JP2001321677A - Titanium oxide/carbon composite particle and its manufacturing method - Google Patents

Titanium oxide/carbon composite particle and its manufacturing method

Info

Publication number
JP2001321677A
JP2001321677A JP2000146930A JP2000146930A JP2001321677A JP 2001321677 A JP2001321677 A JP 2001321677A JP 2000146930 A JP2000146930 A JP 2000146930A JP 2000146930 A JP2000146930 A JP 2000146930A JP 2001321677 A JP2001321677 A JP 2001321677A
Authority
JP
Japan
Prior art keywords
titanium oxide
particles
carbon
carbon composite
composite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000146930A
Other languages
Japanese (ja)
Other versions
JP4868326B2 (en
Inventor
Shinichiro Ishihara
晋一郎 石原
Masafumi Ikeda
政史 池田
Hideaki Mukoyama
秀明 向山
Shoji Nagaoka
昭二 永岡
Masanori Nagata
正典 永田
Chohachiro Nagasawa
長八郎 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kohjin Holdings Co Ltd
Kumamoto Prefecture
Kohjin Co
Original Assignee
Kohjin Holdings Co Ltd
Kumamoto Prefecture
Kohjin Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kohjin Holdings Co Ltd, Kumamoto Prefecture, Kohjin Co filed Critical Kohjin Holdings Co Ltd
Priority to JP2000146930A priority Critical patent/JP4868326B2/en
Publication of JP2001321677A publication Critical patent/JP2001321677A/en
Application granted granted Critical
Publication of JP4868326B2 publication Critical patent/JP4868326B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a titanium/carbon composite particle excellent in photocatalytic performance and suitable for a water treating material, a deodorant, an antibacterial material, a coating material, or the like. SOLUTION: The manufacturing method of the spherical titanium oxide/ carbon composite particle is implemented by carbonizing a spherical titanium oxide/carbon composite particle containing titanium oxide on the surface and inside, which is composed of carbonizable organic material such as cellulose.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、吸着能に優れ光触
媒能を有する酸化チタン・炭素複合粒子及びその製造法
に関する。本発明の炭素複合粒子は、球状であり、酸化
チタンの炭素系粒子への固定化という点において極めて
優れており、かかる炭素複合粒子は、水処理材、脱臭
材、抗菌材、コーティング材等に好適に使用される。
TECHNICAL FIELD The present invention relates to titanium oxide / carbon composite particles having excellent adsorption ability and photocatalytic ability, and a method for producing the same. The carbon composite particles of the present invention are spherical and are extremely excellent in immobilizing titanium oxide to carbon-based particles, and such carbon composite particles are used for water treatment materials, deodorizing materials, antibacterial materials, coating materials, and the like. It is preferably used.

【0002】[0002]

【従来の技術】従来の有機物の吸着剤は、シリカゲル、
活性炭、ゼオライト、モレキュラーシーブスなどがあげ
られ、特に、活性炭等の炭素質は、種々の有機物に対し
て吸着力は優れているものの、吸着後、たとえば環境ホ
ルモン等の有害物質を吸着した際に処理するのは、非常
に困難で、高温での焼却処理、高温高圧水を用いる大掛
かりな装置を使った処理、プラズマなど特殊な技法を用
いた処理を行うしかない。またNOx,SOxなどの吸
着力は、小さく、除去することは困難である。
2. Description of the Related Art Conventional organic adsorbents include silica gel,
Activated carbon, zeolite, molecular sieves, etc., are particularly useful.Carbonaceous materials such as activated carbon have excellent adsorptive power to various organic substances, but are treated after adsorbing harmful substances such as environmental hormones after adsorption. It is very difficult to do this, and there is no choice but to perform incineration treatment at high temperature, treatment using a large-scale apparatus using high-temperature and high-pressure water, or treatment using special techniques such as plasma. Further, the adsorption power of NOx, SOx, and the like is small, and it is difficult to remove them.

【0003】一方、酸化チタンは光を照射することによ
り活性酸素を発生させ、その活性酸素が環境汚染物質を
分解、無害化することで近年特に注目されている。かか
る点に着目し、活性炭と光触媒能を有する酸化チタンと
の複合により、有害物の吸着能と有害物分解能を共有し
ようとする材料がいくつか提案されている。
[0003] On the other hand, titanium oxide has attracted special attention in recent years because it generates active oxygen by irradiating light, and the active oxygen decomposes and detoxifies environmental pollutants. Focusing on this point, there have been proposed some materials that attempt to share harmful substance adsorption capacity and harmful substance resolution by combining activated carbon with titanium oxide having photocatalytic ability.

【0004】例えば特開平6−315614号公報に、
二酸化チタンと活性炭との混合物を汚染物質の除去に用
いることが記載されている。しかしながらこの方法で
は、酸化チタンの保持が難しく、また活性炭と酸化チタ
ンが別々に存在しているため、活性炭の濃縮効果が期待
できず、十分に酸化チタンの能力を使用することが困難
である。
[0004] For example, in Japanese Patent Application Laid-Open No. 6-315614,
The use of a mixture of titanium dioxide and activated carbon for the removal of pollutants is described. However, in this method, it is difficult to retain titanium oxide, and since activated carbon and titanium oxide are separately present, the effect of concentrating activated carbon cannot be expected, and it is difficult to sufficiently use the capacity of titanium oxide.

【0005】そこで、酸化チタンを担持した複合活性炭
が提案されている(特開平8−208211号公報、特
開平9−20509号公報、特開平9−67113号公
報)。これらは、活性炭あるいは活性炭製造プロセス時
に酸化チタンを混合し、活性炭の表面に固定化するもの
であるが、本発明者らの調査では、担持力はそれほど強
いものではなく、使用時の酸化チタンの離散が問題とな
る。
[0005] Therefore, composite activated carbon supporting titanium oxide has been proposed (JP-A-8-208211, JP-A-9-20509, and JP-A-9-67113). These are those in which titanium oxide is mixed during the activated carbon or activated carbon production process and immobilized on the surface of the activated carbon.However, according to the investigation by the present inventors, the supporting force is not so strong, and the titanium oxide used during use is not so strong. Discrete matters.

