℃/分で800℃まで加熱し30分間保
持して焼成し、炭素化した。次いで、窒素ガスをキャリ
アガスとして水蒸気に切り替え800℃で1.5時間保
持して賦活処理し、酸化チタン担持活性炭素繊維を得
た。
EXAMPLES Examples and comparative examples will be given below for illustrating the present invention more specifically, but the invention is not limited thereto. Examples 1 and 2 100 parts by weight of a novolac type phenol resin (manufactured by Gunei Chemical Industry Co., Ltd.) was dissolved in 400 parts by weight of ethanol to obtain an ethanol solution of the phenol resin. On the other hand, an ethanol solution of titanium tetrachloride (TiCl 4 ) was prepared, and a predetermined amount thereof was mixed with each phenol ethanol solution and sufficiently stirred. Then, the ethanol is removed by rotary evaporation under reduced pressure to obtain a Ti-containing phenol resin. Next, each Ti-containing phenol resin obtained was centrifugally spun (diameter 14 μm) by a conventional method to obtain a phenol resin fiber. The above obtained fiber was added to formaldehyde 2
After soaking for 0 minute, the temperature was raised to 95 ° C. at a temperature rising rate of 0.5 ° C./minute and kept for 8 hours for curing. The obtained cured fiber was wrapped in a carbon cloth, heated in a horizontal tubular furnace to 800 ° C. at a temperature rising rate of 5 ° C./min in a nitrogen gas stream, held for 30 minutes and baked to be carbonized. Next, the nitrogen gas was changed to steam as a carrier gas, and the mixture was kept at 800 ° C. for 1.5 hours for activation treatment to obtain titanium oxide-supporting activated carbon fibers.

【0022】比較例1 四塩化チタン−エタノ−ル溶液を使用しない以外は実施
例1と全く同様な操作と条件にて活性炭素繊維を得た。
Comparative Example 1 An activated carbon fiber was obtained by the same operation and conditions as in Example 1 except that the titanium tetrachloride-ethanol solution was not used.

【0023】比較例2 比較例1で得られた活性炭素繊維100重量部を20w
t%アナタ−ス型二酸化チタンスラリ−1500重量部
に5分間浸漬した。次いで濾過し、乾燥して二酸化チタ
ン担持活性炭素繊維を得た。
Comparative Example 2 100 parts by weight of the activated carbon fiber obtained in Comparative Example 1 was added to 20 w.
It was immersed for 5 minutes in 1500 parts by weight of t% anatase type titanium dioxide slurry. Then, it was filtered and dried to obtain a titanium dioxide-supporting activated carbon fiber.

【0024】<物性評価>実施例及び比較例で得られた
各活性炭素繊維につき、化学分析、BET比表面積を測
定して物性評価した。その結果を表1にて示す。
<Evaluation of Physical Properties> Each of the activated carbon fibers obtained in Examples and Comparative Examples was subjected to chemical analysis and BET specific surface area was measured to evaluate physical properties. The results are shown in Table 1.

【0025】[0025]

【表1】 [Table 1]

【0026】<脱臭試験>10cmφの蓋なしのシャ−
レに、実施例1、2及び比較例1、2で調製した活性炭
素繊維0.5gを入れ、30リットル容のアクリルボッ
クス内中央に静置し、その上部に紫外線ランプを固定し
て、蓋をして密閉系とした。次いで、アセトアルデヒ
ド、ジメチルジスルフィドのそれぞれを対象ガスとし
て、アクリルボックス内に濃度20ppmになるまで流
入し、1時間吸着、その後、紫外線を1時間照射する。
更に、除去されたガス量相当分を加え再び濃度20pp
mとし、同様のサイクルを3回実施した。各サイクル中
の対象ガスの濃度の変化をプロットして、図1〜図8に
示す。これらの図に示される結果からも判るように、本
発明による脱臭性光触媒活性炭は、十分なガス吸着能を
有し、連続サイクルにおいても劣化がみられなかった。
これに対し比較例1の活性炭素繊維はサイクルを重ねる
ごとに吸着除去能が低下し、また比較例2の二酸化チタ
ン添着型活性炭素繊維はガス吸着除去能が劣ることが判
る。
<Deodorization test> 10 cmφ without a lid
0.5 g of the activated carbon fibers prepared in Examples 1 and 2 and Comparative Examples 1 and 2 was placed in the container and left in the center of an acrylic box of 30 liter capacity, and an ultraviolet lamp was fixed on the top of the box, and the lid was closed. To make a closed system. Next, using acetaldehyde and dimethyl disulfide as target gases, the gas is flown into the acrylic box until the concentration becomes 20 ppm, adsorbed for 1 hour, and then irradiated with ultraviolet rays for 1 hour.
Furthermore, the amount of the removed gas is added and the concentration is again 20 pp.
m, and the same cycle was repeated 3 times. The changes in the concentration of the target gas during each cycle are plotted and shown in FIGS. As can be seen from the results shown in these figures, the deodorizing photocatalytic activated carbon according to the present invention has a sufficient gas adsorption capacity and no deterioration was observed even in the continuous cycle.
On the other hand, the activated carbon fiber of Comparative Example 1 has a lower adsorptive removal capability with each cycle, and the titanium dioxide-impregnated activated carbon fiber of Comparative Example 2 has a poor gas adsorption and removal capability.

