【0001】
【発明の属する技術分野】
本発明は、臭気を除去する脱臭体および脱臭装置に関するものである。
【0002】
【従来の技術】
従来、光触媒を脱臭体として用いるには、光触媒の紛体を必要であれば結合剤を用いて粒状化、あるいは基材やハニカムに塗布していた(例えば、特許文献1参照)。また光触媒として代表的な酸化チタンの膜形成法ではゾルゲル法やCVD法もあるが、基本的にはアナターゼ型の酸化チタンの膜を基材に形成し、脱臭体としていた(例えば、特許文献2参照)。
【0003】
【特許文献1】
特開平7−241475号公報
【特許文献2】
特開平7−251080号公報
【0004】
【発明が解決しようとする課題】
しかしながら、単に光触媒を固めて粒状化、あるいは光触媒の膜を形成しただけでは紫外線照射時に活性は得られるものの、担体の比表面積が小さく、光触媒が十分に分散されないために活性が低いという課題を有してした。
【0005】
本発明は、前記従来の課題を解決するもので、高い光活性を有する脱臭体を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記従来の課題を解決するために、本発明の脱臭体は、少なくとも光触媒と、気体分子の平均径以上の孔を有する構造体とを備え、前記光触媒を前記構造体に担持する構成とした。これによって担体の単位体積あたりの表面積を大きくすることができ、担持する前記光触媒を効果的に表面に分散できる。
【0007】
【発明の実施の形態】
請求項1に記載の発明は、少なくとも光触媒と、気体分子の平均径以上の孔を有する構造体とを備え、前記光触媒を前記構造体に担持した脱臭体とするもので、担体の単位体積あたりの表面積が大きくすることができ、担持する前記光触媒を効果的に表面に分散でき、光触媒を有効に活用できるので、脱臭体としての臭気分解能力が大きく向上する。
【0008】
請求項2に記載の発明は、光触媒が少なくとも酸化チタンを含む請求項1記載の脱臭体としたもので、酸化チタンを添加することで光活性が大きくなり、脱臭体の性能が大きく向上する。
【0009】
請求項3に記載の発明は、物理吸着作用を有する吸着剤を含む請求項1記載の脱臭体としたもので、ゼオライト、シリカ、活性炭等の物理吸着作用を有する吸着剤を加えることで、高い吸着能力を有し、さらに光触媒による再生、つまり吸着臭気物質の分解も可能な脱臭体とすることができる。
【0010】
請求項4に記載の発明は、少なくとも構造体の内部を貫通する孔を有する請求項1記載の脱臭体としたもので、臭気が前記脱臭体内部に侵入しやすく、前記脱臭体内部の面積を有効に利用できるので、従来の脱臭体と同等以上の臭気分解性能を有する脱臭体を提供できる。
【0011】
請求項5に記載の発明は、構造体がエアロゲルである請求項1〜4のいずれか1項に記載の脱臭体としたもので、容易にかつ構造を破壊することなく多孔質構造を有する脱臭体を作製することができ、また単位体積あたりの表面積を大きくすることができ、従来の脱臭体と同等以上の表面積を有する脱臭体とすることができる。さらには、空間率が99%程度までの多孔質構造を有する脱臭体を作製することができ、見かけの体積に匹敵するほどの空間を有することができるため、1パスで処理できる臭気ガス量を多くすることができる。したがって、従来の脱臭体と同等以上の脱臭性能を有する脱臭体を実現できる。
【0012】
請求項6に記載の発明は、構造体がキセロゲルである請求項1〜4のいずれか1項に記載の脱臭体としたもので、容易に多孔質構造を有する脱臭体を作製することができ、また単位体積あたりの表面積を大きくすることができ、従来の脱臭体と同等以上の表面積を有する脱臭体とすることができる。さらには、空間率が99%程度までの多孔質構造を有する脱臭体を作製することができ、見かけの体積に匹敵するほどの空間を有することができるため、1パスで処理できる臭気ガス量を多くすることができる。したがって、従来の脱臭体と同等以上の脱臭性能を有する脱臭体を実現できる。
【0013】
請求項7に記載の発明は、構造体が疎水性を有する請求項1〜6のいずれか1項に記載の脱臭体としたもので、酸化チタンに代表される光触媒は多湿状態では、光触媒が水に覆われるため、十分な活性がでない。前記構造体を疎水性とすることで、前記光触媒近傍雰囲気の水分が少なくなり前記光触媒が水に覆われ難くなり、多湿下においても活性を得ることが可能となる。
【0014】
請求項8に記載の発明は、少なくとも疎水性を有する物質を含む請求項1〜7のいずれか1項に記載の脱臭体とするもので、疎水性を有する物質が前記脱臭体内に存在することで、脱臭体自体が疎水性を有し、前記光触媒近傍雰囲気の水分が少なくなり前記光触媒が水に覆われ難くなり、多湿下においても活性を得ることが可能となる。
【0015】
請求項9に記載の発明は、物理吸着作用を有する吸着剤が疎水性を有する請求項3記載の脱臭体とするもので、多湿化においても疎水性の吸着剤であれば、吸着性能は低下することがなく、また前記光触媒近傍雰囲気の水分が少なくなり前記光触媒が水に覆われ難くなり、多湿下においても活性を得ることが可能となる。
【0016】