【0006】また、特開平10−286456号公報に
は、活性炭表面にゾルゲル法にて酸化チタンを固定化す
ることが記載されているが、担持力も弱く、ゾルからゲ
ルを得る面倒な化学反応プロセスを経なければならない
と言う問題もある。また、上記いずれの活性炭も形状が
不定型であるため、水処理等において固定床として用い
た場合、固定床で有機物の不均一拡散が生じ、固定床と
しての効率が悪くなる。
Japanese Patent Application Laid-Open No. 10-286456 discloses that titanium oxide is immobilized on the surface of activated carbon by a sol-gel method. However, the supporting force is weak, and a cumbersome chemical reaction process for obtaining a gel from the sol is performed. There is also the problem of having to go through. In addition, since any of the above activated carbons has an irregular shape, when used as a fixed bed in water treatment or the like, non-uniform diffusion of organic matter occurs in the fixed bed, and the efficiency of the fixed bed becomes poor.

【0007】一方、球状の酸化チタン複合活性炭がいく
つか提案されている(特開平8−295506号公報、
特開平10−33989号公報等)。これらは何れも中
空状の粒子であり、軽量化を目的としたもので、本発明
とは異なるものである。また、中空のため機械的強度は
小さく、また高い比表面積は望めない。
On the other hand, some spherical titanium oxide composite activated carbons have been proposed (JP-A-8-295506,
JP-A-10-33989). These are all hollow particles and are intended for weight reduction, and are different from the present invention. In addition, since it is hollow, the mechanical strength is small, and a high specific surface area cannot be expected.

【0008】[0008]

【発明が解決しようとする課題】そこで本発明者らは、
上記課題を解決すべく鋭意検討した結果、表面及び内部
に酸化チタンを含有した炭化処理可能な有機物からなる
球状複合粒子を炭素化処理することによって、表面及び
内部に強固に酸化チタンが固定化された球状の炭素複合
粒子が得られることを見出した。こうして得られた酸化
チタン・炭素複合粒子は、炭素粒子にしっかりと酸化チ
タンが固定されているにもかかわらず、炭素化処理によ
る粒子自体の収縮で、酸化チタンが粒子表面に多く露出
し、光触媒活性の高い材料となっていることを見出し、
本発明に至った。
SUMMARY OF THE INVENTION Accordingly, the present inventors
As a result of intensive studies to solve the above problems, the titanium oxide is firmly fixed on the surface and inside by carbonizing spherical composite particles made of carbonizable organic material containing titanium oxide on the surface and inside. It was found that spherical carbon composite particles were obtained. In the titanium oxide / carbon composite particles thus obtained, despite the titanium oxide being firmly fixed to the carbon particles, a large amount of titanium oxide is exposed on the particle surface due to the contraction of the particles themselves due to the carbonization treatment, and the photocatalyst Finding that it is a highly active material,
The present invention has been reached.

【0009】[0009]

【発明の実施の形態】用いられる球状粒子原料として
は、セルロース系、フェノール樹脂系、アクリル樹脂
系、ポリエチレン系等の天然系及び合成系の炭素化可能
な有機物であれば使用でき、これら有機物からなる球状
粒子であり表面及び内部に酸化チタンを担持したものと
することが必要である。原料粒子の粒径は特に限定され
ないが、調製される酸化チタン・炭素粒子の目的の粒径
を考慮して選定することができる。この酸化チタンを担
持した有機物粒子を炭素化することによって表面及び内
部に酸化チタンを強固に担持した球状の炭素粒子を得る
ことができる。炭素化処理は、その素材に応じた条件で
適宜行われる。通常不活性ガスの雰囲気下で高温に加熱
され、有機物が炭素へと変化する。特に酸化チタン・セ
ルロース複合粒子は、炭化処理し易いことからより好ま
しい。
BEST MODE FOR CARRYING OUT THE INVENTION As raw materials for spherical particles to be used, natural and synthetic carbonizable organic substances such as cellulose, phenolic resin, acrylic resin, and polyethylene can be used. It is necessary to form spherical particles having titanium oxide supported on the surface and inside. The particle size of the raw material particles is not particularly limited, but can be selected in consideration of the target particle size of the prepared titanium oxide / carbon particles. By carbonizing the organic particles carrying titanium oxide, spherical carbon particles carrying titanium oxide firmly on the surface and inside can be obtained. The carbonization treatment is appropriately performed under conditions according to the material. Usually, it is heated to a high temperature in an atmosphere of an inert gas, and the organic matter is changed to carbon. Particularly, titanium oxide / cellulose composite particles are more preferable because they are easily carbonized.

【0010】以下、原料球状粒子を酸化チタン・セルロ
ース複合粒子に限って具体例を例示しながら本発明を詳
細に説明するが、この限りではない。本発明にいう球状
の酸化チタン・セルロース複合粒子は、光触媒能を有す
る酸化チタンを表面及び内部に含有したもので有ればい
ずれでもよく、例えば特開昭63−92603号公報に
記載されている方法により製造されたものを使用するこ
とができる。この方法によれば、適当な製造条件の選択
によって平均粒径が600〜1000μmの大きいもの
から平均粒径が3〜10μmの微小な球状の酸化チタン
・セルロース複合粒子を得ることができる。粒度は必要
に応じて分級により適宜そろえられる。また、パルプな
どの原料セルロースを一旦溶媒に溶解し、凝固剤によっ
てセルロースに凝固するという成形品は一般に特に再生
セルロースと呼ばれるが、この再生セルロース粒子は、
高度に形状及び構造を制御できる点で好ましい。
Hereinafter, the present invention will be described in detail with reference to specific examples in which the raw material spherical particles are limited to titanium oxide / cellulose composite particles, but the present invention is not limited thereto. The spherical titanium oxide / cellulose composite particles referred to in the present invention may be any as long as they contain titanium oxide having photocatalytic ability on the surface and inside, and are described in, for example, JP-A-63-92603. What was manufactured by the method can be used. According to this method, fine spherical titanium oxide / cellulose composite particles having an average particle diameter of 3 to 10 μm from a large one having an average particle diameter of 600 to 1000 μm can be obtained by selecting appropriate production conditions. The particle size can be properly adjusted by classification as needed. In addition, a molded article in which raw cellulose such as pulp is once dissolved in a solvent and coagulated into cellulose with a coagulant is generally called particularly regenerated cellulose.
This is preferable in that the shape and structure can be highly controlled.

