JP3945369B2 - Deodorant - Google Patents

Deodorant Download PDF

Info

Publication number
JP3945369B2
JP3945369B2 JP2002308224A JP2002308224A JP3945369B2 JP 3945369 B2 JP3945369 B2 JP 3945369B2 JP 2002308224 A JP2002308224 A JP 2002308224A JP 2002308224 A JP2002308224 A JP 2002308224A JP 3945369 B2 JP3945369 B2 JP 3945369B2
Authority
JP
Japan
Prior art keywords
adsorbent
deodorizing
deodorizing body
adsorption action
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002308224A
Other languages
Japanese (ja)
Other versions
JP2004141311A (en
Inventor
光宏 佐野
幸一 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002308224A priority Critical patent/JP3945369B2/en
Publication of JP2004141311A publication Critical patent/JP2004141311A/en
Application granted granted Critical
Publication of JP3945369B2 publication Critical patent/JP3945369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、トイレ臭や寝たきりの方の介護時や用便時などに発生する複合臭気や、下水処理場などで発生する硫化水素等の硫黄系臭気を除去する脱臭体に関するものである。
【0002】
【従来の技術】
従来は、各種臭気を吸着する吸着剤を添着させた粒状の活性炭を充填させ、臭気を脱臭する脱臭体としたもの(例えば文献1参照。)や、硫黄系の臭気を化学吸着する吸着剤を粉末状で作製し、繊維で作ったハニカム体に担持させ脱臭体とするもの(例えば文献2参照。)であった。
【0003】
【特許文献1】
特開2000−157620号公報
【0004】
【特許文献2】
特開2001−321424号公報
【0005】
【発明が解決しようとする課題】
しかしながら、各種臭気を吸着する吸着剤を添着させた活性炭は、トイレ臭などの複合臭気、特に硫黄系の臭気を脱臭する能力が十分ではなく、特に粒状で用いた場合、表面積が小さいため各種ガスの脱臭能力が極めて低いという課題があった。
【0006】
また、硫黄系の臭気を化学吸着する吸着剤を繊維で作ったハニカム体に担持させた脱臭体は、大型サイズを作製することが難しいため、下水処理場など大型施設に設置して用いることが極めて困難であるという課題もあった。
【0007】
【課題を解決するための手段】
本発明は、このような課題を解決するものであり、化学吸着作用を有する吸着剤と、少なくとも前記化学吸着作用を有する吸着剤の平均径以下かつ気体分子の平均径以上の孔を有する構造体とを備え、前記化学吸着作用を有する吸着剤が前記構造体に担持された脱臭体としたもので、硫黄系の臭気、特に硫化水素を吸着する能力が極めて高い化学吸着作用を有する吸着剤を含んだ粒状固体とすることで脱臭体を容易に扱うことができるようになり、大型施設に対応することが容易となる。また、化学吸着作用を有する吸着剤と同じサイズの孔を多く持つ多孔質構造体とすることで、単位体積あたりの表面積を大きくすることができ、従来のハニカム体に担持した脱臭体と同等以上の表面積を有する脱臭体とすることができ、従来の脱臭体と同等以上の脱臭性能を確保できる。
【0008】
【発明の実施の形態】
本発明の請求項1に記載の発明は、化学吸着作用を有する吸着剤と、少なくとも前記化学吸着作用を有する吸着剤の平均径以下かつ気体分子の平均径以上の孔を有する疎水性もしくは撥水性のキセロゲルとを備え、前記化学吸着作用を有する吸着剤が前記キセロゲルに担持された脱臭体としたもので、トイレ臭中に含まれる硫化水素や下水処理場で発生する硫化水素を化学吸着作用により極めて高い脱臭能力で除去することができ、また化学吸着であるため、一度吸着した硫化水素を再度放出することがない。さらに、運搬性、取扱い性がよく、従来のハニカム体に担持した脱臭体と同等以上の脱臭性能を有する脱臭体を実現できる。
【0009】
また、請求項2記載の発明は、化学吸着作用を有する吸着剤は少なくともマンガン、コバルト、銅、亜鉛のいずれかを含む酸化物、水酸化物、複合酸化物、あるいはその混合物である請求項1記載の脱臭体としたもので、これらは硫化水素を主に硫酸化物として化学吸着し脱臭するものだが、特にマンガン、コバルト、銅、亜鉛の酸化物や複合酸化物などは、硫酸化物を作りやすく、硫化水素を除去する能力が非常に高いので、従来のハニカム体に担持した脱臭体と同等以上の脱臭性能を有する脱臭体を実現できる。
【0010】
また、請求項3記載の発明は、物理吸着作用を有する吸着剤を含む請求項1記載の脱臭体としたもので、ゼオライトやセピオライト、シリカ、アルミナ等の物理吸着作用を有する吸着剤を加えることで、トイレ臭のアンモニアや二硫化ジメチルに対する脱臭作用を高めた脱臭体を実現できる。
【0011】
また、請求項4記載の発明は、キセロゲルの一部は少なくともマンガン、コバルト、銅のいずれかを含む酸化物、水酸化物、複合酸化物、あるいはその混合物からなる請求項1に記載の脱臭体としたもので、担持体そのものに硫化水素を除去する能力が高いマンガン、コバルト、銅、亜鉛の酸化物や複合酸化物を含むことにより、従来のハニカム体に担持した脱臭体と同等以上の脱臭性能を有する脱臭体を実現できる。
【0012】
また、請求項5記載の発明は、少なくとも吸水性もしくは吸湿性を有する物質を含む請求項1から4のいずれか1項に記載の脱臭体としたもので、マンガン、コバルト、銅の酸化物や複合酸化物などは、水蒸気が多いほど硫酸化物を作りやすく硫化水素の脱臭性能が向上するもので、吸水性もしくは吸湿性を有する物質を添加しておくことにより、吸水もしくは吸湿した水分がマンガン、コバルト、銅の酸化物や複合酸化物に供給され、硫化水素の除去性能が向上する。したがって、従来のハニカム体に担持した脱臭体と同等以上の脱臭性能を有する脱臭体を実現できる。
【0013】
また、請求項6記載の発明は、物理吸着作用を有する吸着剤が吸水性もしくは吸湿性を有する請求項3記載の脱臭体としたもので、マンガン、コバルト、銅の酸化物や複合酸化物などは、水蒸気が多いほど硫酸化物を作りやすく硫化水素の脱臭性能が向上するもので、物理吸着作用を有する吸着剤が吸水もしくは吸湿した水分がマンガン、コバルト、銅の酸化物や複合酸化物に供給され、硫化水素の除去性能が向上する。したがって、従来のハニカム体に担持した脱臭体と同等以上の脱臭性能を有する脱臭体を実現できる。
