JPH08259344A - Porous adsorbing material - Google Patents

Porous adsorbing material

Info

Publication number
JPH08259344A
JPH08259344A JP7070127A JP7012795A JPH08259344A JP H08259344 A JPH08259344 A JP H08259344A JP 7070127 A JP7070127 A JP 7070127A JP 7012795 A JP7012795 A JP 7012795A JP H08259344 A JPH08259344 A JP H08259344A
Authority
JP
Japan
Prior art keywords
oxide
inorganic
adsorbent
silica
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7070127A
Other languages
Japanese (ja)
Inventor
Koichi Takahama
孝一 高濱
Toshiji Sako
利治 佐古
Naoharu Nakagawa
尚治 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP7070127A priority Critical patent/JPH08259344A/en
Publication of JPH08259344A publication Critical patent/JPH08259344A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To obtain a porous adsorbing material capable of adsorbing both a sulfur (S)-based and a nitrogen (N)-based smell components in high performance. CONSTITUTION: This adsorbing material comprises an inorganic porous material obtained by arranging an inorganic pillar material between layers of a swelling laminar compound and an adsorbent. The inorganic pillar material is preferably at least one selected from the group consisting of alumina, silica-alumina compound oxide, silica-titania compound oxide, silica-zirconia, iron oxide, nickel oxide, cobalt oxide, manganese oxide, vanadium oxide and copper oxide. The inorganic pillar material is preferably a photocatalyst. The photocatalyst is preferably one selected from the group consisting of titania, strontium titanate, zirconia, zinc oxide and tin oxide. The adsorbent is preferably at least one selected from the group consisting of activated carbon, activated carbon fiber, charcoal, silica gel, active alumina, zeolite, zirconium phosphate and zinc oxide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高性能な多孔性吸着体に
関する。
FIELD OF THE INVENTION The present invention relates to a high performance porous adsorbent.

【0002】[0002]

【従来の技術】従来、生活回りの各種悪臭に対しては、
活性炭を利用するものが一般的であった。この活性炭
は、やし殻、石炭、砂糖、木材、リグナイト、ピート、
フェノール樹脂等の、炭素を大量に含む材料を出発物質
として、数百度の熱処理で炭化させたもので、取り扱い
易くするために粉末状、粒状、ハニカム状の形態に成形
し、さらに水蒸気、二酸化炭素、酸素によるガス賦活処
理、あるいは、塩化亜鉛、リン酸、塩化カルシウム、硫
化カリウム、その他脱水、酸化、浸食性薬品による薬品
賦活処理を施すことで、微細孔を発達させたものであ
る。
2. Description of the Related Art Conventionally, for various offensive odors in daily life,
It was common to use activated carbon. This activated carbon is made from palm shell, coal, sugar, wood, lignite, peat,
A material containing a large amount of carbon, such as phenol resin, is carbonized by heat treatment at several hundred degrees, and is formed into powder, granules, or honeycomb for easy handling, and steam, carbon dioxide The micropores are developed by performing a gas activation treatment with oxygen, or a chemical activation treatment with zinc chloride, phosphoric acid, calcium chloride, potassium sulfide, other dehydration, oxidation, or an erosive chemical.

【0003】前記の方法で得られた活性炭は、微細孔へ
の分子の物理吸着を主に利用するため、アンモニア等の
低沸点分子を吸着させるのが困難であった。そこで、活
性炭成形物にクエン酸等の酸を添着させる等の化学処理
で、吸着しにくい特定物質の吸着性能を向上させる方法
が採られていた。しかし、このような処理を施すと、活
性炭が本来有している物理吸着性能を損なうという欠点
があった。このように、従来の活性炭成形物では、多種
多様な分子が複合されている悪臭に対して、十分な脱臭
性能を発揮できず、イオウ(S)系の臭気成分の吸着性
能に優れているが、窒素(N)系の臭気成分の吸着性能
については、満足できるレベルには至っていなかった。
そこで、イオウ(S)系の臭気成分及び窒素(N)系の
臭気成分のいずれの臭気成分に対しても吸着性能に優れ
た高性能な吸着剤が求められていた。
The activated carbon obtained by the above method mainly utilizes physical adsorption of molecules into fine pores, and thus it is difficult to adsorb low boiling point molecules such as ammonia. Therefore, a method of improving the adsorption performance of a specific substance that is difficult to be adsorbed by a chemical treatment such as impregnating an activated carbon molded product with an acid such as citric acid has been adopted. However, such treatment has a drawback in that the physical adsorption performance originally possessed by activated carbon is impaired. As described above, the conventional activated carbon molded product cannot exhibit sufficient deodorizing performance against a malodor composed of various kinds of molecules and is excellent in the adsorption performance of the sulfur (S) odor component. However, the adsorption performance of nitrogen (N) odorous components has not reached a satisfactory level.
Therefore, there has been a demand for a high-performance adsorbent having excellent adsorption performance for both the sulfur (S) odor component and the nitrogen (N) odor component.

【0004】[0004]

【発明が解決しようとする課題】本発明は前述の事実に
鑑みてなされたもので、その目的とするところは、イオ
ウ(S)系の臭気成分及び窒素(N)系の臭気成分とも
に高性能に吸着できる多孔性吸着体を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned facts, and an object of the present invention is to achieve high performance in both sulfur (S) odor components and nitrogen (N) odor components. The object is to provide a porous adsorbent capable of adsorbing to.