請求項10に記載の発明は、少なくとも請求項1〜9のいずれか1項に記載の脱臭体および前記脱臭体に少なくとも紫外線を含む光を照射する照射手段、送風手段を備えた脱臭装置とするもので、室内空間の臭気を酸化分解により迅速に浄化することが可能となる。
【0017】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0018】
(実施例1)
図1は本発明の第1の実施例における脱臭体の形態を示す模式図である。以下図1を参照しながら本実施例について説明する。図1(a)は本実施例の脱臭体Aの模式図、図1(b)は同脱臭体Aの一部分を拡大した模式図である。図1(a)、図1(b)において、1の脱臭体Aは、光触媒2が構造体3に担持されている構造をとる。光触媒2と構造体3はアンカー効果もしくは物理的な結合もしくは化学的な結合などの作用により結合されているが、バインダを添加しても良い。
【0019】
構造体3は、構造体を形成する骨格4(以下、単に骨格4と称す)からなり、骨格4同士間の骨格間距離5は気体分子の平均径以上のものが存在する。そして、これら骨格の隙間が多数の孔を形成し、脱臭体1は多孔質構造となっている。
【0020】
図1(a)、図1(b)より明らかなように、光触媒2同士が空間を有する構造となるため、光触媒の表面が有効に作用することが可能になる。
【0021】
骨格の太さや孔の大きさ、光触媒2の平均径は小さい方が脱臭性能は向上する傾向にあるが、孔の大きさがあまりに小さすぎると、臭気を有する気体分子が脱臭体内部まで浸入できず、脱臭性能は低下することとなる。また、孔は構造体の外部と連通しているのが望ましく、構造体を貫通する孔を有することにより、その孔を臭気が通り抜けることで効率よく脱臭される。
【0022】
骨格の材質は特に限定するものではないが、臭気を発せず、むしろ臭気を吸着するものが望ましく、少なくとも骨格の一部が光触媒2から成るものにより、さらに脱臭性能を上げることができる。
【0023】
光触媒としては、比較的安価で触媒活性の高い酸化チタン等を用いることが可能である。脱臭体1はより小さい方が同体積あたりの表面積を大きくとることができるので、脱臭性能は向上する。
【0024】
(実施例2)
以下、本発明の第2の実施例について説明する。
【0025】
図2は本実施例における脱臭体の形態を示す模式図である。以下図2を参照しながら本実施例を説明する。図2は図1の構成の脱臭体Aに物理吸着作用を有する吸着剤を加えた脱臭体Bである。物理吸着作用を有する吸着剤にはゼオライト、シリカ、活性炭等を用いることが可能である。脱臭対象となる臭気にあわせて、吸着剤の選定が可能である。この構成を用いれば、吸着剤による物理吸着脱臭により臭気が除去され、脱臭体としての性能はさらに向上する。また吸着剤で吸着した臭気物質は光により励起したときに発生するラジカルにより酸化分解できるので、再生されることになる。さらに疎水性ゼオライト等を用いれば、水が吸着し難くなるので、近傍に存在する酸化チタンも水に覆われ難くなる。したがって処理空気が高湿度の場合でも光触媒の活性を大きく低下させることはない。同疎水性を有する材料を脱臭体Aに添加することでも同様の効果は得られる。
【0026】
(実施例3)
以下、本発明の第3の実施例について説明する。
【0027】
図3は本実施例における脱臭体の模式図である。図3(a)は本実施例の脱臭体の模式図、図3(b)は脱臭体21の一部分を拡大した模式図である。脱臭体21は、光触媒22が構造体23に担持されている構造をとる。光触媒22と構造体23はアンカー効果もしくは物理的な結合もしくは化学的な結合などの作用により結合されているが、バインダを添加しても良い。
【0028】
光触媒22は(実施例1)の光触媒2と同様のものであり、本実施例では酸化チタンを用いた。
【0029】
構造体23は、エアロゲルやキセロゲルからなる。エアロゲルやキセロゲルは主に金属酸化物や、カーボン、ウレタンなどの有機物が0.1〜20nm程度の一次粒子24を形成し、それが数珠状につながり粒子間距離25の多数の連通孔を形成する。そのため構造体23は多孔質構造となっており、粒子間距離は1nm〜1μm程度が望ましい。また、空間率は大きい方が1パスで処理できる臭気ガス量を多くすることができるので望ましいが、大きすぎると担持できる光触媒22の量が少なくなるため、70%〜95%程度の空間率が望ましい。また本実施例では、平均径が約30μm程度の大きさの脱臭体21を用いたが、これらの大きさに拘るものではないが、より小さい方が表面積を大きくとることができるので、脱臭性能は向上する。
【0030】
エアロゲルやキセロゲルの材質は特に限定するものではないが、エアロゲルやキセロゲルの一部が光触媒22から形成されたものは、より脱臭効果が高い。また、材質にシリカを選択すると、原材料が安価で種類も豊富であり、作製プロセスも簡単であるので、非常に望ましい。
【0031】