【0027】[0027]

【発明の効果】本発明に係る脱臭性光触媒活性炭は、従
来の吸着担体に光触媒を添着、コ−ティング、混練によ
って担持する方法と比較し、高いガス吸着能と幅広い吸
着スペクトルを有し、更に、光触媒機能を兼ね備えた加
工性の優れたものである。よって、脱臭担体に光触媒を
コ−ティング、添着、混練といった工程は必要なく、活
性炭自体の比表面積を有効に活用することが可能であ
る。よって、薄い汚染ガスの除去あるいは高レベルの汚
染ガスの除去に対応できなかった分野へ効果的に適応す
ることができる。また、本発明に係る製造方法によれ
ば、かかる脱臭性光触媒活性炭を工業的に有利に得るこ
とができる。
INDUSTRIAL APPLICABILITY The deodorizing photocatalytic activated carbon according to the present invention has a high gas adsorption capacity and a wide adsorption spectrum as compared with the conventional method of supporting a photocatalyst on an adsorption carrier by impregnating, coating or kneading. It also has a photocatalytic function and excellent workability. Therefore, the steps of coating, impregnating, and kneading the photocatalyst on the deodorizing carrier are not necessary, and the specific surface area of the activated carbon itself can be effectively utilized. Therefore, it is possible to effectively apply to the field which cannot cope with the removal of thin pollutant gas or the removal of high level pollutant gas. Further, according to the production method of the present invention, such deodorizing photocatalytic activated carbon can be industrially advantageously obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のジメチルジスルフィドの脱臭試験結
果を示すグラフである。
FIG. 1 is a graph showing the results of a deodorization test of dimethyl disulfide in Example 1.

【図2】実施例2のジメチルジスルフィドの脱臭試験結
果を示すグラフである。
FIG. 2 is a graph showing the results of a deodorization test of dimethyl disulfide of Example 2.

【図3】比較例1のジメチルジスルフィドの脱臭試験結
果を示すグラフである。
FIG. 3 is a graph showing the results of a deodorization test of dimethyl disulfide of Comparative Example 1.

【図4】比較例1のジメチルジスルフィドの脱臭試験結
果を示すグラフである。
FIG. 4 is a graph showing the results of a deodorization test of dimethyl disulfide of Comparative Example 1.

【図5】実施例1のアセトアルデヒドの脱臭試験結果を
示すグラフである。
FIG. 5 is a graph showing the results of the deodorizing test of acetaldehyde in Example 1.

【図6】実施例2のアセトアルデヒドの脱臭試験結果を
示すグラフである。
FIG. 6 is a graph showing the results of an acetaldehyde deodorization test in Example 2.

【図7】比較例1のアセトアルデヒドの脱臭試験結果を
示すグラフである。
7 is a graph showing the results of a deodorizing test for acetaldehyde in Comparative Example 1. FIG.

【図8】比較例2のアセトアルデヒドの脱臭試験結果を
示すグラフである。
FIG. 8 is a graph showing the results of a deodorizing test for acetaldehyde in Comparative Example 2.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C01B 31/08 B01D 53/36 ZABJ ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C01B 31/08 B01D 53/36 ZABJ

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Ti成分の存在下で炭素化および賦活さ
れた酸化チタン担持活性炭を主成分とする脱臭性光触媒
活性炭。
1. A deodorizing photocatalytic activated carbon comprising a titanium oxide-supported activated carbon carbonized and activated in the presence of a Ti component as a main component.
【請求項2】 酸化チタン担持活性炭は繊維状である請
求項1記載の脱臭性光触媒活性炭。
2. The deodorizing photocatalytic activated carbon according to claim 1, wherein the titanium oxide-supporting activated carbon is fibrous.
【請求項3】 脱臭性光触媒活性炭は全重量当たりTi
として0.1〜30wt%である請求項1又は2記載の
脱臭性光触媒活性炭。
3. The deodorizing photocatalytic activated carbon is Ti based on the total weight.
The deodorizing photocatalytic activated carbon according to claim 1 or 2, which is 0.1 to 30 wt%.
【請求項4】 活性炭前駆体有機物とTi含有溶液とを
均一に混合処理した後、次いで焼成により炭素化し、賦
活化処理することを特徴とする脱臭性光触媒活性炭の製
造方法。
4. A method for producing a deodorizing photocatalytic activated carbon, which comprises uniformly mixing an activated carbon precursor organic substance and a Ti-containing solution, and then carbonizing by firing to activate the deodorizing photocatalytic activated carbon.
JP7140717A 1995-06-07 1995-06-07 Deodorizing photocatalytical activated carbon and production thereof Pending JPH08332378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7140717A JPH08332378A (en) 1995-06-07 1995-06-07 Deodorizing photocatalytical activated carbon and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7140717A JPH08332378A (en) 1995-06-07 1995-06-07 Deodorizing photocatalytical activated carbon and production thereof

Publications (1)

Publication Number Publication Date
JPH08332378A true JPH08332378A (en) 1996-12-17

Family

ID=15275078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7140717A Pending JPH08332378A (en) 1995-06-07 1995-06-07 Deodorizing photocatalytical activated carbon and production thereof

Country Status (1)

Country Link
JP (1) JPH08332378A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023374A1 (en) * 1996-11-25 1998-06-04 Ecodevice Laboratory Co., Ltd. Photocatalyst having visible light activity and uses thereof
JP2001321677A (en) * 2000-05-18 2001-11-20 Kohjin Co Ltd Titanium oxide/carbon composite particle and its manufacturing method
KR20030028325A (en) * 2001-09-29 2003-04-08 엔바이로테크(주) Process for Preparing Activated Carbon Having Nano-structure Photocatalyst
KR100615515B1 (en) * 2005-03-17 2006-08-25 이종대 Method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method
CN108434979A (en) * 2018-04-10 2018-08-24 苏州市晶协高新电子材料有限公司 A kind of processing system of organic exhaust gas
CN109046301A (en) * 2018-07-13 2018-12-21 南京卡邦科技有限公司 A kind of preparation method of catalyst
CN116371419A (en) * 2023-04-21 2023-07-04 中南大学 Microbial carbon-supported manganese-cobalt catalyst and preparation method and application thereof
CN116712857A (en) * 2023-06-19 2023-09-08 浙江省农业科学院 Air purifying agent and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998023374A1 (en) * 1996-11-25 1998-06-04 Ecodevice Laboratory Co., Ltd. Photocatalyst having visible light activity and uses thereof
US6306343B1 (en) 1996-11-25 2001-10-23 Ecodevice Laboratory Co., Ltd Photocatalyst having visible light activity and uses thereof
JP2001321677A (en) * 2000-05-18 2001-11-20 Kohjin Co Ltd Titanium oxide/carbon composite particle and its manufacturing method
KR20030028325A (en) * 2001-09-29 2003-04-08 엔바이로테크(주) Process for Preparing Activated Carbon Having Nano-structure Photocatalyst
KR100615515B1 (en) * 2005-03-17 2006-08-25 이종대 Method for solid of photo-catalyst and adsorbent including the photo-catalyst using the method
CN108434979A (en) * 2018-04-10 2018-08-24 苏州市晶协高新电子材料有限公司 A kind of processing system of organic exhaust gas
CN109046301A (en) * 2018-07-13 2018-12-21 南京卡邦科技有限公司 A kind of preparation method of catalyst
CN116371419A (en) * 2023-04-21 2023-07-04 中南大学 Microbial carbon-supported manganese-cobalt catalyst and preparation method and application thereof
CN116712857A (en) * 2023-06-19 2023-09-08 浙江省农业科学院 Air purifying agent and preparation method thereof
CN116712857B (en) * 2023-06-19 2023-11-07 浙江省农业科学院 Air purifying agent and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2007023558A1 (en) Tungsten oxide photocatalyst, process for producing the same, and fiber cloth having deodorizing/antifouling function
US20020111268A1 (en) Catalyst for removing dioxin and preparation method thereof
JPH08239279A (en) Nitrogen-containing molecular sieve activated carbon, production and use thereof
JPH08332378A (en) Deodorizing photocatalytical activated carbon and production thereof
CN107649145B (en) Catalyst for decomposing ozone and preparation method thereof
JPH09155187A (en) Activated carbon for adsorbing acidic gas and production thereof
JPH0555184B2 (en)
CN108906108B (en) N-SrTiO3Microwave synthesis process of active carbon treatment material and application thereof
JP5358433B2 (en) Composite, method for producing the same, and composition containing the same
JP4201910B2 (en) Titanium oxide composite biomass carbide, method for producing the same, and method for decomposing chemical substances thereby
KR102501792B1 (en) Manufacturing method of activated carbon for air purifier filter with surface modification treatment
WO1996022827A1 (en) Deodorant material, process for producing the same, and method of deodorization
JP2000225349A (en) Filter
JPH11137656A (en) Deodorant catalyst element and its production
JPH08252304A (en) Deodorizing activated carbon and its manufacture
JP3546766B2 (en) Deodorizing catalyst
JP4283144B2 (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP2000157863A (en) Activated carbon for air cleaning and production thereof
JP2002355299A (en) Air cleaning filter using photocatalyst
JPH0780299A (en) Metal oxide added activated carbon catalyst
KR101132187B1 (en) Method for preparing a metal oxide catalyst for deodorization
JPH1033646A (en) Toilet deodorizing catalyst
KR102454332B1 (en) Air purifier
CN115414963B (en) Catalyst for removing VOCs and preparation method and application thereof
JP2995608B2 (en) Ozone filter and its manufacturing method