【0005】[0005]

【課題を解決するための手段】本発明の請求項1に係る
多孔性吸着体は、膨潤性層状化合物の層間に無機ピラー
材が配置されてなる無機多孔体と吸着剤とを含むことを
特徴とする。
A porous adsorbent according to claim 1 of the present invention comprises an adsorbent and an inorganic porous material in which an inorganic pillar material is arranged between layers of a swellable layered compound. And

【0006】本発明の請求項2に係る多孔性吸着体は、
前記無機ピラー材が、アルミナ、シリカ−アルミナ複合
酸化物、シリカ−チタニア複合酸化物、シリカ−ジルコ
ニア、酸化鉄、酸化ニッケル、酸化コバルト、酸化マン
ガン、酸化バナジウム及び酸化銅からなる群から選択さ
れる少なくとも1種であることを特徴とする。
The porous adsorbent according to claim 2 of the present invention is
The inorganic pillar material is selected from the group consisting of alumina, silica-alumina composite oxide, silica-titania composite oxide, silica-zirconia, iron oxide, nickel oxide, cobalt oxide, manganese oxide, vanadium oxide and copper oxide. It is characterized by being at least one kind.

【0007】本発明の請求項3に係る多孔性吸着体は、
前記無機ピラー材が、光触媒であることを特徴とする。
The porous adsorbent according to claim 3 of the present invention is
The inorganic pillar material is a photocatalyst.

【0008】本発明の請求項4に係る多孔性吸着体は、
前記光触媒が、チタニア、チタン酸ストロンチウム、ジ
ルコニア、酸化亜鉛及び酸化スズからなる群から選択さ
れる少なくとも1種であることを特徴とする。
The porous adsorbent according to claim 4 of the present invention is
The photocatalyst is at least one selected from the group consisting of titania, strontium titanate, zirconia, zinc oxide and tin oxide.

【0009】本発明の請求項5に係る多孔性吸着体は、
前記吸着剤が活性炭、活性炭素繊維、木炭、シリカゲ
ル、活性アルミナ、ゼオライト、リン酸ジルコニウム及
び酸化亜鉛からなる群から選択される少なくとも1種で
あることを特徴とする。
The porous adsorbent according to claim 5 of the present invention comprises:
It is characterized in that the adsorbent is at least one selected from the group consisting of activated carbon, activated carbon fiber, charcoal, silica gel, activated alumina, zeolite, zirconium phosphate and zinc oxide.

【0010】以下、本発明を詳細に説明する。本発明に
係る多孔性吸着体は、膨潤性層状化合物の層間に無機ピ
ラー材が配置されてなる無機多孔体と吸着剤とを含んで
いる。前記無機多孔体は、膨潤性層状化合物の層間に無
機ピラー材が担持されている。
Hereinafter, the present invention will be described in detail. The porous adsorbent according to the present invention contains an inorganic porous material having an inorganic pillar material arranged between layers of a swellable layered compound and an adsorbent. In the inorganic porous material, an inorganic pillar material is supported between layers of a swellable layered compound.

【0011】前記膨潤性層状化合物は、特定の無機化合
物に限定されないが、例えば、Na−モンモリロナイ
ト、Ca−モンモリロナイト、合成スメクタイト、Na
−テニオライト、Li−テニオライト、Na−ヘクトラ
イト、Li−ヘクトライト、酸性白土、合成雲母等のフ
ィロケイ酸鉱物等が挙げられ、それぞれ、単独、または
2種以上の混合物でもよい。なお、膨潤に際して、Ca
−モンモリロナイト、酸性白土等の難膨潤性のものは、
混練等により強い剪断力を与えるとよい。
The swellable layered compound is not limited to a specific inorganic compound, and examples thereof include Na-montmorillonite, Ca-montmorillonite, synthetic smectite, and Na.
-Teniolite, Li-teniolite, Na-hectorite, Li-hectorite, phyllosilicate minerals such as acid clay, synthetic mica, etc. may be mentioned, and each may be a single type or a mixture of two or more types. When swelling, Ca
-For swelling materials such as montmorillonite and acid clay,
A strong shearing force may be applied by kneading or the like.

【0012】前記無機ピラー材は、例えば、アルミナ、
シリカ−アルミナ複合酸化物、シリカ−チタニア複合酸
化物、シリカ−ジルコニア、酸化鉄、酸化ニッケル、酸
化コバルト、酸化マンガン、酸化バナジウム及び酸化銅
からなる群から選択される少なくとも1種であるのが好
ましく、光触媒であることが、さらに好ましい。この光
触媒は、例えば、チタニア、チタン酸ストロンチウム、
ジルコニア、酸化亜鉛及び酸化スズからなる群から選択
される少なくとも1種が挙げられる。
The inorganic pillar material is, for example, alumina,
It is preferably at least one selected from the group consisting of silica-alumina composite oxide, silica-titania composite oxide, silica-zirconia, iron oxide, nickel oxide, cobalt oxide, manganese oxide, vanadium oxide and copper oxide. More preferably, it is a photocatalyst. This photocatalyst is, for example, titania, strontium titanate,
At least one selected from the group consisting of zirconia, zinc oxide and tin oxide can be mentioned.