次に、脱臭体21の作製方法について簡単に説明する。水ガラスや、珪素、アルミニウム、ジルコニウム、チタン等の金属アルコキシドをゲル原料として、水やアルコール等の溶媒と必要に応じて酸あるいはアルカリ触媒を混合することで、溶媒中でゲル原料を反応させ湿潤ゲルを形成させ、内部の溶媒を蒸発乾燥させることにより作製される。湿潤ゲル形成時に酸化チタンを混合させておくことにより、酸化チタンを担持した湿潤ゲルを形成できる。金属アルコキシドの場合、加水分解・縮重合を経て、湿潤ゲルとなる。また、ゲル原料として水ガラスを用いる場合は、水ガラスに直接塩酸等の触媒を加え、ゲル化させ、湿潤ゲルを形成させる。このとき、水ガラスに含まれるナトリウム分などを触媒を入れる前に、電気透析処理などで取り除いておくか、ゲル化後に塩になったものを水で洗浄することで除去する。本実施例では、ゲル原料としてテトラメトキシシラン(以下、TMOSという)を用いた。これは珪素のアルコキシドで、入手しやすく、また反応速度が速いため、非常に好ましいからである。
【0032】
湿潤ゲルは、珪素原子と酸素原子が交互に結合した3次元網目構造のシリカ粒子を作り、それらシリカ粒子が重合して数珠状となり、それら粒子同士の隙間すなわち孔に水等の溶媒が入り込む構造となっている。また、酸化チタンは3次元網目構造の一部分や一部の孔に入り込む構造となっている。したがって、本実施例でのキセロゲルやエアロゲルの材質としてはシリカとなる。
【0033】
この後、湿潤ゲルを普通に熱風乾燥させたものは、溶媒が乾燥するときの表面張力により、収縮してしまい孔を潰してしまうので、空間率が小さくなり、脱臭性能を低下させる原因となる。しかしながら、湿潤ゲル表面のシラノール基をヘキサメチルジシラザン、ジメチルジメトキシシラン等でメチル基を導入することにより疎水化を行い、さらに溶媒をトルエンやキシレンやアセトンやヘキサンなどの表面張力が比較的小さな溶媒に置換し、熱風乾燥させたものは、表面張力がほとんど働かず、図3に示すように0.1〜20nm程度の径をもつシリカ一次粒子24が集合し、1nm〜1μm程度の粒子間距離25をもった集合体となる。一次粒子径や粒子間距離の大きさは、用いる湿潤ゲル原料の種類や量、溶媒と触媒の種類や量、水の量で決定され、湿潤ゲルの構造がほぼそのまま脱臭体21の構造となる。そして、一次粒子の集合体が1μm〜10mm程度の二次粒子を形成することとなる。本実施例では、この二次粒子が、約30μm程度の大きさで、脱臭体21として用いられるもので、このときの構造体23がキセロゲルと称されるものである。キセロゲル作製時には疎水化することになるため、構造体は疎水性となり光触媒の多湿時の性能低下の防止にも効果がある。
【0034】
また、湿潤ゲルに疎水化処理を施さずとも、有機溶剤で置換した湿潤ゲル中の溶媒を超臨界状態にすることで乾燥させる、もしくは二酸化炭素を超臨界状態で流通させることにより溶媒を抽出する超臨界乾燥により乾燥することでも、図3に示すような脱臭体21を得ることができ、このときの構造体23がエアロゲルと称されるものである。
【0035】
エアロゲルとキセロゲルとの物性はよく似ているが、キセロゲルの方が安価に作製できるというメリットがあり、エアロゲルはキセロゲルに比べ作製時に構造を破壊することが少なく、有効に作用する箇所を多くすることができる。
【0036】
また、(実施例1)と同様に物理吸着作用を有する吸着剤を混合した場合においても、(実施例2)で記述したような手法により脱臭体の作製が可能である。また混合する前記吸着剤は任意の添加量が可能である。
【0037】
以下、実験例を示す。
【0038】
<実験例1>
TMOS45.6gとメタノール41.4gに平均径20nm程度の酸化チタン(石原産業製ST−21)20gを混合し、攪拌を行った溶液を(以下、溶液Aという)を用意した。次に、水21.6gに約29wt%のアンモニア水0.1gを添加し、攪拌を行った溶液(以下、溶液Xと称す)を用意した。溶液Aに溶液Xを攪拌しながら添加することにより、約20分で湿潤ゲルを作製し、40℃の恒温槽で24時間静置した。その後、湿潤ゲルの径が2mm程度になるように破砕した後、ジメチルジメトキシシラン84.7gを添加し、40℃の恒温槽で72時間静置することにより、疎水化処理を行った。その後、湿潤ゲルをアセトンに浸すことにより湿潤ゲル中の水を脱水し、湿潤ゲル中の溶媒をアセトンに置換した。その後、130℃の恒温槽で6時間乾燥を行い、約30μmに粉砕して脱臭体を作製した(以下、本実施例ではナノ脱臭体1という)。
【0039】
図4に示す臭気除去性能評価装置を用いて作製した脱臭体の性能を評価した。容器41内に紫外線ランプ42、攪拌用送風機43、サンプル皿44が配置され、前期容器41の上部にサンプリング口45を設けている。容器41は容積50L、また紫外線ランプ42は20Wのものを用い、サンプル皿上の照射強度が2mmW/cm2となる高さに設定した。サンプル皿は直径10cm、高さ1cmのものを用い、供試サンプルは同体積で比較評価した。
【0040】
試験手順について説明する。まず測定皿44に脱臭体を入れ、配置する。容器41を閉じ、攪拌用送風機43を動作させながら、アセトアルデヒドガスを注入して、内部の濃度が20ppmとなるようにした。なおガス分析にはガスクロマトグラフ(FID)を使用、容器内は20℃50%となるように保持した。紫外線ランプ44を点灯して試験を開始。1時間後の容器内濃度を測定した。サンプル1として酸化チタン(ST−01)、サンプル2としてナノ脱臭体1を用い試験した。サンプル1は1時間後の濃度が9ppm、サンプル2では2ppmとなった。明らかにサンプル2の方がアセトアルデヒドの濃度が減少していた。さらに酸性臭気である酢酸、塩基性臭気のアンモニアについても同様の効果が確認できた。