【0011】調製される酸化チタン・炭素複合粒子中の
酸化チタン含有量は、原料酸化チタン・セルロース複合
粒子の酸化チタン含有量によって大まか制御されるた
め、予め目的の含有量を炭化条件等を考慮し、原料を準
備しておく必要がある。酸化チタン・セルロース複合粒
子中の酸化チタンの含有量は、セルロース1重量当たり
0.02〜5重量部が好ましく、0.05〜1.0重量
部がより好ましい。含有量が0.02重量部未満では、
調整される酸化チタン・炭素複合粒子の光触媒機能が乏
しく、5重量部を越えると、セルロース複合粒子の形態
が安定せず、酸化チタンが脱落し易くなるばかりでな
く、得られる、酸化チタン・炭素粒子の強度が弱くなり
好ましくない。
The content of titanium oxide in the prepared titanium oxide / carbon composite particles is roughly controlled by the content of titanium oxide in the starting titanium oxide / cellulose composite particles. It is necessary to prepare raw materials. The content of titanium oxide in the titanium oxide / cellulose composite particles is preferably 0.02 to 5 parts by weight, more preferably 0.05 to 1.0 part by weight, per 1 weight of cellulose. If the content is less than 0.02 parts by weight,
If the titanium oxide / carbon composite particles to be adjusted have a poor photocatalytic function and exceed 5 parts by weight, the morphology of the cellulose composite particles will not be stable and the titanium oxide will not only fall off easily, but also the resulting titanium oxide / carbon The strength of the particles becomes weak, which is not preferable.

【0012】また、必要に応じて原料としてのセルロー
ス複合粒子に多孔化処理をしておくこともできる。多孔
化度の高い酸化チタン・セルロース複合粒子を原料に用
いた場合、得られる酸化チタン・炭素複合粒子も概ね粗
な構造を形成し、表面積が向上し、嵩比重が低減する。
多孔化処理の方法は特に限定されないが、例えば特開昭
63−90501号公報や特開昭63−92602号公
報に記載されている方法を使用することができる。本発
明粒子の表面積及び嵩比重を向上させる他の方法として
は、本発明の炭素化処理工程において発泡するような発
泡剤を予め酸化チタンと共にセルロース粒子中に含有さ
せておくことにより達成できる。発泡剤としては、熱に
よる分解や気化で体積膨張するもので有ればいずれでも
よく、例えば熱分解してガスを発生する無機発泡剤やア
ゾ化合物、ヒドラジン誘導体、セミカルバジド化合物、
アジ化合物、ニトロソ化合物、トリアゾール化合物等の
有機系発泡剤を使用することができる。
[0012] If necessary, the cellulose composite particles as a raw material may be subjected to a porous treatment. When titanium oxide / cellulose composite particles having a high degree of porosity are used as a raw material, the resulting titanium oxide / carbon composite particles also have a generally rough structure, the surface area is improved, and the bulk specific gravity is reduced.
The method of the porous treatment is not particularly limited, and for example, a method described in JP-A-63-90501 or JP-A-63-92602 can be used. Another method for improving the surface area and bulk specific gravity of the particles of the present invention can be achieved by previously including a foaming agent that foams in the carbonization treatment step of the present invention together with titanium oxide in the cellulose particles. Any foaming agent may be used as long as it expands in volume by decomposition or vaporization due to heat.For example, an inorganic foaming agent or an azo compound which generates a gas by thermal decomposition, a hydrazine derivative, a semicarbazide compound,
Organic foaming agents such as azimuth compounds, nitroso compounds, and triazole compounds can be used.

【0013】本発明で使用される酸化チタンは特に限定
されずアナターゼ型、ルチル型のどちらの結晶型のもの
も使用でき、その結晶形は問わず、使用する状況により
適宜選択できる。但し、一般にアナターゼ型の方が光触
媒能が高いため、より好ましい。一般に酸化チタンの粒
子径は、0.001から1.0μm程度であり、光触媒
能の観点からできるだけ小さい方が好ましい。特に近年
開発が進んでいる超微粒子状(通常2〜200nm)の
酸化チタンを用いることは特に好ましい。また、実際に
使用する酸化チタンは、製造しようとする酸化チタン・
炭素複合粒子の目的粒径の1/20以下であり、好まし
くは1/50以下である。1/20より大きいと酸化チ
タン・炭素複合粒子の形態が安定せず球状とならず、酸
化チタンの担持力も弱くなる。また光触媒の形状には特
に限定はない。二酸化チタンの添加方法により、凝集し
た光触媒が複合された炭素球状粒子と分散した光触媒が
複合された炭素球状粒子が得られる。
The titanium oxide used in the present invention is not particularly limited, and any one of anatase type and rutile type crystal forms can be used. However, the anatase type is generally more preferable because of its higher photocatalytic activity. Generally, the particle diameter of titanium oxide is about 0.001 to 1.0 μm, and it is preferable that the particle diameter be as small as possible from the viewpoint of photocatalytic ability. In particular, it is particularly preferable to use titanium oxide in the form of ultrafine particles (usually 2 to 200 nm) which has been developed in recent years. The titanium oxide actually used is the titanium oxide to be produced.
It is 1/20 or less, and preferably 1/50 or less, of the target particle size of the carbon composite particles. If it is larger than 1/20, the morphology of the titanium oxide / carbon composite particles will not be stable and will not be spherical, and the carrying capacity of titanium oxide will be weak. The shape of the photocatalyst is not particularly limited. According to the method of adding titanium dioxide, carbon spherical particles in which agglomerated photocatalysts are composited and dispersed photocatalysts are composited are obtained.

【0014】球状の酸化チタン・セルロース複合粒子の
炭素化により球状の酸化チタン・炭素複合粒子を調製す
る方法を以下に説明する。まず得られた酸化チタン・セ
ルロース複合粒子を乾燥しておく必要があり、水分率は
3〜10重量%程度が好ましい。乾燥方法は特に限定さ
れないが、熱風乾燥方法、円筒乾燥機の使用、赤外線乾
燥、高周波乾燥、凍結乾燥、有機溶媒からの乾燥、減圧
乾燥、風乾等を使用できる(乾燥プロセス)。
A method for preparing spherical titanium oxide / carbon composite particles by carbonizing the spherical titanium oxide / cellulose composite particles will be described below. First, the obtained titanium oxide / cellulose composite particles need to be dried, and the water content is preferably about 3 to 10% by weight. The drying method is not particularly limited, but a hot air drying method, use of a cylindrical dryer, infrared drying, high frequency drying, freeze drying, drying from an organic solvent, drying under reduced pressure, air drying and the like can be used (drying process).