【0014】
【実施例】
以下、本発明の実施例について、図面を参照しながら説明する。
【0015】
(実施例1)
図1は本発明の第一の実施例における脱臭体の模式図である。図1(a)は本実施例の脱臭体の模式図であり、(b)は脱臭体1の一部分を拡大した模式図である。脱臭体1は、化学吸着作用を有する吸着剤2(以下、本実施例では化学吸着剤2という)が構造体3に担持されている構造をとる。化学吸着剤2と構造体3はアンカー効果もしくは物理的な結合もしくは化学的な結合などの作用により結合されているが、バインダを添加しても良い。
【0016】
構造体3は、構造体を形成する骨格4(以下、本実施例では骨格4という)からなり、骨格4同士間の骨格間距離5は化学吸着剤2の平均径以下かつ気体分子の平均径以上のものが存在し、その数が多い方が化学吸着剤2の表面を有効に使うことができ、脱臭性能は向上する。そして、これら骨格の隙間が多数の孔を形成し、脱臭体1は多孔質構造となっている。
【0017】
骨格の太さや孔の大きさ、化学吸着剤2の平均径は小さい方が脱臭性能は向上する傾向にあるが、孔の大きさがあまりに小さすぎると、臭気を有する気体分子が脱臭体内部まで浸入できず、脱臭性能は低下することとなる。また、孔は構造体の外部と連通しているのが望ましく、構造体を貫通する孔を有することにより、その孔を臭気が通り抜けることで効率よく脱臭される。
【0018】
骨格の材質は特に限定するものではないが、臭気を発せず、むしろ臭気を吸着するものが望ましく、少なくとも骨格の一部が化学吸着剤2から成るものにより、さらに脱臭性能を上げることができる。
【0019】
次に化学吸着剤2について説明する。本実施例では、化学吸着剤2にマンガン、銅、コバルトの複合酸化物(以下、本実施例では複合酸化物Aという)を用いた。なお、本実施例ではマンガン、銅、コバルトの複合酸化物を用いたが、これに限定するものではなく、マンガン、銅、亜鉛、コバルトのいずれかを含む酸化物、水酸化物、複合酸化物あるいはその混合物とすることにより、同様に硫化水素に対する強力な化学吸着作用を有する脱臭体とすることができる。
【0020】
本実施例で用いた複合酸化物Aは、特に硫化水素の除去に優れ、硫化水素を最終的に硫酸塩の形や硫黄単体として化学吸着するものである。また、同じ硫黄系臭気であるメチルメルカプタンを二硫化ジメチルに転化する触媒作用も有する。複合酸化物Aは0.1〜1μm程度の大きさであり、脱臭体1は平均径が約2mm程度の大きさであったが、いずれもこれらの大きさに拘るものではないが、より小さい方が同体積あたりの表面積を大きくとることができるので、脱臭性能は向上する。
【0021】
さらに、化学吸着剤2の形は球状に限定されるものでなく、また脱臭体1の形も球状に限定されるものではない。脱臭体1の表面に凹凸を設けることにより、単位体積あたりの表面積を増やすことができるようになり、より効果的である。
【0022】
このような脱臭体1の重量は非常に軽く、運搬性、取扱性ともに非常によく、また化学吸着剤2をハニカム体に担持したものより初期の脱臭性能、寿命ともに同等以上のものを実現することができる。これにより、成形困難な大型のハニカム体を作製することなく、高性能な脱臭体を大きな施設に応用することができる。
【0023】
(実施例2)
図2は本発明の第二の実施例における脱臭体の模式図である。図2(a)は本実施例の脱臭体の模式図であり、(b)は脱臭体11の一部分を拡大した模式図である。(実施例1)における脱臭体1にさらに物理吸着作用を有する吸着剤6(以下、本実施例では物理吸着剤6という)が添加された構造を有し、脱臭体1は化学吸着剤2と物理吸着剤6とが構造体3に担持されている構造をとる。化学吸着剤2と物理吸着剤6とが構造体3にアンカー効果もしくは物理的な結合もしくは化学的な結合などの作用により結合されている。
【0024】
これにより、トイレ臭に含まれる硫化水素は化学吸着作用により除去でき、さらにアンモニアや二硫化ジメチルを物理吸着作用により除去できるため、トイレ臭が全般的に除去することが可能となる。また、メチルメルカプタンを二硫化ジメチルに転化する触媒作用をも有する化学吸着作用を有する吸着剤を用いることにより、トイレ臭に含まれるメチルメルカプタンは二硫化ジメチルとなり、物理吸着作用を有する吸着剤に吸着されることで、さらにトイレ臭が全般的に除去することが可能となる。
【0025】
本実施例では、物理吸着剤6として、疎水性ゼオライトを用いたが、親水性のゼオライト、セピオライト、シリカ、アルミナ等を用いても同様な効果が得られる。
【0026】
化学吸着剤2と物理吸着剤6との比率は、臭気の成分により変えることができる。すなわち、硫化水素が多い場合は化学吸着剤2を多くし、アンモニアや二硫化ジメチルが多い場合、物理吸着剤6を多くすると臭気全般を効率よく脱臭することができる。通常のトイレ臭の場合は、化学吸着作用を有する吸着剤と物理吸着作用を有する吸着剤は重量比で1:1程度が望ましい。
【0027】
なお、アンモニア等のガスを吸着し吸着作用を喪失した物理吸着作用を有する吸着剤に、臭気を含まない空気を流通させることにより、吸着したガスを放出させ、吸着作用を再生させることができる。また、温度を上げることによっても、吸着作用を喪失した物理吸着作用を有する吸着剤の吸着作用を再生させることができる。
【0028】
このような脱臭体1の重量は非常に軽く、運搬性、取扱性ともに非常によく、また化学吸着剤2と物理吸着剤6とをハニカム体に担持したものより初期の脱臭性能、寿命ともに同等以上のものを実現することができる。これにより、成形困難な大型のハニカム体を作製することなく、高性能な脱臭体を大きな施設に応用することができる。
【0029】
(実施例3)
以下、本発明の第三の実施例を図に基づいて説明する。
【0030】
図3は本発明の第三の実施例における脱臭体の模式図である。図3(a)は本実施例の脱臭体の模式図であり、(b)は脱臭体21の一部分を拡大した模式図である。脱臭体21は、化学吸着作用を有する吸着剤22(以下、本実施例では化学吸着剤22という)が構造体23に担持されている構造をとる。化学吸着剤22と構造体23はアンカー効果もしくは物理的な結合もしくは化学的な結合などの作用により結合されているが、バインダを添加しても良い。
【0031】
化学吸着剤22は(実施例1)の化学吸着剤2と同様のものであり、本実施例では複合酸化物Aを用いた。
【0032】
構造体23は、キセロゲルからなる。キセロゲルは主に金属酸化物や、カーボン、ウレタンなどの有機物が0.1〜20nm程度の一次粒子24を形成し、それが数珠状につながり粒子間距離25の多数の連通孔を形成する。そのため構造体23は多孔質構造となっており、粒子間距離25が化学吸着剤22の平均径以下かつ気体分子の平均径以上のものを多数有することが望ましく、さらには粒子間距離は1nm〜1μm程度が望ましい。また、空間率は大きい方が1パスで処理できる臭気ガス量を多くすることができるので望ましいが、大きすぎると担持できる化学吸着剤22の量が少なくなるため、70%〜95%程度の空間率が望ましい。また本実施例では、平均径が約2mm程度の大きさの脱臭体21を用いたが、これらの大きさに拘るものではないが、より小さい方が表面積を大きくとることができるので、脱臭性能は向上する。
【0033】
セロゲルの材質は特に限定するものではないが、キセロゲルの一部が化学吸着剤22から形成されたものは、より脱臭効果が高い。また、材質にシリカを選択すると、原材料が安価で種類も豊富であり、作製プロセスも簡単であるので、非常に望ましい。
【0034】
次に、脱臭体21の作製方法について簡単に説明する。水ガラスや、珪素、アルミニウム、ジルコニウム、チタン等の金属アルコキシドをゲル原料として、水やアルコール等の溶媒と必要に応じて酸あるいはアルカリ触媒を混合することで、溶媒中でゲル原料を反応させ湿潤ゲルを形成させ、内部の溶媒を蒸発乾燥させることにより作製される。湿潤ゲル形成時に複合酸化物Aを混合させておくことにより、複合酸化物Aを担持した湿潤ゲルを形成できる。金属アルコキシドの場合、加水分解・縮重合を経て、湿潤ゲルとなる。また、ゲル原料として水ガラスを用いる場合は、水ガラスに直接塩酸等の触媒を加え、ゲル化させ、湿潤ゲルを形成させる。このとき、水ガラスに含まれるナトリウム分などを触媒を入れる前に、電気透析処理などで取り除いておくか、ゲル化後に塩になったものを水で洗浄することで除去する。本実施例では、ゲル原料としてテトラメトキシシラン(以下、TMOSという)を用いた。これは珪素のアルコキシドで、入手しやすく、また反応速度が速いため、非常に好ましいからである。また、複合酸化物Aを化学吸着剤22に用いる場合、触媒にアンモニアなどのアルカリ触媒が望ましい。酸触媒では、複合酸化物Aを冒してしまうおそれがあるからである。
【0035】
湿潤ゲルは、珪素原子と酸素原子が交互に結合した3次元網目構造のシリカ粒子を作り、それらシリカ粒子が重合して数珠状となり、それら粒子同士の隙間すなわち孔に水等の溶媒が入り込む構造となっている。また、複合酸化物Aは3次元網目構造の一部分や一部の孔に入り込む構造となっている。したがって、本実施例でのキセロゲルの材質としてはシリカとなる。
【0036】
この後、湿潤ゲルを普通に熱風乾燥させたものは、溶媒が乾燥するときの表面張力により、収縮してしまい孔を潰してしまうので、空間率が小さくなり、脱臭性能を低下させる原因となる。しかしながら、湿潤ゲル表面のシラノール基をヘキサメチルジシラザン、ジメチルジメトキシシラン等でメチル基を導入することにより疎水化を行い、さらに溶媒をトルエンやキシレンやアセトンやヘキサンなどの表面張力が比較的小さな溶媒に置換し、熱風乾燥させたものは、表面張力がほとんど働かず、図3に示すように0.1〜20nm程度の径をもつシリカ一次粒子24が集合し、1nm〜1μm程度の粒子間距離25をもった集合体となる。一次粒子径や粒子間距離の大きさは、用いる湿潤ゲル原料の種類や量、溶媒と触媒の種類や量、水の量で決定され、湿潤ゲルの構造がほぼそのまま脱臭体21の構造となる。そして、一次粒子の集合体が1μm〜10mm程度の二次粒子を形成することとなる。本実施例では、この二次粒子が、約2mm程度の大きさで、脱臭体21として用いられるもので、このときの構造体23がキセロゲルと称されるものである。
【0037】
また、(実施例2)に示すように、物理吸着作用を有する吸着剤(以下、本実施例では物理吸着剤という)を担持させておくことにより、(実施例2)と同様の効果が得られる。
【0038】
このような脱臭体21の重量は非常に軽く、運搬性、取扱性ともに非常によく、また化学吸着剤22と物理吸着剤とをハニカム体に担持したものより初期の脱臭性能、寿命ともに同等以上のものを実現することができる。これにより、成形困難な大型のハニカム体を作製することなく、高性能な脱臭体を大きな施設に応用することができる。
【0039】
以下、実験例を示す。
【0040】
<実験例1>
TMOS45.6gとメタノール41.4gに平均径300μm程度の複合酸化物A9gを混合し、攪拌を行った溶液を(以下、溶液Aという)を用意した。次に、水21.6gに約29wt%のアンモニア水0.1gを添加し、攪拌を行った溶液(以下、溶液Xという)を用意した。溶液Aに溶液Xを攪拌しながら添加することにより、約20分で湿潤ゲルを作製し、40℃の恒温槽で24時間静置した。その後、湿潤ゲルの径が2mm程度になるように破砕した後、ジメチルジメトキシシラン84.7gを添加し、40℃の恒温槽で72時間静置することにより、疎水化処理を行った。その後、湿潤ゲルをアセトンに浸すことにより湿潤ゲル中の水を脱水し、湿潤ゲル中の溶媒をアセトンに置換した。その後、130℃の恒温槽で6時間乾燥を行い、脱臭体を作製した(以下、本実施例ではナノ脱臭体1という)。
【0041】
ナノ脱臭体1と同様条件で、湿潤ゲル作製時にさらに平均径300μm程度の疎水性ゼオライト9gを添加し、同様の処理を施した脱臭体を作製した(以下、本実施例ではナノ脱臭体2という)。
【0042】
ナノ脱臭体1と同様条件で、湿潤ゲル作製時にさらに平均径300μm程度の高吸湿性シリカゲル9gを添加し、同様の処理を施した脱臭体を作製した(以下、本実施例ではナノ脱臭体3という)。
【0043】
これらをそれぞれ50ccの容器に約40%の充填率で充填させた充填層を作製した(以下、本実施例ではそれぞれナノカラム1、ナノカラム2、ナノカラム3という)。ナノカラム1には複合酸化物Aが0.05g/ccで担持されており、ナノカラム2には複合酸化物Aと疎水性ゼオライトが0.1g/cc、ナノカラム3には複合酸化物Aと高吸湿性シリカゲルが0.1g/cc担持されている。本発明の比較例として、粒径2mm程度のヨウ素を添着した活性炭を50ccの容器に約40%の充填率で充填させた充填層を作製した(以下、本実施例では活性炭カラムという)。
【0044】
さらに本発明の他の比較例として、1平方インチあたりのセル数が205のセラミックス繊維を原料とした50ccのハニカム体に、複合酸化物Aと疎水性ゼオライトとを重量比1:1でシリカ分20wt%のコロイダルシリカ(溶媒は水)をバインダとして、ハニカム体1ccあたり0.10gの重量で担持したものを作製した(以下、本実施例ではハニカムカラムという)。
【0045】
これら5種類のカラムを用いて硫化水素、メチルメルカプタン、アンモニア、二硫化ジメチルの通気試験を行った。このとき、空間速度を7200h−1に設定し、これらのガスをカラムの入口でいったん水に通し、湿度の高い状態でカラムに流入させた。それぞれのガスを濃度50ppmで流入させ、このときのカラム出口でのそれぞれのガス濃度を測定し、除去率を算出した。そして、流通開始直後の除去率を初期性能とし、除去率が80%になる時間を破過時間として、これら脱臭体の脱臭性能を喪失する時間とした。その結果を(表1)に示す。
【0046】
【表1】

Figure 0003945369
【0047】
(表1)より、ハニカムカラムと同等以上の初期性能、寿命を有する脱臭体を実現できる。またこれにより、成形困難な大型のハニカム体を作製することなく、高性能な脱臭体を大きな施設に応用することができる。
【0048】
【発明の効果】
以上のように、本発明によると、特に硫化水素について極めて高い除去能力を有する脱臭体を実現することができ、その脱臭体は、取扱い性、量産性、輸送性の良さから下水処理施設のような硫化水素が発生する大型施設に簡単に設置することができる。
【図面の簡単な説明】
【図1】 (a)本発明の第一の実施例における脱臭体の模式図
(b)同、脱臭体の一部分を拡大した模式図
【図2】 (a)本発明の第二の実施例における脱臭体の模式図
(b)同、脱臭体の一部分を拡大した模式図
【図3】 (a)本発明の第三の実施例における脱臭体の模式図
(b)同、脱臭体の一部分を拡大した模式図
【符号の説明】
1 脱臭体
2 化学吸着作用を有する吸着剤
3 構造体
4 構造体を形成する骨格
5 骨格間距離
6 物理吸着作用を有する吸着剤
21 脱臭体
22 化学吸着作用を有する吸着剤
23 構造体
24 一次粒子
25 粒子間距離[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a deodorizing body for removing a toilet odor, a composite odor generated when nursing a bedridden person or a stool, and a sulfur odor such as hydrogen sulfide generated in a sewage treatment plant.
[0002]
[Prior art]
Conventionally, a granular activated carbon impregnated with an adsorbent that adsorbs various odors and filled with a deodorant that deodorizes the odor (see, for example, Reference 1), or an adsorbent that chemically adsorbs a sulfur-based odor. It was produced in a powder form and supported on a honeycomb body made of fibers to form a deodorizing body (see, for example, Reference 2).
[0003]
[Patent Document 1]
JP 2000-157620 A
[Patent Document 2]
Japanese Patent Laid-Open No. 2001-321424
[Problems to be solved by the invention]
However, activated carbon impregnated with an adsorbent that adsorbs various odors does not have sufficient ability to deodorize composite odors such as toilet odors, especially sulfur-based odors. There was a problem that the deodorizing ability of the was extremely low.
[0006]
In addition, it is difficult to produce a large-sized deodorant that is supported on a honeycomb body made of fibers with an adsorbent that chemically adsorbs sulfur-based odors, so it should be used in large facilities such as sewage treatment plants. There was also a problem that it was extremely difficult.
[0007]
[Means for Solving the Problems]
The present invention solves such a problem, and has a structure having an adsorbent having a chemical adsorption action and at least pores having an average diameter of not more than the average diameter of the adsorbent having the chemical adsorption action and not less than the average diameter of gas molecules. The adsorbent having the chemical adsorption action is a deodorant supported on the structure, and an adsorbent having a very high ability to adsorb sulfur-based odors, particularly hydrogen sulfide. It becomes easy to handle a deodorizing body by making it the granular solid contained, and it becomes easy to respond | correspond to a large sized facility. In addition, by making the porous structure having many pores of the same size as the adsorbent having a chemical adsorption action, the surface area per unit volume can be increased, and it is equal to or more than the deodorizing body supported on the conventional honeycomb body. Therefore, the deodorizing performance equal to or higher than that of the conventional deodorizing body can be ensured.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is a hydrophobic or water-repellent material having an adsorbent having a chemisorbing action and at least pores having an average diameter of not more than the adsorbent having the chemisorbing action and not less than the average diameter of gas molecules. Xerogel, and a deodorizer in which the adsorbent having the chemical adsorption action is carried on the xerogel, and the hydrogen sulfide contained in the toilet odor and the hydrogen sulfide generated in the sewage treatment plant are obtained by the chemical adsorption action. It can be removed with an extremely high deodorizing ability and is chemisorbed, so that once adsorbed hydrogen sulfide is not released again. In addition, a deodorizing body that has good transportability and handleability and has a deodorizing performance equal to or higher than that of a conventional deodorizing body supported on a honeycomb body can be realized.
[0009]
According to a second aspect of the present invention, the adsorbent having a chemical adsorption action is an oxide, hydroxide, complex oxide, or a mixture containing at least one of manganese, cobalt, copper, and zinc. These are deodorized substances, which are chemically adsorbed and deodorized mainly with hydrogen sulfide as a sulfur oxide, but especially oxides and composite oxides of manganese, cobalt, copper, zinc, etc. are easy to make a sulfur oxide. Since the ability to remove hydrogen sulfide is very high, it is possible to realize a deodorizing body having a deodorizing performance equal to or higher than that of a conventional deodorizing body supported on a honeycomb body.
[0010]
The invention described in claim 3 is the deodorizer according to claim 1 including an adsorbent having a physical adsorption action, and an adsorbent having a physical adsorption action such as zeolite, sepiolite, silica, and alumina is added. Therefore, it is possible to realize a deodorizing body with enhanced deodorizing action against toilet odor ammonia and dimethyl disulfide.
[0011]
The invention according to claim 4 is the deodorizing body according to claim 1, wherein a part of the xerogel is composed of an oxide, hydroxide, complex oxide, or a mixture containing at least one of manganese, cobalt, and copper. Deodorizing material equivalent to or better than the conventional deodorizing material supported on honeycomb bodies by including oxides and composite oxides of manganese, cobalt, copper, zinc, which have high ability to remove hydrogen sulfide. A deodorizing body having performance can be realized.
[0012]
The invention according to claim 5 is the deodorizer according to any one of claims 1 to 4 which contains at least a water-absorbing or hygroscopic substance, and is an oxide of manganese, cobalt, copper, Complex oxides, etc. are those that make it easier to produce sulfur oxides as the amount of water vapor increases, and the deodorization performance of hydrogen sulfide improves.By adding a substance having water absorption or hygroscopicity, the water absorbed or absorbed becomes manganese, It is supplied to cobalt and copper oxides and composite oxides to improve hydrogen sulfide removal performance. Therefore, a deodorizing body having a deodorizing performance equal to or higher than that of a conventional deodorizing body supported on a honeycomb body can be realized.
[0013]
The invention according to claim 6 is the deodorant according to claim 3 in which the adsorbent having a physical adsorption action has water absorption or hygroscopicity, such as manganese, cobalt, copper oxide or composite oxide. The more water vapor, the easier it is to make sulfur oxides and the better the deodorization performance of hydrogen sulfide. The water absorbed or absorbed by the adsorbent with physical adsorption action is supplied to the oxides and composite oxides of manganese, cobalt and copper. As a result, the performance of removing hydrogen sulfide is improved. Therefore, a deodorizing body having a deodorizing performance equal to or higher than that of a conventional deodorizing body supported on a honeycomb body can be realized.
[0014]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0015]
Example 1
FIG. 1 is a schematic view of a deodorizing body in the first embodiment of the present invention. FIG. 1A is a schematic diagram of the deodorizing body of this example, and FIG. 1B is a schematic diagram in which a part of the deodorizing body 1 is enlarged. The deodorizing body 1 has a structure in which an adsorbent 2 having a chemical adsorption action (hereinafter referred to as a chemical adsorbent 2 in this embodiment) is supported on a structure 3. The chemical adsorbent 2 and the structure 3 are bonded by an action such as an anchor effect or a physical bond or a chemical bond, but a binder may be added.
[0016]
The structure 3 includes a skeleton 4 forming the structure (hereinafter referred to as the skeleton 4 in the present embodiment), and the inter-frame distance 5 between the skeletons 4 is equal to or less than the average diameter of the chemical adsorbent 2 and the average diameter of gas molecules. The above-mentioned thing exists and the one where there are many can use the surface of the chemical adsorbent 2 effectively, and deodorizing performance improves. And the space | gap of these frame | skeleton forms many holes, and the deodorizing body 1 has a porous structure.
[0017]
Deodorizing performance tends to improve when the skeleton thickness, pore size, and the average diameter of the chemical adsorbent 2 are small. However, if the pore size is too small, odorous gas molecules can reach the inside of the deodorizing body. It cannot penetrate and deodorization performance will fall. Moreover, it is desirable that the hole communicates with the outside of the structure. By having the hole penetrating the structure, the odor can be efficiently deodorized by passing through the hole.
[0018]
The material of the skeleton is not particularly limited, but a material that does not emit odor but rather adsorbs the odor is desirable, and at least a part of the skeleton is made of the chemical adsorbent 2, so that the deodorization performance can be further improved.
[0019]
Next, the chemical adsorbent 2 will be described. In this example, a complex oxide of manganese, copper, and cobalt (hereinafter referred to as complex oxide A in this example) was used for the chemical adsorbent 2. In this example, a complex oxide of manganese, copper, and cobalt was used. However, the present invention is not limited to this, and an oxide, hydroxide, or complex oxide containing any of manganese, copper, zinc, and cobalt. Or it can be set as the deodorizing body which has the strong chemical adsorption effect with respect to hydrogen sulfide similarly by setting it as the mixture.
[0020]
The composite oxide A used in this example is particularly excellent in removing hydrogen sulfide, and chemically adsorbs hydrogen sulfide finally in the form of sulfate or as a simple substance of sulfur. It also has a catalytic action to convert methyl mercaptan, which has the same sulfur odor, into dimethyl disulfide. The composite oxide A has a size of about 0.1 to 1 μm, and the deodorizer 1 has an average diameter of about 2 mm, but these are not related to these sizes, but are smaller. Since the surface area per volume can be increased, the deodorizing performance is improved.
[0021]
Furthermore, the shape of the chemical adsorbent 2 is not limited to a spherical shape, and the shape of the deodorizing body 1 is not limited to a spherical shape. By providing irregularities on the surface of the deodorizing body 1, the surface area per unit volume can be increased, which is more effective.
[0022]
Such a deodorizing body 1 is very light in weight, has very good transportability and handling, and realizes an initial deodorizing performance and life equal to or better than those in which a chemical adsorbent 2 is supported on a honeycomb body. be able to. Thereby, a high-performance deodorizing body can be applied to a large facility without producing a large honeycomb body that is difficult to form.
[0023]
(Example 2)
FIG. 2 is a schematic view of a deodorizing body in the second embodiment of the present invention. FIG. 2A is a schematic diagram of the deodorizing body of this example, and FIG. 2B is a schematic diagram in which a part of the deodorizing body 11 is enlarged. The deodorizer 1 in (Example 1) has a structure in which an adsorbent 6 having a physical adsorption action (hereinafter referred to as a physical adsorbent 6 in this embodiment) is added. The physical adsorbent 6 and the structure 3 are supported. The chemical adsorbent 2 and the physical adsorbent 6 are bonded to the structure 3 by an action such as an anchor effect, a physical bond, or a chemical bond.
[0024]
As a result, hydrogen sulfide contained in the toilet odor can be removed by the chemical adsorption action, and ammonia and dimethyl disulfide can be removed by the physical adsorption action, so that the toilet odor can be generally removed. In addition, by using an adsorbent with a chemical adsorption action that also has a catalytic action to convert methyl mercaptan to dimethyl disulfide, methyl mercaptan contained in toilet odor becomes dimethyl disulfide and is adsorbed on the adsorbent with physical adsorption action. As a result, the toilet odor can be removed in general.
[0025]
In the present embodiment, hydrophobic zeolite is used as the physical adsorbent 6, but the same effect can be obtained by using hydrophilic zeolite, sepiolite, silica, alumina or the like.
[0026]
The ratio between the chemical adsorbent 2 and the physical adsorbent 6 can be changed depending on the odor component. That is, when the amount of hydrogen sulfide is large, the chemical adsorbent 2 is increased. When the amount of ammonia or dimethyl disulfide is large, the physical sorbent 6 can be increased to efficiently deodorize the entire odor. In the case of a normal toilet odor, the adsorbent having a chemical adsorption action and the adsorbent having a physical adsorption action are preferably about 1: 1 by weight.
[0027]
In addition, the adsorbed gas can be released and the adsorbing action can be regenerated by circulating the air containing no odor to the adsorbent having a physical adsorbing action that has absorbed the gas such as ammonia and lost the adsorbing action. Further, the adsorption action of the adsorbent having a physical adsorption action that has lost the adsorption action can also be regenerated by increasing the temperature.
[0028]
Such a deodorizing body 1 is very light in weight, has very good transportability and handling properties, and has the same initial deodorizing performance and life as those of the chemical adsorbent 2 and physical adsorbent 6 supported on a honeycomb body. The above can be realized. Thereby, a high-performance deodorizing body can be applied to a large facility without producing a large honeycomb body that is difficult to form.
[0029]
(Example 3)
Hereinafter, a third embodiment of the present invention will be described with reference to the drawings.
[0030]
FIG. 3 is a schematic view of a deodorizing body in the third embodiment of the present invention. FIG. 3A is a schematic diagram of the deodorizing body of this example, and FIG. 3B is a schematic diagram in which a part of the deodorizing body 21 is enlarged. The deodorizing body 21 has a structure in which an adsorbent 22 having a chemical adsorption action (hereinafter referred to as a chemical adsorbent 22 in this embodiment) is supported on a structure 23. The chemical adsorbent 22 and the structure 23 are bonded by an action such as an anchor effect or a physical bond or a chemical bond, but a binder may be added.
[0031]
The chemical adsorbent 22 is the same as the chemical adsorbent 2 in Example 1, and the composite oxide A was used in this example.
[0032]
Structure 23 is comprised of a key Serogeru. · The Serogeru mainly metal oxides and carbon, organic material such as urethane form primary particles 24 of about 0.1 to 20, it forms a plurality of communication holes for connection distance between particles 25 in beaded. For this reason, the structure 23 has a porous structure, and it is desirable that the interparticle distance 25 has a large number of particles having an average diameter not more than the average diameter of the chemical adsorbent 22 and not less than the average diameter of the gas molecules. About 1 μm is desirable. A larger space ratio is desirable because the amount of odorous gas that can be processed in one pass can be increased. However, if the space ratio is too large, the amount of the chemical adsorbent 22 that can be supported decreases, and therefore a space of about 70% to 95%. Rate is desirable. Further, in this example, the deodorizing body 21 having an average diameter of about 2 mm was used. However, although it is not related to these sizes, the smaller one can take a larger surface area. Will improve.
[0033]
Although not key material of Serogeru is particularly limited, in which a part of the key Serogeru is formed from a chemical adsorbent 22 is more deodorizing effect is high. In addition, if silica is selected as the material, it is very desirable because raw materials are inexpensive and abundant in variety, and the manufacturing process is simple.
[0034]