【0013】本発明に係る多孔性吸着体は、膨潤性層状
化合物の層間に無機ピラーが挿入されている多孔体であ
って、高比表面積であるため、吸着性能に優れている。
また、固体酸性を有しているため、特にN系臭気成分の
吸着性能に優れている。そのうえ、無機ピラーを光触媒
で構成すると、光を照射することで、光触媒性能を発揮
し、臭気成分の除去性能が向上する。さらに、すでに吸
着していた成分を分解することもできるため、吸着剤の
再生が可能になる。
The porous adsorbent according to the present invention is a porous body in which the inorganic pillars are inserted between the layers of the swellable layered compound, and has a high specific surface area, and therefore has excellent adsorption performance.
Further, since it has a solid acidity, it is particularly excellent in the adsorption performance of N-type odor components. Moreover, when the inorganic pillar is composed of a photocatalyst, the photocatalytic performance is exhibited by irradiating light, and the performance of removing odorous components is improved. Furthermore, since the components that have already been adsorbed can be decomposed, the adsorbent can be regenerated.

【0014】本発明に用いる前記吸着剤として、例え
ば、活性炭、活性炭素繊維、木炭、シリカゲル、活性ア
ルミナ、ゼオライト、リン酸ジルコニウム及び酸化亜鉛
からなる群から選択される少なくとも1種が挙げられ
る。これの吸着剤は、特にS系臭気成分の吸着性能に優
れている。すなわち、本発明に係る多孔性吸着体は、膨
潤性層状化合物の層間に無機ピラー材が配置されてなる
無機多孔体が主に、N系臭気成分を吸着して除去し、吸
着剤が主に、S系臭気成分を吸着して除去するので、N
系臭気成分及びS系臭気成分のいずれも高性能に吸着し
て除去することができる。
Examples of the adsorbent used in the present invention include at least one selected from the group consisting of activated carbon, activated carbon fiber, charcoal, silica gel, activated alumina, zeolite, zirconium phosphate and zinc oxide. This adsorbent is particularly excellent in the adsorption performance of S-based odor components. That is, in the porous adsorbent according to the present invention, the inorganic porous body in which the inorganic pillar material is arranged between the layers of the swellable layered compound is mainly used to adsorb and remove the N-based odor component, and the adsorbent is mainly used. , S-type odor components are adsorbed and removed, so N
Both the system odor component and the S system odor component can be adsorbed and removed with high performance.

【0015】本発明に係る多孔性吸着体は次のようにし
て得られる。まず、膨潤性層状化合物を溶媒と混合し、
さらに必要に応じて混練し、層間に溶媒を十分含ませて
膨潤状態に保持する。この膨潤状態の膨潤性層状化合物
の層間の間隔は、例えば、水等の溶媒に0.8重量%で
分散したNa−モンモリロナイトの場合で150Å以上
である。
The porous adsorbent according to the present invention is obtained as follows. First, a swellable layered compound is mixed with a solvent,
Further, if necessary, kneading is performed, and a solvent is sufficiently included between the layers to maintain a swollen state. The distance between the layers of the swellable layered compound in the swollen state is, for example, 150 Å or more in the case of Na-montmorillonite dispersed in a solvent such as water at 0.8% by weight.

【0016】前記膨潤に用いる溶媒としては、例えば、
水、エタノール、メタノール、ジメチルホルムアミド
(DMF)、ジメチルスルホキシド(DMSO)、アセ
トン等の極性溶媒が単独又は併用して用いられる。なか
でも、水が汎用される。
The solvent used for the swelling is, for example,
Polar solvents such as water, ethanol, methanol, dimethylformamide (DMF), dimethylsulfoxide (DMSO), and acetone are used alone or in combination. Among them, water is commonly used.

【0017】次に、無機ピラー材の調整方法について説
明する。無機ピラー材、例えば、チタニア及びこのチタ
ニアと酸化物の複合酸化物は次のようにして準備する。
チタンのアルコキシド、硝酸塩、塩化物等を出発原料と
し、この原料を加水分解し、重合反応した後に、解膠反
応し、ポリカチオン状態のチタニアゾルを得る。これら
反応の際に、必要に応じて、塩酸、硝酸、アンモニア、
ピペリジン、水酸化ナトリウム等の触媒を用いる。ま
た、チタニアと複合する前記酸化物は、この金属酸化物
を含む金属アルコキシド、硝酸塩、塩化物等を加水分解
し、重合反応して、酸化物を含有したゾルを得る。
Next, a method for adjusting the inorganic pillar material will be described. An inorganic pillar material such as titania and a composite oxide of the titania and an oxide is prepared as follows.
A titanium alkoxide, nitrate, chloride or the like is used as a starting material, and this material is hydrolyzed, polymerized, and then peptized to obtain a titania sol in a polycation state. During these reactions, if necessary, hydrochloric acid, nitric acid, ammonia,
A catalyst such as piperidine or sodium hydroxide is used. Further, the oxide complexed with titania hydrolyzes a metal alkoxide, a nitrate, a chloride and the like containing the metal oxide, and polymerizes to obtain a sol containing the oxide.

