JP2022162500A - Photocatalyst powder, photocatalyst molding, environment purifying agent and method for producing photocatalyst powder - Google Patents

Photocatalyst powder, photocatalyst molding, environment purifying agent and method for producing photocatalyst powder Download PDF

Info

Publication number
JP2022162500A
JP2022162500A JP2021090632A JP2021090632A JP2022162500A JP 2022162500 A JP2022162500 A JP 2022162500A JP 2021090632 A JP2021090632 A JP 2021090632A JP 2021090632 A JP2021090632 A JP 2021090632A JP 2022162500 A JP2022162500 A JP 2022162500A
Authority
JP
Japan
Prior art keywords
photocatalyst
powder
photocatalyst powder
particles
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021090632A
Other languages
Japanese (ja)
Other versions
JP7027600B1 (en
Inventor
博史 垰田
Hiroshi Tougeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2021090632A priority Critical patent/JP7027600B1/en
Application granted granted Critical
Publication of JP7027600B1 publication Critical patent/JP7027600B1/en
Publication of JP2022162500A publication Critical patent/JP2022162500A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide: a high-performance photocatalyst powder which can perform environmental purification in a wide range of fields effectively, economically and safely and can be transported safely; a photocatalyst molding; an environment purifying agent; and a method for producing a photocatalyst powder.SOLUTION: There is used a photocatalyst powder in which metal ions are incorporated between the layers of an inorganic layered compound. There is used a photocatalyst molding obtained by incorporating the photocatalyst powder into a polymer. There is used an environment purifying agent which is a mixture of the photocatalyst powder and a peroxide powder. There is used for a method for producing a photocatalyst powder by intercalating a photocatalyst supported with metal ions between the layers of an inorganic layered compound, followed by drying.SELECTED DRAWING: None

Description

本発明は、悪臭や空気中の有害物質、汚れの分解除去あるいは廃水処理や浄水処理、抗菌抗ウィルス抗かびなど、幅広い分野に使用できる高性能の環境浄化剤と、光触媒成形物と、その作製に用いられる光触媒粉体及び光触媒粉体の製造方法に関するものである。The present invention provides a high-performance environmental purification agent that can be used in a wide range of fields such as decomposing and removing bad odors, harmful substances in the air, dirt, wastewater treatment, water purification treatment, antibacterial, antiviral, antifungal, and photocatalyst moldings, and their production. The present invention relates to a photocatalyst powder used for and a method for producing the photocatalyst powder.

光触媒に光を当てると電子と正孔が同時に発生し、酸素などと反応して活性酸素ができる。この活性酸素はオゾンよりも強い酸化力を持っていて、有害化学物質や悪臭、菌・ウィルスなどを水や二酸化炭素などの無毒な物質に変えることができる。この光触媒反応は光を利用するだけで環境浄化などのさまざまな応用が可能である。従来、樹脂に光触媒を混入したシート、フィルムがあった(特許文献1,2,3)。When the photocatalyst is exposed to light, electrons and holes are generated at the same time, and react with oxygen to form active oxygen. This active oxygen has a stronger oxidizing power than ozone, and can convert harmful chemical substances, odors, bacteria and viruses into non-toxic substances such as water and carbon dioxide. This photocatalytic reaction can be applied to various applications such as environmental purification simply by using light. Conventionally, there have been sheets and films in which a photocatalyst is mixed in resin (Patent Documents 1, 2, and 3).

このように光触媒は数多くの利点を持っているが、光触媒反応を起こすためには光触媒が光を照射されて励起することが必要で、利用できる光は通常、酸化チタンなどの場合、紫外線のみで可視光が利用できないという問題があった。紫外線は太陽光の中に3~4%しか含まれておらず、自動車や電車などの窓ガラスが紫外線カットガラスになっていることが多いため、車内・室内では紫外線はほとんど利用できない。そのため、例えば、直射日光が当たる建物の南面では光触媒反応は早く進むが、建物の北面や室内・車内では光が弱いため、ほとんど光触媒反応が起きず、効果を発揮することが難しいという問題があった。したがって、光触媒反応を促進するためには、光触媒が利用できる光の範囲を拡大する必要があった。In this way, photocatalysts have many advantages, but in order to cause a photocatalytic reaction, it is necessary for the photocatalyst to be excited by being irradiated with light. There was a problem that visible light was not available. Ultraviolet rays make up only 3-4% of sunlight, and the windows of automobiles and trains are often made of UV-blocking glass, so ultraviolet rays cannot be used indoors. For this reason, for example, the photocatalytic reaction progresses quickly on the south side of a building that is exposed to direct sunlight, but the photocatalytic reaction hardly occurs on the north side of the building, indoors, or in a car because the light is weak, making it difficult to achieve the desired effect. rice field. Therefore, in order to promote the photocatalytic reaction, it was necessary to expand the range of light that can be used by the photocatalyst.

また、光触媒は空気中の酸素や水中の酸素を活性酸素に変え、その強力な酸化力を利用して環境浄化を行うため、水処理の場合、水中に溶存酸素が含まれていないと環境浄化を行うことができない。そして、汚染された水ほど溶存酸素が少ないため、浄化が難しかった。In addition, photocatalysts convert oxygen in the air and water into active oxygen, and use that strong oxidizing power to clean up the environment. cannot be done. And the more polluted water has less dissolved oxygen, the more difficult it is to purify.

さらに、光触媒は有機物を炭酸ガスや水に分解するため、プラスチックや繊維、紙などの基材に塗布したり練り込んだりして使用した場合、基材が分解されて長期的に使用できなかった。Furthermore, since photocatalysts decompose organic substances into carbon dioxide and water, if they were applied or kneaded into substrates such as plastics, fibers, and paper, the substrates would decompose and could not be used for a long period of time. .

特開2007-307884号公報JP 2007-307884 A 特開2005-097608号公報Japanese Patent Application Laid-Open No. 2005-097608 特開2013-136216号公報JP 2013-136216 A

本発明の目的は、上記のような従来技術のもつ問題点に鑑み、悪臭の除去や、空気中の有害物質または汚れの分解除去、排水処理や浄化処理、抗菌や防かびなど、幅広い分野の環境浄化を効果的かつ経済的に安全に行うことができ、安全に輸送することができる高性能の光触媒粉体と、光触媒成形物と、環境浄化剤と、光触媒粉体の製造方法とを提供することにある。In view of the problems of the prior art as described above, the purpose of the present invention is to eliminate odors, decompose and remove harmful substances or dirt in the air, treat wastewater, purify wastewater, and antibacterial and antifungal. To provide a high-performance photocatalyst powder, a photocatalyst molding, an environmental cleaning agent, and a method for producing the photocatalyst powder, which can effectively and economically and safely clean up the environment and can be transported safely. to do.

本発明者は上記の目的を達成するため、鋭意研究を重ねた結果、光触媒に鉄や銅、銀、亜鉛などの金属イオンを担持することによって光触媒の性能が飛躍的に向上することを見出した。これは、金属イオンがアンテナとなって可視光を吸収し、そのエネルギーを光触媒に注入して光触媒反応を起こすためである。In order to achieve the above object, the present inventors have made intensive studies and found that the performance of photocatalysts can be dramatically improved by supporting metal ions such as iron, copper, silver, and zinc on photocatalysts. . This is because the metal ions act as antennas and absorb visible light, injecting the energy into the photocatalyst to cause a photocatalytic reaction.

これらの金属イオンの中で特に鉄イオンは、安全で安価という長所を持っていて、最も長波長の570nmまでの可視光を吸収することができ、光触媒に担持するりことで紫外線だけでなく、紫、藍、青、緑、黄までの可視光が利用できるようになることを見出した。Among these metal ions, iron ions in particular have the advantage of being safe and inexpensive, and can absorb visible light up to the longest wavelength of 570 nm. We have found that visible light up to violet, indigo, blue, green and yellow can be used.

光触媒に鉄などの金属イオンを担持する方法としては通常、イオン注入やスパッタリング、真空蒸着が用いられているが、多量のエネルギーや高価な真空装置などが必要で、光触媒が高価なものになってしまい、経済性に問題があった。そこで、光触媒粒子への低コストの金属イオン担持方法として、溶解して金属イオンをもたらす金属塩を水に溶かし、それを光触媒粒子に含侵させて乾燥するという簡便な方法を見出した。Ion implantation, sputtering, and vacuum deposition are usually used to support metal ions such as iron on photocatalysts. Unfortunately, there was an economic problem. Therefore, as a low-cost method of supporting metal ions on photocatalyst particles, the present inventors have found a simple method of dissolving a metal salt that produces metal ions by dissolving it in water, impregnating the photocatalyst particles with the dissolved metal salt, and drying the solution.

また、本発明者は溶存酸素がほとんど含まれていない汚染した水の浄化や歯牙漂白を行う場合、水の中に過酸化水素などの過酸化物と光触媒と加えて接触させると、過酸化物が分解して多量の活性酸素が放出されるため、その活性酸素の強力な酸化力を利用することで迅速に処理できることを見出していた(特許第3030380号)。In addition, when the present inventor purifies contaminated water containing little dissolved oxygen or bleaches teeth, adding a peroxide such as hydrogen peroxide and a photocatalyst to the water and making it contact with the peroxide is decomposed to release a large amount of active oxygen, it has been found that rapid treatment can be achieved by utilizing the strong oxidizing power of the active oxygen (Patent No. 3030380).

そこで、光触媒に鉄などの金属イオンを担持し、過酸化物と混合することで、環境浄化を効果的かつ経済的に行うことができる高性能の環境浄化剤を作製することができたが、この環境浄化剤は非常に不安定であるという問題が見つかった。過酸化水素に鉄のイオンを接触させると過酸化水素が活性酸素に分解するというフェントン反応が知られている。鉄イオンを担持した光触媒と過酸化物を接触させると、直ちに過酸化物が活性酸素に分解して連鎖反応を起こすため、非常に強力に環境浄化を行うことができるが、一度、反応を開始すると、過酸化物がなくなるまで反応が続き、途中で止めることができない。そのため、この環境浄化剤を安定に安全に輸送あるいは保存することが非常に難しかった。Therefore, by supporting a metal ion such as iron on a photocatalyst and mixing it with a peroxide, it was possible to produce a high-performance environmental cleaning agent that can effectively and economically clean the environment. A problem was found that this environmental cleaning agent was highly unstable. Fenton reaction is known in which hydrogen peroxide decomposes into active oxygen when iron ions are brought into contact with hydrogen peroxide. When a photocatalyst supporting iron ions and a peroxide come into contact with each other, the peroxide immediately decomposes into active oxygen and causes a chain reaction. Then the reaction continues until the peroxide is gone, and it cannot be stopped in the middle. Therefore, it has been very difficult to stably and safely transport or store this environmental cleaning agent.

本発明者は上記の目的を達成するため鋭意研究を重ねた結果、鉄などの金属イオンを担持した光触媒粒子を無機層状化合物の層間にインターカレートして乾燥することによって得られた光触媒粉体が、過酸化物と接触しても、直ぐには過酸化物が活性酸素に分解して連鎖反応を起こすことはなく、安定していることを見出した。As a result of intensive studies to achieve the above object, the present inventors have found a photocatalyst powder obtained by intercalating photocatalyst particles supporting metal ions such as iron between layers of an inorganic layered compound and drying. However, it was found that even if it comes into contact with peroxide, the peroxide does not immediately decompose into active oxygen and cause a chain reaction, and is stable.

また、光触媒を使わず、鉄などの金属イオンのみを無機層状化合物の層間にインターカレートして乾燥することによって得られた粉体も、光触媒粉体となることを見出した。さらに、この光触媒粉体が過酸化物と接触しても、直ぐには過酸化物が活性酸素に分解して連鎖反応を起こすことはなく、安定していることを見出し、本発明を完成するに至った。Moreover, the inventors have also found that a powder obtained by intercalating only metal ions such as iron between layers of an inorganic layered compound and drying without using a photocatalyst is also a photocatalyst powder. Further, it was found that even when this photocatalyst powder comes into contact with a peroxide, the peroxide does not immediately decompose into active oxygen to cause a chain reaction, and is stable. Arrived.

すなわち、本発明は、無機層状化合物の層間に光触媒粒子と金属イオンを含有した光触媒粉体である。無機層状化合物の層間に酸化チタン粒子と鉄イオンを含有した光触媒粉体である。無機層状化合物の層間に鉄イオンを含有した粉体である。また、本発明は該光触媒粉体を重合体に含有させた光触媒組成物である。該光触媒組成物を成形した光触媒成形物である。さらに、本発明は無機層状化合物の層間に光触媒粒子と金属イオンを含有した光触媒粉体を過酸化物の粉末と混合した環境浄化剤である。無機層状化合物の層間に酸化チタン粒子と鉄イオンを含有した光触媒粉体を過酸化物の粉末と混合した環境浄化剤である。無機層状化合物の層間に鉄イオンを含有した粉体と過酸化物の粉末と混合した環境浄化剤である。That is, the present invention is a photocatalyst powder containing photocatalyst particles and metal ions between layers of an inorganic layered compound. It is a photocatalyst powder containing titanium oxide particles and iron ions between layers of an inorganic layered compound. It is a powder containing iron ions between layers of an inorganic layered compound. The present invention also provides a photocatalyst composition containing the photocatalyst powder in a polymer. A photocatalyst molding obtained by molding the photocatalyst composition. Further, the present invention is an environmental cleaning agent obtained by mixing a photocatalyst powder containing photocatalyst particles and metal ions between layers of an inorganic layered compound with a peroxide powder. It is an environmental cleaning agent in which a photocatalyst powder containing titanium oxide particles and iron ions between layers of an inorganic layered compound is mixed with a peroxide powder. It is an environmental cleaning agent in which a powder containing iron ions between layers of an inorganic layered compound and a peroxide powder are mixed.

本発明は、無機層状化合物の層間に光触媒粒子、特に酸化チタン粒子と金属イオン特に鉄イオンを含有した光触媒粉体である。また、それを過酸化物の粉末と混合した環境浄化剤である。光触媒は、有機物を炭酸ガスや水に分解するため、プラスチックや繊維、紙などの基材に塗布したり練り込んだりして使用した場合、基材が分解されて長期的に使用できない。しかし、本発明の光触媒粉体は、無機層状化合物の層間に光触媒がインターカレートされているため、プラスチックや繊維、紙などの基材に塗布したり練り込んだりして使用した場合、光触媒が直接プラスチックや繊維、紙などの基材に接触しないため、分解されない。そのため、本発明の光触媒粉体を重合体に含有させて作製された光触媒組成物及び光触媒成形物は、長期的に使用でき、悪臭や空気中の有害物質、汚れの分解除去あるいは廃水処理や浄水処理、抗菌抗ウィルス抗かびなどの幅広い分野で使用できる。効果的かつ安全に使用することができる。そして、本発明の光触媒粉体を用いた環境浄化剤は輸送や保管を安全に行うことができる。水に溶かすだけで活性酸素が連続的に発生し、水中や空気中の細菌やウイルスを強力な酸化力によって容易に水や二酸化炭素に分解されるため、確実にしかも効率よく死滅させることができる。通常、薬剤を使用していると薬剤の効かない耐性菌が発生するが、光触媒は耐性菌に対しても有効であるし、光触媒に対する耐性菌は生じず、変異したウィルスに対しても有効である。それだけでなく、抗菌・抗ウィルスや消臭、空気浄化、水質浄化、土壌浄化、鮮度保持など、同時に複数の機能を発揮することが可能で、世界中どこでも使用できる。The present invention is a photocatalyst powder containing photocatalyst particles, particularly titanium oxide particles, and metal ions, particularly iron ions, between layers of an inorganic layered compound. It is also an environmental cleanser that is mixed with peroxide powder. Since photocatalysts decompose organic matter into carbon dioxide and water, if they are applied to or kneaded into substrates such as plastics, fibers, and papers, the substrates will decompose and cannot be used for a long period of time. However, in the photocatalyst powder of the present invention, since the photocatalyst is intercalated between the layers of the inorganic layered compound, when it is used by being applied or kneaded into a base material such as plastic, fiber, or paper, the photocatalyst is Since it does not come into direct contact with substrates such as plastics, fibers, and paper, it does not decompose. Therefore, the photocatalyst composition and photocatalyst molded article prepared by incorporating the photocatalyst powder of the present invention into a polymer can be used for a long time, and can be used for the decomposition and removal of bad odors, harmful substances in the air, and dirt, or for wastewater treatment and water purification. It can be used in a wide range of fields such as treatment, antibacterial, antiviral, and antifungal. Can be used effectively and safely. The environmental cleaning agent using the photocatalyst powder of the present invention can be safely transported and stored. Active oxygen is continuously generated just by dissolving it in water, and bacteria and viruses in water and air are easily decomposed into water and carbon dioxide by its strong oxidizing power, so it can kill bacteria and viruses reliably and efficiently. . Normally, drug-resistant bacteria occur when drugs are used, but photocatalysts are also effective against drug-resistant bacteria, photocatalyst-resistant bacteria do not occur, and they are effective against mutated viruses. be. In addition to that, it is possible to demonstrate multiple functions at the same time, such as antibacterial, antiviral, deodorant, air purification, water purification, soil purification, freshness preservation, etc., and can be used anywhere in the world.

本発明に用いられる光触媒粒子としては、酸化チタンや酸化タングステン、酸化亜鉛、酸化鉄、酸化鉛、酸化インジウム、炭化けい素、硫化モリブデン、硫化カドミウムなど、いろいろなものが使用される。しかし、最も好ましいのは、酸化チタンである。酸化タングステンや硫化モリブデン、酸化インジウムはタングステンやモリブデン、インジウムがレアメタルで資源的に希少で高価であるのに対し、酸化チタンは、白色顔料として大量生産されて広く使用されており、チタンが地殻中に9番目に多い元素である。このため酸化チタンは資源的に豊富で安価で入手しやすい。そして、硫化カドミウムや酸化鉛が有毒であるのに対し、酸化チタンは食品添加物として認められている。酸化チタンは、歯磨き粉やホワイトチョコレートにも使用されていて、安全無毒な物質である。さらに、酸化亜鉛や酸化鉛、硫化カドミウムなどは水に入れて光を当てると、光溶解という現象が起こって陽イオンに陰イオンに分解されて消滅してしまう。しかし、酸化チタン粒子は、光溶解を起こさず、安定で耐久性に優れている。このため、酸化チタン粒子は、光触媒として最も好ましい。As the photocatalyst particles used in the present invention, various particles such as titanium oxide, tungsten oxide, zinc oxide, iron oxide, lead oxide, indium oxide, silicon carbide, molybdenum sulfide and cadmium sulfide are used. Most preferred, however, is titanium oxide. Tungsten oxide, molybdenum sulfide, and indium oxide are rare metals, and titanium oxide is mass-produced and widely used as a white pigment. is the 9th most abundant element in For this reason, titanium oxide is abundant in resources, inexpensive, and readily available. And while cadmium sulfide and lead oxide are toxic, titanium oxide is recognized as a food additive. Titanium oxide is also used in toothpaste and white chocolate, and is a safe and non-toxic substance. Furthermore, when zinc oxide, lead oxide, cadmium sulfide, etc. are placed in water and exposed to light, a phenomenon called photodissolution occurs, and they are decomposed into cations and anions and disappear. However, titanium oxide particles do not cause photodissolution, are stable and have excellent durability. For this reason, titanium oxide particles are most preferred as a photocatalyst.

本発明に用いられる酸化チタンは、光触媒として働くもので、アナターゼ、ルチル、ブルッカイトなどの結晶のものだけでなく、酸素欠陥を有すものや、金属ドープ、あるいは窒素、硫黄などをドープした酸化チタンが挙げられる。また、粒子表面に光触媒として不活性なシリカやアルミナや、アパタイトなどのセラミックスを島状に担持したものでもよい。非晶質の酸化チタンは光触媒として働かないため、好ましくない。酸化チタン粒子は、アナターゼ型とルチル型とを含むものを用いる方が好ましい。光触媒としての活性が高い。アナターゼ型60~90%がよく、75~80%が好ましい。The titanium oxide used in the present invention works as a photocatalyst, and not only crystals such as anatase, rutile, and brookite, but also those having oxygen defects, metal-doped, nitrogen, sulfur, etc.-doped titanium oxide. is mentioned. In addition, the particles may be those in which silica, alumina, or ceramics such as apatite, which are inactive as photocatalysts, are supported on the surface of the particles in the form of islands. Amorphous titanium oxide is not preferable because it does not work as a photocatalyst. It is preferable to use titanium oxide particles containing an anatase type and a rutile type. Highly active as a photocatalyst. 60-90% anatase is good, preferably 75-80%.

本発明に用いられる光触媒粒子は、光触媒として高活性な表面積の大きな微細なものが望ましい。光触媒粒子の粒径としては1nm~10μmが望ましく、特に10nm~1μmが好ましい。光触媒反応は表面反応であり、表面積が大きい光触媒の方が高活性である。The photocatalyst particles used in the present invention are desirably fine particles with a large surface area that are highly active as photocatalysts. The particle size of the photocatalyst particles is desirably 1 nm to 10 μm, particularly preferably 10 nm to 1 μm. A photocatalytic reaction is a surface reaction, and a photocatalyst with a large surface area is highly active.

本発明に用いられる鉄塩としては、第一鉄塩だけでなく、第二鉄塩や、第一鉄塩と第二鉄塩の混合物なども挙げられ、硫酸塩、硝酸塩、炭酸塩、リン酸塩、酢酸塩、シュウ酸塩、フマル酸塩、乳酸塩、クエン酸塩、アンモニウム塩、塩化物や臭化物などのハロゲン化物など、いろいろな塩が使用できる。しかし、硝酸塩や硫酸塩が特に好ましい。また、本発明に用いられる鉄塩は無水塩であっても含水塩であってもよく、鉄イオンを含んだ廃液でもよい。硝酸塩や硫酸鉄などの鉄塩は、安価で環境に無害で取扱が容易という利点を持っている。The iron salts used in the present invention include not only ferrous salts, but also ferric salts and mixtures of ferrous and ferric salts, including sulfates, nitrates, carbonates, and phosphates. Various salts can be used, including salts, acetates, oxalates, fumarates, lactates, citrates, ammonium salts, halides such as chlorides and bromides. However, nitrates and sulfates are particularly preferred. Moreover, the iron salt used in the present invention may be an anhydrous salt, a hydrous salt, or a waste liquid containing iron ions. Iron salts such as nitrates and iron sulfates have the advantages of being inexpensive, harmless to the environment, and easy to handle.

本発明に用いられる鉄イオンの光触媒粉体に対する担持量は、0.01~20重量%が望ましく、特に、0.1~10重量%が好ましい。これ以下であると、鉄イオンがアンテナとして働きにくくなる。一方、これ以上であると、得られた光触媒粒子の色が濃くなりすぎて、粒子表面下層にある鉄イオンに光が当たりにくくなって、光の利用効率が落ちてしまう。The amount of iron ions supported in the photocatalyst powder used in the present invention is desirably 0.01 to 20% by weight, particularly preferably 0.1 to 10% by weight. If it is less than this, it becomes difficult for iron ions to work as an antenna. On the other hand, if it is more than this, the color of the resulting photocatalyst particles becomes too dark, making it difficult for the iron ions in the lower layer of the particle surface to be exposed to light, resulting in a decrease in light utilization efficiency.

本発明に用いられる無機層状化合物は、モンモリロナイト、加水ハロイサイト、ベントナイト、スメクタイト、サポナイト、スティブンサイト、ヘクトライトなどの粘土鉱物、マンガン酸塩、チタン酸塩、チタノニオブ酸塩、ニオブ酸塩、層状ペロブスカイト型酸化物、層状リン酸塩、層状ケイ酸塩、層状複水酸化物や遷移金属水酸化物などの水酸化物、硫化物、セレン化物などの遷移金属カルコゲナイドなど、いろいろなものが挙げられる。しかし、その中で、モンモリロナイト、加水ハロイサイト、ベントナイト、スメクタイト、サポナイト、スティブンサイト、ヘクトライトなどの粘土鉱物が好ましい。粘土鉱物は親水性であり、大量に入手可能で、毒性もなく安全で不燃性で安価である。The inorganic layered compound used in the present invention includes clay minerals such as montmorillonite, hydrated halloysite, bentonite, smectite, saponite, stevensite, and hectorite, manganates, titanates, titanoniobates, niobates, and layered perovskites. There are various examples such as type oxides, layered phosphates, layered silicates, hydroxides such as layered double hydroxides and transition metal hydroxides, transition metal chalcogenides such as sulfides and selenides. Among them, however, clay minerals such as montmorillonite, hydrated halloysite, bentonite, smectite, saponite, stevensite and hectorite are preferred. Clay minerals are hydrophilic, available in large quantities, non-toxic, safe, non-flammable and inexpensive.

さて、これらの鉄塩と光触媒粒子を溶媒に添加して分散することで光触媒スラリーが得られ、次に、無機層状化合物を溶媒に添加して良く分散すると、無機層状化合物の層と層の間が広がって粘性の液体が得られる。この二つの液体を添加して攪拌混合しながら乾燥すると、鉄イオンを担持した光触媒粒子が無機層状化合物の層間にインターカレートした光触媒粉体が得られる。また、光触媒スラリーの代わりに鉄塩の水溶液を使用すると、鉄イオンが無機層状化合物の層間にインターカレートした光触媒粉体が得られる。この際、鉄塩を溶媒に溶解してから光触媒粒子を添加して分散してもよいし、溶媒に光触媒粒子を添加して分散した後、鉄塩を溶解してもよい。溶媒としては水が安価で大量に入手可能であり、毒性もなく安全で不燃性で、最も好ましい。By adding these iron salts and photocatalyst particles to a solvent and dispersing them, a photocatalyst slurry is obtained. spreads to obtain a viscous liquid. When these two liquids are added and dried while stirring and mixing, a photocatalyst powder in which photocatalyst particles supporting iron ions are intercalated between layers of the inorganic layered compound is obtained. Further, when an aqueous iron salt solution is used instead of the photocatalyst slurry, a photocatalyst powder in which iron ions are intercalated between the layers of the inorganic layered compound can be obtained. At this time, the photocatalyst particles may be added and dispersed after the iron salt is dissolved in the solvent, or the iron salt may be dissolved after the photocatalyst particles are added to the solvent and dispersed. Water is the most preferred solvent because it is inexpensive, available in large quantities, non-toxic, safe and non-flammable.

こうして得られた光触媒粉体は、光触媒粒子が無機層状化合物の層間にインターカレートされているため、プラスチックや繊維、紙などの基材に塗布したり練り込んだりして使用した場合、基材と光触媒粒子との接触が抑制されて基材の分解が抑制され、長期的に使用することができる。これによりポリエチレン、ナイロン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエステル、ポリプロピレン、ポリエチレンオキサイド、ポリエチレングリコール、ポリエチレンテレフタレート、シリコン樹脂、ポリビニルアルコール、ビニルアセタール樹脂、ポリアセテート、ABS樹脂、エポキシ樹脂、酢酸ビニル樹脂、セルロース、セルロース誘導体、ポリアミド、ポリウレタン、ポリカーボネート、ポリスチレン、尿素樹脂、フッ素樹脂、ポリフッ化ビニリデン、フェノール樹脂、セルロイド、キチン、澱粉シートなどのあらゆる種類の重合体からなる有機繊維やプラスチック製品などの組成物を得ることが可能で、上記光触媒粉体と重合体(樹脂)とからなる光触媒組成物を成形することによって光触媒成形物が得られる。光触媒組成物中の光触媒粒子の濃度は、該組成物の重量に対して通常0.01~80重量%、好ましくは1~50重量%が好ましい。これ以下であると光触媒効果が発揮しにくく、これ以上であると光触媒組成物や光触媒成形物が脆くなってしまう。In the photocatalyst powder thus obtained, the photocatalyst particles are intercalated between the layers of the inorganic layered compound. contact with the photocatalyst particles is suppressed, decomposition of the substrate is suppressed, and it can be used for a long time. Polyethylene, nylon, polyvinyl chloride, polyvinylidene chloride, polyester, polypropylene, polyethylene oxide, polyethylene glycol, polyethylene terephthalate, silicone resin, polyvinyl alcohol, vinyl acetal resin, polyacetate, ABS resin, epoxy resin, vinyl acetate resin, Compositions such as organic fibers and plastic products made of all kinds of polymers such as cellulose, cellulose derivatives, polyamide, polyurethane, polycarbonate, polystyrene, urea resin, fluororesin, polyvinylidene fluoride, phenolic resin, celluloid, chitin, starch sheet, etc. can be obtained, and a photocatalyst molded product can be obtained by molding the photocatalyst composition comprising the photocatalyst powder and the polymer (resin). The concentration of the photocatalyst particles in the photocatalyst composition is usually 0.01 to 80% by weight, preferably 1 to 50% by weight, based on the weight of the composition. If it is less than this, the photocatalyst effect will be difficult to exhibit, and if it is more than this, the photocatalyst composition and the photocatalyst molding will become brittle.

無機層状化合物の層間に、光触媒粒子と鉄イオンを含有した光触媒粉体を過酸化物の粉体と混合することで環境浄化剤が得られる。また、無機層状化合物の層間に鉄イオンを含有した粉体を、過酸化物の粉体と混合することで環境浄化剤が得られる。本発明に用いられる過酸化物は、過炭酸カリウムなどの過炭酸塩、過ホウ酸ナトリウムなどの過ホウ酸塩、過酸化尿素、過酸化尿素水素、過酸化水素カルバミド、カルバミドペルオキシドなどが挙げられる。上記過酸化物の配合割合は、0.1~99重量%、より好ましくは10-70重量%である。本発明の環境浄化剤は粉末であり、輸送や保存が簡単で、水に溶かして使用することで光触媒粒子や鉄イオンが過酸化物と接触して連続的に活性酸素が発生し、水処理や脱臭、抗菌、抗ウィルス、防カビ、洗浄、防汚などの環境浄化を効率良く極めて迅速に経済的安全に行うことができる。An environmental cleaning agent can be obtained by mixing a photocatalyst powder containing photocatalyst particles and iron ions with a peroxide powder between layers of an inorganic layered compound. Further, an environmental cleaning agent can be obtained by mixing a powder containing iron ions between layers of an inorganic layered compound with a peroxide powder. Peroxides used in the present invention include percarbonates such as potassium percarbonate, perborates such as sodium perborate, urea peroxide, urea hydrogen peroxide, hydrogen peroxide carbamide, carbamide peroxide, and the like. . The blending ratio of the peroxide is 0.1 to 99% by weight, more preferably 10 to 70% by weight. The environmental purification agent of the present invention is a powder, which is easy to transport and store. When dissolved in water and used, the photocatalyst particles and iron ions come into contact with the peroxide to continuously generate active oxygen, which can be used for water treatment. Environmental purification such as deodorization, antibacterial, antiviral, antifungal, washing, antifouling, etc. can be performed efficiently, extremely quickly, economically and safely.

本発明の環境浄化剤においては、好適には、さらに、安定剤としてキレート成分が含まれる。その例として、オルトリン酸、ポリリン酸、ピロリン酸、トリポリリン酸などのリン酸の塩、リン酸、ケイ酸マグネシウムやケイ酸マグネシウムナトリウムなどのケイ酸塩、酢酸、クエン酸、酒石酸、リンゴ酸、ギ酸、グルコン酸、ケイ酸、コハク酸、シュウ酸、ソルビン酸、塩酸、硫酸、乳酸、葉酸、酪酸等が挙げられる。ケイ酸塩の配合割合は0.01~10重量%、より好ましくは0.1~5重量%である。リン酸塩の混合割合は、0~90重量%、より好ましくは5~50重量%である。クエン酸などの酸の混合割合は、0~70重量%、より好ましくは10~50重量%である。The environmental cleaning agent of the present invention preferably further contains a chelate component as a stabilizer. Examples include salts of phosphoric acid such as orthophosphoric acid, polyphosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, phosphoric acid, silicates such as magnesium silicate and magnesium sodium silicate, acetic acid, citric acid, tartaric acid, malic acid, formic acid. , gluconic acid, silicic acid, succinic acid, oxalic acid, sorbic acid, hydrochloric acid, sulfuric acid, lactic acid, folic acid, butyric acid and the like. The blending ratio of silicate is 0.01 to 10% by weight, more preferably 0.1 to 5% by weight. The mixing ratio of the phosphate is 0 to 90% by weight, preferably 5 to 50% by weight. The mixing ratio of acid such as citric acid is 0 to 70% by weight, more preferably 10 to 50% by weight.

水にヘクトライトの粉末を添加して良く分散し、塩化第一鉄を溶解して攪拌しながら乾燥してヘクトライトの層間に鉄イオンが20重量%含有された光触媒粉末を作製した。この光触媒粉末1重量%と過ホウ酸ナトリウム65重量%とピロリン酸四ナトリウム20重量%とリンゴ酸14重量%を混合して粉末の環境浄化剤を作製し、遮光フィルムでできた袋に密封した。その結果、過ホウ酸ナトリウムを鉄イオンと接触させると直ちに分解して酸素が発生し、袋がぱんぱんに膨らむが、ヘクトライトに鉄イオンをインターカレートした粉末を使用した場合にはほぼ酸素が発生せず、袋が変化しなかった。Hectorite powder was added to water and well dispersed, and ferrous chloride was dissolved and dried with stirring to prepare a photocatalyst powder containing 20% by weight of iron ions between hectorite layers. 1% by weight of this photocatalyst powder, 65% by weight of sodium perborate, 20% by weight of tetrasodium pyrophosphate and 14% by weight of malic acid were mixed to prepare a powdery environmental cleaning agent, which was sealed in a bag made of a light-shielding film. . As a result, when sodium perborate comes into contact with iron ions, it immediately decomposes and oxygen is generated, and the bag swells, but when hectorite intercalated with iron ions is used, almost all oxygen is generated. No, the bag did not change.

この環境浄化剤を水で100倍に希釈して5ccシャーレにとり、100ppmになるようにメチレンブルー粉末を加えた。これに、1000ルックスの蛍光灯の光を照射した。その結果、メチレンブルーは5分で20ppmに30分で0ppmになった。環境浄化剤を使用せずにメチレンブルーの水溶液に光を照明下だけではメチレンブルーの濃度に変化はなかった。This environmental cleaning agent was diluted 100-fold with water, placed in a 5 cc petri dish, and methylene blue powder was added to 100 ppm. This was irradiated with light from a fluorescent lamp of 1000 lux. As a result, methylene blue reached 20 ppm in 5 minutes and 0 ppm in 30 minutes. There was no change in the concentration of methylene blue when the aqueous solution of methylene blue was exposed to light without using an environmental cleaning agent.

水に硫酸第二鉄を溶解した後、粒径50nmのアナターゼ型酸化チタン粒子を添加して攪拌し、酸化チタンに鉄イオンを5wt%担持した分散液を作製した。これにモンモリロナイトの粉末を添加し良く攪拌しながら乾燥し、鉄イオンを担持した酸化チタンとモンモリロナイトが重量比1対1の光触媒粉体を作製した。モンモリロナイトは1nm程度の厚さのナノシートが積層してできており、水の中に添加すると層間が広がり、鉄イオンを担持した酸化チタン粒子がインターカレートされる。この光触媒粉体を2gシャーレに入れ、それを用いて光触媒製品技術協議会の光触媒性能評価試験法IIa(ガスバッグA法)によりアセトアルデヒドを用いて分解試験を行った。その結果、モンモリロナイトにインターカレートしていない鉄イオンを担持しただけの酸化チタン光触媒粒子1gを使った試験結果と比べ、アセトアルデヒドを2.4倍多く分解した。これはモンモリロナイトの層間にインターカレートされたため、アセトアルデヒドの吸着力が向上したためと考えられる。After dissolving ferric sulfate in water, anatase-type titanium oxide particles with a particle size of 50 nm were added and stirred to prepare a dispersion in which 5 wt % of iron ions were supported on titanium oxide. A powder of montmorillonite was added to this, and the mixture was dried while stirring well to prepare a photocatalyst powder having a weight ratio of 1:1 between iron ion-carrying titanium oxide and montmorillonite. Montmorillonite is made of laminated nanosheets with a thickness of about 1 nm, and when added to water, the interlayer spreads and titanium oxide particles supporting iron ions are intercalated. 2 g of this photocatalyst powder was placed in a petri dish, and a decomposition test was performed using acetaldehyde according to the photocatalyst performance evaluation test method IIa (gas bag A method) of the Photocatalyst Product Technical Council. As a result, acetaldehyde was decomposed 2.4 times more than the test result using 1 g of titanium oxide photocatalyst particles only carrying iron ions that were not intercalated with montmorillonite. It is considered that this is because intercalation between the layers of montmorillonite improves the adsorption power of acetaldehyde.

また、この光触媒粉体を5重量%酢酸ビニル樹脂に混ぜ光触媒成形体を作製した。カーボンアークランプを用いて促進劣化試験を行った。80時間後の重量減少率を測定した結果、モンモリロナイトにインターカレートしていない鉄イオンを担持しただけの酸化チタンの光触媒粉体を使った試験では33%重量が減少したが、この光触媒粉体を使用した場合は5%しか減少せず、大きな劣化防止効果が得られた。Further, this photocatalyst powder was mixed with 5% by weight vinyl acetate resin to prepare a photocatalyst molding. An accelerated aging test was performed using a carbon arc lamp. As a result of measuring the weight loss rate after 80 hours, the weight was reduced by 33% in the test using the photocatalyst powder of titanium oxide, which only supported iron ions that were not intercalated with montmorillonite. was used, the decrease was only 5%, and a large deterioration prevention effect was obtained.

さらに、この光触媒粉体2重量%と過炭酸カリウム70重量%とポリリン酸ナトリウム13重量%とクエン酸15重量%を混合して粉末の環境浄化剤を作製し、遮光フィルムでできた袋に密封した。その結果、光触媒粉体の代わりに鉄イオンを担持しただけの酸化チタン光触媒粉体を使った場合は過酸化物の分解により酸素が発生して袋がパンパンに膨らんでしまったが、モンモリロナイトにインターカレートした光触媒粉体を使用した場合にはほぼ酸素が発生せず、袋が膨らまなかった。Further, 2% by weight of this photocatalyst powder, 70% by weight of potassium percarbonate, 13% by weight of sodium polyphosphate, and 15% by weight of citric acid were mixed to prepare a powdery environmental cleaning agent, which was then sealed in a bag made of a light-shielding film. did. As a result, when titanium oxide photocatalyst powder supporting only iron ions was used instead of photocatalyst powder, oxygen was generated due to the decomposition of the peroxide and the bag swelled. When curated photocatalyst powder was used, almost no oxygen was generated and the bag did not swell.

この環境浄化剤を水で100倍に希釈し、それを用いてJIS R1702ファインセラミックス-光触媒抗菌加工材料の抗菌試験方法及び抗菌効果の方法により黄色ブドウ球菌を用いて抗菌性能試験を行った。その結果、1時間後、リファレンスの120万個の菌数に対して10個以下になり、99.999%以上の減少率が得られた。なお、99%以上が合格である。This environmental cleaning agent was diluted 100 times with water, and an antibacterial performance test was conducted using Staphylococcus aureus according to JIS R1702 Fine ceramics-Antibacterial test method and antibacterial effect method for photocatalyst antibacterial processed materials. As a result, after 1 hour, the number of bacteria decreased to 10 or less compared to the reference 1,200,000, and a reduction rate of 99.999% or more was obtained. In addition, 99% or more are pass.

水に粒径40nmのアナターゼ型80%ルチル型20%の酸化チタン粒子を添加して攪拌し分散した後、硝酸第二鉄を溶解して、酸化チタンに鉄イオンを5wt%担持した分散液を作製した。これにスメクタイトの粉末を添加し良く攪拌しながら乾燥し、スメクタイトの層間に鉄イオンを担持した酸化チタン粒子をインターカレートした、鉄イオンを担持した酸化チタンとスメクタイトが重量比1対1の光触媒粉体を作製した。この光触媒粉体を2gシャーレに入れ、それを用いて光触媒製品技術協議会の光触媒性能評価試験法IIa(ガスバッグA法)によりトルエンを用いて分解試験を行った。その結果、スメクタイトにインターカレートしていない鉄イオンを担持しただけの酸化チタン光触媒粒子1gを使った場合、光触媒粒子が親水性でトルエンが撥水性なので親和性が低いため、1時間後、トルエンは11%しか分解されなかったが、作製した光触媒粉体を使用した場合には、トルエンは吸着されて99%分解された。After adding 80% anatase type 20% rutile titanium oxide particles with a particle size of 40 nm to water and stirring and dispersing, ferric nitrate is dissolved to prepare a dispersion in which 5% by weight of iron ions are supported on titanium oxide. made. Powder of smectite is added to this, and the mixture is dried while stirring well, and titanium oxide particles supporting iron ions are intercalated between smectite layers. A photocatalyst in which the weight ratio of titanium oxide supporting iron ions and smectite is 1:1. A powder was produced. 2 g of this photocatalyst powder was placed in a petri dish, and a decomposition test was performed using toluene according to photocatalyst performance evaluation test method IIa (gas bag A method) of the Photocatalyst Product Technical Council. As a result, when using 1 g of titanium oxide photocatalyst particles that only support iron ions that are not intercalated with smectite, the photocatalyst particles are hydrophilic and toluene is water repellent, so the affinity is low. was decomposed by only 11%, but when the prepared photocatalyst powder was used, toluene was adsorbed and decomposed by 99%.

また、この光触媒粉体を10重量%ポリエチレングリコールに混ぜ、光触媒成形物を作製した。キセノンアークランプを用いて促進劣化試験を行った。100時間後の重量減少率を測定した結果、スメクタイトにインターカレートしていない鉄イオンを担持しただけの酸化チタン光触媒粒子を使った試験では45%重量が減少したが、この光触媒成形体を使用した場合は6%しか減少せず、大きな劣化防止効果が得られた。Further, this photocatalyst powder was mixed with 10% by weight polyethylene glycol to prepare a photocatalyst molding. An accelerated aging test was performed using a xenon arc lamp. As a result of measuring the weight loss rate after 100 hours, the weight was reduced by 45% in the test using titanium oxide photocatalyst particles that only supported iron ions that were not intercalated with smectite, but this photocatalyst compact was used. In the case of 100%, the reduction was only 6%, and a large deterioration prevention effect was obtained.

さらに、この光触媒粉体3重量%と過酸化尿素水素75重量%とケイ酸マグネシウム10重量%とシュウ酸12重量%を混合して粉末の環境浄化剤を作製し、遮光フィルムでできた袋に密封した。その結果、光触媒粉体の代わりにスメクタイトにインターカレートしていない鉄イオンを担持しただけの酸化チタン光触媒粒子を使った場合は過酸化物の分解により酸素が発生して袋がパンパンに膨らんでしまったが、スメクタイトにインターカレートした光触媒粉体を使用した場合にはほぼ酸素が発生せず、袋が膨らまなかった。Furthermore, 3% by weight of this photocatalyst powder, 75% by weight of urea hydrogen peroxide, 10% by weight of magnesium silicate, and 12% by weight of oxalic acid were mixed to prepare a powdery environmental cleaning agent, which was placed in a bag made of a light-shielding film. Sealed. As a result, when titanium oxide photocatalyst particles that only support iron ions that are not intercalated with smectite are used instead of photocatalyst powder, oxygen is generated due to the decomposition of the peroxide, and the bag swells. Unfortunately, when smectite-intercalated photocatalyst powder was used, almost no oxygen was generated and the bag did not swell.

この環境浄化剤を水で100倍に希釈し、それを用いてISO 18071:2016ファインセラミックス(アドバンストセラミックス、アドバンストテクニカルセラミックス)屋内照明下における光触媒材料の抗ウィルス性特定試験方法によりノロウィルスの代替であるネコカリシウイルスを用いて抗ウィルス性能試験を行った。その結果、30分後、100%不活化という結果が得られた。なお、99%以上が合格である。Dilute this environmental purification agent 100 times with water and use it as an alternative to norovirus by ISO 18071: 2016 fine ceramics (advanced ceramics, advanced technical ceramics) antiviral specific test method for photocatalyst materials under indoor lighting. An antiviral performance test was performed using a feline calicivirus. As a result, 100% inactivation was obtained after 30 minutes. In addition, 99% or more are pass.

本願の粉体、光触媒成形物、環境浄化剤、光触媒粉体の製造方法は、広く光触媒を利用する製品の製造に使用される。本願の光触媒成形体は、家庭、会社、施設などで広く使用される。The powders, photocatalyst moldings, environmental cleaning agents, and methods for producing photocatalyst powders of the present application are widely used in the production of products that utilize photocatalysts. The photocatalyst molded article of the present application is widely used in homes, companies, facilities, and the like.

Claims (9)

金属イオンを無機層状化合物の層間に有させた光触媒粉体。A photocatalyst powder having metal ions between layers of an inorganic layered compound. 前記金属イオンを担持した光触媒粒子を前記無機層状化合物の層間に有させた請求項1記載の光触媒粉体。2. The photocatalyst powder according to claim 1, wherein the photocatalyst particles carrying the metal ions are provided between the layers of the inorganic layered compound. 前記金属イオンは、鉄イオンである請求項1又は2記載の光触媒粉体。3. The photocatalyst powder according to claim 1, wherein said metal ions are iron ions. 前記光触媒粒子は、酸化チタン粒子である請求項2記載の光触媒粉体。3. The photocatalyst powder according to claim 2, wherein said photocatalyst particles are titanium oxide particles. 請求項1~4のいずれか1項に記載の光触媒粉体を、重合体に含有させた光触媒成形物。A photocatalyst molded article in which the photocatalyst powder according to any one of claims 1 to 4 is contained in a polymer. 請求項1~4のいずれか1項に記載の光触媒粉体と、
過酸化物の粉末との混合物である環境浄化剤。
The photocatalyst powder according to any one of claims 1 to 4,
Environmental remediation agent that is a mixture with peroxide powder.
さらにキレート成分を含む請求項6記載の環境浄化剤。7. The environmental cleaning agent according to claim 6, further comprising a chelate component. 金属イオンを担持した光触媒粒子を無機層状化合物の層間にインターカレートして乾燥する光触媒粉体の製造方法。A method for producing a photocatalyst powder, comprising intercalating photocatalyst particles supporting metal ions between layers of an inorganic layered compound and drying the particles. 鉄塩と光触媒粒子を溶媒に添加して分散する第1分散工程と、
前記分散工程で得られた光触媒スラリーに無機層状化合物を分散する第2分散工程と、を含む光触媒粉体の製造方法。
A first dispersing step of adding and dispersing the iron salt and the photocatalyst particles to the solvent;
and a second dispersing step of dispersing an inorganic layered compound in the photocatalyst slurry obtained in the dispersing step.
JP2021090632A 2021-04-12 2021-04-12 Method for manufacturing photocatalyst powder, photocatalyst molded product, environmental purifier, photocatalyst powder Active JP7027600B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021090632A JP7027600B1 (en) 2021-04-12 2021-04-12 Method for manufacturing photocatalyst powder, photocatalyst molded product, environmental purifier, photocatalyst powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021090632A JP7027600B1 (en) 2021-04-12 2021-04-12 Method for manufacturing photocatalyst powder, photocatalyst molded product, environmental purifier, photocatalyst powder

Publications (2)

Publication Number Publication Date
JP7027600B1 JP7027600B1 (en) 2022-03-01
JP2022162500A true JP2022162500A (en) 2022-10-24

Family

ID=81183877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021090632A Active JP7027600B1 (en) 2021-04-12 2021-04-12 Method for manufacturing photocatalyst powder, photocatalyst molded product, environmental purifier, photocatalyst powder

Country Status (1)

Country Link
JP (1) JP7027600B1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267629A (en) * 1994-03-31 1995-10-17 Matsushita Electric Works Ltd Porous inorganic material and its production
JPH08259344A (en) * 1995-03-28 1996-10-08 Matsushita Electric Works Ltd Porous adsorbing material
JPH10338516A (en) * 1997-06-04 1998-12-22 Nikki Kagaku Kk Production of metal oxide intercalated into clay mineral
JPH1133088A (en) * 1997-07-14 1999-02-09 Sumitomo Osaka Cement Co Ltd Fungicidal material provided with contamination decomposing function and manufacture thereof
JP2002028412A (en) * 2000-07-14 2002-01-29 Mitsubishi Paper Mills Ltd Photocatalytic filter
JP2002035595A (en) * 2000-07-25 2002-02-05 Mitsubishi Paper Mills Ltd Photocatalyst filter
JP2003062462A (en) * 2001-08-27 2003-03-04 National Institute Of Advanced Industrial & Technology Photocatalyst included between clay layers and method for producing the same
JP2004091404A (en) * 2002-08-30 2004-03-25 Takuro Ishibashi Tooth surface cleaner composition
JP2007254704A (en) * 2006-02-22 2007-10-04 Japan Polypropylene Corp Catalyst component for olefin polymerization, method for producing the catalyst component, and method for producing olefin polymer by polymerization catalyst by using the catalyst component
JP2009056391A (en) * 2007-08-31 2009-03-19 National Institute For Materials Science Photocatalytic material of octahedron seat structure
JP2014522368A (en) * 2011-06-03 2014-09-04 ナノバイオマターズ リサーチ アンド デヴェロップメント,エス.エル. Nanocomposite materials based on metal oxides with multi-functional properties

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07267629A (en) * 1994-03-31 1995-10-17 Matsushita Electric Works Ltd Porous inorganic material and its production
JPH08259344A (en) * 1995-03-28 1996-10-08 Matsushita Electric Works Ltd Porous adsorbing material
JPH10338516A (en) * 1997-06-04 1998-12-22 Nikki Kagaku Kk Production of metal oxide intercalated into clay mineral
JPH1133088A (en) * 1997-07-14 1999-02-09 Sumitomo Osaka Cement Co Ltd Fungicidal material provided with contamination decomposing function and manufacture thereof
JP2002028412A (en) * 2000-07-14 2002-01-29 Mitsubishi Paper Mills Ltd Photocatalytic filter
JP2002035595A (en) * 2000-07-25 2002-02-05 Mitsubishi Paper Mills Ltd Photocatalyst filter
JP2003062462A (en) * 2001-08-27 2003-03-04 National Institute Of Advanced Industrial & Technology Photocatalyst included between clay layers and method for producing the same
JP2004091404A (en) * 2002-08-30 2004-03-25 Takuro Ishibashi Tooth surface cleaner composition
JP2007254704A (en) * 2006-02-22 2007-10-04 Japan Polypropylene Corp Catalyst component for olefin polymerization, method for producing the catalyst component, and method for producing olefin polymer by polymerization catalyst by using the catalyst component
JP2009056391A (en) * 2007-08-31 2009-03-19 National Institute For Materials Science Photocatalytic material of octahedron seat structure
JP2014522368A (en) * 2011-06-03 2014-09-04 ナノバイオマターズ リサーチ アンド デヴェロップメント,エス.エル. Nanocomposite materials based on metal oxides with multi-functional properties

Also Published As

Publication number Publication date
JP7027600B1 (en) 2022-03-01

Similar Documents

Publication Publication Date Title
Ghanbari et al. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants
Guo et al. Photocatalytic degradation of persistent organic pollutants by Co-Cl bond reinforced CoAl-LDH/Bi12O17Cl2 photocatalyst: mechanism and application prospect evaluation
Moongraksathum et al. Antiviral and antibacterial effects of silver-doped TiO2 prepared by the peroxo sol-gel method
Baladi et al. Synthesis and characterization of g–C3N4–CoFe2O4–ZnO magnetic nanocomposites for enhancing photocatalytic activity with visible light for degradation of penicillin G antibiotic
Sharma et al. PEG assisted P/Ag/Ag2O/Ag3PO4/TiO2 photocatalyst with enhanced elimination of emerging organic pollutants in salinity condition under solar light illumination
Al-Rasheed Water treatment by heterogeneous photocatalysis an overview
US7579296B2 (en) Broad band light absorbing photocatalyst, process for producing thereof, broad band light absorbing photocatalyst composition, and molded article
US8791044B2 (en) Doped titanium dioxide as a visible and sun light photo catalyst
Annan et al. Application of clay ceramics and nanotechnology in water treatment: A review
KR101420983B1 (en) Fabrication of visible light photocatalyst containing graphene quantum dot and silver nanoparticles decorated titania nanoparticles
Tiwari et al. Efficient application of nano-TiO2 thin films in the photocatalytic removal of Alizarin Yellow from aqueous solutions
Mosavi et al. Photocatalytic removal of Methylene Blue using Ag@ CdSe/Zeoilte nanocomposite under visible light irradiation by Response Surface Methodology
Harikumar et al. Hierarchical construction of ZrO2/CaCr2O4/BiOIO3 ternary photocatalyst: Photodegradation of antibiotics, degradation pathway, toxicity assessment, and genotoxicity studies
WO1999033566A1 (en) Photocatalyst powder for environmental purification, polymer composition containing the powder and molded article thereof, and processes for producing these
CN103752298A (en) Nanoscale photocatalyst and preparation method thereof
Guillaume et al. Titanium oxide-clay” as adsorbent and photocatalysts for wastewater treatment
Khang et al. Role of Photochemical Reactions in the Treatment of Water Used in the High-Tech Agriculture
Al-Obaidi et al. Synthesis of chitosan-TiO2 nanocomposite for efficient Cr (VI) removal from contaminated wastewater sorption kinetics, thermodynamics and mechanism
Singh et al. Nanomaterials photocatalytic activities for waste water treatment: a review
Al-Musawi et al. Degradation of amoxicillin under a UV or visible light photocatalytic treatment process using Fe2O3/bentonite/TiO2: Performance, kinetic, degradation pathway, energy consumption, and toxicology studies
Wang et al. Synthesis and characterization of rectorite/ZnO/TiO2 composites and their properties of adsorption and photocatalysis for the removal of methylene blue dye
Hikku et al. Alkyd resin based hydrophilic self-cleaning surface with self-refreshing behaviour as single step durable coating
CN106390871A (en) Co-doped nanometer titania sol and modified HEPA filter screen
Kodithuwakku et al. A review on recent developments in structural modification of TiO2 for food packaging applications
Chani et al. Sunlight assisted photocatalytic dye degradation using zinc and iron based mixed metal-oxides nanopowders

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

R150 Certificate of patent or registration of utility model

Ref document number: 7027600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150