【0015】得られる酸化チタン・炭素複合球状粒子に
おける凝集の抑制や球形保持を行うため、吸着水を除去
する必要がある。したがって酸化チタン・セルロース複
合球状粒子の吸着水を取り除くため、100℃〜250
℃で好ましくは、150℃〜220℃真空下で加熱する
(吸着水除去プロセス)。
It is necessary to remove adsorbed water in order to suppress aggregation and maintain a spherical shape in the obtained titanium oxide / carbon composite spherical particles. Therefore, in order to remove the adsorbed water of the titanium oxide / cellulose composite spherical particles, 100 ° C. to 250 ° C.
Heating at 150 ° C., preferably at 150 ° C. to 220 ° C. under vacuum (adsorbed water removal process).

【0016】その後、乾燥空気もしくは酸素通気下25
0℃〜350℃好ましくは、270℃〜330℃で、脱
水縮合する(脱水縮合プロセス)。脱水縮合時に多くの
タール物質が派生するため、脱水縮合後、水、メタノー
ル、エタノール、テトラヒドロフラン、N,N−ジメチ
ルホルムアミド、ヘキサン等の有機溶媒で連続的に洗浄
し、タール物を除去する(タール物除去プロセス)。
After that, dry air or oxygen is passed under air.
Dehydration-condensation is performed at 0 ° C to 350 ° C, preferably at 270 ° C to 330 ° C (dehydration condensation process). Since many tar substances are generated at the time of dehydration condensation, after the dehydration condensation, the product is successively washed with an organic solvent such as water, methanol, ethanol, tetrahydrofuran, N, N-dimethylformamide, hexane, etc. to remove tar substances (tar). Object removal process).

【0017】次に炭化処理を行う。炭化処理は、350
℃〜1300℃、好ましくは500℃〜900℃で、窒
素等の不活性ガス雰囲気下で所定時間加熱する(炭化処
理プロセス)。光触媒能の高いアナターゼ結晶型が多く
なるような炭化条件を選ぶことが好ましく、適宜条件を
選択する。これにより、酸化チタン・炭素複合粒子を得
ることができる。酸化チタンの存在状態は、原料酸化チ
タン・セルロース複合粒子中の酸化チタンの存在状態に
依存し、原料中に酸化チタンが均一に分散したものであ
れば調製される炭素粒子中に均一に酸化チタンが担持さ
れる。また炭素化プロセスを経るにしたがって、収縮
し、酸化チタンが粒子表面に多く出現し、光触媒活性の
高い粒子となる。
Next, carbonization is performed. 350 carbonization
C. to 1300.degree. C., preferably 500.degree. C. to 900.degree. C., for a predetermined time in an atmosphere of an inert gas such as nitrogen (carbonization process). It is preferable to select carbonization conditions that increase the anatase crystal form having high photocatalytic ability, and the conditions are appropriately selected. Thereby, titanium oxide / carbon composite particles can be obtained. The existence state of titanium oxide depends on the existence state of titanium oxide in the raw titanium oxide / cellulose composite particles, and if the titanium oxide is uniformly dispersed in the raw material, the titanium oxide is uniformly prepared in the prepared carbon particles. Is carried. In addition, as the carbonation process proceeds, the particles shrink, and a large amount of titanium oxide appears on the particle surface, resulting in particles having high photocatalytic activity.

【0018】さらに必要に応じて細孔面積を上げるため
に賦活処理を行うことができる。賦活処理は、炭化処理
後、炭酸ガス、水蒸気やその他の酸化ガス雰囲気下で3
50℃〜1300℃、好ましくは500℃〜1000℃
で行う。賦活は炭化処理と同様、光触媒能の高いアナタ
ーゼ結晶型が多くなるような条件を選ぶことが好まし
い。
If necessary, an activation treatment can be performed to increase the pore area. The activation treatment is carried out in a carbon dioxide gas, steam or other oxidizing gas atmosphere after the carbonization treatment.
50 ° C to 1300 ° C, preferably 500 ° C to 1000 ° C
Do with. As for the activation, it is preferable to select conditions that increase the number of anatase crystal forms having high photocatalytic ability, as in the carbonization treatment.

【0019】得られた酸化チタン・炭素複合粒子の光触
媒能を用途の一つとして説明する。しかし本発明では、
これら用途に限定されるものではない。酸化チタン・炭
素複合球状粒子を石英、合成石英あるいはパイレックス
等の紫外線領域に吸収のないガラスカラムに充填し、キ
セノン灯、水銀灯あるいはブラックライト等の紫外線放
射ライト、もしくは、可視光線も放射できるライトを使
用して、ガラスカラムの周りから、照射する。この際、
ライトの形として、らせん型ライト、円柱状ライトがあ
げられる。またライトの本数は、1本以上何本でもよ
い。また光照射のためのボックスの中に、四方から照射
するため、鏡等の反射板をボックス側面につけることも
できる。ホルムアルデヒド等の有機物で汚染された水を
カラムの中に、ポンプにより、送液し、上記ランプによ
り酸化チタン・炭素複合球状粒子が光触媒能を発現する
ように照射し、カラムから汚染された水が溶出される間
に水中のホルムアルデヒド等の消失、低減を行う。この
際、カラムの長さ、数は、有機物の分解安定性に合わせ
て、適宜、調節してよい。このような固定床で使用する
場合、本発明の球状粒子は特に好適である。不定形粒子
と比較し、球状のためデッドスペースも少なく、処理液
の不均一拡散が起こりにくく、処理効率が高い。また充
填塔での圧力損失が少なく、高流速で処理できる。
The photocatalytic activity of the obtained titanium oxide / carbon composite particles will be described as one of uses. However, in the present invention,
It is not limited to these uses. Titanium oxide / carbon composite spherical particles are filled in a glass column that does not absorb in the ultraviolet region, such as quartz, synthetic quartz, or Pyrex, and a UV light such as a xenon lamp, a mercury lamp, or a black light, or a light that can also emit visible light. Use and irradiate from around the glass column. On this occasion,
The shape of the light includes a spiral light and a cylindrical light. The number of lights may be one or more. In addition, a reflector such as a mirror can be attached to the side of the box for irradiating the light from all sides into the box for light irradiation. Water contaminated with organic substances such as formaldehyde is fed into the column by a pump by a pump, and the lamp is irradiated by the lamp so that the titanium oxide / carbon composite spherical particles exhibit photocatalytic activity. During the elution, disappearance and reduction of formaldehyde in water are performed. At this time, the length and number of the column may be appropriately adjusted according to the decomposition stability of the organic substance. When used in such a fixed bed, the spherical particles of the present invention are particularly suitable. Compared to irregular shaped particles, the dead space is small due to the spherical shape, uneven diffusion of the processing liquid is unlikely to occur, and the processing efficiency is high. In addition, the pressure loss in the packed tower is small, and processing can be performed at a high flow rate.