【0041】
図5に示す脱臭装置においても性能を確認した。ケーシング50、ハニカム体51、送風機52、紫外線ランプ53から構成されている。ナノ脱臭体1をシリカゾル30wt%を含むスラリーにし、セラミックハニカムにディップ後、乾燥焼成した200セルのハニカム体1を作製した。体積300cm3、厚さ5mmのセラミックハニカムを用いた。紫外線ランプはハニカム体1への照射強度が最低2mmW/cm2となるように複数本用いた。
【0042】
次に試験手順について説明する。前記脱臭装置を1m3の容器A中央に設置、前記1容器A内にアセトアルデヒドガスを注入し、50ppmとなるようにした。次に送風機52、紫外線ランプ53を動作させた。1時間後の容器A内のアセトアルデヒド濃度は1ppmであった。同様の試験で前記サンプル1の光触媒についても試験を行ったが、1時間後の容器A内のアセトアルデヒド濃度は8ppmで、ハニカム体を用いた脱臭装置での実用的な試験でも明らかな差が見られた。
【0043】
<実験例2>
TMOS45.6gとメタノール41.4gに平均径20nm程度の酸化チタン(石原産業製ST−21)10gと活性炭10gを混合し、攪拌を行った溶液を(以下、溶液Bという)を用意した。次に、水21.6gに約29wt%のアンモニア水0.1gを添加し、攪拌を行った溶液(以下、溶液Xという)を用意した。溶液Bに溶液Xを攪拌しながら添加することにより、約20分で湿潤ゲルを作製し、40℃の恒温槽で24時間静置した。その後、湿潤ゲルの径が2mm程度になるように破砕した後、ジメチルジメトキシシラン84.7gを添加し、40℃の恒温槽で72時間静置することにより、疎水化処理を行った。その後、湿潤ゲルをアセトンに浸すことにより湿潤ゲル中の水を脱水し、湿潤ゲル中の溶媒をアセトンに置換した。その後、130℃の恒温槽で6時間乾燥を行い、約30μmに粉砕して脱臭体を作製した(以下、本実施例ではナノ脱臭体2という)。
【0044】
実験例1と同様の図4に示す評価装置で評価した。臭気にはアンモニアを用いた。操作手順について説明する。まず測定皿44にナノ脱臭体2を入れ、配置する。容器41を閉じ、攪拌用送風機43を動作させながら、アンモニアガスを注入して、内部の濃度が100ppmとなるようにした。なおガス分析にはガスクロマトグラフ(FID)を使用、容器内は20℃50%となるように保持した。30分後、容器内のアンモニア濃度は15ppmまで減少。再度アンモニアガスを注入、30分後、容器内は30ppmとなった。また同じ工程を2回繰り返し、吸着剤を破過させた。次に紫外線ランプ44を30分間点灯させ、一旦容器41は開放にした。次に最初のように容器41を閉じ、アンモニアガスを注入して、内部の濃度が100ppmとなるようにしたところ、容器内のアンモニア濃度は16ppmまで減少していた。つまり再生効果が確認された。
【0045】
<実験例3>
実験例2の活性炭のかわりに、疎水性ゼオライトを添加、同様の方法でナノ脱臭体3を作製した。実験例2の同様の試験方法で容器内は20℃85%となるように保持して評価した。臭気ガスにはアンモニアを用いた。ナノ脱臭体2、ナノ脱臭体3について各々試験を行い、ともに吸着破過させ、紫外線ランプ44を30分間点灯させ、一旦容器41は開放にした。初期濃度100ppmで再度試験したところ、ナノ脱臭体2では30分後に60ppm、ナノ脱臭体3では15ppmであった。明らかに疎水性ゼオライトを用いた方が多湿時の再生効果が高い結果が得られた。
【0046】
【発明の効果】
以上のように、本発明の脱臭体によれば、担体の単位体積あたりの表面積を大きくすることができ、担持する前記光触媒を効果的に表面に分散できるので、光触媒を有効に活用でき、脱臭体としての臭気分解能力を大きく向上することができる。
【図面の簡単な説明】
【図1】(a)本発明の第一の実施例における脱臭体の模式図
(b)同、脱臭体の一部分を拡大した模式図
【図2】(a)本発明の第二の実施例における脱臭体の模式図
(b)同、脱臭体の一部分を拡大した模式図
【図3】(a)本発明の第三の実施例における脱臭体の模式図
(b)同、脱臭体の一部分を拡大した模式図
【図4】実験例で用いた臭気除去性能評価装置の斜視図
【図5】実験例で用いた脱臭装置の斜視図
【符号の説明】
1 脱臭体
2 光触媒
3 構造体
4 構造体を形成する骨格
5 骨格間距離
6 物理吸着作用を有する吸着剤
21 脱臭体
22 光触媒
23 構造体
24 一次粒子
25 粒子間距離
41 容器
42 紫外線ランプ
43 攪拌用送風機
44 サンプル皿
45 サンプリング口
50 ケーシング
51 ハニカム体
52 送風機
53 紫外線ランプ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deodorizing body and a deodorizing apparatus for removing odor.
