WO2007023558A1 - Tungsten oxide photocatalyst, process for producing the same, and fiber cloth having deodorizing/antifouling function - Google Patents

Tungsten oxide photocatalyst, process for producing the same, and fiber cloth having deodorizing/antifouling function Download PDF

Info

Publication number
WO2007023558A1
WO2007023558A1 PCT/JP2005/015510 JP2005015510W WO2007023558A1 WO 2007023558 A1 WO2007023558 A1 WO 2007023558A1 JP 2005015510 W JP2005015510 W JP 2005015510W WO 2007023558 A1 WO2007023558 A1 WO 2007023558A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten oxide
porous material
inorganic porous
photocatalyst
pores
Prior art date
Application number
PCT/JP2005/015510
Other languages
French (fr)
Japanese (ja)
Inventor
Yasutaro Seto
Tatsuo Nakamura
Shuichi Yonezawa
Kazuya Nishihara
Original Assignee
Suminoe Textile Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suminoe Textile Co., Ltd. filed Critical Suminoe Textile Co., Ltd.
Priority to JP2007532000A priority Critical patent/JP5102034B2/en
Priority to PCT/JP2005/015510 priority patent/WO2007023558A1/en
Publication of WO2007023558A1 publication Critical patent/WO2007023558A1/en

Links

Classifications

    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8678Removing components of undefined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/076Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/30Tungsten
    • B01J35/60

Definitions

  • Tungsten oxide photocatalyst method for producing the same, and fiber cloth having deodorizing and antifouling function
  • the present invention relates to a tungsten oxide photocatalyst that responds to visible light to exhibit a sufficient deodorizing effect and the like, and a method for producing the same.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-282704
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-1879
  • titanium oxide photocatalyst While the titanium oxide photocatalyst is responsive to ultraviolet light, its photocatalytic activity under visible light is extremely low, so that it is used, for example, when it is used indoors with a small amount of ultraviolet light. Sufficient deodorizing effect can not be obtained.
  • New photocatalysts such as nitrogen-doped titanium oxide and oxygen-deficient titanium oxide have been developed that allow this titanium oxide photocatalyst to respond on the visible light side, but advanced manufacturing technology is required to manufacture these photocatalysts. As a result, the cost is very high.
  • oxidation as a visible light responsive photocatalyst Tungsten is known for its deodorizing performance is insufficient.
  • the present invention has been made in view of the strong technical background, and has excellent photocatalytic activity as a visible light responsive photocatalyst and exhibits a sufficient deodorizing'antifouling effect etc. It is an object of the present invention to provide a low cost tungsten oxide photocatalyst, a method for producing the same, and a fiber fabric that exhibits sufficient deodorizing and antifouling functions in response to visible light.
  • the present invention provides the following means.
  • a tungsten oxide based photocatalyst characterized in that tandastane oxide is supported in the pores of an inorganic porous material having an average pore diameter of 0.4 to 40 nm.
  • a tungsten oxide based photocatalyst characterized in that tungsten oxide is supported on the surface and pores of an inorganic porous material having an average pore diameter of 0.4 to 40 nm.
  • the tungsten oxide in the pores becomes a tungsten oxide by heating and calcining in a state in which a solution of a tungsten compound is contained in the pores of the inorganic porous material.
  • [8] including a solution of a tungsten compound in pores of an inorganic porous material having an average pore size of 0.4 to 40 nm;
  • the tungsten compound is converted into oxidized tandasten by heating and firing in the inclusion state to support tungsten oxide in the pores of the inorganic porous material.
  • a method of producing a tungsten oxide based photocatalyst comprising:
  • a deodorant characterized in that the tungsten oxide photocatalyst according to any one of the above items 1 to 7 or 13 is fixed to at least a part of a fiber fabric by a binder resin. Fiber cloth having antifouling function.
  • the tungsten oxide photocatalyst according to the invention of [1] and [2] has tungsten oxide supported in the pores of the inorganic porous material having an average pore diameter of 0.4 to 40 nm.
  • the photocatalytic activity of the tungsten oxide is extremely high, so that the tungsten oxide photocatalyst exhibits a very excellent deodorizing effect, antifouling effect and the like.
  • oxidized tandastane is a visible light responsive photocatalyst, it exhibits sufficient deodorizing effect, antifouling effect, etc. even when used indoors with a small amount of ultraviolet light.
  • the tungsten oxide in the pores is a solution of a tungsten compound as an inorganic substance. Since the tungsten compound is converted into tungsten oxide and supported in the pores by heating and calcining in the state of being contained in the pores of the porous substance, it is possible to be contained in the pores of the inorganic porous substance.
  • the supported tungsten oxide is sufficiently micronized.
  • a hydrophobic inorganic porous material is used as the inorganic porous material, and the hydrophobic inorganic porous material is a hydrophobic strong ring, an aromatic ring such as toluene or xylene. Since it is easy to attract V ⁇ C, it is possible to decompose and remove VOCs with aromatic rings such as toluene and xylene at high efficiency by oxidizing tan- dastene supported in the pores of the inorganic porous material.
  • hydrophobic zeolite is used as the inorganic porous material, and this hydrophobic zeolite is very easy to attract VOCs having strong aromatic rings such as toluene and xylene.
  • the tungsten oxide carried in the pores of the inorganic porous material can decompose and remove VOCs having an aromatic ring such as toluene and xylene with higher efficiency.
  • the one in which tungsten oxide is supported in the pores of the inorganic porous material having an average pore diameter of 0.4 to 40 nm (tungsten oxide based photocatalyst) is efficiently produced. be able to. Since tan dustene is supported in the pores of the inorganic porous material having an average pore size of 0.4 to 40 nm, the photocatalytic activity of the tungsten oxide is extremely high, and thus the tungsten oxide photocatalyst is Demonstrates very good deodorizing effect, antifouling effect, etc. In addition, since tungsten oxide is a visible light responsive photocatalyst, it exhibits sufficient deodorizing effect, antifouling effect and the like even when it is used indoors with a small amount of ultraviolet light.
  • a hydrophobic inorganic porous material is used as the inorganic porous material. Since this hydrophobic inorganic porous material easily attracts V o C having a strong hydrophobic aromatic ring such as toluene, xylene, etc., in the obtained photocatalyst, the oxidation carried by the pores of the inorganic porous material is caused. Tungsten can decompose and remove VOCs with aromatic rings such as toluene and xylene with high efficiency.
  • hydrophobic zeolite is used as the inorganic porous material. Since this hydrophobic zeolite is very easy to attract VOC having aromatic ring such as strong hydrophobic toluene, xylene, etc., in the obtained photocatalyst, the oxidation supported in the pores of the inorganic porous material is caused. Tungsten can decompose and remove VOCs having aromatic rings such as toluene and xylene with high efficiency.
  • the heating temperature at the time of heating and firing is set to 250 to 1500 ° C.
  • the tungsten compound can be converted to tungsten oxide with sufficient conversion efficiency.
  • the Noinder resin is adhered to the fiber fabric in a substantially reticulated manner, whereby the fibers constituting the fiber fabric can move relatively freely. cloth Sufficient flexibility can be secured as a navel. Furthermore, it is possible to leave a space (room) as a part for imparting other functions other than deodorizing and antifouling to the fiber fabric, for example, to impart other functions such as flame retardancy, water repellency, oil repellency, etc. It is possible, and there is an advantage that further multifunctionalization can be achieved in this way.
  • FIG. 1 is a graph showing an absorption spectrum of the tungsten oxide based photocatalyst obtained in each example.
  • FIG. 2 is a graph showing the results of the endurance performance test of the tungsten oxide photocatalyst of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an embodiment of the fiber cloth according to the present invention.
  • the tungsten oxide based photocatalyst according to the present invention is obtained by supporting tungsten oxide in pores of an inorganic porous material having an average pore diameter of 0.4 to 40 nm.
  • the tungsten oxide is supported in the pores of the inorganic porous material having an average pore diameter of 0.4 to 40 nm, the photocatalytic activity of the supported tungsten oxide is extremely high, and hence the oxidation Tungsten-based photocatalysts exhibit very excellent deodorizing effects, antifouling effects, and the like.
  • the present tungsten oxide photocatalyst has a sufficient amount of deodorizing effect, antifouling effect, etc. even when it is used indoors with a small amount of ultraviolet light. Demonstrate.
  • the photocatalytic activity of the supported tungsten oxide is significantly reduced.
  • Tungsten oxide may be supported at a location (for example, the surface) other than the inside of the pores in the inorganic porous material.
  • a location for example, the surface
  • the tungsten oxide based photocatalyst is fixed by a binder resin to at least a part of the fiber fabric as described later, from the viewpoint of preventing the decomposition of the binder resin by the photocatalytic action of tungsten oxide.
  • the amount of the tungsten oxide photocatalyst supported on the surface of the inorganic porous material other than in the pores is small or zero.
  • the above-mentioned tungsten oxide is not particularly limited, but may be heated and fired in a state in which a solution of a tungsten compound is contained in the pores of the inorganic porous material. It is preferable to use one in which the compound is tungsten oxide and is supported in the pores. When this configuration is adopted, tungsten oxide supported in the pores of the inorganic porous material is sufficiently micronized, which can contribute to further improvement of the photocatalytic activity.
  • tungsten oxide one having a structure in which platinum metal such as platinum, palladium, rhodium or the like is supported to enhance its photocatalytic activity may be used, or silver or copper may be used.
  • the inorganic porous material is not particularly limited, but it is preferable to use a hydrophobic inorganic porous material. Since this hydrophobic inorganic porous material has a good affinity for VOCs (volatile organic compounds) having aromatic rings such as toluene and xylene, and it is easy to attract VOCs having these aromatic rings, tungsten oxide There is an advantage that VOCs having aromatic rings such as toluene and xylene can be decomposed and removed with high efficiency by photocatalysis.
  • VOCs volatile organic compounds
  • the hydrophobic inorganic porous material is not particularly limited.
  • hydrophobic zeolite, activated carbon, alumina porous particles whose surface is coated with a fluorine resin, porous surfaces whose surface is coated with a water repellent agent Quality silicon oxide etc. are mentioned.
  • the intermediate product generated by the decomposition action of tungsten oxide (photocatalyst) can be adsorbed and captured more efficiently by this hydrophobic zeolite.
  • hydrophobic zeolite is white, it is advantageous in applications such as interior textiles where color and design are important.
  • the aforementioned "hydrophobic The “organic porous material” does not include the water-absorbing inorganic porous material.
  • hydrophobic zeolite it is particularly preferable to use one having a Si ⁇ / Al molar ratio of 30 or more. It is a hydrophobic zeolite having a Si ⁇ / Al 2 O molar ratio of 60 or more.
  • hydrophobic zeolite for example, a method of directly synthesizing a high SiZAl ratio zeolite such as silicalite, a method of removing A1 in the framework of zeolite by post-treatment, and modification of surface silanol group of zeolite Methods etc.
  • a method of removing A1 in the framework of zeolite by post treatment a method of hydrothermally treating NH + -type or H + -type zeolite at a high temperature and then acid treatment, a method of directly removing A1 by acid treatment, in an aqueous EDTA solution
  • Methods of treatment with Further, as a method of modifying the surface silanol group of zeolite there is a method of introducing an alkyl group (hydrophobic group) by reaction with an alkylsilane or alcohol.
  • the average particle size of the inorganic porous material is preferably 0.05 to 30 x m. Those with a particle diameter of 0.5 ⁇ m or more are easy to manufacture and low cost, and by being 30 ⁇ m or less, for example, when applied to a fiber fabric, the texture of the fiber fabric is soft and good. It is possible to make it into a state S.