【0020】[0020]

【実施例】以下、本発明を実施例により更に詳細に説明
するが、本発明は、下記実施例により限定されるもので
はない。 実施例1 光触媒能を有する酸化チタン(日本エアロジル製:P−
25)23gとイオン交換水をホモミキサー8000r
pmで攪拌混合し、酸化チタンが1μm程度の2次粒子
として分散した酸化チタン分散液を得た。該分散液と常
法によって得られたビスコース1300g(苛性ソーダ
5.5重量%、セルロース8.9重量%)とをスリーワ
ンモーター300rpmで混合し、酸化チタン含有ビス
コースを得た。
EXAMPLES Hereinafter, the present invention will be described in more detail by way of examples, but the present invention is not limited to the following examples. Example 1 Titanium oxide having photocatalytic ability (manufactured by Nippon Aerosil: P-
25) 23g and ion-exchanged water are mixed with a homomixer 8000r
The mixture was stirred and mixed at pm to obtain a titanium oxide dispersion in which titanium oxide was dispersed as secondary particles of about 1 μm. The dispersion and 1300 g of viscose (5.5% by weight of caustic soda, 8.9% by weight of cellulose) obtained by a conventional method were mixed with a three-one motor at 300 rpm to obtain viscose containing titanium oxide.

【0021】酸化チタン含有ビスコース1200gとポ
リアクリル酸ソーダ(平均分子量20万、濃度10重量
%)水溶液4800gと炭酸カルシウム粉末200gと
を室温下10分間回転数400rpmで混合し、酸化チ
タン含有ビスコースの液滴を得た。約30分かけて80
℃に昇温し、さらに30分間、80℃にて該液滴を凝固
せしめた。ガラスフィルターにて凝固粒子を濾別し1重
量%塩酸にて中和し、さらに水洗して酸化チタンを含有
したセルロースを得た。得られた酸化チタン・セルロー
ス複合粒子の走査型電子顕微鏡写真(SEM)を図1−
aに示す。この球状粒子は、X線回折より、セルロース
に由来するピークと二酸化チタン(アナターゼ型)に由
来するピークが確認された(図2−a)。また、強熱残
分にて測定した酸化チタンの含有量は、セルロース当た
り19.5重量%であった。次に得られた酸化チタン・
セルロース複合粒子を凍結乾燥法により乾燥し、水分率
を3.0%とした。
1200 g of titanium oxide-containing viscose, 4800 g of an aqueous solution of sodium polyacrylate (average molecular weight: 200,000, concentration: 10% by weight) and 200 g of calcium carbonate powder were mixed at room temperature for 10 minutes at a rotation speed of 400 rpm. Was obtained. 80 over 30 minutes
The liquid was solidified at 80 ° C. for 30 minutes. The coagulated particles were separated by filtration using a glass filter, neutralized with 1% by weight hydrochloric acid, and washed with water to obtain cellulose containing titanium oxide. A scanning electron micrograph (SEM) of the obtained titanium oxide / cellulose composite particles is shown in FIG.
a. In the spherical particles, a peak derived from cellulose and a peak derived from titanium dioxide (anatase type) were confirmed by X-ray diffraction (FIG. 2A). Further, the content of titanium oxide measured by the residue on ignition was 19.5% by weight per cellulose. Next, the titanium oxide
The cellulose composite particles were dried by a freeze-drying method to a water content of 3.0%.

【0022】吸着水を取り除くため、酸化チタン・セル
ロース複合粒子40gを0.05torrで、室温で3
0分保持し、その後200℃まで2時間で昇温し、5時
間保持し、自然冷却した。収量37.0g、炭素含量4
7.7%であった。この段階での複合粒子は、X線回折
より、セルロースに由来するピークと二酸化チタン(ア
ナターゼ型)に由来するピークが確認された(図2−
b)。
To remove the adsorbed water, 40 g of titanium oxide / cellulose composite particles were added at 0.05 torr at room temperature.
The temperature was held for 0 minutes, then the temperature was raised to 200 ° C. in 2 hours, and the temperature was held for 5 hours, followed by natural cooling. Yield 37.0 g, carbon content 4
7.7%. In the composite particles at this stage, a peak derived from cellulose and a peak derived from titanium dioxide (anatase type) were confirmed by X-ray diffraction (FIG. 2).
b).

【0023】吸着水が除去された球状粒子(図1−b)
37.0gを脱水縮合するために、300℃まで5時間
で昇温し、1時間保持した。収量20.7g、炭素含量
54%であった。脱水縮合後の球状粒子は、X線回折よ
り、セルロースに由来するピークが消失し、二酸化チタ
ン(アナターゼ型)に由来するピークが確認された(図
2−c)。さらに炭化処理は、600℃で、3時間、窒
素等の不活性ガス雰囲気下で加熱することによって行っ
た。炭化処理後の球状粒子の収量は13.2gであっ
た。またX線回折より、セルロースに由来するピークが
消失し、二酸化チタン(アナターゼ型)に由来するピー
クが確認された(図2−d)。得られた資料(炭化処理
後の球状粒子)のBET比表面積は251m2 /gであ
った。この後さらに表面積を上げるために、炭酸ガス雰
囲気下、900℃で、0.5時間加熱し、賦活処理を行
った。収量は12.4gであった。また、X線回折よ
り、炭素と酸化チタン(アナターゼ型)に由来するピー
クが確認された(図2−b)。賦活処理後の粒子のBE
T比表面積は、1000m2 /gであった。酸化チタン
の炭素粒子中での存在状態を確認するためにSEM観察
を行った。図1−cにSEM写真を示す。図1−cより
酸化チタンが炭素粒子表面に多く存在し、さらに埋没し
た状態をとっており、酸化チタンが炭素に強固に固定化
されていることがわかる。
Spherical particles from which adsorbed water has been removed (FIG. 1-b)
In order to dehydrate and condense 37.0 g, the temperature was raised to 300 ° C. in 5 hours and maintained for 1 hour. The yield was 20.7 g and the carbon content was 54%. In the spherical particles after the dehydration condensation, the peak derived from cellulose disappeared and the peak derived from titanium dioxide (anatase type) was confirmed by X-ray diffraction (FIG. 2-c). Further, the carbonization treatment was performed by heating at 600 ° C. for 3 hours in an atmosphere of an inert gas such as nitrogen. The yield of the spherical particles after the carbonization treatment was 13.2 g. Further, the peak derived from cellulose disappeared from X-ray diffraction, and a peak derived from titanium dioxide (anatase type) was confirmed (FIG. 2-d). The BET specific surface area of the obtained data (spherical particles after carbonization treatment) was 251 m 2 / g. Thereafter, in order to further increase the surface area, heating was performed at 900 ° C. for 0.5 hour in a carbon dioxide gas atmosphere to perform an activation treatment. The yield was 12.4 g. In addition, peaks derived from carbon and titanium oxide (anatase type) were confirmed by X-ray diffraction (FIG. 2B). BE of particles after activation treatment
The T specific surface area was 1000 m 2 / g. SEM observation was performed to confirm the existence state of titanium oxide in the carbon particles. FIG. 1-c shows an SEM photograph. From FIG. 1-c, it can be seen that a large amount of titanium oxide is present on the surface of the carbon particles and is buried, and that the titanium oxide is firmly fixed to carbon.