Next, a method for producing the deodorizing body 21 will be briefly described. Water gel and metal alkoxides such as silicon, aluminum, zirconium, and titanium are used as gel raw materials, and water or alcohol is mixed with an acid or alkali catalyst as necessary to react with the gel raw materials in the solvent and wet. It is produced by forming a gel and evaporating and drying the solvent inside. By mixing the composite oxide A during the formation of the wet gel, a wet gel carrying the composite oxide A can be formed. In the case of a metal alkoxide, it becomes a wet gel through hydrolysis and condensation polymerization. When water glass is used as the gel raw material, a catalyst such as hydrochloric acid is directly added to the water glass to cause gelation, thereby forming a wet gel. At this time, the sodium content contained in the water glass is removed by electrodialysis treatment or the like before the catalyst is added, or the salt that has been gelled is removed by washing with water. In this example, tetramethoxysilane (hereinafter referred to as TMOS) was used as the gel material. This is because it is a silicon alkoxide, which is easily obtained and has a high reaction rate, which is very preferable. Further, when the composite oxide A is used for the chemical adsorbent 22, an alkali catalyst such as ammonia is desirable for the catalyst. This is because the acid catalyst may affect the composite oxide A.
[0035]
A wet gel is a structure in which silica particles having a three-dimensional network structure in which silicon atoms and oxygen atoms are alternately bonded, the silica particles are polymerized into a bead shape, and a solvent such as water enters a gap between the particles, that is, pores. It has become. Further, the composite oxide A has a structure that enters a part or part of the holes of the three-dimensional network structure. Thus, the silica as a material of Kiseroge le in the present embodiment.
[0036]
After this, the wet gel that has been normally dried with hot air shrinks due to the surface tension when the solvent dries and crushes the pores, resulting in a decrease in the space ratio and deodorizing performance. . However, silanol groups on the wet gel surface are hydrophobized by introducing methyl groups with hexamethyldisilazane, dimethyldimethoxysilane, etc., and the solvent is a solvent with relatively low surface tension such as toluene, xylene, acetone, hexane, etc. In the case of the hot air drying, the surface tension hardly acts, and as shown in FIG. 3, the silica primary particles 24 having a diameter of about 0.1 to 20 nm are aggregated, and the interparticle distance of about 1 nm to 1 μm. It becomes an aggregate with 25. The size of the primary particle size and interparticle distance is determined by the type and amount of wet gel raw material used, the type and amount of solvent and catalyst, and the amount of water, and the structure of the wet gel becomes the structure of the deodorizing body 21 as it is. . And the aggregate | assembly of a primary particle will form a secondary particle about 1 micrometer-10 mm. In this embodiment, the secondary particles have a size of about 2 mm and are used as the deodorizing body 21, and the structure 23 at this time is called a xerogel.
[0037]
Further, as shown in (Example 2), by carrying an adsorbent having a physical adsorption action (hereinafter referred to as a physical adsorbent in this example), the same effect as in (Example 2) is obtained. It is done.
[0038]
The weight of such a deodorizing body 21 is very light and very good in transportability and handling, and the initial deodorizing performance and life are equal to or greater than those in which a chemical adsorbent 22 and a physical adsorbent are supported on a honeycomb body. Can be realized. Thereby, a high-performance deodorizing body can be applied to a large facility without producing a large honeycomb body that is difficult to form.
[0039]
Examples of experiments are shown below.
[0040]
<Experimental example 1>
A mixed oxide A9 g having an average diameter of about 300 μm was mixed with 45.6 g of TMOS and 41.4 g of methanol, and a stirred solution (hereinafter referred to as “solution A”) was prepared. Next, 0.1 g of about 29 wt% ammonia water was added to 21.6 g of water, and a stirred solution (hereinafter referred to as solution X) was prepared. The solution X was added to the solution A with stirring to prepare a wet gel in about 20 minutes, and left in a constant temperature bath at 40 ° C. for 24 hours. Then, after crushing so that the diameter of a wet gel might be set to about 2 mm, 84.7 g of dimethyldimethoxysilane was added, and it left still in a 40 degreeC thermostat for 72 hours, and the hydrophobization process was performed. Thereafter, the water in the wet gel was dehydrated by immersing the wet gel in acetone, and the solvent in the wet gel was replaced with acetone. Then, it dried for 6 hours in a 130 degreeC thermostat, and produced the deodorizing body (henceforth a nano deodorizing body 1 in a present Example).
[0041]
9 g of hydrophobic zeolite having an average diameter of about 300 μm was further added at the time of preparation of the wet gel under the same conditions as in the nano-deodorizing body 1 to prepare a deodorizing body subjected to the same treatment (hereinafter referred to as nano-deodorizing body 2 in this example). ).
[0042]
Under the same conditions as in the nano-deodorizing body 1, 9 g of a highly hygroscopic silica gel having an average diameter of about 300 μm was further added during the preparation of the wet gel to prepare a deodorizing body subjected to the same treatment (hereinafter, the nano-deodorizing body 3 in this example). Called).
[0043]
A packed layer was prepared by filling each of these in a 50 cc container at a filling rate of about 40% (hereinafter referred to as nanocolumn 1, nanocolumn 2, and nanocolumn 3 in this example). The nanocolumn 1 carries the composite oxide A at 0.05 g / cc, the nanocolumn 2 contains 0.1 g / cc of the composite oxide A and hydrophobic zeolite, and the nanocolumn 3 contains the composite oxide A and high moisture absorption. Silica gel is supported at 0.1 g / cc. As a comparative example of the present invention, a packed bed was prepared by filling activated carbon impregnated with iodine having a particle size of about 2 mm into a 50 cc container at a packing rate of about 40% (hereinafter referred to as activated carbon column in this example).
[0044]
Further, as another comparative example of the present invention, a 50 cc honeycomb body made of ceramic fibers having 205 cells per square inch as a raw material is mixed with a composite oxide A and a hydrophobic zeolite in a weight ratio of 1: 1. A 20 wt% colloidal silica (solvent is water) was used as a binder to carry a weight of 0.10 g per 1 cc honeycomb body (hereinafter referred to as a honeycomb column in this example).
[0045]
Using these five types of columns, aeration tests of hydrogen sulfide, methyl mercaptan, ammonia, and dimethyl disulfide were conducted. At this time, the space velocity was set to 7200 h −1, and these gases were once passed through water at the inlet of the column and allowed to flow into the column in a high humidity state. Each gas was introduced at a concentration of 50 ppm, and the concentration of each gas at the column outlet at this time was measured, and the removal rate was calculated. The removal rate immediately after the start of distribution was defined as initial performance, and the time when the removal rate was 80% was defined as breakthrough time. The results are shown in (Table 1).
[0046]
[Table 1]
Figure 0003945369
[0047]
From (Table 1), it is possible to realize a deodorizing body having an initial performance and lifetime equal to or better than those of the honeycomb column. In addition, this makes it possible to apply a high-performance deodorizing body to a large facility without producing a large honeycomb body that is difficult to form.
[0048]
【The invention's effect】
As described above, according to the present invention, it is possible to realize a deodorizing body having an extremely high removal capacity especially for hydrogen sulfide, and the deodorizing body is like a sewage treatment facility because of its good handling property, mass productivity, and transportability. It can be easily installed in large facilities that generate hydrogen sulfide.
[Brief description of the drawings]
1A is a schematic view of a deodorizing body in a first embodiment of the present invention. FIG. 1B is a schematic view of a part of the deodorizing body in an enlarged manner. FIG. 2A is a second embodiment of the present invention. (B) Schematic diagram in which a part of the deodorizing body is enlarged. (A) Schematic diagram of the deodorizing body in the third embodiment of the present invention (b) Part of the deodorizing body. [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Deodorizing body 2 Adsorbent which has chemical adsorption action 3 Structure 4 Skeleton which forms structure 5 Distance between skeletons 6 Adsorbent which has physical adsorption action 21 Deodorant 22 Adsorbent which has chemical adsorption action 23 Structure 24 Primary particle 25 Interparticle distance