[0002]
[Prior art]
Conventionally, in order to use a photocatalyst as a deodorizer, a photocatalyst powder is granulated using a binder if necessary, or applied to a substrate or a honeycomb (for example, see Patent Document 1). As a typical method for forming a titanium oxide film as a photocatalyst, there are a sol-gel method and a CVD method. However, an anatase-type titanium oxide film is basically formed on a substrate as a deodorizer (for example, Patent Document 2). reference).
[0003]
[Patent Document 1]
JP-A-7-241475 [Patent Document 2]
Japanese Patent Laid-Open No. 7-251080 [0004]
[Problems to be solved by the invention]
However, it is possible to obtain activity during UV irradiation simply by solidifying the photocatalyst and granulating or forming a photocatalyst film, but there is a problem that the activity is low because the specific surface area of the carrier is small and the photocatalyst is not sufficiently dispersed. I did it.
[0005]
This invention solves the said conventional subject, and it aims at providing the deodorizing body which has high photoactivity.
[0006]
[Means for Solving the Problems]
In order to solve the above-described conventional problems, the deodorizing body of the present invention includes at least a photocatalyst and a structure having pores having an average diameter of gas molecules or more, and the photocatalyst is supported on the structure. As a result, the surface area per unit volume of the carrier can be increased, and the supported photocatalyst can be effectively dispersed on the surface.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 comprises at least a photocatalyst and a structure having pores having an average diameter of gas molecules or more, wherein the photocatalyst is a deodorant supported on the structure, The surface area of the photocatalyst can be increased, the supported photocatalyst can be effectively dispersed on the surface, and the photocatalyst can be effectively utilized, so that the odor decomposition ability as a deodorant is greatly improved.
[0008]
The invention described in claim 2 is the deodorizer according to claim 1 in which the photocatalyst contains at least titanium oxide. By adding titanium oxide, the photoactivity is increased, and the performance of the deodorizer is greatly improved.
[0009]
The invention according to claim 3 is the deodorizer according to claim 1 including an adsorbent having a physical adsorption action, and is high by adding an adsorbent having a physical adsorption action such as zeolite, silica, activated carbon or the like. A deodorizing body having adsorption capability and capable of regenerating with a photocatalyst, that is, capable of decomposing the adsorbed odorous substance can be obtained.
[0010]
The invention according to claim 4 is the deodorizing body according to claim 1 having at least a hole penetrating the inside of the structure, and the odor is likely to enter the inside of the deodorizing body, and the area inside the deodorizing body is reduced. Since it can be used effectively, it is possible to provide a deodorizing body having an odor decomposition performance equal to or higher than that of a conventional deodorizing body.
[0011]
The invention according to claim 5 is the deodorizing body according to any one of claims 1 to 4, wherein the structure is an airgel, and has a porous structure easily and without destroying the structure. The body can be produced, the surface area per unit volume can be increased, and a deodorizing body having a surface area equal to or greater than that of a conventional deodorizing body can be obtained. Furthermore, since a deodorizing body having a porous structure with a space ratio of up to about 99% can be produced and a space comparable to the apparent volume can be obtained, the amount of odorous gas that can be processed in one pass is reduced. Can do a lot. Therefore, a deodorizing body having a deodorizing performance equal to or higher than that of a conventional deodorizing body can be realized.
[0012]
The invention according to claim 6 is a deodorizer according to any one of claims 1 to 4, wherein the structure is a xerogel, and a deodorizer having a porous structure can be easily produced. Moreover, the surface area per unit volume can be increased, and a deodorizing body having a surface area equal to or greater than that of a conventional deodorizing body can be obtained. Furthermore, since a deodorizing body having a porous structure with a space ratio of up to about 99% can be produced and a space comparable to the apparent volume can be obtained, the amount of odorous gas that can be processed in one pass is reduced. Can do a lot. Therefore, a deodorizing body having a deodorizing performance equal to or higher than that of a conventional deodorizing body can be realized.
[0013]
The invention according to claim 7 is the deodorizer according to any one of claims 1 to 6, wherein the structure has hydrophobicity, and the photocatalyst represented by titanium oxide is a photocatalyst in a humid state. It is not fully active because it is covered with water. By making the structure hydrophobic, the moisture in the atmosphere in the vicinity of the photocatalyst is reduced, and the photocatalyst is not easily covered with water, so that the activity can be obtained even under high humidity.
[0014]
The invention according to claim 8 is the deodorizer according to any one of claims 1 to 7 including at least a hydrophobic substance, and the hydrophobic substance is present in the deodorized body. Thus, the deodorizing body itself has hydrophobicity, the moisture in the atmosphere in the vicinity of the photocatalyst is reduced, and the photocatalyst becomes difficult to be covered with water, and the activity can be obtained even under high humidity.
[0015]
The invention according to claim 9 is the deodorant according to claim 3 in which the adsorbent having a physical adsorption action has hydrophobicity, and if the adsorbent is hydrophobic even in high humidity, the adsorption performance is lowered. In addition, the moisture in the atmosphere in the vicinity of the photocatalyst is reduced, so that the photocatalyst is not easily covered with water, and the activity can be obtained even under high humidity.
[0016]
A tenth aspect of the present invention is a deodorizing apparatus including at least a deodorizing body according to any one of the first to ninth aspects, an irradiation unit that irradiates the deodorizing body with light containing at least ultraviolet rays, and a blowing unit. Therefore, the odor in the indoor space can be quickly purified by oxidative decomposition.
