JPH03157125A - Deodorizing method with photocatalyst - Google Patents

Deodorizing method with photocatalyst

Info

Publication number
JPH03157125A
JPH03157125A JP1298227A JP29822789A JPH03157125A JP H03157125 A JPH03157125 A JP H03157125A JP 1298227 A JP1298227 A JP 1298227A JP 29822789 A JP29822789 A JP 29822789A JP H03157125 A JPH03157125 A JP H03157125A
Authority
JP
Japan
Prior art keywords
photocatalyst
porous body
semiconductor
gas
malodor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1298227A
Other languages
Japanese (ja)
Inventor
Shuzo Tokumitsu
修三 徳満
Tomoko Ikeda
知子 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1298227A priority Critical patent/JPH03157125A/en
Publication of JPH03157125A publication Critical patent/JPH03157125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To effectively decompose a malodor by the action of a photocatalyst by supporting a semiconductor on a cubic porous body, passing gas contg. the malodor through the resulting photocatalyst and irradiating the semiconductor with light. CONSTITUTION:A cubic porous body of ceramics, etc., produced from a fibrous structure as starting material is dipped in a titania sol to impregnate the sol into the porous body and this porous body is dried and heat-treated to support titanium oxide to obtain a photocatalyst 1. The resulting photocatalyst 1 is set on the bottom of a stainless reactor 2 so that the photocatalyst confronts a window 3 of a quartz sheet and a UV lamp 4 is laid just above the window 3. Gas contg. a malodor and air are allowed to flow in the reactor 2 and the lamp 4 is put on to irradiate the photocatalyst 1 with light. The gas comes in very satisfactory contact with the photocatalyst and the decomposition reaction of the malodor with the photocatalyst proceeds efficiently without shielding UV.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は家庭やオフィス内の悪臭(調理臭・食品臭・た
ばこ臭・体臭・ベットおよびトイレの臭いなど)の光触
媒による脱臭方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for deodorizing bad odors (cooking odor, food odor, tobacco odor, body odor, bed and toilet odor, etc.) in homes and offices using a photocatalyst.

従来の技術 家庭やオフィス内で発生する悪臭(調理臭・食品臭・た
ばこ臭・体臭・ペットおよびトイレ奥など)の成分は、
窒素化合物(アンモニア・アミン類・インドール・スカ
トールなど)、硫黄化合物(硫化水素・メチルメルカプ
タン・硫化メチル・二硫化メチル・二硫化ジメチルなど
)、アルデヒド類(ホルムアルデヒド・アセトアルデヒ
ドなど)、ケトン類(アセトンなど)、アルコール類(
メタノール・エタノールなど)、脂肪酸および芳香族化
合物など、多種多様である。
Conventional technology The components of bad odors that occur in homes and offices (cooking odor, food odor, tobacco odor, body odor, pets, the back of the toilet, etc.) are as follows:
Nitrogen compounds (ammonia, amines, indole, skatole, etc.), sulfur compounds (hydrogen sulfide, methyl mercaptan, methyl sulfide, methyl disulfide, dimethyl disulfide, etc.), aldehydes (formaldehyde, acetaldehyde, etc.), ketones (acetone, etc.) ), alcohol (
There are a wide variety of substances, including methanol, ethanol, etc.), fatty acids, and aromatic compounds.

従来、このような悪臭を除く方法として、悪臭物質と薬
剤とを化学反応させ無臭の物質に変化させる方法、芳香
剤で悪臭物質をマスキングする方法、活性炭やゼオライ
トなどで悪臭物質を吸着する方法、およびこれらの方法
を組み合わせて用いる方法があった。しかし、これらは
使い切ったり、脱臭能力が低下したりしたら、新しいも
のと交換する必要があった。特に脱臭性能が尽きても外
見に変化の無い吸着剤や脱臭剤では、臭いの取れ具合を
官能で感じて交換時期を決めるか、おおよその使用期間
で交換するかであったが、いずれにしても煩わしいもの
であった。そこで、光触媒作用を使って脱臭しようとい
う試みがなされている。これは酸化チタンなどの半導体
に紫外線を照射すると、半導体が励起され有機物を酸化
分解する性質を利用するもので、一般によく使われてい
る活性炭で脱臭しにくいアルデヒド類を始めとして、あ
らゆる悪臭を分解し、また長期間その性能を維持するも
のであって、紫外線灯の交換以外はメインテナンスが極
めて少ない、あるいはメインテナンスの必要の無い方法
である。
Conventionally, methods for removing such bad odors include a method of chemically reacting a malodorous substance with a drug to change it into an odorless substance, a method of masking the malodorous substance with an air freshener, a method of adsorbing the malodorous substance with activated carbon or zeolite, etc. There were also methods that used a combination of these methods. However, once these were used up or their deodorizing ability decreased, they had to be replaced with new ones. In particular, with adsorbents and deodorizers whose appearance does not change even after their deodorizing performance is exhausted, the decision to replace them is based on the sense of how well the odor has been removed, or it has been decided to replace them after approximately the period of use. It was also troublesome. Therefore, attempts have been made to deodorize using photocatalytic action. This technology takes advantage of the property of semiconductors such as titanium oxide when irradiated with ultraviolet rays, which excites them and oxidizes and decomposes organic substances.It decomposes all kinds of bad odors, including aldehydes, which are difficult to deodorize with the commonly used activated carbon. However, it maintains its performance for a long period of time, and requires very little or no maintenance other than replacing the ultraviolet lamp.