Claims (6)

化学吸着作用を有する吸着剤と、少なくとも前記化学吸着作用を有する吸着剤の平均径以下かつ気体分子の平均径以上の孔を有する疎水性もしくは撥水性のキセロゲルとを備え、前記化学吸着作用を有する吸着剤が前記キセロゲルに担持された脱臭体。  An adsorbent having a chemical adsorption action, and a hydrophobic or water repellent xerogel having pores at least equal to or smaller than the average diameter of the adsorbent having the chemical adsorption action and greater than the average diameter of gas molecules, and having the chemical adsorption action A deodorant in which an adsorbent is supported on the xerogel. 化学吸着作用を有する吸着剤は少なくともマンガン、コバルト、銅のいずれかを含む酸化物、水酸化物、複合酸化物、あるいはその混合物である請求項1記載の脱臭体。  The deodorant according to claim 1, wherein the adsorbent having a chemical adsorption action is an oxide, hydroxide, composite oxide, or a mixture thereof containing at least one of manganese, cobalt, and copper. 物理吸着作用を有する吸着剤を含む請求項1記載の脱臭体。  The deodorizing body according to claim 1, comprising an adsorbent having a physical adsorption action. キセロゲルの一部は少なくともマンガン、コバルト、銅のいずれかを含む酸化物、水酸化物、複合酸化物、あるいはその混合物からなる請求項1に記載の脱臭体。  2. The deodorizing body according to claim 1, wherein a part of the xerogel is made of an oxide, hydroxide, composite oxide, or mixture containing at least one of manganese, cobalt, and copper. 少なくとも吸水性もしくは吸湿性を有する物質を含む請求項1から4のいずれか1項に記載の脱臭体。  The deodorizing body of any one of Claim 1 to 4 containing the substance which has a water absorptivity or a hygroscopic property at least. 物理吸着作用を有する吸着剤が吸水性もしくは吸湿性を有する請求項3記載の脱臭体。  The deodorizing body according to claim 3, wherein the adsorbent having a physical adsorption action has water absorption or hygroscopicity.
JP2002308224A 2002-10-23 2002-10-23 Deodorant Expired - Fee Related JP3945369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002308224A JP3945369B2 (en) 2002-10-23 2002-10-23 Deodorant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002308224A JP3945369B2 (en) 2002-10-23 2002-10-23 Deodorant