[0017]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0018]
(Example 1)
FIG. 1 is a schematic view showing the form of a deodorizing body in the first embodiment of the present invention. Hereinafter, this embodiment will be described with reference to FIG. FIG. 1A is a schematic diagram of the deodorizing body A of the present embodiment, and FIG. 1B is a schematic diagram in which a part of the deodorizing body A is enlarged. 1 (a) and 1 (b), one deodorizing body A has a structure in which a photocatalyst 2 is supported on a structure 3. The photocatalyst 2 and the structure 3 are bonded by an action such as an anchor effect or a physical bond or a chemical bond, but a binder may be added.
[0019]
The structure 3 is composed of a skeleton 4 forming the structure (hereinafter simply referred to as the skeleton 4), and the inter-frame distance 5 between the skeletons 4 is greater than the average diameter of gas molecules. And the space | gap of these frame | skeleton forms many holes, and the deodorizing body 1 has a porous structure.
[0020]
As is clear from FIGS. 1 (a) and 1 (b), the photocatalysts 2 have a structure having spaces, so that the surface of the photocatalyst can act effectively.
[0021]
Deodorizing performance tends to improve when the skeleton thickness, pore size, and the average diameter of the photocatalyst 2 are small, but if the pore size is too small, odorous gas molecules can penetrate into the deodorizing body. Therefore, the deodorizing performance is lowered. Moreover, it is desirable that the hole communicates with the outside of the structure. By having the hole penetrating the structure, the odor can be efficiently deodorized by passing through the hole.
[0022]
The material of the skeleton is not particularly limited, but a material that does not emit an odor but rather adsorbs the odor is desirable, and at least a part of the skeleton is made of the photocatalyst 2, so that the deodorization performance can be further improved.
[0023]
As the photocatalyst, it is possible to use titanium oxide or the like that is relatively inexpensive and has high catalytic activity. Since the smaller deodorizer 1 can have a larger surface area per volume, the deodorization performance is improved.
[0024]
(Example 2)
The second embodiment of the present invention will be described below.
[0025]
FIG. 2 is a schematic diagram showing the form of the deodorizing body in this example. Hereinafter, this embodiment will be described with reference to FIG. FIG. 2 shows a deodorizing body B obtained by adding an adsorbent having a physical adsorption action to the deodorizing body A having the configuration shown in FIG. Zeolite, silica, activated carbon and the like can be used as the adsorbent having a physical adsorption action. The adsorbent can be selected according to the odor to be deodorized. If this structure is used, an odor will be removed by the physical adsorption deodorization by an adsorbent, and the performance as a deodorizing body will improve further. The odor substance adsorbed by the adsorbent can be regenerated because it can be oxidatively decomposed by radicals generated when excited by light. Further, when hydrophobic zeolite or the like is used, water is hardly adsorbed, and therefore, titanium oxide existing in the vicinity is hardly covered with water. Therefore, the activity of the photocatalyst is not greatly reduced even when the processing air is highly humid. The same effect can be obtained by adding a material having the same hydrophobicity to the deodorant A.
[0026]
(Example 3)
The third embodiment of the present invention will be described below.
[0027]
FIG. 3 is a schematic view of a deodorizing body in this example. FIG. 3A is a schematic diagram of the deodorizing body of this embodiment, and FIG. 3B is a schematic diagram in which a part of the deodorizing body 21 is enlarged. The deodorizing body 21 has a structure in which the photocatalyst 22 is supported on the structure body 23. The photocatalyst 22 and the structure 23 are bonded by an action such as an anchor effect or a physical bond or a chemical bond, but a binder may be added.
[0028]
The photocatalyst 22 was the same as the photocatalyst 2 of (Example 1), and titanium oxide was used in this example.
[0029]
The structure 23 is made of airgel or xerogel. In airgel and xerogel, organic particles such as metal oxide, carbon, and urethane mainly form primary particles 24 of about 0.1 to 20 nm, which are connected in a bead shape to form a large number of communication holes with an interparticle distance of 25. . Therefore, the structure 23 has a porous structure, and the interparticle distance is preferably about 1 nm to 1 μm. A larger space ratio is desirable because the amount of odorous gas that can be processed in one pass can be increased. However, if the space ratio is too large, the amount of the photocatalyst 22 that can be carried decreases. desirable. Further, in this example, the deodorizing body 21 having an average diameter of about 30 μm was used. However, although it is not related to these sizes, the smaller one can take a larger surface area. Will improve.
[0030]
The material of the airgel or xerogel is not particularly limited, but the airgel or xerogel partially formed from the photocatalyst 22 has a higher deodorizing effect. In addition, if silica is selected as the material, it is very desirable because raw materials are inexpensive and abundant in variety, and the manufacturing process is simple.
[0031]
Next, a method for producing the deodorizing body 21 will be briefly described. Water gel and metal alkoxides such as silicon, aluminum, zirconium, and titanium are used as gel raw materials, and water or alcohol is mixed with an acid or alkali catalyst as necessary to react with the gel raw materials in the solvent and wet. It is produced by forming a gel and evaporating and drying the solvent inside. By mixing titanium oxide at the time of wet gel formation, a wet gel carrying titanium oxide can be formed. In the case of a metal alkoxide, it becomes a wet gel through hydrolysis and condensation polymerization. When water glass is used as the gel raw material, a catalyst such as hydrochloric acid is directly added to the water glass to cause gelation, thereby forming a wet gel. At this time, the sodium content contained in the water glass is removed by electrodialysis treatment or the like before the catalyst is added, or the salt that has been gelled is removed by washing with water. In this example, tetramethoxysilane (hereinafter referred to as TMOS) was used as the gel material. This is because it is a silicon alkoxide, which is easily obtained and has a high reaction rate, which is very preferable.