【0024】こうして得られた酸化チタン・炭素複合球
状粒子の光触媒能を調査した。光触媒能の試験は、図3
に示すような装置を用いて行った。酸化チタン・炭素複
合球状粒子1を10×300mmのパイレックス(登録
商標)製ガラスカラム2中に充填し、ポンプ4でまず脱
気水(移動相)を送液し、ガラスカラム2の周囲からブ
ラックライト3より光を照射した。然る後、液体クロマ
トグラフィー用インジェクター6により、カラム2内に
アセトアルデヒドを10重量%水溶液で20ml(フロ
ーレイト0.50ml/min. )、注入した。ブラックライト3
からの光を所定時間照射し、照射中にカラム2から溶出
された液体を検出器7に導き、液体中の化合物の紫外線
(UV)吸収スペクトルを測定した結果、アセトアルデ
ヒドの分解が観察された。結果を図4に示す。なお、図
3において、5はブラックライト3とガラスカラム2を
備えた照射ボックス、8はレコーダー、9は移動相貯
槽、10は廃液槽を示す。
The photocatalytic activity of the titanium oxide / carbon composite spherical particles thus obtained was investigated. Figure 3 shows the photocatalytic ability test.
This was performed using an apparatus as shown in FIG. The titanium oxide / carbon composite spherical particles 1 are filled in a Pyrex (registered trademark) glass column 2 of 10 × 300 mm, and deaerated water (mobile phase) is first sent by a pump 4, and black around the glass column 2. Light was emitted from Light 3. Thereafter, 20 ml of a 10% by weight aqueous solution of acetaldehyde (flow rate 0.50 ml / min.) Was injected into the column 2 by the injector 6 for liquid chromatography. Black light 3
And the liquid eluted from the column 2 during the irradiation was guided to the detector 7, and the ultraviolet (UV) absorption spectrum of the compound in the liquid was measured. As a result, decomposition of acetaldehyde was observed. FIG. 4 shows the results. In FIG. 3, reference numeral 5 denotes an irradiation box provided with a black light 3 and a glass column 2, 8 denotes a recorder, 9 denotes a mobile phase storage tank, and 10 denotes a waste liquid tank.

【0025】図4は、溶質のカラム中の滞留時間と溶出
された基質(アセトアルデヒド)の紫外線吸収スペクト
ル変化を示すグラフである。カラム2内の溶質の滞留時
間を、 0、54.9、88.0、 147.3及び 442.6分(min.)の
5段階とし、溶出された液体中の化合物のUV吸収スペ
クトルを測定した結果、図に示すごとく、滞留時間が長
くなるにしたがってアセトアルデヒドによるUV吸収が
減少し、アセトアルデヒドが分解されて酢酸に変換され
ていることがわかる。図中、210nm (上向き矢印点)付
近の吸収が酢酸の存在を示し、280nm (下向き矢印点)
付近の吸収がアセトアルデヒドの存在を示す。
FIG. 4 is a graph showing the solute residence time in the column and the change in the ultraviolet absorption spectrum of the eluted substrate (acetaldehyde). The retention time of the solute in the column 2 was set to five steps of 0, 54.9, 88.0, 147.3 and 442.6 minutes (min.), And the UV absorption spectrum of the compound in the eluted liquid was measured. It can be seen that UV absorption by acetaldehyde decreases as the residence time increases, and acetaldehyde is decomposed and converted to acetic acid. In the figure, the absorption around 210 nm (upward arrow point) indicates the presence of acetic acid, and 280 nm (downward arrow point).
Near absorption indicates the presence of acetaldehyde.

【0026】比較例1 実施例でブラックライトを照射せず、光触媒機能を付与
しない場合に相当する条件にした以外は同様にして、ア
セトアルデヒドの分解除去テストを行った。その結果、
アセトアルデヒドを表す紫外線吸収スペクトルがほとん
ど変化しなかった(図4の滞留時間0に相当)。これに
より、光触媒機能を付与した炭素粒子が、アセトアルデ
ヒドの分解除去能が優れていることがわかった。
Comparative Example 1 An acetaldehyde decomposition removal test was performed in the same manner as in the example except that the black light was not irradiated and the photocatalytic function was not used. as a result,
The ultraviolet absorption spectrum representing acetaldehyde hardly changed (corresponding to a residence time of 0 in FIG. 4). Thus, it was found that the carbon particles provided with the photocatalytic function had excellent ability to decompose and remove acetaldehyde.

【0027】[0027]

【発明の効果】本発明は、原料粒子を微細な酸化チタン
を含む球状粒子に調製し、これを乾燥、吸着水除去、脱
水縮合等の処理を経て炭化することによって、表面及び
内部に強固に固定化された酸化チタンを含む球状酸化チ
タン・炭素複合粒子が得られる。本発明の複合粒子は球
状粒子であるため、分級によって粒度分布の広狭を容易
に調整できる。そのため、固定床で使用する場合、不定
形粒子と比較するとデットスペースが少なく、さらに高
密度で再現性よく充填でき、したがって、溶質分子が粒
子間を移動する平均距離が短くなり、処理液の不均一拡
散が起こりにくく、カラムの処理効率が高くなるなどの
利点を有する。また、充填棟での圧力損失が少なく、高
流速で処理できるほか、流動性に富むため、流動床とし
て使用した場合、回収がしやすいなどの利点をも有す
る。本発明の複合粒子は、光触媒等として種々の分野に
使用できるほか、流動性を有することから、コーティン
グ材や粉体塗料としても使用できる。
According to the present invention, the raw material particles are prepared into spherical particles containing fine titanium oxide, and the resulting particles are dried, adsorbed water removed, dehydrated and condensed, and carbonized so that the surface and the inside are firmly formed. Spherical titanium oxide-carbon composite particles containing the immobilized titanium oxide are obtained. Since the composite particles of the present invention are spherical particles, the size of the particle size distribution can be easily adjusted by classification. Therefore, when used in a fixed bed, compared with amorphous particles, there is less dead space, more dense and reproducible packing is possible, so that the average distance for solute molecules to move between particles becomes shorter, and the processing solution becomes more inefficient. It has the advantage that uniform diffusion hardly occurs and the processing efficiency of the column is increased. In addition, since there is little pressure loss in the filling building, processing can be performed at a high flow rate, and the fluidity is high, when used as a fluidized bed, there are advantages such as easy recovery. The composite particles of the present invention can be used in various fields as a photocatalyst and the like, and since they have fluidity, they can also be used as coating materials and powder coatings.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各処理工程での酸化チタン複合粒子の走査型電
子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph of titanium oxide composite particles in each processing step.