【0018】次に、前記酸化物ゾルの溶液を、前記膨潤
性層状化合物を分散させた溶媒に添加し、層間に酸化物
を挿入し担持する、いわゆる、インターカレーション反
応を行う。反応温度、反応時間は限定しないが、一例と
して、60℃、1.5時間という条件が挙げられる。こ
のようにして、前記チタニア酸化物が、膨潤した膨潤性
層状化合物の層間に挿入されて無機ピラー材となり、無
機多孔体が得られる。
Next, the solution of the oxide sol is added to the solvent in which the swellable layered compound is dispersed, and the so-called intercalation reaction is carried out in which the oxide is inserted and supported between the layers. Although the reaction temperature and the reaction time are not limited, conditions such as 60 ° C. and 1.5 hours are mentioned as an example. In this way, the titania oxide is inserted between layers of the swollen swellable layered compound to form an inorganic pillar material, and an inorganic porous body is obtained.

【0019】さらに、この無機多孔体に例えば、活性炭
等の吸着剤を添加して、多孔性吸着体が得られる。この
とき、無機多孔体と活性炭等の吸着剤とを混合せずに、
独立に分離した状態で一体になっていてもよいが、無機
多孔体と活性炭等の吸着剤とを混合して均一に分散され
た多孔性吸着体のほうが好ましい。
Further, for example, an adsorbent such as activated carbon is added to this inorganic porous material to obtain a porous adsorbent. At this time, without mixing the inorganic porous material and the adsorbent such as activated carbon,
Although it may be integrated independently in a separated state, a porous adsorbent in which an inorganic porous material and an adsorbent such as activated carbon are mixed and uniformly dispersed is preferable.

【0020】本発明の無機多孔体の作製における、膨潤
性層状化合物、チタニアを用いる割合は、特に限定され
ないが、一例を示すと、膨潤性層状化合物100重量部
(以下部と記す)に対して、チタニアは10〜150部
の範囲が適量である。さらに、例えば、無機多孔体1部
に対して、吸着剤1〜10部を添加して混合する。
The proportion of the swellable layered compound and titania used in the preparation of the inorganic porous material of the present invention is not particularly limited, but, for example, with respect to 100 parts by weight of the swellable layered compound (hereinafter referred to as "part"). The proper amount of titania is 10 to 150 parts. Further, for example, 1 to 10 parts of the adsorbent is added to and mixed with 1 part of the inorganic porous body.

【0021】前記酸化物を挿入する反応を行った後に、
この反応の終了した液を遠心分離で洗浄を繰り返してゲ
ル状化した後に、ヘラ等で板状に配向成形する。この配
向成形した後に、乾燥を行う。前記液の状態から配向成
形を行わずに乾燥を行ってもよい。
After carrying out the reaction of inserting the oxide,
The liquid after the reaction is repeatedly washed by centrifugation to form a gel, and then oriented and shaped into a plate with a spatula or the like. After this orientation molding, drying is performed. Drying may be performed from the liquid state without performing orientation molding.

【0022】このようにして得られる無機多孔体は、膨
潤性層状化合物の層間に、無機ピラー材としてチタニア
が担持され、吸着性能に優れている。
The inorganic porous material thus obtained has excellent adsorption performance because titania is supported as an inorganic pillar material between the layers of the swellable layered compound.

【0023】[0023]

【作用】本発明の請求項1に係る多孔性吸着体は、膨潤
性層状化合物の層間に無機ピラー材が配置されてなる無
機多孔体と吸着剤とを含むので、膨潤性層状化合物の層
間に無機ピラー材が配置されてなる無機多孔体が主に、
N系臭気成分を吸着して除去し、吸着剤が主に、S系臭
気成分を吸着して除去するため、N系臭気成分及びS系
臭気成分のいずれも高性能に吸着して除去することがで
きる。本発明の請求項2に係る多孔性吸着体は、前記無
機ピラー材が、アルミナ、シリカ−アルミナ酸化物、シ
リカ−チタニア酸化物、シリカ−ジルコニア、酸化鉄、
酸化ニッケル、酸化コバルト、酸化マンガン、酸化バナ
ジウム及び酸化銅からなる群から選択される少なくとも
1種であるので、固体酸性を有しているため、特にN系
臭気成分の吸着性能に優れる。
The porous adsorbent according to claim 1 of the present invention contains an inorganic porous material in which an inorganic pillar material is arranged between layers of a swellable layered compound and an adsorbent, so that the porous adsorbent is provided between layers of a swellable layered compound. Mainly inorganic porous material in which the inorganic pillar material is arranged,
Adsorbs and removes N-type odor components, and the adsorbent mainly absorbs and removes S-type odor components. Therefore, both N-type odor components and S-type odor components are adsorbed and removed with high performance. You can In the porous adsorbent according to claim 2 of the present invention, the inorganic pillar material is alumina, silica-alumina oxide, silica-titania oxide, silica-zirconia, iron oxide,
Since it is at least one selected from the group consisting of nickel oxide, cobalt oxide, manganese oxide, vanadium oxide, and copper oxide, it has solid acidity, and therefore is particularly excellent in the adsorption performance of N-based odorous components.

【0024】本発明の請求項3及び請求項4に係る多孔
性吸着体は、前記無機ピラー材が、光触媒であるので、
光を照射することで、光触媒性能を発揮し、臭気成分の
除去性能が向上する。さらに、すでに吸着していた成分
を分解することもできるため、吸着剤の再生が可能にな
る。
In the porous adsorbent according to claim 3 and claim 4 of the present invention, since the inorganic pillar material is a photocatalyst,
By irradiating with light, the photocatalytic performance is exhibited and the performance of removing odorous components is improved. Furthermore, since the components that have already been adsorbed can be decomposed, the adsorbent can be regenerated.

【0025】本発明の請求項5に係る多孔性吸着体は、
前記吸着剤が活性炭、活性炭素繊維、木炭、シリカゲ
ル、活性アルミナ、ゼオライト、リン酸ジルコニウム及
び酸化亜鉛からなる群から選択される少なくとも1種で
あるので、特にS系臭気成分の吸着性能に優れている。
The porous adsorbent according to claim 5 of the present invention is
Since the adsorbent is at least one selected from the group consisting of activated carbon, activated carbon fiber, charcoal, silica gel, activated alumina, zeolite, zirconium phosphate and zinc oxide, it is particularly excellent in adsorption performance of S-based odor components. There is.

【0026】[0026]

【実施例】以下本発明を実施例によって具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0027】(実施例1)アルミナは次のように作製し
た。塩化アルミニウムを2N水酸化ナトリウム水溶液に
加え、加水分解、重合反応を行うことにより、透明なア
ルミナゾルを得た。
Example 1 Alumina was produced as follows. Aluminum chloride was added to a 2N aqueous sodium hydroxide solution, and hydrolysis and polymerization were performed to obtain a transparent alumina sol.

【0028】膨潤性層状化合物として、Na−モンモリ
ロナイト(クニミネ工業株式会社製:商品名クニピア
F)を用いた。上記Na−モンモリロナイトを水に分散
し、0.8wt%の水溶液を作製した。このNa−モン
モリロナイトが分散した水溶液に、上記アルミナゾルを
添加し、アルミナの挿入反応(インターカレーション反
応)を行い、Na−モンモリロナイトの層間にアルミナ
を担持した。この条件は、反応温度は60℃、反応時間
は1.5時間であった。
As the swellable layered compound, Na-montmorillonite (Kunimine Industries Co., Ltd .: trade name Kunipia F) was used. The Na-montmorillonite was dispersed in water to prepare a 0.8 wt% aqueous solution. The alumina sol was added to the aqueous solution in which the Na-montmorillonite was dispersed, and an insertion reaction (intercalation reaction) of alumina was performed to support the alumina between the Na-montmorillonite layers. Under these conditions, the reaction temperature was 60 ° C. and the reaction time was 1.5 hours.

【0029】次に、この挿入反応が終了した液を遠心分
離、水洗を繰り返し、溶液のpHが略中性となったこと
を確認した後に、60℃で乾燥し、空気中で400℃で
焼成を行い、無機多孔体を得た。
Next, the liquid in which this insertion reaction has been completed is repeatedly centrifuged and washed with water, and after confirming that the pH of the solution has become substantially neutral, it is dried at 60 ° C. and calcined at 400 ° C. in air. Then, an inorganic porous material was obtained.

【0030】無機多孔体を得るための各成分の配合は、
Na−モンモリロナイト:アルミナ=100重量部:6
0重量部の割合となるよう行った。すなわち、膨潤性層
状化合物としてNa−モンモリロナイト( クニミネ工業
株式会社製、商品名クニピアF)100重量部、無機ピ
ラーとしてアルミナ(塩化アルミニウムを水酸化ナトリ
ウムで加水分解、重合したもの)60重量部の割合で用
い、アルミナを層状化合物層間に挿入した無機多孔体を
合成し、この無機多孔体15重量部に対して、活性炭
(クラレケミカル株式会社製:商品名PU200UH)
を85重量部の割合で添加、混合して、多孔性吸着体を
得た。この多孔性吸着体を300ccの容器に0.01g
充填し、約100ppm のトリメチルアミンを容器に導入
して、半減期を調べることにより、で多孔性吸着体の吸
着性能を評価した。その結果を表1に示した。
The composition of each component for obtaining the inorganic porous material is as follows.
Na-montmorillonite: alumina = 100 parts by weight: 6
The proportion was 0 part by weight. That is, 100 parts by weight of Na-montmorillonite (Kunimine Industries Co., Ltd., trade name Kunipia F) as the swelling layered compound, and 60 parts by weight of alumina (aluminum chloride hydrolyzed and polymerized with sodium hydroxide) as the inorganic pillar. Used to synthesize an inorganic porous material in which alumina was inserted between the layered compound layers, and activated carbon (manufactured by Kuraray Chemical Co .: trade name PU200UH) was added to 15 parts by weight of the inorganic porous material.
Was added and mixed at a ratio of 85 parts by weight to obtain a porous adsorbent. 0.01g of this porous adsorbent in a 300cc container
The adsorption performance of the porous adsorbent was evaluated by filling the container, introducing about 100 ppm of trimethylamine into the container, and examining the half-life. The results are shown in Table 1.

【0031】(実施例2)チタニアは次のように作製し
た。チタン酸イソプロポキシド〔Ti(OC
3 7 4 、半井テスク株式会社製試薬〕を2N塩酸水
溶液に加え、加水分解、重合反応、さらに解膠反応し、
透明なチタニアゾルを得た。
(Example 2) Titania was manufactured as follows.
Was. Titanic acid isopropoxide [Ti (OC
3H 7)Four, Hanui Tesque Co., Ltd.] 2N hydrochloric acid water
In addition to the solution, hydrolysis, polymerization reaction, peptization reaction,
A transparent titania sol was obtained.

【0032】膨潤性層状化合物として、Na−モンモリ
ロナイト(クニミネ工業株式会社製:商品名クニピア
F)を用いた。上記Na−モンモリロナイトを水に分散
し、0.8wt%の水溶液を作製した。このNa−モン
モリロナイトが分散した水溶液に、上記チタニアゾルを
添加し、チタニアの挿入反応(インターカレーション反
応)を行い、Na−モンモリロナイトの層間にチタニア
を担持した。この条件は、反応温度は60℃、反応時間
は1.5時間であった。
As the swellable layered compound, Na-montmorillonite (Kunimine Industries Co., Ltd .: trade name Kunipia F) was used. The Na-montmorillonite was dispersed in water to prepare a 0.8 wt% aqueous solution. The titania sol was added to the aqueous solution in which the Na-montmorillonite was dispersed, and the titania insertion reaction (intercalation reaction) was performed to support the titania between the Na-montmorillonite layers. Under these conditions, the reaction temperature was 60 ° C. and the reaction time was 1.5 hours.

【0033】次に、この挿入反応が終了した液を遠心分
離、水洗を繰り返し、溶液のpHが略中性となったこと
を確認した後に、60℃で乾燥を行った。乾燥した後
に、空気中で400℃で焼成を行い、無機多孔体を得
た。
Next, the liquid in which this insertion reaction was completed was repeatedly centrifuged and washed with water, and after confirming that the pH of the solution became substantially neutral, it was dried at 60 ° C. After drying, it was baked in air at 400 ° C. to obtain an inorganic porous body.

【0034】無機多孔体を得るための各成分の配合は、
Na−モンモリロナイト:チタニア=100重量部:6
0重量部の割合となるよう行った。すなわち、膨潤性層
状化合物としてNa−モンモリロナイト(クニミネ工業
株式会社製:商品名クニピアF)100重量部、無機ピ
ラーとしてチタニア(チタン酸イソプロポキシドを塩酸
で加水分解、重合、解こうしたもの)60重量部の割合
で用い、チタニアを層状化合物層間に挿入した無機多孔
体を合成し、この無機多孔体30重量部に対して、繊維
状活性炭(大阪ガス株式会社製:商品名リノベス)を7
0重量部の割合で添加、混合して、多孔性吸着体を得
た。この多孔性吸着体の吸着性能を実施例1と同様にし
て評価し、その結果を表1に示した。
The composition of each component for obtaining the inorganic porous material is as follows.
Na-montmorillonite: titania = 100 parts by weight: 6
The proportion was 0 part by weight. That is, 100 parts by weight of Na-montmorillonite (Kunimine Industries Co., Ltd .: trade name Kunipia F) as a swellable layered compound, and 60 parts by weight of titania (hydrolyzing and polymerizing isopropoxide titanate with hydrochloric acid as an inorganic pillar). The inorganic porous material in which titania was inserted between the layered compound layers was synthesized in an amount of 10 parts by weight, and fibrous activated carbon (trade name: Linoves, manufactured by Osaka Gas Co., Ltd.) was added to 30 parts by weight of the inorganic porous material.
A porous adsorbent was obtained by adding and mixing at a ratio of 0 part by weight. The adsorption performance of this porous adsorbent was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0035】(実施例3)実施例1と同様にして得た無
機多孔体30重量部に対して、活性アルミナ(住友化学
株式会社製、商品名AL−43)を70重量部の割合で
添加、混合して、多孔性吸着体を得た。この多孔性吸着
体の吸着性能を実施例1と同様にして評価し、その結果
を表1に示した。
(Example 3) 70 parts by weight of activated alumina (trade name AL-43, manufactured by Sumitomo Chemical Co., Ltd.) was added to 30 parts by weight of the inorganic porous material obtained in the same manner as in Example 1. , And mixed to obtain a porous adsorbent. The adsorption performance of this porous adsorbent was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0036】(比較例1)活性炭(クラレケミカル株式
会社製、商品名PU200UH)を単独で用いた。この
活性炭の吸着性能を実施例1と同様にして評価し、その
結果を表1に示した。
Comparative Example 1 Activated carbon (produced by Kuraray Chemical Co., Ltd., trade name PU200UH) was used alone. The adsorption performance of this activated carbon was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0037】(比較例2)実施例1で得られた無機多孔
体を単独で用いた。この無機多孔体の吸着性能を実施例
1と同様にして評価し、その結果を表1に示した。
(Comparative Example 2) The inorganic porous material obtained in Example 1 was used alone. The adsorption performance of this inorganic porous material was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】表1の結果、実施例は比較例に比べて、半
減期が短く、すなわち、吸着性能に優れていることが分
かった。
From the results shown in Table 1, it was found that the examples had a shorter half-life than the comparative examples, that is, the adsorption performance was excellent.

【0040】[0040]

【発明の効果】本発明の請求項1に係る多孔性吸着体に
よると、膨潤性層状化合物の層間に無機ピラー材が配置
されてなる無機多孔体が主に、N系臭気成分を吸着して
除去し、吸着剤が主に、S系臭気成分を吸着して除去す
るため、N系臭気成分及びS系臭気成分のいずれも高性
能に吸着して除去することができ、吸着性能に優れる。
According to the porous adsorbent according to the first aspect of the present invention, the inorganic porous body in which the inorganic pillar material is arranged between the layers of the swelling layered compound mainly adsorbs the N-type odor component. Since the adsorbent mainly removes and removes the S-based odor component, both the N-based odor component and the S-based odor component can be adsorbed and removed with high performance, and the adsorption performance is excellent.

【0041】本発明の請求項2に係る多孔性吸着体によ
ると、固体酸性を有しているため、特にN系臭気成分の
吸着性能に優れる。
According to the porous adsorbent of the second aspect of the present invention, since it has a solid acidity, it is particularly excellent in the adsorption performance of N-based odorous components.

【0042】本発明の請求項3及び請求項4に係る多孔
性吸着体によると、光を照射することで、光触媒性能を
発揮し、臭気成分の除去性能が向上し、すでに吸着して
いた成分を分解することもできるため、吸着剤の再生が
可能になる。
According to the porous adsorbents according to the third and fourth aspects of the present invention, by irradiating light, the photocatalytic performance is exhibited, the removal performance of the odorous components is improved, and the components already adsorbed. Since it can be decomposed, the adsorbent can be regenerated.

【0043】本発明の請求項5に係る多孔性吸着体によ
ると、特にS系臭気成分の吸着性能に優れている。
According to the porous adsorbent according to claim 5 of the present invention, the adsorption performance of the S-based odorous component is particularly excellent.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 膨潤性層状化合物の層間に無機ピラー材
が配置されてなる無機多孔体と吸着剤とを含むことを特
徴とする多孔性吸着体。
1. A porous adsorbent comprising an inorganic porous material having an inorganic pillar material arranged between layers of a swellable layered compound and an adsorbent.
【請求項2】 前記無機ピラー材が、アルミナ、シリカ
−アルミナ複合酸化物、シリカ−チタニア複合酸化物、
シリカ−ジルコニア、酸化鉄、酸化ニッケル、酸化コバ
ルト、酸化マンガン、酸化バナジウム及び酸化銅からな
る群から選択される少なくとも1種であることを特徴と
する請求項1記載の多孔性吸着体。
2. The inorganic pillar material is alumina, silica-alumina composite oxide, silica-titania composite oxide,
The porous adsorbent according to claim 1, which is at least one selected from the group consisting of silica-zirconia, iron oxide, nickel oxide, cobalt oxide, manganese oxide, vanadium oxide, and copper oxide.
【請求項3】 前記無機ピラー材が、光触媒であること
を特徴とする請求項1記載の多孔性吸着体。
3. The porous adsorbent according to claim 1, wherein the inorganic pillar material is a photocatalyst.
【請求項4】 前記光触媒が、チタニア、チタン酸スト
ロンチウム、ジルコニア、酸化亜鉛及び酸化スズからな
る群から選択される少なくとも1種であることを特徴と
する請求項3記載の多孔性吸着体。
4. The porous adsorbent according to claim 3, wherein the photocatalyst is at least one selected from the group consisting of titania, strontium titanate, zirconia, zinc oxide and tin oxide.
【請求項5】 前記吸着剤が活性炭、活性炭素繊維、木
炭、シリカゲル、活性アルミナ、ゼオライト、リン酸ジ
ルコニウム及び酸化亜鉛からなる群から選択される少な
くとも1種であることを特徴とする請求項1乃至請求項
4いずれか記載の多孔性吸着体。
5. The adsorbent is at least one selected from the group consisting of activated carbon, activated carbon fiber, charcoal, silica gel, activated alumina, zeolite, zirconium phosphate and zinc oxide. 5. The porous adsorbent according to claim 4.
JP7070127A 1995-03-28 1995-03-28 Porous adsorbing material Withdrawn JPH08259344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7070127A JPH08259344A (en) 1995-03-28 1995-03-28 Porous adsorbing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7070127A JPH08259344A (en) 1995-03-28 1995-03-28 Porous adsorbing material

Publications (1)

Publication Number Publication Date
JPH08259344A true JPH08259344A (en) 1996-10-08

Family

ID=13422586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7070127A Withdrawn JPH08259344A (en) 1995-03-28 1995-03-28 Porous adsorbing material

Country Status (1)

Country Link
JP (1) JPH08259344A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892159A2 (en) * 1997-07-17 1999-01-20 Hitachi, Ltd. Exhaust gas cleaning apparatus and method for internal combustion engine
JPH11323188A (en) * 1998-05-14 1999-11-26 Mitsubishi Materials Corp Photocatalytic film, method for forming it and photocatalytic coating
WO2005102963A1 (en) * 2004-04-22 2005-11-03 Ngk Insulators, Ltd. Method for producing porous honeycomb structure and porous honeycomb structure
JP2006175430A (en) * 2004-11-24 2006-07-06 Yoshihiro Taki Method for producing photocatalyst and method for decomposing contaminant
JP2009056391A (en) * 2007-08-31 2009-03-19 National Institute For Materials Science Photocatalytic material of octahedron seat structure
JP2011224533A (en) * 2010-03-31 2011-11-10 National Institute Of Advanced Industrial Science & Technology Photocatalyst-carrying porous clay material
KR101389378B1 (en) * 2012-07-10 2014-04-29 한국화학연구원 Metal oxide-carbon complex containing photoactive metal oxides, and its manufacturing method, and the photocatalyst thereof
JP2016050122A (en) * 2014-08-28 2016-04-11 株式会社丸長 Clay for ceramic product
CN113321466A (en) * 2021-06-01 2021-08-31 武汉理工大学 Facing mortar capable of removing adsorbed gas pollutants and preparation method thereof
JP2022162500A (en) * 2021-04-12 2022-10-24 垰田 宏子 Photocatalyst powder, photocatalyst molding, environment purifying agent and method for producing photocatalyst powder
KR102501315B1 (en) 2022-09-20 2023-02-22 한국건설기술연구원 Method for manufacturing highly porous silica photo catalyst including iron oxide and manganese oxide, and method for removing synthetic organic chemicals in aqua using the same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892159A3 (en) * 1997-07-17 2000-04-26 Hitachi, Ltd. Exhaust gas cleaning apparatus and method for internal combustion engine
EP0892159A2 (en) * 1997-07-17 1999-01-20 Hitachi, Ltd. Exhaust gas cleaning apparatus and method for internal combustion engine
JPH11323188A (en) * 1998-05-14 1999-11-26 Mitsubishi Materials Corp Photocatalytic film, method for forming it and photocatalytic coating
US8366989B2 (en) 2004-04-22 2013-02-05 Ngk Insulators, Ltd. Method for producing porous honeycomb structure and porous honeycomb structure
WO2005102963A1 (en) * 2004-04-22 2005-11-03 Ngk Insulators, Ltd. Method for producing porous honeycomb structure and porous honeycomb structure
JP2006175430A (en) * 2004-11-24 2006-07-06 Yoshihiro Taki Method for producing photocatalyst and method for decomposing contaminant
JP2009056391A (en) * 2007-08-31 2009-03-19 National Institute For Materials Science Photocatalytic material of octahedron seat structure
JP2011224533A (en) * 2010-03-31 2011-11-10 National Institute Of Advanced Industrial Science & Technology Photocatalyst-carrying porous clay material
KR101389378B1 (en) * 2012-07-10 2014-04-29 한국화학연구원 Metal oxide-carbon complex containing photoactive metal oxides, and its manufacturing method, and the photocatalyst thereof
JP2016050122A (en) * 2014-08-28 2016-04-11 株式会社丸長 Clay for ceramic product
JP2022162500A (en) * 2021-04-12 2022-10-24 垰田 宏子 Photocatalyst powder, photocatalyst molding, environment purifying agent and method for producing photocatalyst powder
CN113321466A (en) * 2021-06-01 2021-08-31 武汉理工大学 Facing mortar capable of removing adsorbed gas pollutants and preparation method thereof
KR102501315B1 (en) 2022-09-20 2023-02-22 한국건설기술연구원 Method for manufacturing highly porous silica photo catalyst including iron oxide and manganese oxide, and method for removing synthetic organic chemicals in aqua using the same

Similar Documents

Publication Publication Date Title
KR100199445B1 (en) Preparation of complexed molecular sieve compounds
JPH08259344A (en) Porous adsorbing material
JPWO2003022425A1 (en) Composite granular material and method for producing the same
WO2004052497A2 (en) Activated carbon for odor control and method for making same
KR20110112322A (en) Method for removing contaminants from gas flows containing water
JP3488496B2 (en) Poison-resistant deodorizing photocatalyst
KR100214444B1 (en) Complex molecular sieve granules for deodorizer and their preparations
JPH01236941A (en) Gaseous ammonia adsorbent
JP3540040B2 (en) Adsorbent manufacturing method
JPH09249824A (en) Air-purifying coating material using photocatalyst
JPH0975434A (en) Deodorant using photocatalyst
Le Van Mao et al. Mesoporous aluminosilicates: Preparation from Ca-A zeolite by treatment with ammonium fluorosilicate
JPH03151041A (en) Molded adsorbent
JP3528293B2 (en) Deodorant
KR100333590B1 (en) Deodorizer and method for deodorizing in light-regeneration mode
JPH07313867A (en) Deodorant composition
KR100424788B1 (en) A nano-structured deodorant based on organic cations, metallic cations and layered silicate
JP2004008515A (en) Deodorant
JP3945369B2 (en) Deodorant
JP3618186B2 (en) Manufacturing method of improved deodorant
JP3884503B2 (en) Hazardous substance removing agent and method of removing harmful substance using the same
JPH0796175A (en) Adsorbent
JP3269306B2 (en) Sulfur compound adsorbent
JP2965347B2 (en) Activated carbon for deodorization
JPH08257106A (en) Deodorizing composition

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604