[0032]
A wet gel is a structure in which silica particles having a three-dimensional network structure in which silicon atoms and oxygen atoms are alternately bonded, the silica particles are polymerized into a bead shape, and a solvent such as water enters a gap between the particles, that is, pores. It has become. Titanium oxide has a structure that enters a part or part of the three-dimensional network structure. Therefore, the material for the xerogel and the airgel in this embodiment is silica.
[0033]
After this, the wet gel that has been normally dried with hot air shrinks due to the surface tension when the solvent dries and crushes the pores, resulting in a decrease in the space ratio and deodorizing performance. . However, silanol groups on the wet gel surface are hydrophobized by introducing methyl groups with hexamethyldisilazane, dimethyldimethoxysilane, etc., and the solvent is a solvent with relatively low surface tension such as toluene, xylene, acetone, hexane, etc. In the case of the hot air drying, the surface tension hardly acts, and as shown in FIG. 3, the silica primary particles 24 having a diameter of about 0.1 to 20 nm are aggregated, and the interparticle distance of about 1 nm to 1 μm. It becomes an aggregate with 25. The size of the primary particle size and interparticle distance is determined by the type and amount of wet gel raw material used, the type and amount of solvent and catalyst, and the amount of water, and the structure of the wet gel becomes the structure of the deodorizing body 21 as it is. . And the aggregate | assembly of a primary particle will form a secondary particle about 1 micrometer-10 mm. In this embodiment, the secondary particles have a size of about 30 μm and are used as the deodorizing body 21, and the structure 23 at this time is called a xerogel. Since the hydrophobicity is produced when the xerogel is produced, the structure becomes hydrophobic and is effective in preventing the performance degradation of the photocatalyst when it is humid.
[0034]
Also, without subjecting the wet gel to hydrophobic treatment, the solvent in the wet gel replaced with an organic solvent is dried by bringing it to a supercritical state, or carbon dioxide is circulated in a supercritical state to extract the solvent. Also by drying by supercritical drying, a deodorizing body 21 as shown in FIG. 3 can be obtained, and the structure 23 at this time is called an airgel.
[0035]
Although the physical properties of airgel and xerogel are similar, xerogel has the merit that it can be produced at a lower cost. Can do.
[0036]
Moreover, even when adsorbents having a physical adsorption action are mixed in the same manner as in (Example 1), it is possible to produce a deodorizing body by the method described in (Example 2). The adsorbent to be mixed can be added in any amount.
[0037]
Examples of experiments are shown below.
[0038]
<Experimental example 1>
20 g of titanium oxide (ST-21 manufactured by Ishihara Sangyo Co., Ltd.) having an average diameter of about 20 nm was mixed with 45.6 g of TMOS and 41.4 g of methanol, and a stirred solution (hereinafter referred to as Solution A) was prepared. Next, 0.1 g of about 29 wt% ammonia water was added to 21.6 g of water, and a stirred solution (hereinafter referred to as solution X) was prepared. The solution X was added to the solution A with stirring to prepare a wet gel in about 20 minutes, and left in a constant temperature bath at 40 ° C. for 24 hours. Then, after crushing so that the diameter of a wet gel might be set to about 2 mm, 84.7 g of dimethyldimethoxysilane was added, and it left still in a 40 degreeC thermostat for 72 hours, and the hydrophobization process was performed. Thereafter, the water in the wet gel was dehydrated by immersing the wet gel in acetone, and the solvent in the wet gel was replaced with acetone. Then, it dried for 6 hours in a 130 degreeC thermostat, and it grind | pulverized to about 30 micrometers, and produced the deodorizing body (henceforth a nano deodorizing body 1 in a present Example).
[0039]
The performance of the deodorant produced using the odor removal performance evaluation apparatus shown in FIG. 4 was evaluated. An ultraviolet lamp 42, a stirring fan 43, and a sample pan 44 are disposed in the container 41, and a sampling port 45 is provided in the upper part of the previous container 41. The container 41 had a volume of 50 L, and the ultraviolet lamp 42 had a capacity of 20 W, and was set to a height at which the irradiation intensity on the sample pan was 2 mmW / cm 2 . A sample pan having a diameter of 10 cm and a height of 1 cm was used, and the test samples were comparatively evaluated with the same volume.
[0040]
The test procedure will be described. First, a deodorizing body is put in the measurement dish 44 and arranged. While the container 41 was closed and the stirring fan 43 was operated, acetaldehyde gas was injected so that the internal concentration became 20 ppm. A gas chromatograph (FID) was used for gas analysis, and the inside of the container was kept at 20 ° C. and 50%. Start the test by turning on the UV lamp 44. The concentration in the container after 1 hour was measured. The test was conducted using titanium oxide (ST-01) as sample 1 and nano-deodorant 1 as sample 2. Sample 1 had a concentration of 9 ppm after 1 hour, and Sample 2 had a concentration of 2 ppm. Apparently, the concentration of acetaldehyde was decreased in Sample 2. Furthermore, the same effect could be confirmed for acetic acid, which is an acidic odor, and ammonia, which is a basic odor.