  • the supported amount of the tungsten oxide is preferably 20 to 150 parts by mass with respect to 100 parts by mass of the inorganic porous material.
  • the amount is less than 20 parts by mass, the UV spectrum of tungsten oxide supported in the pores of the inorganic porous material is shifted to the short wavelength side (ultraviolet light region), and it has almost no absorption in the visible light region. It is not preferable because the expression of photocatalytic activity by visible light becomes insufficient.
  • the amount is more than 150 parts by mass, a large amount of the inorganic porous material is necessarily supported not only in the pores of the inorganic porous material but also on the outer surface, or the proportion of tungsten oxide crystallized alone increases. Since the fiber base material and the binder resin will be decomposed a lot, it is preferable.
  • the loading amount of the tungsten oxide is more preferably 25 to 80 parts by mass with respect to 100 parts by mass of the inorganic porous material.
  • a solution of a tantalum compound is included in the pores of the inorganic porous material having an average pore size of 0.4 to 40 nm.
  • the inorganic porous material is a tungsten compound
  • the solution of tungsten compound is included in the pores of the inorganic porous material by immersing in the solution of Examples of the solution of the tungsten compound include an aqueous solution of a tungsten compound and an alcohol solution of the tungsten compound.
  • the concentration of the tungsten compound in the solution of the tungsten compound is not particularly limited, it is preferable to set in the range of 10 to 50% by mass.
  • the tungsten compound is not particularly limited as long as it becomes tungsten oxide by heating and firing, and examples thereof include ammonium metatungstate, tungsten ethoxide, tungstic acid, ammonium tungstate parapentahydrate, and tandust silicic acid. Hydrate, tandust silicic acid ammonium hydrate, sand dust sodium silicate hydrate, sand dust phosphoric acid hydrate, sand dust phosphoric acid ammonium hydrate, sand dust sodium phosphate hydrate, etc. It becomes tungsten oxide by heating and firing over ° C.
  • the inorganic porous material including the solution of the tungsten compound in the pores is heated and calcined to convert the tungsten compound into tungsten oxide, thereby supporting the tungsten oxide in the pores of the inorganic porous material. Do. In this way, a tungsten oxide based photocatalyst in which tungsten oxide is supported in the pores of the inorganic porous material is obtained.
  • the heating temperature at the time of the heating and firing is preferably set to 250 to 1500 ° C.
  • the tungsten compound can be converted to tungsten oxide at a sufficient conversion rate, and by setting the temperature to 1,500 ° C. or lower, the energy cost of firing can be reduced.
  • the tungsten oxide photocatalyst of the present invention is not particularly limited to one produced by the above-described production method.
  • the fiber cloth (1) having a deodorizing and antifouling function according to the present invention has at least one of the fiber cloth (2) Also in part, the tungsten oxide photocatalyst (3) having the above-described structure is fixed by the binder resin (4) (see FIG. 3).
  • the binder resin is not particularly limited, and examples thereof include acrylic resins, urethane resins, and acrylic silicone resins.
  • the adhesion amount of the tungsten oxide photocatalyst to the fiber fabric is preferably from 0.:! To 50 parts by mass with respect to 100 parts by mass of the fiber fabric.
  • the content is 50 parts by mass or less, the texture of the fabric can be softened, and when the content is 0.1 parts by mass or more, the photocatalytic action can be sufficiently exhibited.
  • the adhesion amount of the tungsten oxide photocatalyst to the fiber fabric is more preferably 0.3 to 20 parts by mass with respect to 100 parts by mass of the fiber fabric.
  • the adhesion amount of the binder resin to the fiber cloth is preferably 0.05 to 50 parts by mass with respect to 100 parts by mass of the fiber cloth. While the texture of the fabric can be made soft by being 50 parts by mass or less and sufficient fixing power can be secured by making it 0.50 parts by mass or more, the falling off of the tungsten oxide photocatalyst can be effectively prevented. can do. Among them, the adhesion amount of the binder resin to the fiber fabric is more preferably 0.15 to 20 parts by mass with respect to 100 parts by mass of the fiber fabric.
  • the fiber cloth (1) having a deodorizing and antifouling function of the present invention is produced, for example, as follows. That is, after a treatment liquid containing the above-mentioned tungsten oxide photocatalyst (having porous titanium oxide supported in pores of the inorganic porous material) and a binder resin is attached to at least a part of the fiber fabric, It can be manufactured by drying.
  • the application of the treatment liquid is performed by, for example, a dipping method, a coating method, or the like.
  • the immersion method for example, after immersing the fiber cloth in a treatment liquid containing the tungsten oxide photocatalyst and the binder resin, a method of squeezing the cloth with a mundal and drying can be exemplified. If manufactured by this immersion method, there is an advantage that the tungsten oxide photocatalyst and the binder resin can be fixed to the fiber cloth in a uniform state.
  • An example of the coating method is a method in which a treatment liquid containing the tungsten oxide photocatalyst and binder resin is applied to at least a part of a fiber fabric and coated, and then dried. If manufactured by this coating method, productivity will be There is an advantage that it can be significantly improved and the amount of adhesion can be controlled with high accuracy. In addition, in this coating method, it is possible to bond the binder resin in a substantially mesh shape. Specific examples of the coating method include, but not particularly limited to, gravure roll method, transfer printing method, screen printing method and the like.
  • the proportion of each component in the treatment liquid is not particularly limited, but if the amount of the binder resin is too large with respect to the amount of the photocatalyst, the ratio of covering the surface of the photocatalyst with the binder resin increases. It is not preferable because the deodorizing and antifouling effects are reduced.
  • the preferred content is 50 to 500 parts by mass of the tungsten oxide photocatalyst relative to 100 parts by mass of the binder resin.
  • the fiber fabric (2) is not particularly limited, and examples thereof include woven fabric, knitted fabric, non-woven fabric, napped fabric (tuffed force mesh, moquette etc.) and the like.
  • the kind, form, etc. of the fiber which comprises the said fiber fabric are not specifically limited.
  • the fibers constituting the fiber fabric include synthetic fibers such as polyester, polyamide and acrylic, semi-synthetic fibers such as acetate and rayon, and natural fibers such as wool, silk, cotton and hemp. You may employ
  • the supported amount of tungsten oxide was 00 parts by mass with respect to 00 parts by mass.
  • Hydrophobic zeolite Si Al / Al 2 O 3 ratio: 1500 having an average pore diameter of 0.6 nm and an average particle diameter of 5 / im in 1 L of an aqueous solution of ammonium tungstate having a concentration of 30% by mass 246
  • Hydrophobic zeolite Si Si / Al 2 O 3 ratio: 1500
  • the UV absorption spectrum of the tungsten oxide based photocatalyst obtained in Examples 1, 5 and 7 is shown in FIG. It can be seen from FIG. 1 that as the amount of tungsten oxide supported in the pores increases, the absorption in the visible light region increases and the resorption increases.
  • Tungsten oxide photocatalyst was placed in a bag with a content of 5 L so that the amount of tungsten oxide was 0.2 g, and then acetaldehyde gas was injected into the bag so that the concentration was 200 ppm. .
  • acetaldehyde gas was injected into the bag so that the concentration was 200 ppm. .
  • the amount of carbon dioxide gas generated by the decomposition of aldehyde was measured, and based on this, the amount of carbon dioxide gas generated per hour was measured.
  • toluene gas is injected into the bag so that the concentration becomes 200 ppm.
  • place this bag 30 cm directly under a fluorescent lamp (using UV cut filter with a wavelength shorter than 390 nm, illuminance 6,000 norethex), and after 4 hours, use toluene The amount of carbon dioxide gas generated by the decomposition of the carbon dioxide was measured, and the amount of carbon dioxide gas generated per hour was measured based on this.
  • the tungsten oxide photocatalysts of Examples 1 to 7 according to the present invention were able to exhibit excellent decomposition performance with respect to acetaldehyde and toluene under visible light irradiation.
  • the photocatalyst of Comparative Example 1 in which oxidized tandasten is supported in the pores of the inorganic porous material having an average pore diameter of 0.3 nm, the decomposition performance is insufficient under visible light irradiation. Met.
  • the photocatalyst of Comparative Example 2 in which oxidized tungsten is supported in the pores of the inorganic porous material having an average pore diameter of 50 nm also has insufficient decomposition performance under visible light irradiation.
  • the degradation performance of the oxidized tandasten-based photocatalyst of the present invention is excellent in the durability of the degradation performance without any deterioration. I understand.
  • Example 2 After 10 parts by mass of the tungsten oxide based photocatalyst of Example 1 was mixed with 84 parts by mass of water, the mixture was sufficiently stirred by a stirrer to obtain a dispersion. 6 parts by mass of an acrylic resin (solid content: 50% by mass) was added to the dispersion, and the mixture was sufficiently stirred to obtain a uniform dispersion treatment liquid. A polyester spunbond non-woven fabric (40 g / m 2 basis weight) is dipped in this dispersion treatment solution, taken out, squeezed with a mandarin, and dried to obtain a fiber fabric having a deodorizing and antifouling function (Fig. 3 Reference) got.
  • the adhesion amount of the tungsten oxide photocatalyst to the fiber fabric was 3 parts by mass with respect to 100 parts by mass of the fiber fabric.
  • the adhesion amount of the binder resin to the fiber cloth was 1 part by mass with respect to 100 parts by mass of the fiber cloth.
  • Example 8 In the same manner as in Example 8 except that the tungsten oxide photocatalyst of Example 2 was used as the tungsten oxide photocatalyst, a fiber cloth having a deodorizing and antifouling function was obtained.
  • Example 8 In the same manner as in Example 8 except that the tungsten oxide photocatalyst of Example 3 was used as the tungsten oxide photocatalyst, a fiber cloth having a deodorizing and antifouling function was obtained.
  • a fiber cloth having a deodorizing and antifouling function was obtained in the same manner as in Example 8 except that the tungsten oxide photocatalyst of Example 4 was used as the tungsten oxide photocatalyst.
  • a fiber cloth having a deodorizing and antifouling function was obtained in the same manner as in Example 8 except that the tungsten oxide photocatalyst of Comparative Example 1 was used as the tungsten oxide photocatalyst.
  • Comparative Example 4 In the same manner as in Example 8 except that the tungsten oxide photocatalyst of Comparative Example 2 was used as the tungsten oxide photocatalyst, a fiber cloth having a deodorizing and antifouling function was obtained.
  • test pieces (10 ⁇ 10 cm square) cut out from each fiber cloth were placed in a bag having an inner volume of 5 L, and then acetaldehyde gas was injected so that the concentration was 200 ppm in the bag.
  • acetaldehyde gas was injected so that the concentration was 200 ppm in the bag.
  • the amount of carbonic acid gas generated by the decomposition of the binder resin was measured, and based on this, the amount of carbon dioxide gas generated per hour (X) was measured.
  • the amount of carbon dioxide gas generated per hour (the amount of carbonic acid gas generated by the decomposition of the binder resin) Y) was measured. Therefore, the amount of carbon dioxide gas generation derived from the decomposition of acetaldehyde was calculated by (X-Y).
  • the deodorant / antifouling fiber fabric of Examples 8 to 11 of the present invention exhibits excellent decomposition performance to acetaldehyde under visible light irradiation. did it.
  • the binder resin is hardly decomposed by the photocatalyst substantially.
  • the binder resin was decomposed by the photocatalyst in the fiber fabric of Comparative Example 3 using the tungsten oxide photocatalyst produced by using an inorganic porous material with an average pore diameter of 0.3 nm.
  • the tungsten oxide photocatalyst according to the present invention is not particularly limited, but examples are For example, it is used as a deodorant, an antibacterial agent, a sterilizer, an antifouling agent, a waste water treatment agent, a water purification treatment agent and the like.
  • the fiber cloth having deodorizing and antifouling functions according to the present invention is not particularly limited.

Abstract

A tungsten oxide photocatalyst that exhibits excellent photocatalytic activity as a visible light responsive photocatalyst, exerting satisfactory deodorizing/antifouling effects, etc. and that is available at low cost. There is provided a tungsten oxide photocatalyst characterized in that tungsten oxide is supported within the pores of an inorganic porous substance of 0.4 to 40 nm average pore diameter.

Description

明 細 書  Specification
酸化タングステン系光触媒及びその製造方法並びに消臭 ·防汚機能を有 する繊維布帛  Tungsten oxide photocatalyst, method for producing the same, and fiber cloth having deodorizing and antifouling function
技術分野  Technical field
[0001] この発明は、可視光で応答して十分な消臭効果等を発揮する酸化タングステン系 光触媒及びその製造方法に関する。  The present invention relates to a tungsten oxide photocatalyst that responds to visible light to exhibit a sufficient deodorizing effect and the like, and a method for producing the same.
背景技術  Background art
[0002] 近年、シックハウス症候群に代表されるように、例えば住宅建材等から発生するホ ルムアルデヒド等の有害物質による生活環境の汚染問題が急速に深刻化してきてい る。また、このような状況の中、前記ホルムアルデヒドだけでなくトルエン、キシレン等 の芳香環を有した難分解性の VOCも室内空気環境ガイドラインによって規制される ようになってきている。  [0002] In recent years, as represented by sick house syndrome, for example, the problem of pollution of living environment by harmful substances such as formaldehyde which is generated from housing construction materials etc. has rapidly become serious. Under these circumstances, not only formaldehyde but also persistent VOCs having an aromatic ring such as toluene or xylene are being regulated by the indoor air environment guidelines.
[0003] ところで、酸化チタン等の光触媒は、ホルムアルデヒド等の有機物等を炭酸ガスと水 に分解する能力があることが知られており(特許文献 1参照)、このような光触媒を繊 維布帛に固着せしめた構成の消臭布帛が種々提案されてレ、る(例えば特許文献 2参 照)。即ち、特許文献 2では、繊維布帛に酸化チタン光触媒がシリコーン架橋型樹脂 で固着されてなる消臭布帛によって、イソ吉草酸を消臭できることが記載されている。 特許文献 1 :特開 2002— 282704号公報  [0003] By the way, it is known that photocatalysts such as titanium oxide have the ability to decompose organic substances such as formaldehyde into carbon dioxide gas and water (see Patent Document 1), and such photocatalysts can be used as fiber fabrics. Various deodorant fabrics having a fixed structure have been proposed (see, for example, Patent Document 2). That is, in Patent Document 2, it is described that isovaleric acid can be deodorized by a deodorizing fabric in which a titanium oxide photocatalyst is fixed to a fiber fabric with a silicone crosslinkable resin. Patent Document 1: Japanese Patent Application Laid-Open No. 2002-282704
特許文献 2 :特開平 10— 1879号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 10-1879
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0004] し力、しながら、酸化チタン光触媒は紫外光応答型であるので、可視光下での光触 媒活性は極めて低ぐ従って例えば紫外線量の少ない屋内において使用されるよう な場合には十分な消臭効果が得られない。この酸化チタン光触媒を可視光側で応 答させるベぐ窒素ドープ型酸化チタン、酸素欠乏型酸化チタン等の新たな光触媒も 開発されているが、これら光触媒の製造には高度な製造技術が要求される結果、コ ストが非常に高くなるという問題があった。また、可視光応答型の光触媒としては酸化 タングステンが知られている力 その消臭性能は不十分であった。 [0004] While the titanium oxide photocatalyst is responsive to ultraviolet light, its photocatalytic activity under visible light is extremely low, so that it is used, for example, when it is used indoors with a small amount of ultraviolet light. Sufficient deodorizing effect can not be obtained. New photocatalysts such as nitrogen-doped titanium oxide and oxygen-deficient titanium oxide have been developed that allow this titanium oxide photocatalyst to respond on the visible light side, but advanced manufacturing technology is required to manufacture these photocatalysts. As a result, the cost is very high. In addition, oxidation as a visible light responsive photocatalyst Tungsten is known for its deodorizing performance is insufficient.
[0005] この発明は、力かる技術的背景に鑑みてなされたものであって、可視光応答型の光 触媒として優れた光触媒活性を有して十分な消臭'防汚効果等を発揮すると共に低 コストである酸化タングステン系光触媒及びその製造方法並びに可視光に応答して 十分な消臭 ·防汚機能を発揮する繊維布帛を提供することを目的とする。  The present invention has been made in view of the strong technical background, and has excellent photocatalytic activity as a visible light responsive photocatalyst and exhibits a sufficient deodorizing'antifouling effect etc. It is an object of the present invention to provide a low cost tungsten oxide photocatalyst, a method for producing the same, and a fiber fabric that exhibits sufficient deodorizing and antifouling functions in response to visible light.
課題を解決するための手段  Means to solve the problem
[0006] 前記目的を達成するために、本発明は以下の手段を提供する。  In order to achieve the above object, the present invention provides the following means.
[0007] [1]平均細孔径が 0. 4〜40nmである無機多孔質物質の細孔内に酸化タンダステ ンが担持されていることを特徴とする酸化タングステン系光触媒。  [1] A tungsten oxide based photocatalyst characterized in that tandastane oxide is supported in the pores of an inorganic porous material having an average pore diameter of 0.4 to 40 nm.
[0008] [2]平均細孔径が 0. 4〜40nmである無機多孔質物質の表面及び細孔内に酸化 タングステンが担持されていることを特徴とする酸化タングステン系光触媒。  [2] A tungsten oxide based photocatalyst characterized in that tungsten oxide is supported on the surface and pores of an inorganic porous material having an average pore diameter of 0.4 to 40 nm.
[0009] [3]前記細孔内の酸化タングステンは、タングステンィ匕合物の溶液を前記無機多孔 質物質の細孔内に包含させた状態で加熱焼成することによってタングステン化合物 が酸化タングステンになって前記細孔内に担持されたものである前項 1または 2に記 載の酸化タングステン系光触媒。  [0009] [3] The tungsten oxide in the pores becomes a tungsten oxide by heating and calcining in a state in which a solution of a tungsten compound is contained in the pores of the inorganic porous material. The tungsten oxide based photocatalyst as described in 1 or 2 above, which is supported in the pores.
[0010] [4]前記酸化タングステンの担持量が、前記無機多孔質物質 100質量部に対して 20〜150質量部である前項 1〜3のいずれか 1項に記載の酸化タングステン系光触 媒。  [4] The tungsten oxide based photocatalyst according to any one of the above items 1 to 3, wherein the supported amount of the tungsten oxide is 20 to 150 parts by mass with respect to 100 parts by mass of the inorganic porous material. .
[0011] [5]前記タングステン化合物がメタタングステン酸アンモニゥムである前項 3または 4 に記載の酸化タングステン系光触媒。  [5] The tungsten oxide based photocatalyst according to the above item 3 or 4, wherein the tungsten compound is ammonium metatungstate.
[0012] [6]前記無機多孔質物質が疎水性無機多孔質物質である前項 1〜5のいずれか 1 項に記載の酸化タングステン系光触媒。 [6] The tungsten oxide photocatalyst according to any one of the above items 1 to 5, wherein the inorganic porous material is a hydrophobic inorganic porous material.
[0013] [7]前記無機多孔質物質が疎水性ゼォライトである前項 1〜5のいずれ力 4項に記 載の酸化タングステン系光触媒。 [7] The tungsten oxide photocatalyst according to any one of [1] to [5], wherein the inorganic porous material is hydrophobic zeolite.
[0014] [8]平均細孔径が 0. 4〜40nmである無機多孔質物質の細孔内にタングステン化 合物の溶液を包含させる工程と、 [8] [8] including a solution of a tungsten compound in pores of an inorganic porous material having an average pore size of 0.4 to 40 nm;
前記包含状態で加熱焼成することによって前記タングステン化合物を酸化タンダス テンに変化させて前記無機多孔質物質の細孔内に酸化タングステンを担持するェ 程と、を含むことを特徴とする酸化タングステン系光触媒の製造方法。 The tungsten compound is converted into oxidized tandasten by heating and firing in the inclusion state to support tungsten oxide in the pores of the inorganic porous material. A method of producing a tungsten oxide based photocatalyst comprising:
[0015] [9]前記タングステン化合物の溶液としてメタタングステン酸アンモニゥムの水溶液 を用いる前項 8に記載の酸化タングステン系光触媒の製造方法。  [9] The method for producing a tungsten oxide based photocatalyst according to the above [9], wherein an aqueous solution of ammonium metatungstate is used as the solution of the tungsten compound.
[0016] [10]前記無機多孔質物質として疎水性無機多孔質物質を用いる前項 8または 9に 記載の酸化タングステン系光触媒の製造方法。 [10] The method for producing a tungsten oxide based photocatalyst according to the above 8 or 9, wherein a hydrophobic inorganic porous material is used as the inorganic porous material.
[0017] [11]前記無機多孔質物質として疎水性ゼォライトを用いる前項 8または 9に記載の 酸化タングステン系光触媒の製造方法。 [11] The method for producing a tungsten oxide based photocatalyst according to the above 8 or 9, wherein hydrophobic zeolite is used as the inorganic porous material.
[0018] [12]前記加熱焼成の際の加熱温度が 250〜: 1500°Cである前項 8〜: 11のいずれ 力、 1項に記載の酸化タングステン系光触媒の製造方法。 [12] The method for producing a tungsten oxide based photocatalyst according to any one of [8] to [11] above, wherein the heating temperature during the heating and firing is 250 to 1500 ° C.
[0019] [13]前項 8〜: 12のいずれ力 4項に記載の製造方法により製造された酸化タンダス テン系光触媒。 [13] An oxidized tandasten-based photocatalyst produced according to the production method described in any one of [4] to [12].
[0020] [14]繊維布帛の少なくとも一部に、前項:!〜 7のいずれか 1項又は前項 13に記載 の酸化タングステン系光触媒がバインダー樹脂によって固着されていることを特徴と する消臭 ·防汚機能を有する繊維布帛。  [14] A deodorant characterized in that the tungsten oxide photocatalyst according to any one of the above items 1 to 7 or 13 is fixed to at least a part of a fiber fabric by a binder resin. Fiber cloth having antifouling function.
[0021] [15]前記酸化タングステン系光触媒の繊維布帛への付着量力 繊維布帛 100質 量部に対して 0.:!〜 50質量部であり、前記バインダー樹脂の繊維布帛への付着量 力 繊維布帛 100質量部に対して 0. 05〜50質量部である前項 14に記載の消臭 · 防汚機能を有する繊維布帛。  [15] Force of adhesion of the tungsten oxide photocatalyst to the fiber fabric Fiber fabric 100 parts by mass: 0.:! To 50 parts by mass, adhesion amount of the binder resin to the fiber fabric Force fiber The textile fabric which has the deodorizing and antifouling function of the preceding clause 14 which is 0.05-5 mass parts to 100 mass parts of textiles.
[0022] [16]前記バインダー樹脂は、繊維布帛に対して略網目状に固着されている前項 1 4または 15に記載の消臭 ·防汚機能を有する繊維布帛。  [16] The fiber fabric according to the above 14 or 15, wherein the binder resin is fixed to the fiber fabric in a substantially reticulated manner.
発明の効果  Effect of the invention
[0023] [1] [2]の発明に係る酸化タングステン系光触媒は、平均細孔径が 0. 4〜40nmで ある無機多孔質物質の細孔内に酸化タングステンが担持されたものであるから、該 酸化タングステンの光触媒活性は著しく高いものとなり、従ってこの酸化タングステン 系光触媒は、非常に優れた消臭効果'防汚効果等を発揮する。また、酸化タンダステ ンは可視光応答型光触媒であるから、紫外線量の少ない屋内で使用されるような場 合であっても十分な消臭効果'防汚効果等を発揮する。  [0023] The tungsten oxide photocatalyst according to the invention of [1] and [2] has tungsten oxide supported in the pores of the inorganic porous material having an average pore diameter of 0.4 to 40 nm. The photocatalytic activity of the tungsten oxide is extremely high, so that the tungsten oxide photocatalyst exhibits a very excellent deodorizing effect, antifouling effect and the like. In addition, since oxidized tandastane is a visible light responsive photocatalyst, it exhibits sufficient deodorizing effect, antifouling effect, etc. even when used indoors with a small amount of ultraviolet light.
[0024] [3]の発明では、細孔内の酸化タングステンは、タングステン化合物の溶液を無機 多孔質物質の細孔内に包含させた状態で加熱焼成することによってタングステンィ匕 合物が酸化タングステンになって細孔内に担持されたものであるから、無機多孔質物 質の細孔内に担持された酸化タングステンは十分に微粒子化されたものとなる。 In the invention of [3], the tungsten oxide in the pores is a solution of a tungsten compound as an inorganic substance. Since the tungsten compound is converted into tungsten oxide and supported in the pores by heating and calcining in the state of being contained in the pores of the porous substance, it is possible to be contained in the pores of the inorganic porous substance. The supported tungsten oxide is sufficiently micronized.
[0025] [4]の発明では、酸化タングステンの担持量力 無機多孔質物質 100質量部に対 して 20〜: 150質量部であるから、酸化タングステンの単位質量当たりの光触媒活性 をさらに向上させることができる。  In the invention of [4], since the loading capacity of tungsten oxide is 20 to 150 parts by mass with respect to 100 parts by mass of the inorganic porous material, the photocatalytic activity per unit mass of tungsten oxide is further improved. Can.
[0026] [5]の発明では、タングステン化合物としてメタタングステン酸アンモニゥムを用いて レ、るから、十分な変換効率で酸化タングステンに変換され得て不要な他の化合物の 生成混入を防止し得て高品質の酸化タングステン系光触媒となる。  In the invention of [5], since metatungstate ammonium is used as a tungsten compound, it can be converted to tungsten oxide with sufficient conversion efficiency to prevent generation and mixing of unnecessary other compounds. It becomes a high quality tungsten oxide photocatalyst.
[0027] [6]の発明では、無機多孔質物質として疎水性無機多孔質物質が用いられており 、この疎水性無機多孔質物質は、疎水性の強レ、トルエン、キシレン等の芳香環を有 した V〇Cを引き付けやすいので、無機多孔質物質の細孔内に担持された酸化タン ダステンによってトルエン、キシレン等の芳香環を有した VOCを高効率で分解除去 すること力 Sできる。  [0027] In the invention of [6], a hydrophobic inorganic porous material is used as the inorganic porous material, and the hydrophobic inorganic porous material is a hydrophobic strong ring, an aromatic ring such as toluene or xylene. Since it is easy to attract V 〇 C, it is possible to decompose and remove VOCs with aromatic rings such as toluene and xylene at high efficiency by oxidizing tan- dastene supported in the pores of the inorganic porous material.
[0028] [7]の発明では、無機多孔質物質として疎水性ゼォライトが用いられており、この疎 水性ゼォライトは、疎水性の強いトルエン、キシレン等の芳香環を有した VOCを非常 に引き付けやすいので、無機多孔質物質の細孔内に担持された酸化タングステンに よってトルエン、キシレン等の芳香環を有した VOCをさらに高効率で分解除去するこ とができる。  In the invention of [7], hydrophobic zeolite is used as the inorganic porous material, and this hydrophobic zeolite is very easy to attract VOCs having strong aromatic rings such as toluene and xylene. Thus, the tungsten oxide carried in the pores of the inorganic porous material can decompose and remove VOCs having an aromatic ring such as toluene and xylene with higher efficiency.
[0029] [8]の発明では、平均細孔径が 0. 4〜40nmである無機多孔質物質の細孔内に酸 ィ匕タングステンが担持されたもの(酸化タングステン系光触媒)を効率良く製造するこ とができる。平均細孔径が 0. 4〜40nmである無機多孔質物質の細孔内に酸化タン ダステンが担持されているので、該酸化タングステンの光触媒活性は著しく高いもの となり、従ってこの酸化タングステン系光触媒は、非常に優れた消臭効果'防汚効果 等を発揮する。また、酸化タングステンは可視光応答型光触媒であるから、紫外線量 の少ない屋内で使用されるような場合であっても十分な消臭効果 ·防汚効果等を発 揮する。  [0029] In the invention of [8], the one in which tungsten oxide is supported in the pores of the inorganic porous material having an average pore diameter of 0.4 to 40 nm (tungsten oxide based photocatalyst) is efficiently produced. be able to. Since tan dustene is supported in the pores of the inorganic porous material having an average pore size of 0.4 to 40 nm, the photocatalytic activity of the tungsten oxide is extremely high, and thus the tungsten oxide photocatalyst is Demonstrates very good deodorizing effect, antifouling effect, etc. In addition, since tungsten oxide is a visible light responsive photocatalyst, it exhibits sufficient deodorizing effect, antifouling effect and the like even when it is used indoors with a small amount of ultraviolet light.
[0030] なお、 [8]の製造方法には、無機多孔質物質の細孔内だけではなくその表面にも 酸化タングステンを担持するものも包含されることは言うまでもない。 [0030] In the production method of [8], not only in the pores of the inorganic porous material but also on the surface thereof It goes without saying that those supporting tungsten oxide are also included.
[0031] [9]の発明では、タングステン化合物の溶液としてメタタングステン酸アンモニゥム の水溶液を用いるから、タングステン化合物を十分な変換効率で酸化タングステンに 変換することができ、不要な他の化合物の生成混入を防止できるから、高品質の酸 化タングステン系光触媒を製造することができる。  In the invention of [9], since an aqueous solution of ammonium metatungstate is used as a solution of a tungsten compound, the tungsten compound can be converted to tungsten oxide with sufficient conversion efficiency, and generation of other unnecessary compounds is caused. As a result, high quality tungsten oxide photocatalyst can be manufactured.
[0032] [10]の発明では、無機多孔質物質として疎水性無機多孔質物質を用いる。この疎 水性無機多孔質物質は、疎水性の強いトルエン、キシレン等の芳香環を有した V〇C を引き付けやすいので、得られた光触媒では、無機多孔質物質の細孔内に担持され た酸化タングステンによってトルエン、キシレン等の芳香環を有した VOCを高効率で 分解除去することができる。  In the invention of [10], a hydrophobic inorganic porous material is used as the inorganic porous material. Since this hydrophobic inorganic porous material easily attracts V o C having a strong hydrophobic aromatic ring such as toluene, xylene, etc., in the obtained photocatalyst, the oxidation carried by the pores of the inorganic porous material is caused. Tungsten can decompose and remove VOCs with aromatic rings such as toluene and xylene with high efficiency.
[0033] [11]の発明では、無機多孔質物質として疎水性ゼォライトを用いる。この疎水性ゼ オライトは、疎水性の強いトルエン、キシレン等の芳香環を有した VOCを非常に引き 付けやすいので、得られた光触媒では、無機多孔質物質の細孔内に担持された酸 化タングステンによってトルエン、キシレン等の芳香環を有した VOCをさらに高効率 で分解除去することができる。  In the invention of [11], hydrophobic zeolite is used as the inorganic porous material. Since this hydrophobic zeolite is very easy to attract VOC having aromatic ring such as strong hydrophobic toluene, xylene, etc., in the obtained photocatalyst, the oxidation supported in the pores of the inorganic porous material is caused. Tungsten can decompose and remove VOCs having aromatic rings such as toluene and xylene with high efficiency.
[0034] [12]の発明では、加熱焼成の際の加熱温度を 250〜1500°Cに設定するから、タ ングステン化合物を十分な変換効率で酸化タングステンに変換することができる。  In the invention of [12], since the heating temperature at the time of heating and firing is set to 250 to 1500 ° C., the tungsten compound can be converted to tungsten oxide with sufficient conversion efficiency.
[0035] [13]の発明では、可視光応答型の光触媒として優れた光触媒活性を有して十分 な消臭 ·防汚効果等を発揮すると共に低コストである酸化タングステン系光触媒が提 供される。  [0035] In the invention of [13], a tungsten oxide based photocatalyst having excellent photocatalytic activity as a visible light responsive photocatalyst to exhibit sufficient deodorizing and antifouling effects and the like and at low cost is provided. Ru.
[0036] [14]の発明では、繊維布帛の少なくとも一部に、前項 [1]〜[7]のいずれか 1項又 は前項 [13]に記載の酸化タングステン系光触媒力 Sバインダー樹脂によって固着され てレ、るから、可視光に応答して十分な消臭 ·防汚機能を発揮する繊維布帛が提供さ れる。  In the invention of [14], at least a part of the fiber cloth is fixed by the tungsten oxide photocatalytic activity S binder resin described in any one of the preceding items [1] to [7] or the preceding item [13]. Thus, a fiber fabric is provided that exhibits sufficient deodorizing and antifouling functions in response to visible light.
[0037] [15]の発明では、繊維布帛として良好な風合いを確保しつつ、十分な消臭 '防汚 機能を確保できる。  In the invention of [15], it is possible to secure a sufficient deodorizing and antifouling function while securing a good texture as a fiber fabric.
[0038] [16]の発明では、ノインダー樹脂は、繊維布帛に対して略網目状に固着されてお り、これによつて繊維布帛を構成する繊維が相対的に自由に動き得るので、繊維布 帛として十分な柔軟性を確保することができる。更に、繊維布帛に消臭、防汚以外の 他の機能を付与する部分としての空間(余地)を残すことができ、例えば難燃、撥水、 撥油等の他の機能を付与することも可能となり、このように更なる多機能化を図り得る 利点がある。 [0038] In the invention of [16], the Noinder resin is adhered to the fiber fabric in a substantially reticulated manner, whereby the fibers constituting the fiber fabric can move relatively freely. cloth Sufficient flexibility can be secured as a navel. Furthermore, it is possible to leave a space (room) as a part for imparting other functions other than deodorizing and antifouling to the fiber fabric, for example, to impart other functions such as flame retardancy, water repellency, oil repellency, etc. It is possible, and there is an advantage that further multifunctionalization can be achieved in this way.
図面の簡単な説明  Brief description of the drawings
[0039] [図 1]各実施例で得られた酸化タングステン系光触媒の吸収スペクトルを示すグラフ である。  FIG. 1 is a graph showing an absorption spectrum of the tungsten oxide based photocatalyst obtained in each example.
[図 2]この発明の酸化タングステン系光触媒の耐久性能試験結果を示すグラフである  FIG. 2 is a graph showing the results of the endurance performance test of the tungsten oxide photocatalyst of the present invention.
[図 3]この発明に係る繊維布帛の一実施形態を示す模式的断面図である。 FIG. 3 is a schematic cross-sectional view showing an embodiment of the fiber cloth according to the present invention.
符号の説明  Explanation of sign
[0040] 1…消臭 ·防汚機能を有する繊維布帛 [0040] 1 ... Deodorant · fiber fabric with antifouling function
2…繊維布帛  2 ... Textile fabric
3…酸化タングステン系光触媒  3 ... Tungsten oxide photocatalyst
4…バインダー樹脂 発明を実施するための最良の形態  4 Binder resin BEST MODE FOR CARRYING OUT THE INVENTION
[0041] この発明に係る酸化タングステン系光触媒は、平均細孔径が 0. 4〜40nmである 無機多孔質物質の細孔内に酸化タングステンが担持されてなるものである。  The tungsten oxide based photocatalyst according to the present invention is obtained by supporting tungsten oxide in pores of an inorganic porous material having an average pore diameter of 0.4 to 40 nm.
[0042] 酸化タングステン力 平均細孔径 0. 4〜40nmである無機多孔質物質の細孔内に 担持されたものであるから、この担持酸化タングステンの光触媒活性は著しく高いも のとなり、従ってこの酸化タングステン系光触媒は、非常に優れた消臭効果'防汚効 果等を発揮する。また、酸化タングステンは可視光応答型光触媒であるから、本酸化 タングステン系光触媒は、紫外線量の少なレ、屋内で使用されるような場合であっても 十分な消臭効果 ·防汚効果等を発揮する。平均細孔径が 0. 4nm未満であると、或 いは平均細孔径が 40nmを超えると、担持された酸化タングステンの光触媒活性は 顕著に低下する。中でも、平均細孔径が 0. 5〜30nmである無機多孔質物質の細孔 内に酸化タングステンが担持されてなる酸化タングステン系光触媒を用いるのが好ま しレ、。特に好ましいのは、平均細孔径が 0. 5〜: 15nmである無機多孔質物質の細孔 内に酸化タングステンが担持されてなる酸化タングステン系光触媒である。 Since the tungsten oxide is supported in the pores of the inorganic porous material having an average pore diameter of 0.4 to 40 nm, the photocatalytic activity of the supported tungsten oxide is extremely high, and hence the oxidation Tungsten-based photocatalysts exhibit very excellent deodorizing effects, antifouling effects, and the like. In addition, since tungsten oxide is a visible light responsive photocatalyst, the present tungsten oxide photocatalyst has a sufficient amount of deodorizing effect, antifouling effect, etc. even when it is used indoors with a small amount of ultraviolet light. Demonstrate. If the average pore size is less than 0.4 nm, or if the average pore size exceeds 40 nm, the photocatalytic activity of the supported tungsten oxide is significantly reduced. Among them, it is preferable to use a tungsten oxide based photocatalyst in which tungsten oxide is supported in the pores of the inorganic porous material having an average pore diameter of 0.5 to 30 nm. Particularly preferred are the pores of the inorganic porous material having an average pore size of 0.5 to 15 nm. It is a tungsten oxide based photocatalyst in which tungsten oxide is supported.
[0043] なお、酸化タングステンは、無機多孔質物質における細孔内以外の箇所 (例えば 表面)に担持されていても良い。但し、後述するような、繊維布帛の少なくとも一部に 、この酸化タングステン系光触媒をバインダー樹脂によって固着せしめた構成を採用 する場合には、酸化タングステンの光触媒作用によるバインダー樹脂の分解を防止 する観点から、無機多孔質物質の細孔内以外の表面における酸化タングステン系光 触媒の担持量は少量又は 0であるように構成されるのが好ましい。  Tungsten oxide may be supported at a location (for example, the surface) other than the inside of the pores in the inorganic porous material. However, in the case of adopting a configuration in which the tungsten oxide based photocatalyst is fixed by a binder resin to at least a part of the fiber fabric as described later, from the viewpoint of preventing the decomposition of the binder resin by the photocatalytic action of tungsten oxide. Preferably, the amount of the tungsten oxide photocatalyst supported on the surface of the inorganic porous material other than in the pores is small or zero.
[0044] 前記酸化タングステンとしては、特に限定されるものではなレ、が、タングステン化合 物の溶液を前記無機多孔質物質の細孔内に包含させた状態で加熱焼成することに よってタングステンィ匕合物が酸化タングステンになって前記細孔内に担持されたもの を用いるのが好ましい。この構成を採用した場合、無機多孔質物質の細孔内に担持 された酸化タングステンは十分に微粒子化されたものとなり、光触媒活性のさらなる 向上に寄与できる。  The above-mentioned tungsten oxide is not particularly limited, but may be heated and fired in a state in which a solution of a tungsten compound is contained in the pores of the inorganic porous material. It is preferable to use one in which the compound is tungsten oxide and is supported in the pores. When this configuration is adopted, tungsten oxide supported in the pores of the inorganic porous material is sufficiently micronized, which can contribute to further improvement of the photocatalytic activity.
[0045] 前記酸化タングステンとしては、その光触媒活性を高めるために白金、パラジウム、 ロジウム等の白金属金属を担持せしめた構成のものを用いても良いし、或いは銀、銅 As the tungsten oxide, one having a structure in which platinum metal such as platinum, palladium, rhodium or the like is supported to enhance its photocatalytic activity may be used, or silver or copper may be used.
、亜鉛等の殺菌性のある金属を担持せしめた構成のものを用いても良い。 It is also possible to use a configuration in which a bactericidal metal such as zinc is carried.
[0046] 前記無機多孔質物質としては、特に限定されるものではないが、疎水性無機多孔 質物質を用いるのが好ましい。この疎水性無機多孔質物質は、トルエン、キシレン等 の芳香環を有した VOC (揮発性有機化合物)との親和性が良好であり、これら芳香 環を有した VOCを引き付けやすいので、酸化タングステンの光触媒作用によってト ルェン、キシレン等の芳香環を有した VOCを高効率で分解除去できる利点がある。 The inorganic porous material is not particularly limited, but it is preferable to use a hydrophobic inorganic porous material. Since this hydrophobic inorganic porous material has a good affinity for VOCs (volatile organic compounds) having aromatic rings such as toluene and xylene, and it is easy to attract VOCs having these aromatic rings, tungsten oxide There is an advantage that VOCs having aromatic rings such as toluene and xylene can be decomposed and removed with high efficiency by photocatalysis.
[0047] 前記疎水性無機多孔質物質としては、特に限定されるものではないが、例えば疎 水性ゼォライト、活性炭、表面をフッ素樹脂でコーティングしたアルミナ多孔質粒子、 表面を撥水剤でコーティングした多孔質酸化珪素などが挙げられる。これらの中でも 、疎水性ゼォライトを用いるのが好ましぐこの場合には酸化タングステン (光触媒)の 分解作用によって生成した中間生成物をこの疎水性ゼォライトで一層効率良く吸着 捕捉すること力 Sできる。また疎水性ゼォライトは白色であるので色彩やデザインを重 要視するインテリア用繊維布帛等の用途では好都合である。なお、前記「疎水性無 機多孔質物質」には、吸水性無機多孔質物質は含まない。 The hydrophobic inorganic porous material is not particularly limited. For example, hydrophobic zeolite, activated carbon, alumina porous particles whose surface is coated with a fluorine resin, porous surfaces whose surface is coated with a water repellent agent Quality silicon oxide etc. are mentioned. Among these, it is preferable to use hydrophobic zeolite. In this case, the intermediate product generated by the decomposition action of tungsten oxide (photocatalyst) can be adsorbed and captured more efficiently by this hydrophobic zeolite. In addition, since hydrophobic zeolite is white, it is advantageous in applications such as interior textiles where color and design are important. In addition, the aforementioned "hydrophobic The “organic porous material” does not include the water-absorbing inorganic porous material.
[0048] 前記疎水性ゼォライトとしては、 Si〇 /A1〇 モル比が 30以上のものを用いるのが 好ましぐ特に好適なのは Si〇 /Al O モル比が 60以上の疎水性ゼォライトである。  As the above-mentioned hydrophobic zeolite, it is particularly preferable to use one having a Si〇 / Al molar ratio of 30 or more. It is a hydrophobic zeolite having a Si〇 / Al 2 O molar ratio of 60 or more.
[0049] 前記疎水性ゼォライトを得るには、例えばシリカライトのように高 SiZAl比ゼオライト を直接合成する方法、ゼォライトの骨格内 A1を後処理により除去する方法、ゼォライ トの表面シラノール基を修飾する方法等が挙げられる。ゼォライトの骨格内 A1を後処 理により除去する方法としては、 NH +型または H+型ゼオライトを高温で水熱処理した 後酸処理を行う方法、酸処理により直接に脱 A1する方法、 EDTA水溶液中で処理 する方法等が挙げられる。またゼォライトの表面シラノール基を修飾する方法として は、アルキルシランやアルコールとの反応によりアルキル基(疎水基)を導入する手法 等が挙げられる。 [0049] In order to obtain the hydrophobic zeolite, for example, a method of directly synthesizing a high SiZAl ratio zeolite such as silicalite, a method of removing A1 in the framework of zeolite by post-treatment, and modification of surface silanol group of zeolite Methods etc. As a method of removing A1 in the framework of zeolite by post treatment, a method of hydrothermally treating NH + -type or H + -type zeolite at a high temperature and then acid treatment, a method of directly removing A1 by acid treatment, in an aqueous EDTA solution Methods of treatment with Further, as a method of modifying the surface silanol group of zeolite, there is a method of introducing an alkyl group (hydrophobic group) by reaction with an alkylsilane or alcohol.
[0050] 前記無機多孔質物質の平均粒径は 0. 05〜30 x mであるのが好ましレ、。 0. 05 μ m以上の粒径のものは製造が容易であり低コストであるし、 30 μ m以下であることで 例えば繊維布帛に付与せしめた場合に繊維布帛の風合レ、を柔らかい良好な状態に すること力 Sできる。  [0050] The average particle size of the inorganic porous material is preferably 0.05 to 30 x m. Those with a particle diameter of 0.5 μm or more are easy to manufacture and low cost, and by being 30 μm or less, for example, when applied to a fiber fabric, the texture of the fiber fabric is soft and good. It is possible to make it into a state S.
[0051] 前記酸化タングステンの担持量は、前記無機多孔質物質 100質量部に対して 20 〜 150質量部であるのが好ましい。 20質量部未満では、無機多孔質物質の細孔内 に担持された酸化タングステンの UVスペクトルが短波長側(紫外光領域)にシフトし てしまい可視光領域に吸収を殆ど有しないものとなって可視光による光触媒活性の 発現が不十分となるので、好ましくない。また 150質量部を超えると、無機多孔質物 質の細孔内だけではなく必然的に外表面にも多量に担持されるものとなる、又は単 独で結晶化する酸化タングステンの割合が多くなる結果、繊維基材ゃバインダー樹 脂を多く分解することとなるので、好ましくなレ、。中でも、前記酸化タングステンの担持 量は、前記無機多孔質物質 100質量部に対して 25〜80質量部であるのがより好ま しい。  The supported amount of the tungsten oxide is preferably 20 to 150 parts by mass with respect to 100 parts by mass of the inorganic porous material. When the amount is less than 20 parts by mass, the UV spectrum of tungsten oxide supported in the pores of the inorganic porous material is shifted to the short wavelength side (ultraviolet light region), and it has almost no absorption in the visible light region. It is not preferable because the expression of photocatalytic activity by visible light becomes insufficient. If the amount is more than 150 parts by mass, a large amount of the inorganic porous material is necessarily supported not only in the pores of the inorganic porous material but also on the outer surface, or the proportion of tungsten oxide crystallized alone increases. Since the fiber base material and the binder resin will be decomposed a lot, it is preferable. Among them, the loading amount of the tungsten oxide is more preferably 25 to 80 parts by mass with respect to 100 parts by mass of the inorganic porous material.
[0052] 次に、この発明の酸化タングステン系光触媒の製造方法の好適例について以下説 明する。まず、平均細孔径が 0. 4〜40nmである無機多孔質物質の細孔内にタンダ ステン化合物の溶液を包含させる。例えば、無機多孔質物質をタングステン化合物 の溶液に浸漬することによって、無機多孔質物質の細孔内にタングステン化合物の 溶液を包含させる。前記タングステン化合物の溶液としては、例えばタングステンィ匕 合物の水溶液、タングステン化合物のアルコール溶液等が挙げられる。 Next, preferred examples of the method for producing a tungsten oxide based photocatalyst according to the present invention will be described below. First, a solution of a tantalum compound is included in the pores of the inorganic porous material having an average pore size of 0.4 to 40 nm. For example, the inorganic porous material is a tungsten compound The solution of tungsten compound is included in the pores of the inorganic porous material by immersing in the solution of Examples of the solution of the tungsten compound include an aqueous solution of a tungsten compound and an alcohol solution of the tungsten compound.
[0053] この時、タングステン化合物の溶液におけるタングステン化合物の濃度は、特に限 定されないものの、 10〜50質量%の範囲に設定するのが好ましい。  At this time, although the concentration of the tungsten compound in the solution of the tungsten compound is not particularly limited, it is preferable to set in the range of 10 to 50% by mass.
[0054] 前記タングステン化合物としては、加熱焼成により酸化タングステンになるものであ れば特に限定されず、例えばメタタングステン酸アンモニゥム、タングステンエトキシド 、タングステン酸、タングステン酸アンモニゥムパラ 5水和物、タンダストけい酸水和物 、タンダストけい酸アンモニゥム水和物、タンダストけい酸ナトリウム水和物、タンダスト りん酸水和物、タンダストりん酸アンモニゥム水和物、タンダストりん酸ナトリウム水和 物等が挙げられ、これらは 250°C以上の加熱焼成により酸化タングステンになる。ま た、前記例示したもの以外に、タングステン酸カリウム、タングステン酸カルシウム、タ ングステン酸コバルト、タングステン酸ジルコニァ、タングステン酸セリウム、タンダステ ン酸銅、タングステン酸ナトリウム水和物、タングステン酸ナトリウム、タングステン酸バ リウム、タングステン酸マンガン、タングステン酸リチウム等が挙げられ、これらは 1000 °C以上の高温焼成により酸化タングステンになる。  The tungsten compound is not particularly limited as long as it becomes tungsten oxide by heating and firing, and examples thereof include ammonium metatungstate, tungsten ethoxide, tungstic acid, ammonium tungstate parapentahydrate, and tandust silicic acid. Hydrate, tandust silicic acid ammonium hydrate, sand dust sodium silicate hydrate, sand dust phosphoric acid hydrate, sand dust phosphoric acid ammonium hydrate, sand dust sodium phosphate hydrate, etc. It becomes tungsten oxide by heating and firing over ° C. In addition to those exemplified above, potassium tungstate, calcium tungstate, cobalt tungstate, zirconia tungstate, cerium tungstate, copper tandastate, sodium tungstate hydrate, sodium tungstate, sodium tungstate Lithium, manganese tungstate, lithium tungstate and the like, which become tungsten oxide by high-temperature firing at 1000 ° C. or higher.
[0055] 次いで、細孔内にタングステン化合物の溶液を包含した無機多孔質物質を加熱焼 成することによって、タングステン化合物を酸化タングステンに変化させて無機多孔 質物質の細孔内に酸化タングステンを担持する。こうして、無機多孔質物質の細孔 内に酸化タングステンが担持されてなる酸化タングステン系光触媒が得られる。  Next, the inorganic porous material including the solution of the tungsten compound in the pores is heated and calcined to convert the tungsten compound into tungsten oxide, thereby supporting the tungsten oxide in the pores of the inorganic porous material. Do. In this way, a tungsten oxide based photocatalyst in which tungsten oxide is supported in the pores of the inorganic porous material is obtained.
[0056] 前記加熱焼成の際の加熱温度は 250〜: 1500°Cに設定するのが好ましい。 250°C 以上とすることでタングステン化合物を十分な変換率で酸化タングステンに変換する ことができると共に、 1500°C以下とすることで焼成のエネルギーコストを低減すること 力 Sできる。中でも、加熱焼成の際の加熱温度は 350〜: 1300°Cに設定するのが特に 好ましい。  The heating temperature at the time of the heating and firing is preferably set to 250 to 1500 ° C. By setting the temperature to 250 ° C. or higher, the tungsten compound can be converted to tungsten oxide at a sufficient conversion rate, and by setting the temperature to 1,500 ° C. or lower, the energy cost of firing can be reduced. Among them, it is particularly preferable to set the heating temperature at the time of heating and firing to 350 to: 1300 ° C.
[0057] なお、この発明の酸化タングステン系光触媒は、上記例示の製造方法によって製 造されるものに特に限定されるものではない。  The tungsten oxide photocatalyst of the present invention is not particularly limited to one produced by the above-described production method.
[0058] この発明に係る消臭'防汚機能を有する繊維布帛(1)は、繊維布帛(2)の少なくと も一部に、上記構成からなる酸化タングステン系光触媒(3)がバインダー樹脂(4)に よって固着されたものである(図 3参照)。 The fiber cloth (1) having a deodorizing and antifouling function according to the present invention has at least one of the fiber cloth (2) Also in part, the tungsten oxide photocatalyst (3) having the above-described structure is fixed by the binder resin (4) (see FIG. 3).
[0059] 前記バインダー樹脂としては、特に限定されるものではなレ、が、例えばアクリル系樹 脂、ウレタン系樹脂、アクリルシリコン系樹脂等が挙げられる。  The binder resin is not particularly limited, and examples thereof include acrylic resins, urethane resins, and acrylic silicone resins.
[0060] 前記酸化タングステン系光触媒の繊維布帛への付着量は、繊維布帛 100質量部 に対して 0.:!〜 50質量部であるのが好ましい。 50質量部以下であることで布帛の風 合いを柔軟なものにすることができると共に 0. 1質量部以上とすることで光触媒作用 を十分に発揮せしめることができる。中でも、前記酸化タングステン系光触媒の繊維 布帛への付着量は、繊維布帛 100質量部に対して 0. 3〜20質量部であるのがより 好ましい。  The adhesion amount of the tungsten oxide photocatalyst to the fiber fabric is preferably from 0.:! To 50 parts by mass with respect to 100 parts by mass of the fiber fabric. When the content is 50 parts by mass or less, the texture of the fabric can be softened, and when the content is 0.1 parts by mass or more, the photocatalytic action can be sufficiently exhibited. Among them, the adhesion amount of the tungsten oxide photocatalyst to the fiber fabric is more preferably 0.3 to 20 parts by mass with respect to 100 parts by mass of the fiber fabric.
[0061] また、前記バインダー樹脂の繊維布帛への付着量は、繊維布帛 100質量部に対し て 0. 05〜50質量部であるのが好ましレ、。 50質量部以下であることで布帛の風合い を柔軟なものにすることができると共に 0. 05質量部以上とすることで十分な固着力 を確保できて酸化タングステン系光触媒の脱落を効果的に防止することができる。中 でも、前記バインダー樹脂の繊維布帛への付着量は、繊維布帛 100質量部に対して 0. 15〜20質量部であるのがより好ましい。  In addition, the adhesion amount of the binder resin to the fiber cloth is preferably 0.05 to 50 parts by mass with respect to 100 parts by mass of the fiber cloth. While the texture of the fabric can be made soft by being 50 parts by mass or less and sufficient fixing power can be secured by making it 0.50 parts by mass or more, the falling off of the tungsten oxide photocatalyst can be effectively prevented. can do. Among them, the adhesion amount of the binder resin to the fiber fabric is more preferably 0.15 to 20 parts by mass with respect to 100 parts by mass of the fiber fabric.
[0062] この発明の消臭 ·防汚機能を有する繊維布帛(1)は、例えば次のようにして製造さ れる。即ち、前記酸化タングステン系光触媒 (無機多孔質物質の細孔内に酸化タン ダステンが担持されたもの)及びバインダー樹脂を含有した処理液を、繊維布帛の少 なくとも一部に付着せしめた後、乾燥させることによって製造できる。前記処理液の付 与は、例えば、浸漬法、コーティング法等によって行われる。  The fiber cloth (1) having a deodorizing and antifouling function of the present invention is produced, for example, as follows. That is, after a treatment liquid containing the above-mentioned tungsten oxide photocatalyst (having porous titanium oxide supported in pores of the inorganic porous material) and a binder resin is attached to at least a part of the fiber fabric, It can be manufactured by drying. The application of the treatment liquid is performed by, for example, a dipping method, a coating method, or the like.
[0063] 前記浸漬法としては、例えば、前記酸化タングステン系光触媒及びバインダー樹脂 を含有した処理液に繊維布帛を浸漬した後、該布帛をマンダルで絞り、乾燥させる 方法を例示できる。この浸漬法で製造すれば、前記酸化タングステン系光触媒及び バインダー樹脂を均一状態に繊維布帛に固着できる利点がある。  As the immersion method, for example, after immersing the fiber cloth in a treatment liquid containing the tungsten oxide photocatalyst and the binder resin, a method of squeezing the cloth with a mundal and drying can be exemplified. If manufactured by this immersion method, there is an advantage that the tungsten oxide photocatalyst and the binder resin can be fixed to the fiber cloth in a uniform state.
[0064] 前記コーティング法としては、例えば、前記酸化タングステン系光触媒及びバイン ダー樹脂を含有した処理液を、繊維布帛の少なくとも一部に塗布してコーティングし た後、乾燥させる方法を例示できる。このコーティング法で製造すれば、生産性を顕 著に向上できるし、付着量を精度高く制御できる利点がある。また、このコーティング 法では、バインダー樹脂を略網目状に接着させることが可能である。前記コーティン グ法の具体的手法としては、特に限定されるものではなレ、が、例えばグラビアロール 法、転写プリント法、スクリーンプリント法等が挙げられる。 An example of the coating method is a method in which a treatment liquid containing the tungsten oxide photocatalyst and binder resin is applied to at least a part of a fiber fabric and coated, and then dried. If manufactured by this coating method, productivity will be There is an advantage that it can be significantly improved and the amount of adhesion can be controlled with high accuracy. In addition, in this coating method, it is possible to bond the binder resin in a substantially mesh shape. Specific examples of the coating method include, but not particularly limited to, gravure roll method, transfer printing method, screen printing method and the like.
[0065] 前記処理液における各成分の配合割合は特に限定されないが、光触媒の量に対 してバインダー樹脂の量が多くなり過ぎると、光触媒の表面をバインダー樹脂で覆つ てしまう割合が増大して、消臭 ·防汚の効果が低下するので好ましくない。好適な配 合量は、前記バインダー樹脂 100質量部に対して、前記酸化タングステン系光触媒 50〜500質量部である。  The proportion of each component in the treatment liquid is not particularly limited, but if the amount of the binder resin is too large with respect to the amount of the photocatalyst, the ratio of covering the surface of the photocatalyst with the binder resin increases. It is not preferable because the deodorizing and antifouling effects are reduced. The preferred content is 50 to 500 parts by mass of the tungsten oxide photocatalyst relative to 100 parts by mass of the binder resin.
[0066] この発明において、前記繊維布帛(2)としては、特に限定されるものではないが、 例えば織物、編物、不織布、立毛布帛(タフテッド力一^ ^ット、モケット等)等が挙げら れる。また、前記繊維布帛を構成する繊維の種類や形態等も特に限定されない。前 記繊維布帛を構成する繊維としては、例えばポリエステル、ポリアミド、アクリル等の 合成繊維、アセテート、レーヨン等の半合成繊維、羊毛、絹、木綿、麻等の天然繊維 などが挙げられ、これら繊維の 1種又は 2種以上を併用した構成を採用しても良い。 実施例  [0066] In the present invention, the fiber fabric (2) is not particularly limited, and examples thereof include woven fabric, knitted fabric, non-woven fabric, napped fabric (tuffed force mesh, moquette etc.) and the like. Be Moreover, the kind, form, etc. of the fiber which comprises the said fiber fabric are not specifically limited. Examples of the fibers constituting the fiber fabric include synthetic fibers such as polyester, polyamide and acrylic, semi-synthetic fibers such as acetate and rayon, and natural fibers such as wool, silk, cotton and hemp. You may employ | adopt the structure which used 1 type or 2 types or more together. Example
[0067] 次に、この発明の具体的実施例について説明するが、本発明はこれら実施例のも のに特に限定されるものではない。  Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.
[0068] ぐ実施例 1 > Example 1>
濃度 10質量%のメタタングステン酸アンモニゥムの水溶液 1L中に、平均細孔径が In 1 L of an aqueous solution of ammonium metatungsate at a concentration of 10% by mass, the average pore size is
0. 6nmで平均粒径が の疎水性ゼォライト(Si〇 /Al O モノレ比は 1500) 200 gを 2時間浸漬することによって、疎水性ゼォライトの細孔内にメタタングステン酸アン モニゥムの水溶液を包含させた。次いで、 700°Cで 3時間空気中で焼成することによ つて、疎水性ゼォライトの細孔内に酸化タングステン (W〇)が担持されてなる酸化タ ングステン系光触媒を得た。得られた酸化タングステン系光触媒において、疎水性ゼ オライト 100質量部に対する酸化タングステンの担持量は 30質量部であった。なお、 焼成により得られた生成物(担持物)が WOであることを紫外吸収スペクトルと XRD 分析 (X線回折分析)により確認した。 [0069] <実施例 2 > An aqueous solution of ammonium metatungstate is included in the pores of the hydrophobic zeolite by immersing 200 g of hydrophobic zeolite (Si〇 / Al 2 O 3 monolith ratio: 1500) with an average particle diameter of 0.6 nm for 2 hours for 2 hours. I did. Next, the resultant was calcined in air at 700 ° C. for 3 hours to obtain a tungsten oxide photocatalyst having tungsten oxide (WW) supported in the pores of hydrophobic zeolite. In the obtained tungsten oxide based photocatalyst, the loading amount of tungsten oxide with respect to 100 parts by mass of hydrophobic zeolite was 30 parts by mass. In addition, it was confirmed by ultraviolet absorption spectrum and XRD analysis (X-ray diffraction analysis) that the product (supporting material) obtained by calcination is WO. Example 2
濃度 10質量%のメタタングステン酸アンモニゥムの水溶液 1L中に、平均細孔径が 5nmで平均粒径が 10 μ mのメソポーラスシリカゲル 200gを 2時間浸漬することによ つて、メソポーラスシリカゲルの細孔内にメタタングステン酸アンモニゥムの水溶液を 包含させた。次いで、 700°Cで 3時間空気中で焼成することによって、メソポーラスシ リカゲルの細孔内に酸化タングステン (W〇 )が担持されてなる酸化タングステン系光 触媒を得た。得られた酸化タングステン系光触媒において、メソポーラスシリカゲル 1 By immersing 200 g of mesoporous silica gel having an average pore diameter of 5 nm and an average particle diameter of 10 μm for 2 hours in 1 L of an aqueous solution of ammonium tungstate having a concentration of 10% by mass, An aqueous solution of ammonium tungstate was included. Subsequently, the resultant was calcined in air at 700 ° C. for 3 hours to obtain a tungsten oxide based photocatalyst in which tungsten oxide (WO) is supported in the pores of the mesoporous silica gel. In the obtained tungsten oxide based photocatalyst, mesoporous silica gel 1
00質量部に対する酸化タングステンの担持量は 30質量部であった。 The supported amount of tungsten oxide was 00 parts by mass with respect to 00 parts by mass.
[0070] ぐ実施例 3 > Example 3>
濃度 10質量%のメタタングステン酸アンモニゥムの水溶液 1L中に、平均細孔径が 10nmで平均粒径が 10 μ mのメソポーラスシリカゲル 200gを 2時間浸漬することによ つて、メソポーラスシリカゲルの細孔内にメタタングステン酸アンモニゥムの水溶液を 包含させた。次いで、 700°Cで 3時間空気中で焼成することによって、メソポーラスシ リカゲルの細孔内に酸化タングステン (WO )が担持されてなる酸化タングステン系光 触媒を得た。得られた酸化タングステン系光触媒において、メソポーラスシリカゲル 1 00質量部に対する酸化タングステンの担持量は 30質量部であった。  By immersing 200 g of mesoporous silica gel having an average pore diameter of 10 nm and an average particle diameter of 10 μm for 2 hours in 1 L of an aqueous solution of ammonium metatungstate having a concentration of 10% by mass, An aqueous solution of ammonium tungstate was included. Next, the resultant was calcined in air at 700 ° C. for 3 hours to obtain a tungsten oxide based photocatalyst in which tungsten oxide (WO 3) is supported in the pores of the mesoporous silica gel. In the obtained tungsten oxide based photocatalyst, the loading amount of tungsten oxide with respect to 100 parts by mass of mesoporous silica gel was 30 parts by mass.
[0071] <実施例 4 >  Example 4
濃度 10質量%のメタタングステン酸アンモニゥムの水溶液 1L中に、平均細孔径が 30nmで平均粒径が 10 μ mのメソポーラスシリカゲル 200gを 2時間浸漬することによ つて、メソポーラスシリカゲルの細孔内にメタタングステン酸アンモニゥムの水溶液を 包含させた。次いで、 700°Cで 3時間空気中で焼成することによって、メソポーラスシ リカゲルの細孔内に酸化タングステンが担持されてなる酸化タングステン系光触媒を 得た。得られた酸化タングステン系光触媒において、メソポーラスシリカゲル 100質量 部に対する酸化タングステンの担持量は 30質量部であった。  By immersing 200 g of mesoporous silica gel having an average pore diameter of 30 nm and an average particle diameter of 10 μm for 2 hours in 1 L of an aqueous solution of ammonium metatungstate having a concentration of 10% by mass, An aqueous solution of ammonium tungstate was included. Next, the resultant was calcined in air at 700 ° C. for 3 hours to obtain a tungsten oxide photocatalyst having tungsten oxide supported in the pores of the mesoporous silica gel. In the obtained tungsten oxide photocatalyst, the amount of tungsten oxide supported per 100 parts by mass of the mesoporous silica gel was 30 parts by mass.
[0072] ぐ比較例 1 >  Comparative Example 1>
濃度 10質量%のメタタングステン酸アンモニゥムの水溶液 1L中に、平均細孔径が 0. 3nmで平均粒径が の疎水性ゼォライト(Si〇 /Al O モノレ比は 1300) 200 gを 2時間浸漬することによって、疎水性ゼォライトの細孔内にメタタングステン酸アン モニゥムの水溶液を包含させた。次いで、 700°Cで 3時間空気中で焼成することによ つて、疎水性ゼォライトの細孔内に酸化タングステンが担持されてなる酸化タンダス テン系光触媒を得た。得られた酸化タングステン系光触媒において、疎水性ゼォライ ト 100質量部に対する酸化タングステンの担持量は 30質量部であった。 Immerse 200 g of hydrophobic zeolite (Si Al / Al 2 O 3 ratio: 1300) with an average pore diameter of 0.3 nm for 2 hours in 1 L of an aqueous solution of ammonium tungstate with a concentration of 10% by mass. Through the pores of hydrophobic zeolites. An aqueous solution of monium was included. Next, the resultant was calcined in air at 700 ° C. for 3 hours to obtain an oxidized tandasten-based photocatalyst in which tungsten oxide is supported in the pores of the hydrophobic zeolite. In the obtained tungsten oxide based photocatalyst, the amount of tungsten oxide supported was 100 parts by mass with respect to 100 parts by mass of hydrophobic zeolite.
[0073] ぐ比較例 2 >  Comparative Example 2>
濃度 10質量%のメタタングステン酸アンモニゥムの水溶液 1L中に、平均細孔径が 50nmで平均粒径が 10 μ mのメソポーラスシリカゲル 200gを 2時間浸漬することによ つて、メソポーラスシリカゲルの細孔内にメタタングステン酸アンモニゥムの水溶液を 包含させた。次いで、 700°Cで 3時間空気中で焼成することによって、メソポーラスシ リカゲルの細孔内に酸化タングステンが担持されてなる酸化タングステン系光触媒を 得た。得られた酸化タングステン系光触媒において、メソポーラスシリカゲル 100質量 部に対する酸化タングステンの担持量は 30質量部であった。  By immersing 200 g of mesoporous silica gel having an average pore diameter of 50 nm and an average particle diameter of 10 μm for 2 hours in 1 L of an aqueous solution of ammonium metatungstate having a concentration of 10% by mass, An aqueous solution of ammonium tungstate was included. Next, the resultant was calcined in air at 700 ° C. for 3 hours to obtain a tungsten oxide photocatalyst having tungsten oxide supported in the pores of the mesoporous silica gel. In the obtained tungsten oxide photocatalyst, the amount of tungsten oxide supported per 100 parts by mass of the mesoporous silica gel was 30 parts by mass.
[0074] <実施例 5 >  Example 5
濃度 30質量%のメタタングステン酸アンモニゥムの水溶液 1L中に、平均細孔径が 0. 6nmで平均粒径が 5 /i mの疎水性ゼォライト(Si〇 /Al O モノレ比は 1500) 246  Hydrophobic zeolite (Si Al / Al 2 O 3 ratio: 1500) having an average pore diameter of 0.6 nm and an average particle diameter of 5 / im in 1 L of an aqueous solution of ammonium tungstate having a concentration of 30% by mass 246
2 2 3  2 2 3
gを 2時間浸漬することによって、疎水性ゼォライトの細孔内にメタタングステン酸アン モニゥムの水溶液を包含させた。次いで、 700°Cで 3時間空気中で焼成することによ つて、疎水性ゼォライトの細孔内に酸化タングステンが担持されてなる酸化タンダス テン系光触媒を得た。得られた酸化タングステン系光触媒において、疎水性ゼォライ ト 100質量部に対する酸化タングステンの担持量は 50質量部であった。  An aqueous solution of ammonium metatungstate was incorporated into the pores of the hydrophobic zeolite by soaking the g for 2 hours. Next, the resultant was calcined in air at 700 ° C. for 3 hours to obtain an oxidized tandasten-based photocatalyst in which tungsten oxide is supported in the pores of the hydrophobic zeolite. In the obtained tungsten oxide based photocatalyst, the amount of tungsten oxide supported was 100 parts by mass with respect to 100 parts by mass of hydrophobic zeolite.
[0075] <実施例 6 > Example 6
濃度 70質量%のメタタングステン酸アンモニゥムの水溶液 1L中に、平均細孔径が 0. 6nmで平均粒径が の疎水性ゼォライト(Si〇 /Al O モノレ比は 1500) 210  Hydrophobic zeolite (Si Si / Al 2 O 3 ratio: 1500) with an average pore size of 0.6 nm and an average particle size of 1 in 1 L of an aqueous solution of ammonium tungstate with a concentration of 70% by mass 210
2 2 3  2 2 3
gを 2時間浸漬することによって、疎水性ゼォライトの細孔内にメタタングステン酸アン モニゥムの水溶液を包含させた。次いで、 700°Cで 3時間空気中で焼成することによ つて、疎水性ゼォライトの細孔内に酸化タングステンが担持されてなる酸化タンダス テン系光触媒を得た。得られた酸化タングステン系光触媒において、疎水性ゼォライ ト 100質量部に対する酸化タングステンの担持量は 70質量部であった。 [0076] <実施例 7 > An aqueous solution of ammonium metatungstate was incorporated into the pores of the hydrophobic zeolite by soaking the g for 2 hours. Next, the resultant was calcined in air at 700 ° C. for 3 hours to obtain an oxidized tandasten-based photocatalyst in which tungsten oxide is supported in the pores of the hydrophobic zeolite. In the obtained tungsten oxide based photocatalyst, the supported amount of tungsten oxide was 70 parts by mass with respect to 100 parts by mass of hydrophobic zeolite. Example 7
濃度 3質量%のメタタングステン酸アンモニゥムの水溶液 1L中に、平均細孔径が 0 . 6nmで平均粒径が 5 /i mの疎水性ゼォライト(SiO /Al O モノレ比は 1500) 270g を 2時間浸漬することによって、疎水性ゼォライトの細孔内にメタタングステン酸アン モニゥムの水溶液を包含させた。次いで、 700°Cで 3時間空気中で焼成することによ つて、疎水性ゼォライトの細孔内に酸化タングステンが担持されてなる酸化タンダス テン系光触媒を得た。得られた酸化タングステン系光触媒において、疎水性ゼォライ ト 100質量部に対する酸化タングステンの担持量は 10質量部であつた。  Immerse 270 g of hydrophobic zeolite (SiO 2 / Al 2 O 3 monolith ratio is 1500) with an average pore diameter of 0.6 nm and an average particle diameter of 5 / im for 2 hours in 1 L of an aqueous solution of ammonium tungstate with a concentration of 3% by mass Thus, an aqueous solution of ammonium metatungstate was incorporated into the pores of the hydrophobic zeolite. Next, the resultant was calcined in air at 700 ° C. for 3 hours to obtain an oxidized tandasten-based photocatalyst in which tungsten oxide is supported in the pores of the hydrophobic zeolite. In the obtained tungsten oxide based photocatalyst, the amount of tungsten oxide supported was 100 parts by mass with respect to 100 parts by mass of hydrophobic silica.
[0077] 実施例 1、 5、 7で得られた酸化タングステン系光触媒の UV吸収スペクトルを図 1に 示す。図 1から、酸化タングステンの細孔内への担持量が増大するのに伴レ、、可視光 領域の吸収が増加してレ、るのがわかる。  The UV absorption spectrum of the tungsten oxide based photocatalyst obtained in Examples 1, 5 and 7 is shown in FIG. It can be seen from FIG. 1 that as the amount of tungsten oxide supported in the pores increases, the absorption in the visible light region increases and the resorption increases.
[0078] 上記のようにして得られた各酸化タングステン系光触媒に対し、下記試験法に従い 、分解性能の評価を行った。その結果を表 1に示す。  The decomposition performance of each tungsten oxide based photocatalyst obtained as described above was evaluated according to the following test method. The results are shown in Table 1.
[0079] [表 1] [0079] [Table 1]
Figure imgf000016_0001
Figure imgf000016_0001
(ァセトアルデヒドの分解) (Acetaldehyde decomposition)
酸化タングステン系光触媒を、酸化タングステン量が 0. 2gとなるように、内容量 5L の袋内に入れた後、袋内にぉレ、て濃度が 200ppmとなるようにァセトアルデヒドガス を注入した。注入後 3時間喑所で放置した後、この袋を蛍光灯ランプ(390nmより短 波長をカットする UVカットフィルター使用、照度 6000ルクス)の直下位置 30cmの場 所に置き、 4時間経過後にァセトアルデヒドの分解によって発生した炭酸ガスの発生 量を測定し、これに基づいて 1時間当たりの炭酸ガス発生量を測定した。  Tungsten oxide photocatalyst was placed in a bag with a content of 5 L so that the amount of tungsten oxide was 0.2 g, and then acetaldehyde gas was injected into the bag so that the concentration was 200 ppm. . After leaving in a place for 3 hours after injection, place this bag 30 cm immediately below the fluorescent lamp (using a UV cut filter to cut wavelengths shorter than 390 nm, illuminance lux: lux), and after 4 hours The amount of carbon dioxide gas generated by the decomposition of aldehyde was measured, and based on this, the amount of carbon dioxide gas generated per hour was measured.
(トノレエンの分角军)  (Tonoreen's minute horn)
酸化タングステン系光触媒を、酸化タングステン量が 0. 2gとなるように、内容量 5L の袋内に入れた後、袋内にぉレ、て濃度が 200ppmとなるようにトルエンガスを注入し た。注入後 3時間喑所で放置した後、この袋を蛍光灯ランプ(390nmより短波長を力 ットする UVカットフィルター使用、照度 6000ノレタス)の直下位置 30cmの場所に置き 、 4時間経過後にトルエンの分解によって発生した炭酸ガスの発生量を測定し、これ に基づいて 1時間当たりの炭酸ガス発生量を測定した。  After putting the tungsten oxide photocatalyst into the bag with a content of 5 L so that the amount of tungsten oxide is 0.2 g, toluene gas is injected into the bag so that the concentration becomes 200 ppm. After leaving in a place for 3 hours after injection, place this bag 30 cm directly under a fluorescent lamp (using UV cut filter with a wavelength shorter than 390 nm, illuminance 6,000 norethex), and after 4 hours, use toluene The amount of carbon dioxide gas generated by the decomposition of the carbon dioxide was measured, and the amount of carbon dioxide gas generated per hour was measured based on this.
[0081] 表 1から明らかなように、この発明に係る実施例 1〜7の酸化タングステン系光触媒 は、可視光照射下においてァセトアルデヒドやトルエンに対して優れた分解性能を発 揮できた。 As apparent from Table 1, the tungsten oxide photocatalysts of Examples 1 to 7 according to the present invention were able to exhibit excellent decomposition performance with respect to acetaldehyde and toluene under visible light irradiation.
[0082] これに対し、平均細孔径が 0. 3nmである無機多孔質物質の細孔内に酸化タンダ ステンが担持されてなる比較例 1の光触媒では、可視光照射下において分解性能が 不十分であった。また平均細孔径が 50nmである無機多孔質物質の細孔内に酸化タ ングステンが担持されてなる比較例 2の光触媒も、可視光照射下におレ、て分解性能 が不十分であった。  On the other hand, in the photocatalyst of Comparative Example 1 in which oxidized tandasten is supported in the pores of the inorganic porous material having an average pore diameter of 0.3 nm, the decomposition performance is insufficient under visible light irradiation. Met. In addition, the photocatalyst of Comparative Example 2 in which oxidized tungsten is supported in the pores of the inorganic porous material having an average pore diameter of 50 nm also has insufficient decomposition performance under visible light irradiation.
[0083] 次に、実施例 5の酸化タングステン系光触媒について耐久性能試験 (繰り返し試験 )を行った。その結果を図 2に示す。この耐久性能試験は次のようにして行った。即ち 、実施例 5で得られた酸化タングステン系光触媒を、酸化タングステン量が 0. 2gとな るように、内容量 5Lの袋内に入れた後、袋内において濃度が 200ppmとなるようにァ セトアルデヒドガスを注入した。注入後 3時間喑所で放置した後、この袋を蛍光灯ラン プ(390nmより短波長をカットする UVカットフィルター使用、照度 6000ルクス)の直 下位置 30cmの場所に置き、この光照射状態で単位時間毎にァセトアルデヒドガス 濃度及び炭酸ガスの濃度を測定しつつ、 54時間経過時と 94時間経過時に新たに 袋内に濃度が 200ppmとなるようにァセトアルデヒドガスを注入するものとした。 Next, with respect to the tungsten oxide photocatalyst of Example 5, a durability test (repeated test) was performed. The results are shown in Figure 2. This endurance performance test was conducted as follows. That is, after putting the tungsten oxide type photocatalyst obtained in Example 5 into a bag with an inner volume of 5 L so that the amount of tungsten oxide is 0.2 g, the concentration in the bag will be 200 ppm. Cetaldehyde gas was injected. After leaving in a place for 3 hours after injection, this bag was placed directly on a fluorescent lamp (using a UV cut filter to cut wavelengths shorter than 390 nm, illuminance of 6000 lux). Lower position Positioned at 30 cm, under this light irradiation state, while measuring acetaldehyde gas concentration and carbon dioxide concentration every unit time, the concentration in the bag was newly set at 200 ppm after 54 hours and 94 hours. Acetoaldehyde gas was injected to achieve
[0084] 図 2のグラフから明らかなように、繰り返し試験を行っても、この発明の酸化タンダス テン系光触媒の分解性能は全く低下することがなぐ分解性能の耐久性に優れてレ、 ることが判った。  As apparent from the graph of FIG. 2, even when the repeated test is conducted, the degradation performance of the oxidized tandasten-based photocatalyst of the present invention is excellent in the durability of the degradation performance without any deterioration. I understand.
[0085] ぐ実施例 8 >  Example 8>
実施例 1の酸化タングステン系光触媒 10質量部を 84質量部の水に混合したのち 攪拌機により十分に攪拌を行って分散液を得た。この分散液に 6質量部のアクリル系 樹脂(固形分 50質量%)を加えて良く攪拌して均一な分散処理液を得た。この分散 処理液に、ポリエステル製のスパンボンド不織布 (目付 40g/m2)を浸漬した後、取り 出してマンダルで絞り、さらに乾燥させることによって、消臭'防汚機能を有する繊維 布帛(図 3参照)を得た。酸化タングステン系光触媒の繊維布帛への付着量は、繊維 布帛 100質量部に対して 3質量部であった。また、バインダー樹脂の繊維布帛への 付着量は、繊維布帛 100質量部に対して 1質量部であった。 After 10 parts by mass of the tungsten oxide based photocatalyst of Example 1 was mixed with 84 parts by mass of water, the mixture was sufficiently stirred by a stirrer to obtain a dispersion. 6 parts by mass of an acrylic resin (solid content: 50% by mass) was added to the dispersion, and the mixture was sufficiently stirred to obtain a uniform dispersion treatment liquid. A polyester spunbond non-woven fabric (40 g / m 2 basis weight) is dipped in this dispersion treatment solution, taken out, squeezed with a mandarin, and dried to obtain a fiber fabric having a deodorizing and antifouling function (Fig. 3 Reference) got. The adhesion amount of the tungsten oxide photocatalyst to the fiber fabric was 3 parts by mass with respect to 100 parts by mass of the fiber fabric. In addition, the adhesion amount of the binder resin to the fiber cloth was 1 part by mass with respect to 100 parts by mass of the fiber cloth.
[0086] <実施例 9 >  Example 9
酸化タングステン系光触媒として、実施例 2の酸化タングステン系光触媒を用いた 以外は、実施例 8と同様にして、消臭'防汚機能を有する繊維布帛を得た。  In the same manner as in Example 8 except that the tungsten oxide photocatalyst of Example 2 was used as the tungsten oxide photocatalyst, a fiber cloth having a deodorizing and antifouling function was obtained.
[0087] <実施例 10 >  Example 10
酸化タングステン系光触媒として、実施例 3の酸化タングステン系光触媒を用いた 以外は、実施例 8と同様にして、消臭'防汚機能を有する繊維布帛を得た。  In the same manner as in Example 8 except that the tungsten oxide photocatalyst of Example 3 was used as the tungsten oxide photocatalyst, a fiber cloth having a deodorizing and antifouling function was obtained.
[0088] <実施例 11 >  Example 11
酸化タングステン系光触媒として、実施例 4の酸化タングステン系光触媒を用いた 以外は、実施例 8と同様にして、消臭 ·防汚機能を有する繊維布帛を得た。  A fiber cloth having a deodorizing and antifouling function was obtained in the same manner as in Example 8 except that the tungsten oxide photocatalyst of Example 4 was used as the tungsten oxide photocatalyst.
[0089] ぐ比較例 3 >  Comparative Example 3>
酸化タングステン系光触媒として、比較例 1の酸化タングステン系光触媒を用いた 以外は、実施例 8と同様にして、消臭 ·防汚機能を有する繊維布帛を得た。  A fiber cloth having a deodorizing and antifouling function was obtained in the same manner as in Example 8 except that the tungsten oxide photocatalyst of Comparative Example 1 was used as the tungsten oxide photocatalyst.
[0090] ぐ比較例 4 > 酸化タングステン系光触媒として、比較例 2の酸化タングステン系光触媒を用いた 以外は、実施例 8と同様にして、消臭'防汚機能を有する繊維布帛を得た。 Comparative Example 4> In the same manner as in Example 8 except that the tungsten oxide photocatalyst of Comparative Example 2 was used as the tungsten oxide photocatalyst, a fiber cloth having a deodorizing and antifouling function was obtained.
[0091] 上記のようにして得られた各繊維布帛に対し、下記試験法に従レ、、分解性能の評 価を行った。その結果を表 2に示す。  The respective fiber fabrics obtained as described above were evaluated for degradation performance according to the following test method. The results are shown in Table 2.
[0092] [表 2] [Table 2]
Figure imgf000020_0001
Figure imgf000020_0001
[0093] <光触媒担持繊維布帛の分解性能試験法 > <Test method for degradation performance of photocatalyst-carrying fiber fabric>
各繊維布帛から切り出した試験片(10 X 10cm角)を、内容量 5Lの袋内に入れた 後、袋内において濃度が 200ppmとなるようにァセトアルデヒドガスを注入した。注入 後 3時間喑所で放置した後、この袋を蛍光灯ランプ(390nmより短波長をカットする UVカットフィルター使用、照度 6000ルクス)の直下位置 30cmの場所に置き、 4時間 経過後にァセトアルデヒドの分解 (バインダー樹脂の分解も含む)によって発生した炭 酸ガスの発生量を測定し、これに基づいて 1時間当たりの炭酸ガス発生量 (X)を測 定した。  The test pieces (10 × 10 cm square) cut out from each fiber cloth were placed in a bag having an inner volume of 5 L, and then acetaldehyde gas was injected so that the concentration was 200 ppm in the bag. After leaving in the same place for 3 hours after injection, place this bag 30 cm directly under a fluorescent lamp (using a UV cut filter to cut wavelengths shorter than 390 nm, illuminance lux: lux), and after 4 hours pass acetate aldehyde The amount of carbonic acid gas generated by the decomposition of the binder resin (including the decomposition of the binder resin) was measured, and based on this, the amount of carbon dioxide gas generated per hour (X) was measured.
[0094] なお、袋内の雰囲気を空気のみ(ァセトアルデヒドガス非含有)にした系についても 同様にして 1時間当たりの炭酸ガス発生量 (バインダー樹脂の分解により発生した炭 酸ガス量)(Y)を測定した。しかして、ァセトアルデヒドの分解に由来する炭酸ガス発 生量は (X—Y)で算出した。  Similarly, in the case of a system in which the atmosphere in the bag is only air (containing no acetate aldehyde gas), the amount of carbon dioxide gas generated per hour (the amount of carbonic acid gas generated by the decomposition of the binder resin) Y) was measured. Therefore, the amount of carbon dioxide gas generation derived from the decomposition of acetaldehyde was calculated by (X-Y).
[0095] 表 2から明らかなように、この発明の実施例 8〜: 11の消臭 ·防汚機能を有する繊維 布帛は、可視光照射下においてァセトアルデヒドに対して優れた分解性能を発揮で きた。  As is clear from Table 2, the deodorant / antifouling fiber fabric of Examples 8 to 11 of the present invention exhibits excellent decomposition performance to acetaldehyde under visible light irradiation. did it.
[0096] これに対し、比較例 3、 4の繊維布帛では、可視光照射下において分解性能が不十 分であった。  On the other hand, in the fiber fabrics of Comparative Examples 3 and 4, the degradation performance was insufficient under visible light irradiation.
[0097] なお、表 2から、この発明の製造方法で製造した酸化タングステン系光触媒を用い た実施例 8〜: 11の繊維布帛では、光触媒によってバインダー樹脂が分解されること は実質的に殆どなかった。これに対し、平均細孔径 0. 3nmの無機多孔質物質を用 レ、て製造した酸化タングステン系光触媒を用いた比較例 3の繊維布帛では、光触媒 によってバインダー樹脂が分解されることがわかった。  From Table 2, in the fiber fabric of Examples 8 to 11 using the tungsten oxide photocatalyst produced according to the production method of the present invention, the binder resin is hardly decomposed by the photocatalyst substantially. The On the other hand, it was found that the binder resin was decomposed by the photocatalyst in the fiber fabric of Comparative Example 3 using the tungsten oxide photocatalyst produced by using an inorganic porous material with an average pore diameter of 0.3 nm.
[0098] ここで用レ、られた用語及び説明は、この発明に係る実施形態を説明するために用 いられたものであって、この発明はこれに限定されるものではなレ、。この発明は請求 の範囲内であれば、その精神を逸脱するものでない限りいかなる設計的変更をも許 容するものである。  The terms and explanations used herein are used to explain the embodiments of the present invention, and the present invention is not limited thereto. This invention tolerates any design change within the scope of the claims unless it deviates from the spirit of the invention.
産業上の利用可能性  Industrial applicability
[0099] この発明に係る酸化タングステン系光触媒は、特に限定されるものではなレ、が、例 えば消臭剤、抗菌剤、殺菌剤、防汚剤、排水処理剤、浄水処理剤等として用いられ る。 The tungsten oxide photocatalyst according to the present invention is not particularly limited, but examples are For example, it is used as a deodorant, an antibacterial agent, a sterilizer, an antifouling agent, a waste water treatment agent, a water purification treatment agent and the like.
この発明に係る消臭 ·防汚機能を有する繊維布帛は、特に限定されるものではない 力 例えばカーペット、カーテン、壁紙、椅子張り地、天井材等のインテリア用布帛の 他、自動車、車両、船舶、航空機等の内装用繊維布帛、あるいは衣服等として用い られる。  The fiber cloth having deodorizing and antifouling functions according to the present invention is not particularly limited. For example, carpets, curtains, wallpaper, interior cloths such as upholstery, ceiling materials, etc. Automobiles, vehicles, ships And textile fabrics for interiors such as aircraft, or as clothes.

Claims

請求の範囲 The scope of the claims
[I] 平均細孔径が 0. 4〜40nmである無機多孔質物質の細孔内に酸化タングステンが 担持されていることを特徴とする酸化タングステン系光触媒。  [I] A tungsten oxide based photocatalyst characterized in that tungsten oxide is supported in pores of an inorganic porous material having an average pore diameter of 0.4 to 40 nm.
[2] 平均細孔径が 0. 4〜40nmである無機多孔質物質の表面及び細孔内に酸化タン ダステンが担持されていることを特徴とする酸化タングステン系光触媒。  [2] A tungsten oxide based photocatalyst characterized in that tungsten oxide is supported on the surface and pores of an inorganic porous material having an average pore size of 0.4 to 40 nm.
[3] 前記細孔内の酸化タングステンは、タングステン化合物の溶液を前記無機多孔質 物質の細孔内に包含させた状態で加熱焼成することによってタングステン化合物が 酸化タングステンになって前記細孔内に担持されたものである請求項 1または 2に記 載の酸化タングステン系光触媒。  [3] Tungsten oxide in the pores is converted into tungsten oxide by heating and baking in a state in which a solution of a tungsten compound is included in the pores of the inorganic porous material, and the tungsten oxide is converted into the pores. The tungsten oxide photocatalyst according to claim 1 or 2, which is supported.
[4] 前記酸化タングステンの担持量力 前記無機多孔質物質 100質量部に対して 20 〜150質量部である請求項 1〜3のいずれ力 1項に記載の酸化タングステン系光触 媒。  [4] The supported amount power of the tungsten oxide The present invention is 20 to 150 parts by mass with respect to 100 parts by mass of the inorganic porous material, The tungsten oxide based optical catalyst according to any one of claims 1 to 3.
[5] 前記タングステン化合物がメタタングステン酸アンモニゥムである請求項 3または 4 に記載の酸化タングステン系光触媒。  [5] The tungsten oxide based photocatalyst according to claim 4 or 5, wherein the tungsten compound is ammonium metatungstate.
[6] 前記無機多孔質物質が疎水性無機多孔質物質である請求項:!〜 5のいずれか 1項 に記載の酸化タングステン系光触媒。 [6] The tungsten oxide photocatalyst according to any one of claims 1 to 5, wherein the inorganic porous material is a hydrophobic inorganic porous material.
[7] 前記無機多孔質物質が疎水性ゼォライトである請求項:!〜 5のいずれか 1項に記載 の酸化タングステン系光触媒。 [7] The tungsten oxide photocatalyst according to any one of claims 1 to 5, wherein the inorganic porous material is hydrophobic zeolite.
[8] 平均細孔径が 0. 4〜40nmである無機多孔質物質の細孔内にタングステン化合物 の溶液を包含させる工程と、 [8] including a solution of a tungsten compound in pores of the inorganic porous material having an average pore size of 0.4 to 40 nm,
前記包含状態で加熱焼成することによって前記タングステン化合物を酸化タンダス テンに変化させて前記無機多孔質物質の細孔内に酸化タングステンを担持するェ 程と、を含むことを特徴とする酸化タングステン系光触媒の製造方法。  A step of converting the tungsten compound into oxidized tandasten by heating and calcining in the inclusion state, and supporting tungsten oxide in the pores of the inorganic porous material. Manufacturing method.
[9] 前記タングステン化合物の溶液としてメタタングステン酸アンモニゥムの水溶液を用 レ、る請求項 8に記載の酸化タングステン系光触媒の製造方法。 [9] The method for producing a tungsten oxide based photocatalyst according to claim 8, wherein an aqueous solution of ammonium metatungstate is used as the solution of the tungsten compound.
[10] 前記無機多孔質物質として疎水性無機多孔質物質を用いる請求項 8または 9に記 載の酸化タングステン系光触媒の製造方法。 [10] The method for producing a tungsten oxide based photocatalyst according to claim 8 or 9, wherein a hydrophobic inorganic porous material is used as the inorganic porous material.
[II] 前記無機多孔質物質として疎水性ゼォライトを用いる請求項 8または 9に記載の酸 化タングステン系光触媒の製造方法。 [II] The acid according to claim 8 or 9, wherein hydrophobic zeolite is used as the inorganic porous material. Method of producing tungsten carbide based photocatalyst.
[12] 前記加熱焼成の際の加熱温度が 250〜: 1500°Cである請求項 8〜: 11のいずれか 1 項に記載の酸化タングステン系光触媒の製造方法。  [12] The method for producing a tungsten oxide based photocatalyst according to any one of claims 8 to 11, wherein a heating temperature at the time of the heating and firing is 250 to 1500 ° C.
[13] 請求項 8〜: 12のいずれ力 4項に記載の製造方法により製造された酸化タンダステ ン系光触媒。 [13] An oxidized tandastane-based photocatalyst produced by the production method according to any one of [4] to [12].
[14] 繊維布帛の少なくとも一部に、請求項 1〜7のいずれ力、 1項又は請求項 13に記載 の酸化タングステン系光触媒がバインダー樹脂によって固着されていることを特徴と する消臭 ·防汚機能を有する繊維布帛。  [14] A deodorant and anti-deodorant characterized in that the tungsten oxide photocatalyst according to any one of claims 1 to 7 is fixed to at least a part of a fiber fabric by a binder resin. Fiber cloth having a stain function.
[15] 前記酸化タングステン系光触媒の繊維布帛への付着量が、繊維布帛 100質量部 に対して 0.:!〜 50質量部であり、前記バインダー樹脂の繊維布帛への付着量力 繊 維布帛 100質量部に対して 0. 05〜50質量部である請求項 14に記載の消臭 ·防汚 機能を有する繊維布帛。  [15] The adhesion amount of the tungsten oxide photocatalyst to the fiber fabric is 0.:! To 50 parts by mass with respect to 100 parts by mass of the fiber fabric, and the adhesion amount of the binder resin to the fiber fabric. The fiber cloth having a deodorizing and antifouling function according to claim 14, which is 0.05 to 50 parts by mass with respect to the mass part.
[16] 前記バインダー樹脂は、繊維布帛に対して略網目状に固着されている請求項 14ま たは 15に記載の消臭 ·防汚機能を有する繊維布帛。  [16] The fiber fabric having a deodorizing and antifouling function according to claim 14 or 15, wherein the binder resin is fixed to the fiber fabric in a substantially reticulated manner.
PCT/JP2005/015510 2005-08-26 2005-08-26 Tungsten oxide photocatalyst, process for producing the same, and fiber cloth having deodorizing/antifouling function WO2007023558A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007532000A JP5102034B2 (en) 2005-08-26 2005-08-26 Tungsten oxide photocatalyst, method for producing the same, and fiber fabric having deodorizing and antifouling functions
PCT/JP2005/015510 WO2007023558A1 (en) 2005-08-26 2005-08-26 Tungsten oxide photocatalyst, process for producing the same, and fiber cloth having deodorizing/antifouling function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/015510 WO2007023558A1 (en) 2005-08-26 2005-08-26 Tungsten oxide photocatalyst, process for producing the same, and fiber cloth having deodorizing/antifouling function

Publications (1)

Publication Number Publication Date
WO2007023558A1 true WO2007023558A1 (en) 2007-03-01

Family

ID=37771316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/015510 WO2007023558A1 (en) 2005-08-26 2005-08-26 Tungsten oxide photocatalyst, process for producing the same, and fiber cloth having deodorizing/antifouling function

Country Status (2)

Country Link
JP (1) JP5102034B2 (en)
WO (1) WO2007023558A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094252A (en) * 2009-10-28 2011-05-12 Toshiba Materials Co Ltd Method for fixing photocatalyst particle on fiber surface
WO2010136792A3 (en) * 2009-05-26 2011-06-16 Intrinsiq Materials Limited Antibacterial composition comprising metal oxide nanoparticles
JP2012091172A (en) * 2011-12-19 2012-05-17 National Institute Of Advanced Industrial Science & Technology Visible light responsive photocatalyst and photolysis method of environmental pollutant
JP2015505721A (en) * 2011-12-01 2015-02-26 ベーウェールBeewair Method for treating effluents in a bed of microbeads by cold plasma and photocatalysis
JP2015193973A (en) * 2009-08-12 2015-11-05 株式会社東芝 anti-viral fiber
JP2017160475A (en) * 2016-03-08 2017-09-14 Jxtgエネルギー株式会社 Catalyst layer, membrane electrode assembly, electrolytic cell, and method for producing catalyst layer
JP2018158316A (en) * 2017-03-23 2018-10-11 シャープ株式会社 Complex of photocatalyst and adsorbent
WO2018221693A1 (en) * 2017-05-31 2018-12-06 国立大学法人北海道大学 Functional structure and production method for functional structure
WO2018221702A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Photocatalyst structure, photocatalyst structure composition, photocatalyst coating material, production method of photocatalyst structure, and decomposition method of aldehydes
JP2020025941A (en) * 2018-08-17 2020-02-20 地方独立行政法人東京都立産業技術研究センター Photocatalyst and method of manufacturing the same
WO2020116469A1 (en) * 2018-12-03 2020-06-11 国立大学法人北海道大学 Functional structure
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
KR20220067603A (en) * 2020-11-16 2022-05-25 한국생산기술연구원 Fiber finishing agent for removing pollutant
CN115430414A (en) * 2022-09-15 2022-12-06 浙江冰虫环保科技有限公司 Environment-friendly degradation photocatalyst formaldehyde scavenger
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101390689B1 (en) * 2012-03-12 2014-04-30 이동수 Fabric with thermo barrier coating

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500660A (en) * 1995-03-02 1999-01-19 ユニヴァースィティ テクノロヂィズ インタナショナル インコーポレイテッド Photocatalytic compound and method for producing the same
JPH11505760A (en) * 1995-05-26 1999-05-25 ユーニヴァースィティ テクノロヂィズ インタナショナル インク. Photocatalyst composition and method for producing the same
JP2001239168A (en) * 2000-03-02 2001-09-04 Natl Inst Of Advanced Industrial Science & Technology Meti Method for carrying photocatalyst on porous glass membrane
JP2005194652A (en) * 2004-01-06 2005-07-21 Suminoe Textile Co Ltd Textile fabric with deodorizing function carried with photocatalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11500660A (en) * 1995-03-02 1999-01-19 ユニヴァースィティ テクノロヂィズ インタナショナル インコーポレイテッド Photocatalytic compound and method for producing the same
JPH11505760A (en) * 1995-05-26 1999-05-25 ユーニヴァースィティ テクノロヂィズ インタナショナル インク. Photocatalyst composition and method for producing the same
JP2001239168A (en) * 2000-03-02 2001-09-04 Natl Inst Of Advanced Industrial Science & Technology Meti Method for carrying photocatalyst on porous glass membrane
JP2005194652A (en) * 2004-01-06 2005-07-21 Suminoe Textile Co Ltd Textile fabric with deodorizing function carried with photocatalyst

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010136792A3 (en) * 2009-05-26 2011-06-16 Intrinsiq Materials Limited Antibacterial composition comprising metal oxide nanoparticles
US10327445B2 (en) 2009-08-12 2019-06-25 Kabushiki Kaisha Toshiba Antiviral material, antiviral film, antiviral fiber, and antiviral product
JP2015193973A (en) * 2009-08-12 2015-11-05 株式会社東芝 anti-viral fiber
JP2011094252A (en) * 2009-10-28 2011-05-12 Toshiba Materials Co Ltd Method for fixing photocatalyst particle on fiber surface
JP2015505721A (en) * 2011-12-01 2015-02-26 ベーウェールBeewair Method for treating effluents in a bed of microbeads by cold plasma and photocatalysis
JP2012091172A (en) * 2011-12-19 2012-05-17 National Institute Of Advanced Industrial Science & Technology Visible light responsive photocatalyst and photolysis method of environmental pollutant
JP2017160475A (en) * 2016-03-08 2017-09-14 Jxtgエネルギー株式会社 Catalyst layer, membrane electrode assembly, electrolytic cell, and method for producing catalyst layer
JP2018158316A (en) * 2017-03-23 2018-10-11 シャープ株式会社 Complex of photocatalyst and adsorbent
US11161101B2 (en) 2017-05-31 2021-11-02 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
JP7352910B2 (en) 2017-05-31 2023-09-29 国立大学法人北海道大学 Functional structure and method for manufacturing functional structure
CN110709168A (en) * 2017-05-31 2020-01-17 古河电气工业株式会社 Photocatalyst structure, photocatalyst structure composition, photocatalyst coating material, method for producing photocatalyst structure, and method for decomposing aldehyde
US11655157B2 (en) 2017-05-31 2023-05-23 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
JPWO2018221693A1 (en) * 2017-05-31 2020-05-28 国立大学法人北海道大学 Functional structure and method for manufacturing functional structure
US11904306B2 (en) 2017-05-31 2024-02-20 Furukawa Electric Co., Ltd. Catalyst structure and method for producing the catalyst structure
AU2018277967B2 (en) * 2017-05-31 2021-05-27 Furukawa Electric Co., Ltd. Functional structure and production method for functional structure
WO2018221702A1 (en) * 2017-05-31 2018-12-06 古河電気工業株式会社 Photocatalyst structure, photocatalyst structure composition, photocatalyst coating material, production method of photocatalyst structure, and decomposition method of aldehydes
WO2018221693A1 (en) * 2017-05-31 2018-12-06 国立大学法人北海道大学 Functional structure and production method for functional structure
US11654422B2 (en) 2017-05-31 2023-05-23 Furukawa Electric Co., Ltd. Structured catalyst for catalytic cracking or hydrodesulfurization, catalytic cracking apparatus and hydrodesulfurization apparatus including the structured catalyst, and method for producing structured catalyst for catalytic cracking or hydrodesulfurization
US11684909B2 (en) 2017-05-31 2023-06-27 Furukawa Electric Co., Ltd. Structured catalyst for methanol reforming, methanol reforming device, method for producing structured catalyst for methanol reforming, and method for producing at least one of olefin or aromatic hydrocarbon
US11680211B2 (en) 2017-05-31 2023-06-20 Furukawa Electric Co., Ltd. Structured catalyst for hydrodesulfurization, hydrodesulfurization device including the structured catalyst, and method for producing structured catalyst for hydrodesulfurization
US11648538B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11666894B2 (en) 2017-05-31 2023-06-06 Furukawa Electric Co., Ltd. Structured catalyst for CO shift or reverse shift and method for producing same, CO shift or reverse shift reactor, method for producing carbon dioxide and hydrogen, and method for producing carbon monoxide and water
US11547987B2 (en) 2017-05-31 2023-01-10 Furukawa Electric Co., Ltd. Structured catalyst for oxidation for exhaust gas purification, method for producing same, automobile exhaust gas treatment device, catalytic molding, and gas purification method
US11648543B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
US11648542B2 (en) 2017-05-31 2023-05-16 National University Corporation Hokkaido University Functional structural body and method for making functional structural body
JP7141095B2 (en) 2018-08-17 2022-09-22 地方独立行政法人東京都立産業技術研究センター photocatalyst
JP2020025941A (en) * 2018-08-17 2020-02-20 地方独立行政法人東京都立産業技術研究センター Photocatalyst and method of manufacturing the same
CN113164942A (en) * 2018-12-03 2021-07-23 国立大学法人北海道大学 Functional structure
EP3892376A4 (en) * 2018-12-03 2022-09-07 National University Corporation Hokkaido University Functional structure
WO2020116469A1 (en) * 2018-12-03 2020-06-11 国立大学法人北海道大学 Functional structure
KR102418944B1 (en) * 2020-11-16 2022-07-11 한국생산기술연구원 Fiber finishing agent for removing pollutant
KR20220067603A (en) * 2020-11-16 2022-05-25 한국생산기술연구원 Fiber finishing agent for removing pollutant
CN115430414A (en) * 2022-09-15 2022-12-06 浙江冰虫环保科技有限公司 Environment-friendly degradation photocatalyst formaldehyde scavenger

Also Published As

Publication number Publication date
JP5102034B2 (en) 2012-12-19
JPWO2007023558A1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
WO2007023558A1 (en) Tungsten oxide photocatalyst, process for producing the same, and fiber cloth having deodorizing/antifouling function
JP6577591B2 (en) Visible light active photocatalyst coating composition and air purification filter
TWI324948B (en) Photocatalystic composite material, method for producing the same and application thereof
WO2006046443A1 (en) Fiber fabric having voc removing function
US20120189489A1 (en) Complex metal oxide catalyst, filter module including complex metal oxide catalyst, and air cleaner including complex metal oxide catalyst
JP2005532894A (en) Method for producing a photocatalyst by coating a titanium dioxide film on a flexible substrate
KR20130092592A (en) Titanium oxide photocatalyst having copper compounds supported thereon, and method for producing same
JP2002285691A (en) Interior material
JP4293801B2 (en) Active tubular titanium oxide particles, catalyst containing the titanium oxide particles, and deodorant
CN107649145B (en) Catalyst for decomposing ozone and preparation method thereof
JP2014124630A (en) Photocatalyst carrier and method for manufacturing the same
JP2002138376A (en) Interior material
KR20170140494A (en) Manganese-copper catalyst coated silicon carbide honeycomb
JP4428510B2 (en) A fiber fabric carrying a photocatalyst and having a deodorizing function.
JPH105598A (en) Photocatalyst powder, photocatalyst body using the same and their production, and environmental cleaning method using them
JPH08266902A (en) Environment purifying material using photocatalyst and its composition
JP2005163243A (en) Photocatalyst-carrying fibrous formed body
JP2003268945A (en) Interior finish material
US20220111353A1 (en) Monolithic composite photocatalysts
JPH09239277A (en) Photocatalytic powder, photocatalyst using the powder and environment cleaning method using them
JP2000225349A (en) Filter
RU2482912C1 (en) Method of producing filtering-sorbing material with photo catalytic properties
KR20160121852A (en) Multifunctional Cu-TiO2-PU having both photocatalyst and adsorbent activity and manufacturing method thereof
JP2001096154A (en) Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
JP2005052713A (en) Carbon fiber supported porous titanium oxide photocatalyst and filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007532000

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05781030

Country of ref document: EP

Kind code of ref document: A1