発明が解決しようとする課題 上記光触媒で悪臭を分解する性能を決定づける要因とし
て、紫外線強度・触媒量、悪臭と触媒の接触効率などが
ある。そこで触媒量を増やしたり、悪臭と触媒の接触効
率を上げようとして案内フィンを設けたりすると、触媒
に照射される紫外線が遮られ、光の弱いところや影のと
ころができ、かえって反応が効率良く進まなかったり、
逆に臭いのある中間生成物ができるという矛盾が生じる
など、分解反応を効率良く進ませて、脱臭速度を速める
ことが難しいという課題があった。
Problems to be Solved by the Invention Factors that determine the ability of the photocatalyst to decompose malodors include the intensity of ultraviolet rays, the amount of catalyst, and the contact efficiency between malodor and catalyst. Therefore, if the amount of catalyst is increased or guide fins are installed to improve the contact efficiency between the bad odor and the catalyst, the ultraviolet rays irradiated to the catalyst will be blocked, creating areas of weak light or shadows, which will actually make the reaction proceed more efficiently. There wasn't,
On the other hand, there was a problem in that it was difficult to make the decomposition reaction proceed efficiently and speed up the deodorization rate, such as the production of smelly intermediate products.

本発明は上記従来の課題を解決するものであり、光触媒
作用による悪臭の分解を効果的に行う方法を提供するこ
とを第一の目的とするものである。また前記第一の目的
に関連して、悪臭の分解を効果的に行う第二の方法を提
供することを第二の目的とするものである。
The present invention is intended to solve the above-mentioned conventional problems, and its first object is to provide a method for effectively decomposing bad odors through photocatalytic action. Further, in relation to the first object, a second object is to provide a second method for effectively decomposing bad odors.

課題を解決するための手段 上記第一の目的を達成するための第一の手段は、半導体
を担持した立体的多孔体上悪臭を含む気体の共存下で、
前記半導体に光を照射し半導体を活性化する光触媒によ
る脱臭方法とするものである。また第二の目的を達成す
るための第二の手段は、半導体を担持した立体的多孔体
と悪臭を含む気体の共存下で、前記気体を前記多孔体を
透過して流し、さらに半導体に光を照射し半導体を活性
化する光触媒による脱臭方法とするものである。
Means for Solving the Problems The first means for achieving the above-mentioned first objective is to:
This is a deodorizing method using a photocatalyst in which the semiconductor is irradiated with light to activate the semiconductor. A second means for achieving the second objective is to allow the gas to pass through the porous body in the coexistence of a three-dimensional porous body carrying a semiconductor and a gas containing a bad odor, and to further illuminate the semiconductor. This is a deodorizing method using a photocatalyst that activates semiconductors by irradiating them.

作  用 半導体物質と、非酸化性化合物と酸素を含む気体が共存
する場合、半導体物質に紫外線を照射すると、非酸化性
化合物が酸化分解することが知られている。特に酸化チ
タンについては多くの研究がなされている。この光触媒
作用の作用原理は、半導体中の荷電子帯の電子が紫外線
を吸収して伝導帯に励起され、そこで生じた荷電子帯の
正孔は触媒表面にある水酸基(OH基)と反応し、伝導
体に励起された電子は酸素(0)と反応して、活性の高
いOHラジカル、0ラジカル、0門が生じ、これが非酸
化性化合物を酸化分解するものと推測される。この光触
媒作用を脱臭装置に応用する場合に重要なことは、電灯
から照射される紫外線が効率良く使われること、さらに
悪臭が十分に半導体触媒層に接触することである。前者
については、半導体物質の検討が必要である。ここでは
後者について種々検討を行った。
It is known that when a working semiconductor material, a non-oxidizing compound, and a gas containing oxygen coexist, when the semiconductor material is irradiated with ultraviolet rays, the non-oxidizing compound is oxidized and decomposed. In particular, much research has been conducted on titanium oxide. The working principle of this photocatalysis is that electrons in the valence band in the semiconductor absorb ultraviolet light and are excited to the conduction band, and the holes in the valence band generated there react with the hydroxyl groups (OH groups) on the catalyst surface. It is assumed that the electrons excited in the conductor react with oxygen (0) to generate highly active OH radicals, 0 radicals, and 0 gates, which oxidize and decompose non-oxidizing compounds. When applying this photocatalytic effect to a deodorizing device, what is important is that the ultraviolet rays emitted from the electric lamp are used efficiently and that the bad odor comes into sufficient contact with the semiconductor catalyst layer. Regarding the former, it is necessary to consider semiconductor materials. Here, we conducted various studies regarding the latter.

その結果第一の手段の方法である、立体的多孔体に半導
体を担持した触媒にすることによって、触媒の表面積を
広(できるとともに、触媒表面で乱流を発生させること
ができ、悪臭と触媒との接触効率が極めて良くなること
を見出した。また第二の手段である方法は、前記立体的
多孔体の触媒が有している通気性を利用して、悪臭を含
む気体をこの触媒を透過して流すようにすることで、さ
らに悪臭と触媒との接触効率が良(なるものである。
As a result, by using the first method, which is a catalyst in which a semiconductor is supported on a three-dimensional porous body, the surface area of the catalyst can be expanded (and turbulent flow can be generated on the catalyst surface, which can reduce the odor and the catalyst). The second method uses the air permeability of the three-dimensionally porous catalyst to transport gases containing bad odors through the catalyst. By allowing the odor to pass through and flow, the efficiency of contact between the foul odor and the catalyst is further improved.

実施例 次に第1図〜第7図に基づいて本発明の実施例について
説明する。
Embodiment Next, an embodiment of the present invention will be described based on FIGS. 1 to 7.

(実施例1) 第1図・第2図は本発明で用いる半導体(酸化チタン)
を担持した立体的多孔体の光触媒であって、第1図は平
面写真、第2図は断面写真である。この実施例で用いた
多孔体は、繊維構造体く織編物)を出発原料とした旭化
成工業のアルミナセラミック繊維多孔体であって、目開
きが約1゜5nu++、ピッチ約2.5mmの織物が開
口部を互いに塞ぐようにして2段になった、厚さ約3m
+nの物である。次に、この多孔体にチタニアゾルをデ
イツプして含浸した後、乾燥後400℃〜700℃で熱
処理して酸化チタンを担持し、光触媒1とした。ここで
の酸化チタンの担持量は403 g / dである。
(Example 1) Figures 1 and 2 are semiconductors (titanium oxide) used in the present invention.
FIG. 1 is a plan view photograph, and FIG. 2 is a cross-sectional photograph. The porous body used in this example is an alumina ceramic fiber porous body manufactured by Asahi Kasei Industries, which uses a fibrous structure (woven or knitted fabric) as a starting material, and is a woven fabric with an opening of about 1°5 nu++ and a pitch of about 2.5 mm. Approximately 3m thick, with two tiers that close the openings.
+n. Next, this porous body was impregnated with titania sol by dipping, and after drying, it was heat-treated at 400° C. to 700° C. to support titanium oxide, thereby obtaining a photocatalyst 1. The amount of titanium oxide supported here was 403 g/d.

以下に本実施例の触媒を使用した実験例について説明す
る。第3図は光触媒反応のワンパスでの分解率を測定す
る、流通式測定装置である。2はステンレスで出来た反
応器で、底面に幅30.5mm長さ120mmの光触媒
1−1をセットし、その対面は石英板の窓3とした。そ
の窓3の直上より紫外線灯4で光を照射する。5−1.
5−2は邪魔板であって、共に下方に5mmだけ隙間が
あり、極力ガスが光触媒1−1の近傍を流れるようにし
である。6は悪臭ガスの入ったボンベ、7は空気の入っ
たボンベであり、8−1.8−2はそれぞれのボンベか
ら吐出されるガスの圧力を調節するレギュレータ、9−
1.9−2は流量調節器、10は2種類のガスを均一に
攪拌混合する混合器、12はバイパス側と反応側を切り
替える三方コック、13・14・15はガスのサンプリ
ング用のゴム栓である。また、11はそれぞれの要素部
品を結ぶ配管で、ガラス・フッソ樹脂、あるいはステン
レスで出来ている。ここで、紫外線灯4は消費電力10
Wの殺菌灯GL−10で、光触媒11表面の紫外線強度
が3.Oo+W/ cnf (波長250t+mの強度
を測定した)になるようセットした。またガスのトータ
ル流量は2e/分になるように流量調節器9−1.9−
2で調節した。次にこの流通式測定装置の操作について
説明する。光触媒1−1を反応器2にセットし三方コッ
ク12をバイパス側に開くようにした後、ボンベ6・7
を開は悪臭ガスと空気を出し、流量調節器9−1・9−
2で流量を設定して、しばら(放置してガスめ流れを安
定させる。時々ゴム栓13よりシリンジでガスをサンプ
リングし、ガスクロマトグラフィで分析し濃度測定を行
いながら、流量調節器9−1・9−2でガス濃度の微調
節を行う。混合ガスが設定流量・設定濃度に安定したら
、紫外線灯4を点灯し光触媒1−1に5分間照射する。
An experimental example using the catalyst of this example will be described below. Figure 3 shows a flow-type measuring device that measures the decomposition rate in one pass of the photocatalytic reaction. 2 is a reactor made of stainless steel, and a photocatalyst 1-1 with a width of 30.5 mm and a length of 120 mm was set on the bottom, and a window 3 of a quartz plate was placed opposite to the photocatalyst 1-1. Light is irradiated from directly above the window 3 with an ultraviolet lamp 4. 5-1.
Reference numeral 5-2 denotes a baffle plate, and there is a gap of 5 mm below both plates, so that the gas flows as close to the photocatalyst 1-1 as possible. 6 is a cylinder containing foul-smelling gas, 7 is a cylinder containing air, 8-1.8-2 is a regulator that adjusts the pressure of the gas discharged from each cylinder, 9-
1.9-2 is a flow rate regulator, 10 is a mixer that stirs and mixes two types of gas uniformly, 12 is a three-way cock that switches between the bypass side and the reaction side, and 13, 14, and 15 are rubber plugs for gas sampling. It is. Further, numeral 11 is a pipe connecting each element part, and is made of glass, fluorine resin, or stainless steel. Here, the power consumption of ultraviolet lamp 4 is 10
With the W germicidal lamp GL-10, the ultraviolet intensity on the surface of the photocatalyst 11 is 3. It was set to Oo+W/cnf (the intensity at a wavelength of 250t+m was measured). In addition, the flow rate regulator 9-1.9- is used so that the total flow rate of gas is 2e/min.
Adjusted with 2. Next, the operation of this flow-type measuring device will be explained. After setting the photocatalyst 1-1 in the reactor 2 and opening the three-way cock 12 to the bypass side, open the cylinders 6 and 7.
The opening releases foul-smelling gas and air, and the flow rate regulators 9-1 and 9-
Set the flow rate in Step 2, and leave it for a while to stabilize the gas flow. From time to time, sample the gas from the rubber stopper 13 with a syringe, analyze it with gas chromatography, and measure the concentration. The gas concentration is finely adjusted in step 9-2. When the mixed gas stabilizes at the set flow rate and set concentration, the ultraviolet lamp 4 is turned on and the photocatalyst 1-1 is irradiated for 5 minutes.

次に、三方コック12を反応側に開くように切り替えて
5分間放置した後、入口のゴム栓14・出口のゴム栓1
5よりそれぞれシリンジでガスをサンプリングし、ガス
クロマトグラフィで濃度分析を行う。濃度測定を10分
間隔で120分間行う。この入口、出口のガス濃度を次
式に代入して、光触媒1−1における悪臭ガスの分解率
を求める。
Next, switch the three-way cock 12 to open to the reaction side and leave it for 5 minutes, then open the inlet rubber stopper 14 and the outlet rubber stopper 1.
Sample the gas using a syringe from 5 and analyze the concentration using gas chromatography. Concentration measurements are taken at 10 minute intervals for 120 minutes. By substituting the gas concentrations at the inlet and outlet into the following equation, the decomposition rate of the malodorous gas in the photocatalyst 1-1 is determined.

b m=(1)X100 m:分解率(%) a:入口悪臭ガス濃度 b=出ロ悪臭ガス濃度 光触媒1−1の分解率は、各時間の分解率が安定した時
点での平均分解率である。ここで、光触媒1−1として
立体的多孔体の光触媒1の場合と、平板状の光触媒の場
合について分解率を比較して測定した。比較のために用
いる平板状の光触媒は、厚さ0.51f1mのアルミナ
−シリカ質のセラミックペーパーに、チタニアゾルをデ
イツプして含浸した後、乾燥後400℃〜700℃で熱
処理して酸化チタンを300g/J担持したものである
。悪臭ガスとしては1spptnのアセトアルデヒドと
、 20ppmのメチルメルカプタンについて分解率を
測定した。その結果を第1表に示す。
b m = (1) It is. Here, as photocatalyst 1-1, the decomposition rates were compared and measured for the case of photocatalyst 1 having a three-dimensional porous body and the case of using a flat photocatalyst. The flat photocatalyst used for comparison was prepared by dipping and impregnating titania sol into alumina-siliceous ceramic paper with a thickness of 0.51 f1 m, drying it and then heat-treating it at 400°C to 700°C to add 300 g of titanium oxide. /J carried. The decomposition rates were measured for 1 spptn of acetaldehyde and 20 ppm of methyl mercaptan as malodorous gases. The results are shown in Table 1.

注  A、A=アセトアルデヒド M、M=メチルメルカプタン このように、光触媒が立体的多孔体になることによって
、4割以上分解率が向上する。
Note: A, A = acetaldehyde M, M = methyl mercaptan In this way, by making the photocatalyst into a sterically porous body, the decomposition rate is improved by more than 40%.

(実施例2) 第4図及び第5図に本発明の別の実施例を示す。第4図
は縦断面図、第5図は横断面図である。28・29は紫
外線灯、30は紫外線灯28・29のソケット、21・
22・23は悪臭空気の流れに直角に、紫外線灯28・
29に平行に設けられた立体的多孔体の光触媒、24・
25・26・27は悪臭空気の流れに平行に、ケーシン
グ37に固定された立体的多孔体の光触媒、36は塵を
捕集するプレフィルタ、31・32はクロスフローファ
ン、33・34は前記ファン用のモータ、35は吸い込
みグリル、38は吹き出しグリルである。前記光触媒2
1〜27は実施例1と同じ触媒からなり、21・22・
23は400imX 130111m、24−25は2
60+++m X 130+yun、26・27は26
0mm X 400ml11で全触媒面積は3640c
ntである。
(Example 2) Another example of the present invention is shown in FIGS. 4 and 5. FIG. 4 is a longitudinal cross-sectional view, and FIG. 5 is a cross-sectional view. 28 and 29 are ultraviolet lamps, 30 are sockets for ultraviolet lamps 28 and 29, 21 and
22 and 23 are ultraviolet lamps 28 and 23 perpendicular to the flow of foul-smelling air.
A three-dimensional porous photocatalyst provided in parallel to 29, 24.
25, 26, and 27 are three-dimensional porous photocatalysts fixed to a casing 37 in parallel to the flow of foul-smelling air; 36 is a pre-filter that collects dust; 31, 32 are cross-flow fans; 33 and 34 are the aforementioned A motor for the fan, 35 is a suction grill, and 38 is a blowout grill. The photocatalyst 2
1 to 27 are the same catalysts as in Example 1, and 21, 22, and
23 is 400imX 130111m, 24-25 is 2
60+++m x 130+yun, 26/27 is 26
0mm x 400ml11, total catalyst area is 3640c
nt.

紫外線灯28・29としては紫外線を含む光を照射しう
るものであれば良く、照射される紫外線としては遠紫外
線でも近紫外線でも良い。そのような電灯としては、例
えば低圧水銀灯・高圧水銀灯・超高圧水銀灯がある。こ
れらの電灯は単独で使用しても良(、併用しても良い。
The ultraviolet lamps 28 and 29 may be of any type as long as they can emit light containing ultraviolet light, and the ultraviolet light to be emitted may be far ultraviolet light or near ultraviolet light. Examples of such electric lights include low-pressure mercury lamps, high-pressure mercury lamps, and ultra-high-pressure mercury lamps. These lights can be used alone (or in combination).

ここでは消費電力15Wの殺菌灯GL−15(波長25
3.7nm、紫外線出力3.2W)を2本使用した。
Here, we will introduce the germicidal lamp GL-15 (wavelength 25) with a power consumption of 15W.
Two ultraviolet rays (3.7 nm, ultraviolet output 3.2 W) were used.

上記構成において紫外線灯28・29を点灯し、31・
32のクロスフローファンを運転すると、悪臭を含んだ
空気は吸い込みグリル35から吸い込まれて、まずプレ
フィルタ36で塵が捕集される。次に悪臭空気は光触媒
21〜23を透過して流れ、臭気ガスなどの有機物は、
紫外線灯28・29からの紫外線によって励起された立
体的多孔体の光触媒21〜27に接触し分解される。
In the above configuration, the ultraviolet lamps 28 and 29 are turned on, and the
When the cross-flow fan 32 is operated, air containing bad odor is sucked in through the suction grill 35, and dust is first collected by the pre-filter 36. Next, the foul-smelling air passes through the photocatalysts 21 to 23 and flows, and organic substances such as foul-smelling gases are removed.
It comes into contact with the photocatalysts 21 to 27 of the three-dimensional porous body excited by the ultraviolet rays from the ultraviolet lamps 28 and 29, and is decomposed.

すなわち臭気の原因物質であるアンモニア・アミン類の
窒素化合物・硫化水素・メルカプタン類の硫黄化合物・
アルデヒド類・ケトン類・アルコール類・脂肪酸及び芳
香族化合物は、二酸化炭素・水・窒素酸化物・硫黄化合
物などに酸化分解される。そして脱臭された空気は吹き
出しグリル38より吐出される。第7図は比較例の光触
媒による脱臭装置の縦断面図である。45・46は紫外
線灯、47は前記紫外線灯のソケット、43・44は悪
臭空気の流れに平行に、前記紫外線灯に平行に設けられ
た円筒型の平板状光触媒、42は塵を捕集するプレフィ
ルタ、48・49はシロッコファン、50・51は前記
ファン用のモータ、52は吸い込みグリル、53は吹き
出しグリルである。また、55〜57悪臭空気を光触媒
43・44に導く案内板である。前記光触媒43・44
は実施例1で比較した平板状触媒と同じ触媒からなり、
共に直径150+nm x長さ40011111で全触
媒面積は3770cJである。また、紫外線灯45・4
6としては消費電力15Wの殺菌灯GL−15(波長2
53.7nm、紫外線出力3.2W)を2本使用した。
In other words, odor-causing substances such as ammonia, nitrogen compounds of amines, hydrogen sulfide, sulfur compounds of mercaptans,
Aldehydes, ketones, alcohols, fatty acids, and aromatic compounds are oxidatively decomposed into carbon dioxide, water, nitrogen oxides, sulfur compounds, etc. The deodorized air is then discharged from the blow-off grille 38. FIG. 7 is a longitudinal sectional view of a comparative example of a deodorizing device using a photocatalyst. 45 and 46 are ultraviolet lamps, 47 are sockets for the ultraviolet lamps, 43 and 44 are cylindrical flat photocatalysts installed parallel to the flow of foul-smelling air and parallel to the ultraviolet lamps, and 42 is a dust collector. A pre-filter, 48 and 49 are sirocco fans, 50 and 51 are motors for the fans, 52 is a suction grill, and 53 is a blowout grill. Further, 55 to 57 are guide plates that guide malodorous air to the photocatalysts 43 and 44. The photocatalysts 43 and 44
is made of the same catalyst as the flat catalyst compared in Example 1,
Both have a diameter of 150+nm x a length of 40011111, and the total catalyst area is 3770 cJ. Also, ultraviolet lamp 45.4
6 is a germicidal lamp GL-15 (wavelength 2) with a power consumption of 15W.
Two ultraviolet rays (53.7 nm, ultraviolet output 3.2 W) were used.

ここで次の方法によって、上記2つの脱臭装置について
アセトアルデヒドと硫化水素の分解性能を測定する。ア
ルミニウム製の内容積1dの箱に本発明の実施例の脱臭
装置を入れる。そしてこの箱に、アセトアルデヒドを注
入し初期濃度を約7ppmに合わせる。続いて紫外線灯
28・29を点灯するとともに、モータ33・34の電
源を投入してクロスフローファン31・32を風ft1
.5−/分になるように動かし脱臭装置を始動させる。
Here, the acetaldehyde and hydrogen sulfide decomposition performance of the above two deodorizing devices was measured by the following method. The deodorizing device of the embodiment of the present invention is placed in an aluminum box having an internal volume of 1 d. Then, acetaldehyde is injected into this box and the initial concentration is adjusted to about 7 ppm. Next, the ultraviolet lamps 28 and 29 are turned on, the motors 33 and 34 are turned on, and the cross flow fans 31 and 32 are turned on to blow ft1 of air.
.. 5 minutes per minute to start the deodorizing device.

そして1dの箱の中のアセトアルデヒドの濃度変化を測
定する。濃度の測定はガスクロマトグラフィでFID検
出器を使って行った。次に硫化水素の分解性能を測定し
た。この場合も初期濃度は約7ppmで、濃度の測定は
ガスクロマトグラフィでFPD検出器を使って行った。
Then, the change in the concentration of acetaldehyde in the box 1d is measured. The concentration was measured by gas chromatography using an FID detector. Next, the hydrogen sulfide decomposition performance was measured. In this case as well, the initial concentration was about 7 ppm, and the concentration was measured by gas chromatography using an FPD detector.

比較例の第7図に示す脱臭装置についても、同じ方法で
アセトアルデヒドと硫化水素の分解性能を測定した。こ
れらの測定結果を第6図に示す。A−Cは本実施例のア
セトアルデヒド・硫化水素の分解曲線、B−Dは比較例
のアセトアルデヒド・硫化水素の分解曲線である。立体
的多孔体の光触媒を透過して悪臭が流れる実施例は、円
筒型の平板状光触媒に沿って流れる比較例に比べると、
1/10の濃度になる時間は、6〜7割に短くなり、本
実施例の効果は明らかである。
Regarding the deodorizing device shown in FIG. 7 as a comparative example, the decomposition performance of acetaldehyde and hydrogen sulfide was measured using the same method. The results of these measurements are shown in FIG. A-C is a decomposition curve of acetaldehyde/hydrogen sulfide of this example, and B-D is a decomposition curve of acetaldehyde/hydrogen sulfide of a comparative example. The example in which the bad odor flows through the three-dimensional porous photocatalyst is compared to the comparative example in which the odor flows along the cylindrical plate-shaped photocatalyst.
The time required for the concentration to reach 1/10 is reduced by 60 to 70%, and the effect of this example is clear.

発明の効果 上記した実施例から明らかなように、第一の手段である
光触媒による脱臭方法は、光触媒を立体的多孔体にする
ことにより、光触媒と悪臭気体の接触が極めて良くなり
、紫外線を遮ることなく光触媒作用による悪臭の分解反
応を効率良く進ませるこ七ができる。さらに第二の手段
である光触媒による脱臭方法は、悪臭を含む気体を多孔
体の光触媒を透過して流すことにより、前記第一の手段
による効果より一層光触媒と悪臭気体の接触が極めて良
くなり、紫外線を遮ることなく光触媒作用による悪臭の
分解反応を効率良く進ませることができる。
Effects of the Invention As is clear from the examples described above, in the first method of deodorizing using a photocatalyst, by making the photocatalyst into a three-dimensional porous body, the contact between the photocatalyst and the foul-smelling gas is extremely improved, and ultraviolet rays are blocked. This allows the decomposition reaction of bad odors to proceed efficiently through photocatalytic action. Furthermore, the second method of deodorizing using a photocatalyst allows a gas containing a bad odor to pass through a porous photocatalyst, thereby making the contact between the photocatalyst and the bad-smelling gas much better than the effect of the first method. The decomposition reaction of bad odors can proceed efficiently through photocatalytic action without blocking ultraviolet rays.

【図面の簡単な説明】[Brief explanation of the drawing]

媒、4・28・29・45・46・・・紫外線灯。 Medium, 4, 28, 29, 45, 46... UV lamp.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体を担持した立体的多孔体と悪臭を含む気体
の共存下で、前記半導体に光を照射し半導体を活性化す
る光触媒による脱臭方法。
(1) A deodorizing method using a photocatalyst in which the semiconductor is irradiated with light to activate the semiconductor in the coexistence of a three-dimensional porous body supporting a semiconductor and a gas containing a bad odor.
(2)半導体を担持した立体的多孔体と悪臭を含む気体
の共存下で、前記気体を前記多孔体を透過して流し、さ
らに半導体に光を照射し半導体を活性化する光触媒によ
る脱臭方法。
(2) A deodorizing method using a photocatalyst, in which a three-dimensional porous body supporting a semiconductor and a gas containing a bad odor coexist, the gas is passed through the porous body, and the semiconductor is further irradiated with light to activate the semiconductor.
JP1298227A 1989-11-16 1989-11-16 Deodorizing method with photocatalyst Pending JPH03157125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1298227A JPH03157125A (en) 1989-11-16 1989-11-16 Deodorizing method with photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1298227A JPH03157125A (en) 1989-11-16 1989-11-16 Deodorizing method with photocatalyst

Publications (1)

Publication Number Publication Date
JPH03157125A true JPH03157125A (en) 1991-07-05

Family

ID=17856877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1298227A Pending JPH03157125A (en) 1989-11-16 1989-11-16 Deodorizing method with photocatalyst

Country Status (1)

Country Link
JP (1) JPH03157125A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05253544A (en) * 1992-03-13 1993-10-05 Toto Ltd Production of plate-shape member having deodorizing function
JPH063494U (en) * 1991-10-28 1994-01-18 株式会社日本フォトサイエンス Fluid photochemical reaction processor
EP0630679A1 (en) * 1992-11-10 1994-12-28 Toto Ltd. Air treating method using photocatalyst under interior illumination
JPH08196903A (en) * 1995-01-24 1996-08-06 Agency Of Ind Science & Technol Porous photocatalyst and manufacture thereof
WO2006080216A1 (en) * 2005-01-26 2006-08-03 Sumitomo Electric Industries, Ltd. Surface emitting device
JP2007098197A (en) * 2005-09-30 2007-04-19 Bridgestone Corp Manufacturing method of photocatalyst material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380833A (en) * 1986-09-25 1988-04-11 Toyota Central Res & Dev Lab Inc Method and apparatus for purifying malodor in compartment
JPH01139139A (en) * 1987-11-26 1989-05-31 Nippon Sheet Glass Co Ltd Deodorization/sterilization equipment
JPH01231926A (en) * 1988-03-14 1989-09-18 Hitachi Ltd Air cleaner
JPH02107339A (en) * 1988-10-14 1990-04-19 Hitachi Ltd Catalyst structure and its manufacturing method and usage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6380833A (en) * 1986-09-25 1988-04-11 Toyota Central Res & Dev Lab Inc Method and apparatus for purifying malodor in compartment
JPH01139139A (en) * 1987-11-26 1989-05-31 Nippon Sheet Glass Co Ltd Deodorization/sterilization equipment
JPH01231926A (en) * 1988-03-14 1989-09-18 Hitachi Ltd Air cleaner
JPH02107339A (en) * 1988-10-14 1990-04-19 Hitachi Ltd Catalyst structure and its manufacturing method and usage

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH063494U (en) * 1991-10-28 1994-01-18 株式会社日本フォトサイエンス Fluid photochemical reaction processor
JPH05253544A (en) * 1992-03-13 1993-10-05 Toto Ltd Production of plate-shape member having deodorizing function
EP0630679A1 (en) * 1992-11-10 1994-12-28 Toto Ltd. Air treating method using photocatalyst under interior illumination
EP0630679A4 (en) * 1992-11-10 1997-07-16 Toto Ltd Air treating method using photocatalyst under interior illumination.
JPH08196903A (en) * 1995-01-24 1996-08-06 Agency Of Ind Science & Technol Porous photocatalyst and manufacture thereof
WO2006080216A1 (en) * 2005-01-26 2006-08-03 Sumitomo Electric Industries, Ltd. Surface emitting device
JP2007098197A (en) * 2005-09-30 2007-04-19 Bridgestone Corp Manufacturing method of photocatalyst material

Similar Documents

Publication Publication Date Title
JPH03106420A (en) Deodorizing method for photo-catalyst
JPH02207824A (en) Air purifier
CN1960769B (en) Method for decomposing harmful substance and apparatus for decomposing harmful substance
JPH0512967B2 (en)
JPH07114925B2 (en) Photocatalytic deodorization method
JPH03157125A (en) Deodorizing method with photocatalyst
JP2002263181A (en) Simple deodorizer
JPH0515488B2 (en)
JP2000107276A (en) Air cleaner
JPH11276563A (en) Air cleaner
JP4030234B2 (en) Air purification method
JPH067906B2 (en) Photocatalytic deodorization method
KR100468224B1 (en) Anion air-cleaning machine added photocatalyst sterilizing apparatus
JPH01293876A (en) Deodorizing apparatus by photocatalyst
JP2002191682A (en) Air cleaner and air cleaning filter
JPH0759293B2 (en) Photocatalytic deodorization method
JPH0478326B2 (en)
JPH01159031A (en) Deodorization by photocatalyst and deodorizing apparatus
JP3254739B2 (en) Air purification method and air purification device
JPH02251226A (en) Air cleaning apparatus
JPH11276564A (en) Air cleaner
JPH01238867A (en) Deodorizing method by photocatalyst
JPH02169039A (en) Method for regenerating photocatalyst
KR100603802B1 (en) Method and apparatus for oxidizing carbon monoxide
JPH067905B2 (en) Deodorizer with photocatalyst