【図2】各処理工程での酸化チタン複合粒子のX線回折
グラフである。
FIG. 2 is an X-ray diffraction graph of titanium oxide composite particles in each processing step.

【図3】機能評価装置の模式図である。FIG. 3 is a schematic diagram of a function evaluation device.

【図4】溶質のカラム中の滞留時間と溶出された基質
(アセトアルデヒド)の紫外線吸収スペクトル変化を示
したグラフである。
FIG. 4 is a graph showing the retention time of a solute in a column and the change in ultraviolet absorption spectrum of an eluted substrate (acetaldehyde).

【符号の説明】[Explanation of symbols]

1 酸化チタン・炭素複合球状粒子 2 ガラスカラム 3 ブラックライト 4 ポンプ 5 照射ボックス 6 インジェクター DESCRIPTION OF SYMBOLS 1 Titanium oxide / carbon composite spherical particle 2 Glass column 3 Black light 4 Pump 5 Irradiation box 6 Injector

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C01G 23/04 B01D 53/36 J (72)発明者 向山 秀明 熊本県八代市植柳元町5595 (72)発明者 永岡 昭二 熊本県熊本市東町3−11−38 熊本県工業 技術センター内 (72)発明者 永田 正典 熊本県熊本市東町3−11−38 熊本県工業 技術センター内 (72)発明者 長澤 長八郎 茨城県つくば市東1−1 通産省工業技術 院物質工学工業技術研究所内 Fターム(参考) 4D048 AA19 AB03 BA05X BA05Y BA07X BA07Y BB01 EA01 4G046 CA04 CB02 CB08 CC01 HA10 4G047 CA02 CC03 CD03 4G069 AA02 AA03 AA08 BA04A BA04B BA08A BA08B BA48A BC50A BC50B BD04A BD04B CA05 CA11 CA17 DA06 FA01 FA02 FB06 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C01G 23/04 B01D 53/36 J (72) Inventor Hideaki Mukaiyama 5595 Ueyanagi Motomachi, Yatsushiro-shi, Kumamoto (72) Inventor Shoji Nagaoka 3-11-38 Higashicho, Kumamoto City, Kumamoto Prefecture Inside the Kumamoto Prefectural Industrial Technology Center (72) Inventor Masanori Nagata 3-11-38 Higashicho, Kumamoto City, Kumamoto Prefecture In the Kumamoto Prefectural Industrial Technology Center (72) Inventor Naga Nagasawa Hachiro 1-1, Higashi, Tsukuba, Ibaraki Prefecture F-term (Reference) 4M048 AA19 AB03 BA05X BA05Y BA07X BA07Y BB01 EA01 4G046 CA04 CB02 CB08 CC01 HA10 4G047 CA02 CC03 CD03 4G069 AA02 BA04A08A08B08 BA48A BC50A BC50B BD04A BD04B CA05 CA11 CA17 DA06 FA01 FA02 FB06

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 酸化チタンを表面及び内部に含有する球
状酸化チタン・炭素複合粒子。
1. Spherical titanium oxide / carbon composite particles containing titanium oxide on the surface and inside.
【請求項2】 表面及び内部に酸化チタンを含有した炭
素化可能な有機物からなる球状の酸化チタン・有機物複
合粒子を炭化することからなる球状酸化チタン・炭素複
合粒子の製造方法。
2. A method for producing spherical titanium oxide / carbon composite particles comprising carbonizing spherical titanium oxide / organic composite particles comprising a carbonizable organic substance containing titanium oxide on the surface and inside.
【請求項3】 表面及び内部に酸化チタンを含有した球
状の酸化チタン・セルロース複合粒子を炭化することか
らなる請求項1記載の球状酸化チタン・炭素複合粒子の
製造方法。
3. The method for producing spherical titanium oxide / carbon composite particles according to claim 1, comprising carbonizing spherical titanium oxide / cellulose composite particles containing titanium oxide on the surface and inside.
JP2000146930A 2000-05-18 2000-05-18 Titanium oxide / carbon composite particles and production method thereof Expired - Fee Related JP4868326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000146930A JP4868326B2 (en) 2000-05-18 2000-05-18 Titanium oxide / carbon composite particles and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000146930A JP4868326B2 (en) 2000-05-18 2000-05-18 Titanium oxide / carbon composite particles and production method thereof

Publications (2)

Publication Number Publication Date
JP2001321677A true JP2001321677A (en) 2001-11-20
JP4868326B2 JP4868326B2 (en) 2012-02-01

Family

ID=18653195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000146930A Expired - Fee Related JP4868326B2 (en) 2000-05-18 2000-05-18 Titanium oxide / carbon composite particles and production method thereof

Country Status (1)