[0041]
The performance was also confirmed in the deodorizing apparatus shown in FIG. A casing 50, a honeycomb body 51, a blower 52, and an ultraviolet lamp 53 are included. The nano-deodorizing body 1 was made into a slurry containing 30 wt% silica sol, dipped on a ceramic honeycomb, dried and fired, and a 200-cell honeycomb body 1 was produced. A ceramic honeycomb having a volume of 300 cm 3 and a thickness of 5 mm was used. A plurality of ultraviolet lamps were used so that the irradiation intensity to the honeycomb body 1 was at least 2 mmW / cm 2 .
[0042]
Next, the test procedure will be described. The deodorizing apparatus was installed in the center of a 1 m 3 container A, and acetaldehyde gas was injected into the 1 container A so as to be 50 ppm. Next, the blower 52 and the ultraviolet lamp 53 were operated. The acetaldehyde concentration in the container A after 1 hour was 1 ppm. In the same test, the photocatalyst of Sample 1 was also tested. The concentration of acetaldehyde in the container A after 1 hour was 8 ppm, and a clear difference was found in a practical test using a deodorizing apparatus using a honeycomb body. It was.
[0043]
<Experimental example 2>
10 g of titanium oxide (ST-21 manufactured by Ishihara Sangyo Co., Ltd.) having an average diameter of about 20 nm and 10 g of activated carbon were mixed with 45.6 g of TMOS and 41.4 g of methanol, and a stirred solution (hereinafter referred to as solution B) was prepared. Next, 0.1 g of about 29 wt% ammonia water was added to 21.6 g of water, and a stirred solution (hereinafter referred to as solution X) was prepared. The solution X was added to the solution B with stirring to prepare a wet gel in about 20 minutes, and left in a constant temperature bath at 40 ° C. for 24 hours. Then, after crushing so that the diameter of a wet gel might be set to about 2 mm, 84.7 g of dimethyldimethoxysilane was added, and it left still in a 40 degreeC thermostat for 72 hours, and the hydrophobization process was performed. Thereafter, the water in the wet gel was dehydrated by immersing the wet gel in acetone, and the solvent in the wet gel was replaced with acetone. Then, it dried for 6 hours in a 130 degreeC thermostat, and it grind | pulverized to about 30 micrometers, and produced the deodorizing body (henceforth a nano deodorizing body 2 in a present Example).
[0044]
Evaluation was performed using the same evaluation apparatus as shown in FIG. Ammonia was used for the odor. The operation procedure will be described. First, the nano-deodorizing body 2 is placed in the measurement dish 44 and arranged. The container 41 was closed and ammonia gas was injected while operating the agitating blower 43 so that the internal concentration became 100 ppm. A gas chromatograph (FID) was used for gas analysis, and the inside of the container was kept at 20 ° C. and 50%. After 30 minutes, the ammonia concentration in the container decreased to 15 ppm. Ammonia gas was injected again, and 30 minutes later, the inside of the container became 30 ppm. The same process was repeated twice to break through the adsorbent. Next, the ultraviolet lamp 44 was turned on for 30 minutes, and the container 41 was once opened. Next, the container 41 was closed as in the beginning, and ammonia gas was injected to adjust the internal concentration to 100 ppm. As a result, the ammonia concentration in the container was reduced to 16 ppm. That is, the reproduction effect was confirmed.
[0045]
<Experimental example 3>
Instead of the activated carbon of Experimental Example 2, a hydrophobic zeolite was added, and the nano-deodorizing body 3 was produced by the same method. In the same test method as in Experimental Example 2, the inside of the container was held at 20 ° C. and 85% and evaluated. Ammonia was used as the odor gas. Each of the nano-deodorizing body 2 and the nano-deodorizing body 3 was tested, and both were adsorbed and broken. The ultraviolet lamp 44 was turned on for 30 minutes, and the container 41 was once opened. When tested again at an initial concentration of 100 ppm, it was 60 ppm after 30 minutes for Nano Deodorant 2 and 15 ppm for Nano Deodorizer 3. Obviously, the use of hydrophobic zeolite gave a higher regeneration effect under high humidity.
[0046]
【The invention's effect】
As described above, according to the deodorizing body of the present invention, the surface area per unit volume of the carrier can be increased and the supported photocatalyst can be effectively dispersed on the surface, so that the photocatalyst can be effectively utilized and deodorized. The ability to decompose odor as a body can be greatly improved.
[Brief description of the drawings]
FIG. 1A is a schematic diagram of a deodorizing body in a first embodiment of the present invention. FIG. 2B is a schematic diagram showing an enlarged part of the deodorizing body. FIG. 2A is a second embodiment of the present invention. Fig. 3B is a schematic diagram of a deodorizing body in Fig. 3B. Fig. 3A is a schematic diagram of an enlarged portion of the deodorizing body. Fig. 3A is a schematic diagram of a deodorizing body in the third embodiment of the present invention. Fig. 4 is a perspective view of the apparatus for evaluating odor removal performance used in the experimental example. Fig. 5 is a perspective view of the deodorizing apparatus used in the experimental example.
DESCRIPTION OF SYMBOLS 1 Deodorizing body 2 Photocatalyst 3 Structure 4 Structure | skeleton which forms structure 5 Interstitial distance 6 Adsorbent 21 which has a physical adsorption action Deodorizing body 22 Photocatalyst 23 Structure 24 Primary particle 25 Interparticle distance 41 Container 42 Ultraviolet lamp 43 For stirring Blower 44 Sample pan 45 Sampling port 50 Casing 51 Honeycomb body 52 Blower 53 Ultraviolet lamp