Publications (2)

Publication Number Publication Date
JP2004141311A JP2004141311A (en) 2004-05-20
JP3945369B2 true JP3945369B2 (en) 2007-07-18

Family

ID=32454424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002308224A Expired - Fee Related JP3945369B2 (en) 2002-10-23 2002-10-23 Deodorant

Country Status (1)

Country Link
JP (1) JP3945369B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426369B2 (en) * 2006-07-06 2014-02-26 ザ プロクター アンド ギャンブル カンパニー Deodorant composition containing metal deodorant
KR101908998B1 (en) 2016-05-26 2018-10-17 한소 주식회사 Iron-zinc complex metal oxide coated activated carbon adsorbent for acidic gas removal and manufacturing method the same
JP7288420B2 (en) * 2020-06-10 2023-06-07 石塚硝子株式会社 Sulfur-based odor deodorant

Also Published As

Publication number Publication date
JP2004141311A (en) 2004-05-20

Similar Documents

Publication Publication Date Title
EP1341719B1 (en) Activated carbon for odor control and method for making same
JPH0620548B2 (en) Composite adsorbent
US7101417B2 (en) Activated carbon for odor control and method for making same
CN106902574B (en) A kind of air purifying filter core and its preparation method and application based on glass fibre and alumina fibre skeleton
JP2007167495A (en) Aldehyde-containing air purifying agent and its manufacturing method
JP6761999B2 (en) A water vapor adsorbent in which a hygroscopic salt is supported on an amorphous aluminum silicate granule.
JP2014176821A (en) Adsorbent
WO2005115611A1 (en) Adsorbent and process for producing the same
JP2006015334A (en) Adsorbent and manufacturing method therefor
JP3945369B2 (en) Deodorant
JP2008043829A (en) Humidity-adjusting ceramic material containing photocatalyst coated with silicon oxide film
JP4113943B2 (en) Tubular structure made of amorphous aluminum silicate, method for producing the same, and adsorbent using the same
JP4507296B2 (en) Deodorizing material
JPH08259344A (en) Porous adsorbing material
JP3540040B2 (en) Adsorbent manufacturing method
JP3375927B2 (en) Humidity control deodorant material using siliceous shale
Yu et al. Adsorption of acetone, ethyl acetate and toluene by beta zeolite/diatomite composites: preparation, characterization and adsorbability
JP3528293B2 (en) Deodorant
JPH03151041A (en) Molded adsorbent
JP2005034254A (en) Deodorizing body and deodorizing apparatus using the same
JP2005169298A (en) Catalytic body and cleaning apparatus using the same
JP3436470B2 (en) Deodorant
JPH11285633A (en) Adsorption remover for lower aliphatic aldehydes
JP4631022B2 (en) Novel aluminum silicate and its synthesis method
JP4538626B2 (en) Method for producing tubular aluminum silicate having fine pores

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050422

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees