JPH10277400A - Silica three-dimensional recticulated structure photocatalyst carrying titanium, oxide and its preparation - Google Patents

Silica three-dimensional recticulated structure photocatalyst carrying titanium, oxide and its preparation

Info

Publication number
JPH10277400A
JPH10277400A JP9085169A JP8516997A JPH10277400A JP H10277400 A JPH10277400 A JP H10277400A JP 9085169 A JP9085169 A JP 9085169A JP 8516997 A JP8516997 A JP 8516997A JP H10277400 A JPH10277400 A JP H10277400A
Authority
JP
Japan
Prior art keywords
titanium oxide
silica
dimensional network
photocatalyst
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9085169A
Other languages
Japanese (ja)
Other versions
JP3886594B2 (en
Inventor
Hiroko Tanaka
裕子 田中
Hiromasa Ogawa
弘正 小川
Hitoshi Okinaka
仁 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rasa Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Rasa Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Rasa Industries Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP08516997A priority Critical patent/JP3886594B2/en
Publication of JPH10277400A publication Critical patent/JPH10277400A/en
Application granted granted Critical
Publication of JP3886594B2 publication Critical patent/JP3886594B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a new photocatalyst in which a silica three-dimensional reticulated structure and titanium oxide are compounded together and also provide a preparation process thereof. SOLUTION: A mixed liquid of alkoxysilane, polyacrylic acid, water, alcohol and titanium oxide powder is reacted under the presence of an acid catalyst to hydrolyze and condensate and form a silica three-dimensional net structure, and then the structure thus formed is burnt. The mixed amount in the mixed liquid of titanium oxide fine powder is in the range of 1-10 wt.% of the total weight of the structure after burning. Thus a photocatalyst formed by carrying and fixing titanium oxide in the range of 1-10 wt.% on the surface and in the vicinity of the silica three-dimensional net-sturucture having anstrom order surface pores and micron order inner communicating pores can be provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリカの三次元網
状構造体と酸化チタンとを複合化させた新規な光触媒、
およびその製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a novel photocatalyst obtained by combining a three-dimensional network structure of silica and titanium oxide,
And a method of manufacturing the same.

【0002】[0002]

【従来の技術】半導体としての性質を有する酸化チタン
は、太陽光や蛍光灯等の光を照射することにより、その
表面に強い酸化作用を有する正孔と強い還元作用を有す
る電子とが生成し、これが空気中の窒素酸化物や水中の
有機塩素化合物等の有害物質を分解して除去することは
良く知られている。
2. Description of the Related Art Titanium oxide, which has the properties of a semiconductor, generates holes having a strong oxidizing action and electrons having a strong reducing action on its surface when irradiated with sunlight or fluorescent light. It is well known that this decomposes and removes harmful substances such as nitrogen oxides in air and organochlorine compounds in water.

【0003】かような酸化チタンの光触媒活性を高める
ためには、その比表面積をできる限り大きくすることが
重要であるが、そのためには酸化チタンを粒子径の小さ
い微粉末とする必要があった。しかしながら、微粉末状
の酸化チタンは取り扱いや、使用後の回収が難しいとい
う問題があった。
In order to enhance the photocatalytic activity of such titanium oxide, it is important to increase the specific surface area as much as possible. For this purpose, it is necessary to make the titanium oxide into a fine powder having a small particle diameter. . However, there is a problem that the fine powdered titanium oxide is difficult to handle and recover after use.

【0004】また酸化チタンの結晶形態にはルチル型、
アナターゼ型、ブルッカイト型の3種類があるが、光触
媒として用いる酸化チタンはアナターゼ型とする必要が
ある。アナターゼ型の酸化チタンは一般にチタンアルコ
キシドのゾル−ゲル反応等から作られるが、チタンアル
コキシドはゾル−ゲル反応における加水分解がきわめて
速く、工業的に製造するためには反応の制御が困難であ
った。
The crystal form of titanium oxide is a rutile type,
There are three types, anatase type and brookite type. Titanium oxide used as a photocatalyst needs to be anatase type. Anatase-type titanium oxide is generally produced by a sol-gel reaction of titanium alkoxide, but titanium alkoxide is extremely rapidly hydrolyzed in the sol-gel reaction, and it is difficult to control the reaction for industrial production. .

【0005】[0005]

【発明が解決しようとする課題】そこで本発明は、酸化
チタン微粉末を適切な多孔質固体担体に担持させること
により、取り扱いが容易でしかも十分な光触媒活性を備
えた酸化チタン光触媒を提供することを目的としてなさ
れたものである。
Accordingly, an object of the present invention is to provide a titanium oxide photocatalyst which is easy to handle and has sufficient photocatalytic activity by supporting fine titanium oxide powder on a suitable porous solid carrier. It was made for the purpose of.

【0006】さらに本発明は、チタンアルコキシドのゾ
ル−ゲル反応を用いることなく、工業的に有利に簡便に
実施でき、しかも多量の酸化チタンを含有させることが
でき触媒活性の高い酸化チタン光触媒を製造できる方法
を提供することを目的としてなされたものである。
Further, the present invention produces a titanium oxide photocatalyst which can be industrially advantageously and simply carried out without using a sol-gel reaction of titanium alkoxide and which can contain a large amount of titanium oxide and has high catalytic activity. It is intended to provide a possible method.

【0007】[0007]

【課題を解決するための手段】すなわち本発明は、オン
グストローム・オーダーの表面微細孔とミクロン・オー
ダーの内部連通孔を備えたシリカ三次元網状構造体の表
面および表面近傍に、1〜10重量%の範囲で酸化チタ
ンを担持固定させたことを特徴とする酸化チタンを担持
したシリカ三次元網状構造光触媒である。
That is, the present invention relates to a silica three-dimensional network having surface micropores on the order of Angstroms and internal communication pores on the order of microns on the surface and in the vicinity of the surface. A titanium three-dimensional network photocatalyst supporting titanium oxide, wherein titanium oxide is supported and fixed in the range of

【0008】さらに本発明は、上記のごとき酸化チタン
担持シリカ三次元網状構造光触媒の製造方法であって、
アルコキシシラン、ポリアクリル酸、水、アルコールお
よび酸化チタン微粉末の混合液を酸触媒のもとで反応さ
せることにより、アルコキシシランを加水分解および縮
合させてシリカ三次元網状構造体を形成させた後、得ら
れた構造体を焼成すること、酸化チタン微粉末の混合液
中の混合量は、焼成後の構造体全重量に対して1〜10
重量%の範囲とすることを特徴とするものである。
Further, the present invention relates to a method for producing a three-dimensional network photocatalyst comprising silica supported on titanium oxide as described above,
After reacting a mixed liquid of alkoxysilane, polyacrylic acid, water, alcohol and titanium oxide fine powder under an acid catalyst, the alkoxysilane is hydrolyzed and condensed to form a silica three-dimensional network structure. Firing the obtained structure, the mixing amount of the titanium oxide fine powder in the mixed solution is 1 to 10 with respect to the total weight of the structure after firing.
% By weight.

【0009】[0009]

【発明の実施の形態】本発明において酸化チタンの担体
となるシリカ三次元網状構造体については、特開平8−
12317号公報に開示されている。本発明は、この既
知のシリカ三次元網状構造体が、酸化チタンの触媒活性
を維持できる効果的な固体担体となること、さらには、
このシリカ三次元網状構造体を製造する際に反応系に酸
化チタン微粉末を混合しておくことにより、反応生成物
であるシリカ三次元網状構造体中にシリカ微粉末が効果
的に分散した状態で多量に担持固定化できることを見い
だし、本発明を完成させたものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a silica three-dimensional network structure serving as a carrier of titanium oxide is disclosed in
No. 12317. The present invention provides that the known silica three-dimensional network structure serves as an effective solid support capable of maintaining the catalytic activity of titanium oxide.
By mixing the titanium oxide fine powder into the reaction system when producing this silica three-dimensional network, the silica fine powder is effectively dispersed in the reaction product silica three-dimensional network. The present inventors have found that a large amount can be supported and immobilized, and the present invention has been completed.

【0010】本発明による光触媒を製造するに際して
は、まず、ポリアクリル酸、アルコール、酸、酸化チタ
ンおよび水を混合して5〜10分間攪拌する。この混合
の際、酸化チタンを均一に混合するためには、反応に用
いる水に予め酸化チタン微粉末を懸濁させてスラリー状
にしてから混合することが好ましい。各成分を均一に混
合した後、アルコキシシランを添加してさらに5〜10
分間攪拌する。次いでこの混合液を50〜80℃、好ま
しくは60〜70℃で20〜30時間放置してゾル−ゲ
ル反応を行わせる。この反応によりアルコキシシランは
加水分解して縮合し、ゲル化した複合体が得られる。こ
の複合体は表面がポリアクリル酸で被覆された状態とな
っているので、光触媒活性を高めるために500〜60
0℃で焼成する。
In producing the photocatalyst according to the present invention, first, polyacrylic acid, alcohol, acid, titanium oxide and water are mixed and stirred for 5 to 10 minutes. In order to uniformly mix the titanium oxide at the time of the mixing, it is preferable that titanium oxide fine powder is previously suspended in water used for the reaction to form a slurry and then mixed. After uniformly mixing the components, an alkoxysilane was added to further mix
Stir for a minute. Then, the mixture is left at 50 to 80 ° C., preferably 60 to 70 ° C. for 20 to 30 hours to cause a sol-gel reaction. By this reaction, the alkoxysilane is hydrolyzed and condensed to obtain a gelled complex. Since the surface of this composite is coated with polyacrylic acid, the composite is 500 to 60 to increase the photocatalytic activity.
Bake at 0 ° C.

【0011】かくして得られた光触媒は、白色もしくは
淡黄色を呈し、10〜30オングストロームといったオ
ングストローム・オーダーの表面微細孔と、5〜30μ
mといったミクロン・オーダーの内部連通孔を備えたシ
リカ三次元網状構造体を固体担体とし、この表面および
表面近傍に酸化チタンが担持固定された構造を有してい
る。かようなシリカ三次元網状構造体は通常500〜7
00m2 /g程度の比表面積を有している。
The photocatalyst thus obtained has a white or pale yellow color and has fine surface pores of the order of 10 to 30 angstroms and 5 to 30 μm.
It has a structure in which a silica three-dimensional network having internal communication holes on the order of microns such as m is used as a solid support, and titanium oxide is supported and fixed on the surface and in the vicinity of the surface. Such a silica three-dimensional network is usually 500 to 7
It has a specific surface area of about 00 m 2 / g.

【0012】酸化チタンの担持量は、光触媒全重量の1
〜10重量%とする。酸化チタンの担持量が1重量%よ
りも少ないと、効果的な光触媒活性が発現しない。一
方、酸化チタンを多量に担持させようとして製造時のゾ
ル−ゲル反応系の混合液中に10重量%よりも多量の酸
化チタンを添加しても、酸化チタンの一部が混合液中に
沈殿してしまうため、担持量の上限は10重量%程度と
なる。光触媒全重量の1〜10重量%という酸化チタン
の担持量は、予め調製しておいたシリカの三次元網状構
造体に後から酸化チタン微粉末を物理的に吸着させた場
合の担持量に比べると著しく多量であり、こうした多量
の酸化チタンの担持により効果的な光触媒活性が発現さ
れる点が本発明における特徴となっている。酸化チタン
微粉末は結晶形態がアナターゼ型のものを使用する必要
があり、粒子径20nm以下のものが好ましく使用でき
る。
The amount of titanium oxide supported is 1% of the total weight of the photocatalyst.
To 10% by weight. If the supported amount of titanium oxide is less than 1% by weight, no effective photocatalytic activity is exhibited. On the other hand, even if more than 10% by weight of titanium oxide is added to the sol-gel reaction mixture at the time of production in order to carry a large amount of titanium oxide, part of the titanium oxide precipitates in the mixture. Therefore, the upper limit of the supported amount is about 10% by weight. The supported amount of titanium oxide of 1 to 10% by weight based on the total weight of the photocatalyst is compared with the supported amount when titanium oxide fine powder is physically adsorbed later on a previously prepared silica three-dimensional network structure. It is a feature of the present invention that an effective photocatalytic activity is exhibited by supporting such a large amount of titanium oxide. It is necessary to use an anatase type crystal form as the titanium oxide fine powder, and a particle diameter of 20 nm or less can be preferably used.

【0013】本発明の製造方法において使用されるアル
コキシシランとしては、アルコキシル基の数が3〜4個
のメトキシシラン、エトキシシラン、プロポキシシラン
等が挙げられるが、テトラメトキシシシラン、テトラエ
トキシシランが好ましく使用できる。反応系となる混合
液中のアルコキシシランの添加量は混合液全量に対して
40〜50重量%、好ましくは44〜46重量%であ
る。
The alkoxysilane used in the production method of the present invention includes methoxysilane, ethoxysilane, propoxysilane and the like having 3 to 4 alkoxyl groups, and includes tetramethoxysilane and tetraethoxysilane. It can be used preferably. The amount of the alkoxysilane added to the reaction mixture is 40 to 50% by weight, preferably 44 to 46% by weight, based on the total amount of the mixture.

【0014】ポリアクリル酸は、分子量10万〜20
万、好ましくは13万〜17万のものが使用でき、反応
系となる混合液中に混合液全量に対して1.0〜5.0
重量%、好ましくは1.5〜2.0重量%の範囲で添加
する。また混合液中に添加するポリアクリル酸とアルコ
キシシランの割合は重量比で0.03〜0.04の範囲
とすることが好ましく、これにより、酸化チタンを担持
固定化するのに好適なミクロンオーダーの連通孔を有す
るシリカ三次元網状構造体を効率よく形成することがで
きる。
Polyacrylic acid has a molecular weight of 100,000 to 20
10,000, preferably 130,000 to 170,000 can be used, and 1.0 to 5.0 based on the total amount of the mixture in the reaction mixture.
% By weight, preferably in the range of 1.5 to 2.0% by weight. Further, the ratio of polyacrylic acid and alkoxysilane to be added to the mixture is preferably in the range of 0.03 to 0.04 by weight ratio, whereby the micron order suitable for carrying and fixing titanium oxide is preferred. It is possible to efficiently form a silica three-dimensional network structure having communication holes.

【0015】混合液に使用されるアルコールとしては、
メチルアルコール、エチルアルコール等の低級アルコー
ルが挙げられるが、使用するアルコキシシランのアルコ
キシル基と同じものを用いることが好ましい。混合液中
の添加量は混合液全量に対して10〜20重量%、好ま
しくは15〜18重量%程度である。
The alcohol used for the mixture is
Although lower alcohols such as methyl alcohol and ethyl alcohol are exemplified, it is preferable to use the same alkoxyl group as the alkoxysilane used. The amount added in the mixed solution is about 10 to 20% by weight, preferably about 15 to 18% by weight, based on the total amount of the mixed solution.

【0016】触媒として使用する酸は、塩酸、硝酸、酢
酸等が挙げられ、混合液中の添加量は混合液全量に対し
て1.2〜2.5重量%、好ましくは1.8〜2.2重
量%程度である。
The acid used as the catalyst includes hydrochloric acid, nitric acid, acetic acid and the like. The amount of the acid added to the mixture is 1.2 to 2.5% by weight, preferably 1.8 to 2% by weight based on the total amount of the mixture. It is about 2% by weight.

【0017】反応生成物である複合体は、表面がポリア
クリル酸で覆われているため光触媒活性成分である酸化
チタンが効果的に触媒活性を発現できない。そのためこ
の複合体を500〜600℃程度の温度で1〜2時間焼
成してポリアクリル酸や水分を除去する必要がある。焼
成温度が低いとポリアクリル酸を完全に分解除去でき
ず、焼成温度が高すぎるとシリカ構造体の表面の微細孔
が塞がってしまい比表面積が減少する危険があるため、
上記の焼成温度範囲とすることが望ましい。
Since the surface of the complex as a reaction product is covered with polyacrylic acid, titanium oxide as a photocatalytically active component cannot effectively exhibit catalytic activity. Therefore, it is necessary to bake the composite at a temperature of about 500 to 600 ° C. for 1 to 2 hours to remove polyacrylic acid and water. If the firing temperature is low, polyacrylic acid cannot be completely decomposed and removed, and if the firing temperature is too high, micropores on the surface of the silica structure may be blocked and the specific surface area may decrease,
It is desirable to set the firing temperature range described above.

【0018】[0018]

【実施例】以下に実施例および実験例を挙げて本発明を
さらに詳述するが、本発明はこれらの実施例のみに限定
されるものではない。
The present invention will be described in more detail with reference to the following Examples and Experimental Examples, but the present invention is not limited to these Examples.

【0019】[実施例1]100mL(ミリリットル)
ビーカーに25%ポリアクリル酸水溶液(分子量15
万)2g、水8g、60%硝酸1g、エチルアルコール
5g、酸化チタン微粉末(平均粒子径7nm)1gを混
合し、10分間攪拌した。次いでテトラエトキシシラン
13gを加えてさらに10分間攪拌を行った。混合液を
TPX製シャーレに移して軽く蓋をし、70℃に保った
恒温乾燥機中に入れて30時間放置してテトラエトキシ
シランの加水分解および縮合反応を行った。反応が終わ
った生成物を空気中500℃で1時間焼成した。得られ
た酸化チタン担持シリカ三次元網状構造光触媒は白色の
固体で、その特徴は以下の通りであった。
Example 1 100 mL (milliliter)
25% polyacrylic acid aqueous solution (molecular weight 15
2 g), 8 g of water, 1 g of 60% nitric acid, 5 g of ethyl alcohol, and 1 g of titanium oxide fine powder (average particle diameter: 7 nm) were mixed and stirred for 10 minutes. Next, 13 g of tetraethoxysilane was added, and the mixture was further stirred for 10 minutes. The mixture was transferred to a TPX petri dish, covered lightly, placed in a thermostatic dryer kept at 70 ° C., and left for 30 hours to carry out hydrolysis and condensation of tetraethoxysilane. The product after the reaction was calcined in air at 500 ° C. for 1 hour. The obtained titanium oxide-supported silica three-dimensional network photocatalyst was a white solid, and the characteristics were as follows.

【0020】・担体であるシリカは三次元的な網状構造
となっている。
The silica as a carrier has a three-dimensional network structure.

【0021】・三次元網状構造シリカは、平均22オン
グストロームの表面微細孔と、10〜30μmの内部連
通孔を有し、その比表面積をBET法で測定した結果、
639m2 /gであった。図1に走査型電子顕微鏡写真
を示す。
The three-dimensional network silica has surface micropores having an average of 22 angstroms and internal communication pores of 10 to 30 μm, and the specific surface area is measured by the BET method.
639 m 2 / g. FIG. 1 shows a scanning electron micrograph.

【0022】・酸化チタンが網状構造シリカの表面上に
固定されている。図2にエネルギー分散X線分光法によ
る測定スペクトルを示す。なおスペクトル中のAuは、
測定に際して蒸着させたものである。
Titanium oxide is fixed on the surface of the network silica. FIG. 2 shows a spectrum measured by energy dispersive X-ray spectroscopy. Note that Au in the spectrum is
It was deposited during the measurement.

【0023】・ICP発光分光分析装置により測定した
ところ、SiO2 含有量87.2重量%、TiO2 含有
量5.4重量%であった。
The content of SiO 2 was 87.2% by weight and the content of TiO 2 was 5.4% by weight, as measured by ICP emission spectroscopy.

【0024】[実施例2]100mLビーカーに25%
ポリアクリル酸水溶液(分子量15万)2g、水8.5
g、60%硝酸1.14g、メチルアルコール3.84
g、酸化チタン微粉末(平均粒子径7nm)1gを混合
し、10分間攪拌した。次いでテトラメトキシキシシラ
ン9.54gを加えてさらに10分間攪拌を行った。混
合液をTPX製シャーレに移して軽く蓋をし、70℃に
保った恒温乾燥機中に入れて30時間放置してテトラメ
トキシシランの加水分解および縮合反応を行った。反応
が終わった生成物を空気中500℃で1時間焼成した。
得られた酸化チタン担持シリカ三次元網状構造光触媒は
白色の固体で、その構造は実施例1で得られたテトラエ
トキシシランの場合と同様、三次元的な網状構造となっ
ていた。
[Example 2] 25% in a 100 mL beaker
2 g of polyacrylic acid aqueous solution (molecular weight: 150,000), water 8.5
g, 60% nitric acid 1.14 g, methyl alcohol 3.84
g, and 1 g of titanium oxide fine powder (average particle size: 7 nm) were mixed and stirred for 10 minutes. Then, 9.54 g of tetramethoxyxysilane was added, and the mixture was further stirred for 10 minutes. The mixture was transferred to a TPX petri dish, lightly capped, placed in a constant temperature drier maintained at 70 ° C., and allowed to stand for 30 hours to perform hydrolysis and condensation of tetramethoxysilane. The product after the reaction was calcined in air at 500 ° C. for 1 hour.
The obtained titanium oxide-supported silica three-dimensional network structure photocatalyst was a white solid, and the structure was a three-dimensional network structure as in the case of the tetraethoxysilane obtained in Example 1.

【0025】[実施例3]100mLビーカーに25%
ポリアクリル酸水溶液(分子量15万)2g、水8g、
60%硝酸1g、エチルアルコール5g、酸化チタン微
粉末(平均粒子径7nm)1gを混合し、10分間攪拌
した。次いでメチルトリエトキシシラン14.5gを加
えてさらに10分間攪拌を行った。混合液をTPX製シ
ャーレに移して軽く蓋をし、70℃に保った恒温乾燥機
中に入れて30時間放置してメチルトリエトキシシラン
の加水分解および縮合反応を行った。反応が終わった生
成物を空気中500℃で1時間焼成した。得られた酸化
チタン担持シリカ三次元網状構造光触媒は白色の固体
で、その構造は実施例1で得られたテトラエトキシシラ
ンの場合と同様、三次元的な網状構造となっていた。
[Example 3] 25% in a 100 mL beaker
2 g of polyacrylic acid aqueous solution (molecular weight 150,000), 8 g of water,
1 g of 60% nitric acid, 5 g of ethyl alcohol, and 1 g of titanium oxide fine powder (average particle size: 7 nm) were mixed and stirred for 10 minutes. Next, 14.5 g of methyltriethoxysilane was added, and the mixture was further stirred for 10 minutes. The mixture was transferred to a TPX petri dish, lightly capped, placed in a constant-temperature dryer maintained at 70 ° C., and allowed to stand for 30 hours to perform hydrolysis and condensation of methyltriethoxysilane. The product after the reaction was calcined in air at 500 ° C. for 1 hour. The obtained titanium oxide-supported silica three-dimensional network structure photocatalyst was a white solid, and the structure was a three-dimensional network structure as in the case of the tetraethoxysilane obtained in Example 1.

【0026】[実施例4]100mLビーカーに25%
ポリアクリル酸水溶液(分子量15万)2g、水8g、
35%塩酸1g、エチルアルコール5g、酸化チタン微
粉末(平均粒子径7nm)1gを混合し、10分間攪拌
した。次いでテトラエトキシシラン13gを加えてさら
に10分間攪拌を行った。混合液をTPX製シャーレに
移して軽く蓋をし、70℃に保った恒温乾燥機中に入れ
て30時間放置してテトラエトキシシランの加水分解お
よび縮合反応を行った。反応が終わった生成物を空気中
500℃で1時間焼成した。得られた酸化チタン担持三
次元網状構造体光触媒は白色の固体で、その構造は実施
例1で得られたテトラエトキシシランの場合と同様、三
次元的な網状構造となっていた。
Example 4 25% in a 100 mL beaker
2 g of polyacrylic acid aqueous solution (molecular weight 150,000), 8 g of water,
1 g of 35% hydrochloric acid, 5 g of ethyl alcohol, and 1 g of titanium oxide fine powder (average particle size: 7 nm) were mixed and stirred for 10 minutes. Next, 13 g of tetraethoxysilane was added, and the mixture was further stirred for 10 minutes. The mixture was transferred to a TPX petri dish, covered lightly, placed in a thermostatic dryer kept at 70 ° C., and left for 30 hours to carry out hydrolysis and condensation of tetraethoxysilane. The product after the reaction was calcined in air at 500 ° C. for 1 hour. The obtained titanium oxide-supported three-dimensional network photocatalyst was a white solid, and had a three-dimensional network structure similar to that of the tetraethoxysilane obtained in Example 1.

【0027】[実験例]実施例1で調製した酸化チタン
担持シリカ三次元網状構造光触媒を用いて、NOx ガス
の除去試験を行った。
[Experimental Example] A NOx gas removal test was carried out using the titanium oxide-supported silica three-dimensional network photocatalyst prepared in Example 1.

【0028】容量3L(リットル)の臭い袋に、実施例
1で調製した本発明による酸化チタン担持シリカ三次元
網状構造光触媒0.5gと10ppmに調整したNOx
ガス3Lを入れ、蛍光灯および紫外線灯の照射下でNO
x ガス濃度の経時変化をガス検知管を使用して測定し
た。同時に、対照サンプルとして、アルコキシシランの
ゾル−ゲル反応系に酸化チタン微粉末を添加せずに反応
させて得られた酸化チタンを担持していないシリカ三次
元網状構造体についても同様のNOx ガス除去試験を行
った。結果を表1に示す。
In a 3 L (liter) odor bag, 0.5 g of the titanium oxide-supported silica three-dimensional network photocatalyst according to the present invention prepared in Example 1 and NOx adjusted to 10 ppm were used.
Inject 3 L of gas and irradiate with NO under fluorescent lamp and ultraviolet lamp.
x Changes over time in gas concentration were measured using a gas detector tube. At the same time, as a control sample, the same NOx gas removal was performed on a silica three-dimensional network structure not supporting titanium oxide obtained by reacting an alkoxysilane sol-gel reaction system without adding fine titanium oxide powder. The test was performed. Table 1 shows the results.

【0029】また比較試験として、上記対照サンプルと
同様のシリカ三次元網状構造体を形成した後、酸化チタ
ン微粉末をこのシリカ構造体表面に物理的に付着させた
ものについても、同様のNOx ガス除去試験を行った。
結果を表2に示す。なおこの比較試験のサンプルはIC
P発光分光分析装置で測定したところ、SiO2 含有量
が99.0重量%、TiO2 含有量が0.5重量%であ
った。
As a comparative test, the same three-dimensional silica network structure as that of the control sample was formed, and then the titanium oxide fine powder was physically adhered to the surface of the silica structure. A removal test was performed.
Table 2 shows the results. The sample of this comparative test was IC
As measured by a P emission spectrometer, the SiO 2 content was 99.0% by weight and the TiO 2 content was 0.5% by weight.

【0030】 [0030]

【0031】 [0031]

【0032】表1から、本発明の酸化チタンを担持した
シリカ三次元網状構造光触媒は、蛍光灯の照射により、
未照射の場合に比べて極めて優れたNOx ガス除去効果
を示すことがわかる。また、紫外線灯の照射によりさら
に優れた効果を示すことが確認された。なお、表1中の
酸化チタンを担持していない対照サンプルでもある程度
のNOx ガスを除去しているが、これは、多孔質のシリ
カ三次元網状構造体がNOx ガスをいくらか物理的に吸
着しているためと考えられる。
From Table 1, it can be seen that the silica three-dimensional network photocatalyst supporting titanium oxide of the present invention was irradiated with a fluorescent lamp.
It can be seen that an extremely excellent NOx gas removing effect is exhibited as compared with the case of no irradiation. Further, it was confirmed that irradiation with an ultraviolet lamp exhibited an even more excellent effect. It should be noted that the control sample not supporting titanium oxide in Table 1 also removed some NOx gas, but this was because the porous silica three-dimensional network physically absorbed the NOx gas to some extent. It is thought that there is.

【0033】一方、表2の比較試験におけるように、酸
化チタン微粉末を単に物理的に担体上に付着させただけ
のものは、担体表面に固定化できる酸化チタンの絶対量
が少ないため、光触媒として十分な活性が得られないこ
とがわかる。
On the other hand, as shown in the comparative test of Table 2, the titanium oxide fine powder merely physically adhered to the carrier has a small absolute amount of titanium oxide that can be immobilized on the carrier surface. It turns out that sufficient activity cannot be obtained.

【0034】[0034]

【発明の効果】以上の説明からわかるように、本発明
は、シリカ三次元網状構造体からなる担体上に多量の酸
化チタン微粉末を光触媒活性を保持した状態で効果的に
担持固定化せしめた光触媒を提供できるため、酸化チタ
ン微粉末に比べて取り扱いが容易であり、しかも高い光
触媒活性を得ることができる。
As can be seen from the above description, according to the present invention, a large amount of titanium oxide fine powder is effectively supported and fixed on a carrier composed of a silica three-dimensional network structure while maintaining photocatalytic activity. Since a photocatalyst can be provided, it is easier to handle as compared with titanium oxide fine powder, and high photocatalytic activity can be obtained.

【0035】さらに本発明の方法によれば、アルコキシ
シランのゾル−ゲル反応系に酸化チタン微粉末を存在さ
せることによって、シリカの三次元網状構造体の表面微
細孔や内部連通孔内に酸化チタンを強固に固定化するこ
とができ、シリカ三次元網状構造体を一旦調製した後に
酸化チタンを後から物理的に付着させた場合に比べてよ
り一層多量の酸化チタンを担持させることができるた
め、活性の高い酸化チタン光触媒を容易に製造すること
ができる。
Further, according to the method of the present invention, the titanium oxide fine powder is present in the sol-gel reaction system of the alkoxysilane, whereby the titanium oxide is formed in the fine pores and internal communication pores of the three-dimensional network structure of silica. Can be firmly immobilized, and a larger amount of titanium oxide can be supported as compared with the case where titanium oxide is physically attached later after the silica three-dimensional network structure is once prepared, A highly active titanium oxide photocatalyst can be easily produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シリカ三次元網状構造体の走査型電子顕微鏡写
真である。
FIG. 1 is a scanning electron micrograph of a three-dimensional network structure of silica.

【図2】本発明の酸化チタン担持シリカ三次元網状構造
光触媒のエネルギー分散X線分光法による測定スペクト
ルである。
FIG. 2 is a spectrum measured by energy dispersive X-ray spectroscopy of a titanium oxide-supported silica three-dimensional network photocatalyst of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小川 弘正 大阪府池田市緑丘1丁目8番31号 工業技 術院大阪工業技術研究所内 (72)発明者 沖中 仁 東京都中央区京橋一丁目1番1号 ラサ工 業株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiromasa Ogawa 1-81-31 Midorioka, Ikeda-shi, Osaka Inside the Industrial Technology Research Institute Osaka Institute of Industrial Technology (72) Inventor Jin Okinaka 1-1-1 Kyobashi, Chuo-ku, Tokyo No. 1 Inside Lhasa Industry Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 オングストローム・オーダーの表面微細
孔とミクロン・オーダーの内部連通孔を備えたシリカ三
次元網状構造体の表面および表面近傍に、1〜10重量
%の範囲で酸化チタンを担持固定させたことを特徴とす
る酸化チタンを担持したシリカ三次元網状構造光触媒。
1. Titanium oxide is supported and fixed in the range of 1 to 10% by weight on and near the surface of a silica three-dimensional network structure having surface micropores on the order of Angstroms and internal communication holes on the order of microns. 3. A silica three-dimensional network photocatalyst carrying titanium oxide.
【請求項2】 アルコキシシラン、ポリアクリル酸、
水、アルコールおよび酸化チタン微粉末の混合液を酸触
媒のもとで反応させることにより、アルコキシシランを
加水分解および縮合させてシリカ三次元網状構造体を形
成させた後、得られた構造体を焼成すること、酸化チタ
ン微粉末の混合液中の混合量は、焼成後の構造体全重量
に対して1〜10重量%の範囲とすることを特徴とする
酸化チタンを担持したシリカ三次元網状構造光触媒の製
造方法。
2. An alkoxysilane, polyacrylic acid,
By reacting a mixed solution of water, alcohol and titanium oxide fine powder under an acid catalyst to hydrolyze and condense the alkoxysilane to form a silica three-dimensional network structure, the obtained structure is Baking, the mixing amount of the titanium oxide fine powder in the mixed solution is in the range of 1 to 10% by weight based on the total weight of the structure after baking, and a three-dimensional network of silica supporting titanium oxide. A method for producing a structured photocatalyst.
JP08516997A 1997-04-03 1997-04-03 Method for producing silica three-dimensional network photocatalyst supporting titanium oxide Expired - Lifetime JP3886594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08516997A JP3886594B2 (en) 1997-04-03 1997-04-03 Method for producing silica three-dimensional network photocatalyst supporting titanium oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08516997A JP3886594B2 (en) 1997-04-03 1997-04-03 Method for producing silica three-dimensional network photocatalyst supporting titanium oxide

Publications (2)

Publication Number Publication Date
JPH10277400A true JPH10277400A (en) 1998-10-20
JP3886594B2 JP3886594B2 (en) 2007-02-28

Family

ID=13851170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08516997A Expired - Lifetime JP3886594B2 (en) 1997-04-03 1997-04-03 Method for producing silica three-dimensional network photocatalyst supporting titanium oxide

Country Status (1)

Country Link
JP (1) JP3886594B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012324A1 (en) * 1999-07-29 2001-02-22 Noritake Co., Ltd. Photocatalyst filter and method for preparation thereof
KR20010075751A (en) * 2000-01-17 2001-08-11 김영웅 porous material contained titanium dioxide photo-catalyst and its processing method
JP2003071281A (en) * 2001-09-06 2003-03-11 Fukui Prefecture Porous photocatalyst and method for manufacturing the same
WO2004085306A1 (en) * 2003-03-26 2004-10-07 Matsushita Electric Industrial Co. Ltd. Apparatus for photolysis of water and method for photolysis of water
GB2424598A (en) * 2005-03-29 2006-10-04 Dainippon Printing Co Ltd Photocatalyst composition
JP2007229624A (en) * 2006-03-01 2007-09-13 Tohoku Ricoh Co Ltd Photocatalytic material
WO2012017846A1 (en) * 2010-08-06 2012-02-09 Dic株式会社 One-pack coating composition, photocatalyst employing same, coating film of same, and method for manufacturing same
JP2012055893A (en) * 2011-12-21 2012-03-22 Daicel Corp Method for producing titanium oxide photocatalyst coated with porous silica film
JP2013132632A (en) * 2011-12-27 2013-07-08 Toei Sangyo Kk Metal oxide catalyst carrier, and method for producing the same
JP2014024041A (en) * 2012-07-30 2014-02-06 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE AND TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001012324A1 (en) * 1999-07-29 2001-02-22 Noritake Co., Ltd. Photocatalyst filter and method for preparation thereof
KR20010075751A (en) * 2000-01-17 2001-08-11 김영웅 porous material contained titanium dioxide photo-catalyst and its processing method
JP2003071281A (en) * 2001-09-06 2003-03-11 Fukui Prefecture Porous photocatalyst and method for manufacturing the same
WO2004085306A1 (en) * 2003-03-26 2004-10-07 Matsushita Electric Industrial Co. Ltd. Apparatus for photolysis of water and method for photolysis of water
US7909979B2 (en) 2003-03-26 2011-03-22 Panasonic Corporation Water photolysis system and process
US7732117B2 (en) 2005-03-29 2010-06-08 Dai Nippon Printing Co., Ltd. Photocatalyst composition and photocatalyst containing layer
GB2424598A (en) * 2005-03-29 2006-10-04 Dainippon Printing Co Ltd Photocatalyst composition
JP2007229624A (en) * 2006-03-01 2007-09-13 Tohoku Ricoh Co Ltd Photocatalytic material
WO2012017846A1 (en) * 2010-08-06 2012-02-09 Dic株式会社 One-pack coating composition, photocatalyst employing same, coating film of same, and method for manufacturing same
JP5087184B2 (en) * 2010-08-06 2012-11-28 Dic株式会社 One-pack type coating composition, photocatalyst used therefor, coating film thereof, and production method thereof
JP2012055893A (en) * 2011-12-21 2012-03-22 Daicel Corp Method for producing titanium oxide photocatalyst coated with porous silica film
JP2013132632A (en) * 2011-12-27 2013-07-08 Toei Sangyo Kk Metal oxide catalyst carrier, and method for producing the same
JP2014024041A (en) * 2012-07-30 2014-02-06 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE AND TiO2 COMPOSITE POROUS SILICA PHOTOCATALYST PARTICLE

Also Published As

Publication number Publication date
JP3886594B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
JP3959213B2 (en) Titanium oxide, photocatalyst body using the same, and photocatalyst body coating agent
JP6197162B2 (en) Method for inactivating virus and antiviral property-imparting article
CN1200877C (en) Mesostructured material incorporating particles of nanometric dimensions
JP3949374B2 (en) Titanium oxide, photocatalyst and photocatalyst coating using the same
JP4957244B2 (en) Titanium oxide photocatalyst, method for producing the same, and use thereof
KR20010020209A (en) Catalyst for partially oxidizing unsaturated hydrocarbon
JP3886594B2 (en) Method for producing silica three-dimensional network photocatalyst supporting titanium oxide
JPH11505760A (en) Photocatalyst composition and method for producing the same
JP5627006B2 (en) Photocatalyst and method for producing the same
JP4540971B2 (en) Neutral titanium oxide sol and method for producing the same
JP3987395B2 (en) Visible light responsive photocatalyst, method for producing the same, and photocatalyst using the same
JP2003055841A (en) Titanium oxide fiber and photocatalyst body using the same
JP5358433B2 (en) Composite, method for producing the same, and composition containing the same
JP3978636B2 (en) Coating composition for photocatalyst film formation
JP5313051B2 (en) Zirconium oxalate sol
US6803023B1 (en) Composite structure for deodorization or wastewater treatment
JP2002159865A (en) Titanium oxide photocatalyst for basic gas removal
JP2001096154A (en) Vanadium oxide/titania hybrid photocatalyst and its manufacturing method
JP4296533B2 (en) Titanium oxide photocatalyst with excellent nitrogen oxide removal performance
JP4484195B2 (en) Method for producing titanium oxide
JP2668958B2 (en) Method for producing spherical silica porous material
JP2668959B2 (en) Spherical silica porous body and method for producing the same
KR20160014750A (en) Inorganic hollow beads coated photocatalyst for a water treatment and method for manufacturing the same
KR20030084174A (en) Direct adhesion method of photocatalyst on substrate
CN110339813A (en) A kind of Nano-composite magnetic materials and preparation method for air cleaning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040301

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term