Country Link
JP (1) JP4868326B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247621A (en) * 2005-03-14 2006-09-21 Kyushu Inoac Co Ltd Photocatalyst support and method for producing it
JP2007015885A (en) * 2005-07-07 2007-01-25 Haruhiko Yamaguchi Spherical activated carbon and method for producing the same
JP2007056086A (en) * 2005-08-23 2007-03-08 Daito Kasei Kogyo Kk Pigment-containing cellulose powder and cosmetic, resin and coating containing the same
JP2011194393A (en) * 2010-02-25 2011-10-06 Nisshinbo Holdings Inc Harmful substance decomposition material
JP2015016466A (en) * 2013-06-21 2015-01-29 台北医学大学 Water treating apparatus and process for preparation of fine water cluster and fine water cluster prepared with the apparatus or process
JP2019069872A (en) * 2017-10-06 2019-05-09 国立研究開発法人産業技術総合研究所 Visible light active modified carbon particle/titania core shell composite and method for manufacturing the same
JP2019069410A (en) * 2017-10-06 2019-05-09 国立研究開発法人産業技術総合研究所 Visible light activated photocatalytic composite filter material, and production method thereof
CN110624528A (en) * 2019-08-01 2019-12-31 武汉纺织大学 Carbon fiber microsphere loaded TiO for adsorbing-photodegrading VOC2Catalyst and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390501A (en) * 1986-10-03 1988-04-21 Kanebo Ltd Porous fine cellulose particle and production thereof
JPS6392603A (en) * 1986-10-08 1988-04-23 Kanebo Ltd Production of microparticle of cellulose composite
JPH08332378A (en) * 1995-06-07 1996-12-17 Nippon Chem Ind Co Ltd Deodorizing photocatalytical activated carbon and production thereof
JPH0967111A (en) * 1995-08-30 1997-03-11 Mitsubishi Chem Corp Production of activated carbon
JPH1028861A (en) * 1996-07-16 1998-02-03 Shin Meiwa Ind Co Ltd Composite material for environmental purification and manufacture thereof
JPH1033989A (en) * 1996-07-29 1998-02-10 Mitsubishi Chem Corp Production of activated carbon
JP2000084414A (en) * 1998-09-14 2000-03-28 Nippon Electric Glass Co Ltd Photocatalytic particle and article with photocatalytic function
JP2000254495A (en) * 1999-03-09 2000-09-19 Daicel Chem Ind Ltd Titanium oxide composited biomass carbide, its production and method for decomposing chemical substance by the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6390501A (en) * 1986-10-03 1988-04-21 Kanebo Ltd Porous fine cellulose particle and production thereof
JPS6392603A (en) * 1986-10-08 1988-04-23 Kanebo Ltd Production of microparticle of cellulose composite
JPH08332378A (en) * 1995-06-07 1996-12-17 Nippon Chem Ind Co Ltd Deodorizing photocatalytical activated carbon and production thereof
JPH0967111A (en) * 1995-08-30 1997-03-11 Mitsubishi Chem Corp Production of activated carbon
JPH1028861A (en) * 1996-07-16 1998-02-03 Shin Meiwa Ind Co Ltd Composite material for environmental purification and manufacture thereof
JPH1033989A (en) * 1996-07-29 1998-02-10 Mitsubishi Chem Corp Production of activated carbon
JP2000084414A (en) * 1998-09-14 2000-03-28 Nippon Electric Glass Co Ltd Photocatalytic particle and article with photocatalytic function
JP2000254495A (en) * 1999-03-09 2000-09-19 Daicel Chem Ind Ltd Titanium oxide composited biomass carbide, its production and method for decomposing chemical substance by the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247621A (en) * 2005-03-14 2006-09-21 Kyushu Inoac Co Ltd Photocatalyst support and method for producing it
JP4738851B2 (en) * 2005-03-14 2011-08-03 大東化成工業株式会社 Method for producing photocatalyst carrier
JP2007015885A (en) * 2005-07-07 2007-01-25 Haruhiko Yamaguchi Spherical activated carbon and method for producing the same
JP2007056086A (en) * 2005-08-23 2007-03-08 Daito Kasei Kogyo Kk Pigment-containing cellulose powder and cosmetic, resin and coating containing the same
JP2011194393A (en) * 2010-02-25 2011-10-06 Nisshinbo Holdings Inc Harmful substance decomposition material
JP2015016466A (en) * 2013-06-21 2015-01-29 台北医学大学 Water treating apparatus and process for preparation of fine water cluster and fine water cluster prepared with the apparatus or process
US10661003B2 (en) 2013-06-21 2020-05-26 Taipei Medical University Apparatus and process for preparation of small water cluster and small molecular cluster water prepared therefrom
JP2019069872A (en) * 2017-10-06 2019-05-09 国立研究開発法人産業技術総合研究所 Visible light active modified carbon particle/titania core shell composite and method for manufacturing the same
JP2019069410A (en) * 2017-10-06 2019-05-09 国立研究開発法人産業技術総合研究所 Visible light activated photocatalytic composite filter material, and production method thereof
JP7018643B2 (en) 2017-10-06 2022-02-14 国立研究開発法人産業技術総合研究所 Visible light activity modified carbon particle-titania core shell complex, its manufacturing method
CN110624528A (en) * 2019-08-01 2019-12-31 武汉纺织大学 Carbon fiber microsphere loaded TiO for adsorbing-photodegrading VOC2Catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP4868326B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
US8563467B2 (en) Method for preparation of activated carbon
US6064560A (en) Active carbon and process for its production
Tay et al. Optimising the preparation of activated carbon from digested sewage sludge and coconut husk
CN1244818A (en) Photocatalyst having visible light activity and use thereof
JP2001240407A (en) Activated carbon and its manufacturing method
JP4868326B2 (en) Titanium oxide / carbon composite particles and production method thereof
JP6999131B2 (en) How to make activated carbon
JP4142341B2 (en) Activated carbon and its manufacturing method
JP2003012316A (en) Activated carbon and its manufacturing method
JPH11503964A (en) Enhanced adsorbent and room temperature catalyst particles and methods of making and using same
CN106824160B (en) The preparation method of activated carbon fiber film loading ZnO photochemical catalyst
KR101447206B1 (en) The manufacturing method of titanium dioxide nanotubes
CN115487796B (en) Composite photocatalyst and preparation method and application thereof
Yadav et al. Synthesis of high surface area activated carbon from eucalyptus bark for the removal of methylene blue
KR101391688B1 (en) Process for preparing dry adsorbent for selective capture of carbon dioxide
CN115518692B (en) Porphyrin-titanium dioxide-based molecularly imprinted polymer for photo-depositing metallic silver, and preparation method and application thereof
JPH0280315A (en) Granulated active carbon
JP6515470B2 (en) Adsorbent material
CN114558603B (en) Nitrogen-doped hollow hierarchical pore carbon microsphere with high oxygen content and preparation method and application thereof
Anu et al. Studies on removal of methylene blue from aqueous solution using activated carbon derived from wood apple waste biomass by microwave irradiation
JP2005034254A (en) Deodorizing body and deodorizing apparatus using the same
JP2005169298A (en) Catalytic body and cleaning apparatus using the same
JP3491070B2 (en) Method for producing porous carbon material supporting titanium oxide
JP3282238B2 (en) Method for producing chemical activated carbon
JP3206107B2 (en) Air purifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees