JP2002085967A - Photocatalyst membrane and method of producing the same - Google Patents

Photocatalyst membrane and method of producing the same

Info

Publication number
JP2002085967A
JP2002085967A JP2000280570A JP2000280570A JP2002085967A JP 2002085967 A JP2002085967 A JP 2002085967A JP 2000280570 A JP2000280570 A JP 2000280570A JP 2000280570 A JP2000280570 A JP 2000280570A JP 2002085967 A JP2002085967 A JP 2002085967A
Authority
JP
Japan
Prior art keywords
film
tio
membrane
photocatalyst
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000280570A
Other languages
Japanese (ja)
Other versions
JP4163374B2 (en
Inventor
Masahiro Asayama
雅弘 浅山
Noboru Segawa
昇 瀬川
Tsuneji Kameda
常治 亀田
Akiko Suyama
章子 須山
Katsutoshi Nishida
勝利 西田
Yoshiyasu Ito
義康 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000280570A priority Critical patent/JP4163374B2/en
Publication of JP2002085967A publication Critical patent/JP2002085967A/en
Application granted granted Critical
Publication of JP4163374B2 publication Critical patent/JP4163374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a photocatalyst membrane having improved catalytic efficiency and a method of producing the same. SOLUTION: The photocatalyst membrane contains TiO2 as a main component and has a multilayer structure in which the distribution of the porosity is such that the porosity is <=80% at the surface of the membrane and >=10% at the inside of the membrane, and the distribution of the average pore diameter is such that the average pore diameter is <=5 μm at the surface of the membrane and >=2 nm at the inside of the membrane and which is composed of not more than 10 layers, each having a membrane thickness of >=0.2 μm. In the photocatalyst membrane, the porosity and the average pore diameter are decreased toward the inside from the surface of the membrane, the thickness of the membrane is <=5 μm, the content of the metal particles is 0.01 to 30%, an average diameter of the metal particles is <=0.1 μm and the content of zeolite is 0.1 to 50%. Further, the method of producing the photocatalyst membrane comprises adding a binder to primary particles of TiO2 having an average particle size of <=100 nm, being a raw material, to obtain a slurry, then coating the slurry onto a substrate by a slip casting method and sintering the coated film.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い光触媒性能を
有する光触媒膜およびその製造方法に係わり、特に、空
気浄化、水浄化等の環境浄化型装置へ適用可能な光触媒
膜およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst film having high photocatalytic performance and a method for producing the same, and more particularly to a photocatalyst film applicable to an environment purification type apparatus such as air purification and water purification, and a method for producing the same. It is.

【0002】[0002]

【従来の技術】近年、空気浄化・脱臭、水浄化・排水処
理、防汚、抗菌・殺菌、防曇等の広い分野で光触媒が注
目されている。光半導体粒子にそのバンドギャップ以上
のエネルギを持つ波長の光を与えた場合、価電子帯に存
在している電子が光励起され伝導帯に移動し、一方、価
電子帯には正孔(ホール)が生成される。生成した電子
(e)は酸素(O)と反応してスーパーオキサイド
アニオン(・O )を生成し、また、正孔(h)は
水と反応してヒドロキシラジカル(・OH)を生成す
る。
2. Description of the Related Art In recent years, photocatalysts have received attention in a wide range of fields such as air purification / deodorization, water purification / drainage treatment, antifouling, antibacterial / sterilizing, and antifogging. When light of a wavelength having energy equal to or greater than the band gap is applied to the optical semiconductor particles, electrons existing in the valence band are photoexcited and move to the conduction band, while holes in the valence band are present. Is generated. The generated electron (e ) reacts with oxygen (O 2 ) to generate a superoxide anion (· O 2 ), and the hole (h + ) reacts with water to generate a hydroxyl radical (· OH). Generate

【0003】スーパーオキサイドアニオン(・O
は強い還元力を示し、ヒドロキシラジカル(・OH)は
強い酸化力を示すため、これらを利用して上記のような
様々な環境浄化分野へ応用しようとする試みがなされて
いる。
[0003] The superoxide anion (· O 2 -)
Has a strong reducing power, and the hydroxyl radical (.OH) has a strong oxidizing power. Therefore, attempts have been made to use these compounds in various fields of environmental purification as described above.

【0004】光触媒は、応用範囲が極めて広いこと、ま
た、エネルギー源として太陽光や蛍光灯の光が直接利用
できることなどから“環境に優しい”という点で大変注
目されているものの、触媒反応はそれほど強力で迅速な
ものではなかった。従って、触媒反応の効率を向上させ
るというのが最重要課題となっており、光触媒膜の効率
向上を目的として、多くの検討がなされている。
[0004] Photocatalysts have received a great deal of attention in terms of their "environmental friendliness" because of their extremely wide application range and the direct use of sunlight or fluorescent light as an energy source. It was not powerful and quick. Therefore, improving the efficiency of the catalytic reaction is the most important issue, and many studies have been made for the purpose of improving the efficiency of the photocatalytic film.

【0005】例えば、特開平9−262482号公報に
は、Cr、V、Cu、Fe、Mg、Ag、Pd、Ni、
MnおよびPtの群から選択される1種以上の金属イオ
ンを1×1015イオン/g−TiO以上の割合で酸
化チタンの表面から内部に含有させることが記載されて
いる。具体的には、上記金属イオンを30keV以上の
高エネルギーに加速して、これを酸化チタンに照射する
ことにより、金属イオンを酸化チタンにドーピングする
方法が記載されている。
For example, Japanese Patent Application Laid-Open No. 9-262482 discloses that Cr, V, Cu, Fe, Mg, Ag, Pd, Ni,
It describes that one or more metal ions selected from the group of Mn and Pt are contained from the surface to the inside of titanium oxide at a rate of 1 × 10 15 ions / g-TiO 2 or more. Specifically, a method is described in which the metal ions are accelerated to a high energy of 30 keV or more and the titanium ions are irradiated with the metal ions to dope the metal ions to the titanium oxide.

【0006】また、特開平2−107339号公報に
は、反応ガスおよび光が流通可能な3次元構造を有する
基材上に、光触媒活性成分を担持させて触媒構造体を形
成することが記載されており、空気中に含まれる悪臭成
分を効率よく除去できるとしている。
JP-A-2-107339 discloses that a photocatalytic active component is supported on a substrate having a three-dimensional structure through which a reaction gas and light can flow to form a catalyst structure. It is said that the odorous components contained in the air can be efficiently removed.

【0007】また、特開平8−103631号公報に
は、球状の耐熱ガラスを融着して作ったガラスフィルタ
に、チタンのアルコキシドとアルコールアミン類などか
ら調整されたチタニアゾルあるいはそれにポリエチレン
グリコールまたはポリエチレンオキサイドを添加したも
のをコーティングした後、室温から徐々に600℃から
700℃の最終温度にまで加熱昇温して製造することが
記載されており、これにより汚染物質を吸着および分解
除去できるとしている。
JP-A-8-103631 discloses a titania sol prepared from alkoxides of titanium and alcoholamines or polyethylene glycol or polyethylene oxide on a glass filter prepared by fusing spherical heat-resistant glass. It is described that, after coating with the additive, the product is heated and gradually heated from room temperature to a final temperature of 600 ° C. to 700 ° C., whereby the contaminants can be adsorbed and decomposed and removed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記の
ような様々な検討がなされているにもかかわらず、いず
れの場合も未だ効率が十分とは言い難く、さらに効率向
上のための有効な施策が求められていた。
However, in spite of various studies as described above, in any case, the efficiency is still not sufficient, and effective measures for improving the efficiency are not yet considered. Was sought.

【0009】本発明は、上記問題を解決するためになさ
れたものであり、触媒反応の効率をより向上させた光触
媒膜およびその製造方法を得ることを目的とするもので
ある。
The present invention has been made to solve the above problems, and has as its object to obtain a photocatalyst film with further improved catalytic reaction efficiency and a method for producing the same.

【0010】[0010]

【課題を解決するための手段】本発明者らは、光触媒膜
の効率向上に関して鋭意研究を重ねた結果、光触媒膜の
構造を表面および内部で気孔率、気孔径を制御する事
で、効率よく比表面積、被分解物質の吸着部位を大幅に
増大することができ、見かけ上光触媒性能が急激に向上
すること、またこのような光触媒膜を再現性良く、かつ
自由にコントロールする方法を見い出し、本発明を完成
したものである。
Means for Solving the Problems As a result of intensive studies on the improvement of the efficiency of the photocatalytic film, the present inventors have found that the structure of the photocatalytic film can be efficiently controlled by controlling the porosity and the pore diameter on the surface and inside. It has been found that the specific surface area and the adsorption site of the substance to be decomposed can be greatly increased, and that apparently the photocatalytic performance is dramatically improved, and a method for controlling such a photocatalytic film with good reproducibility and free control has been found. The invention has been completed.

【0011】すなわち、請求項1記載の光触媒膜は、T
iOを主成分とした光触媒膜であって、この光触媒膜
の気孔率は、膜表面で80%以下、膜内部で10%以上
の分布を有し、かつ、平均気孔径は、膜表面で5μm以
下、膜内部で2nm以上の分布を有することを特徴とす
る。
That is, the photocatalyst film according to claim 1 has a T
A photocatalyst film containing iO 2 as a main component, wherein the porosity of the photocatalyst film has a distribution of 80% or less on the surface of the film and 10% or more inside the film, and the average pore diameter is on the surface of the film. It has a distribution of 5 μm or less and 2 nm or more inside the film.

【0012】本発明によれば、TiOを主成分とする
光触媒膜は、TiO膜の表面の気孔率が高く、気孔径
が大きい構造となっている。触媒膜の構造を表面と内部
とで変化させることで、比表面積の増大により反応面積
が増え、分解吸着サイトの増加により光触媒効率が向上
する。また、本発明によれば、膜表面の気孔率が大き
く、かつ気孔径が大きいためTiO膜内部まで光が効
率良く透過できる。さらに、光が比較的透過しにくく光
触媒反応が起こりにくい膜内部では、気孔率が低くかつ
気孔径も小さいため、効率良くガスの吸着を行える。こ
れらの相乗効果により光触媒効率を大幅に向上すること
ができる。
According to the present invention, the photocatalyst film containing TiO 2 as a main component has a structure in which the surface of the TiO 2 film has a high porosity and a large pore diameter. By changing the structure of the catalyst film between the surface and the inside, the reaction area increases due to an increase in the specific surface area, and the photocatalytic efficiency improves due to an increase in the number of decomposition adsorption sites. Further, according to the present invention, since the porosity of the film surface is large and the pore diameter is large, light can efficiently pass through the inside of the TiO 2 film. Furthermore, inside the film where light is relatively hard to transmit and photocatalytic reaction does not easily occur, the gas can be efficiently adsorbed because the porosity is low and the pore diameter is small. These synergistic effects can greatly improve the photocatalytic efficiency.

【0013】また、TiO膜の気孔率を膜表面で80
%以下、膜内部で10%以上と規定したが、膜表面での
気孔率が80%を超えると、TiO膜粒子の脱離等が
生じるためであり、膜内部での気孔率が10%未満では
光が透過しない部位が多くなり吸着サイトの量も減り、
反応効率が低下するためである。
Further, the porosity of the TiO 2 film is
% Or less, and 10% or more inside the film. However, if the porosity on the film surface exceeds 80%, desorption of TiO 2 film particles occurs, and the porosity inside the film is 10%. If it is less, the number of sites through which light does not pass increases, the amount of adsorption sites also decreases,
This is because the reaction efficiency decreases.

【0014】なお、本発明において、膜表面および膜内
部としたが、表面および内部の境界は、触媒膜の表面か
ら100nmの厚さの箇所であり、この境界よりも触媒
膜の表面側である場合に膜表面とし、この境界よりも下
部である場合に膜内部としたものである。
In the present invention, the surface of the membrane and the interior of the membrane are used. However, the boundary between the surface and the interior is a location having a thickness of 100 nm from the surface of the catalyst film, and is closer to the surface of the catalyst film than this boundary. In this case, the surface is defined as the film surface, and when it is below the boundary, it is defined as the inside of the film.

【0015】請求項2記載の発明は、光触媒膜の膜表面
から膜内部に向かい、気孔率および平均気孔径が減少し
ていることを特徴とする請求項1記載の光触媒膜であ
る。
The invention according to claim 2 is the photocatalyst film according to claim 1, wherein the porosity and the average pore diameter decrease from the film surface of the photocatalyst film toward the inside.

【0016】本発明において、膜表面から膜内部に向か
って、気孔率および平均気孔径を減少させた構造とする
ことで、膜内部まで効率よく光を透過すると共に、気孔
に分解および吸着させる分子を選択的に吸着できるよう
にするためである。
In the present invention, the structure in which the porosity and the average pore diameter are reduced from the film surface toward the inside of the film allows light to efficiently pass through the inside of the film and to be decomposed and adsorbed by the pores. Is to be able to be selectively adsorbed.

【0017】なお、本発明において、触媒膜の表面から
内部にかけて、気孔率および気孔径を減少させること
で、より多くの種類の被分解物質を吸着させる事が可能
となり、被分解物質が特定されない状況での光触媒性能
が向上する。
In the present invention, by reducing the porosity and pore diameter from the surface to the inside of the catalyst film, it becomes possible to adsorb more kinds of decomposed substances, and the decomposed substances are not specified. The photocatalytic performance in the situation is improved.

【0018】請求項3記載の発明は、光触媒膜の厚さ
が、5μm以下であることを特徴とする請求項1または
2に記載の光触媒膜である。
The invention according to claim 3 is the photocatalyst film according to claim 1 or 2, wherein the thickness of the photocatalyst film is 5 μm or less.

【0019】本発明において、光触媒膜の厚さを5μm
以下と規定したが、厚さが5μmを超えると、光が膜内
部まで透過できず光触媒性能が低下するためである。
In the present invention, the thickness of the photocatalytic film is 5 μm
This is because, when the thickness exceeds 5 μm, light cannot be transmitted to the inside of the film, and the photocatalytic performance is reduced.

【0020】請求項4記載の発明は、光触媒膜が多層構
造からなり、この多層構造を形成する各層の膜厚が0.
2μm以上であることを特徴とする請求項1または2に
記載の光触媒膜である。
According to a fourth aspect of the present invention, the photocatalyst film has a multilayer structure, and each of the layers forming the multilayer structure has a thickness of 0.1 mm.
The photocatalyst film according to claim 1, wherein the thickness is 2 μm or more.

【0021】本発明において、触媒膜の各層をそれぞれ
0.2μm以上と規定したが、0.2μm未満では製造
プロセスが困難となり、製造コストが高くなるためであ
る。
In the present invention, each layer of the catalyst film is specified to be 0.2 μm or more. However, if it is less than 0.2 μm, the production process becomes difficult and the production cost increases.

【0022】請求項5記載の発明は、各層が、10層以
下であることを特徴とする請求項4に記載の光触媒膜で
ある。
The invention according to claim 5 is the photocatalyst film according to claim 4, wherein each layer is 10 layers or less.

【0023】触媒膜を多層構造とした場合、各層を10
層よりも多くすると、製造プロセスコストが増加する半
面、特性向上がそれほど増加しない。このため、本発明
において触媒膜を10層以下にすると良い。
When the catalyst film has a multilayer structure, each layer has a thickness of 10
When the number of layers is larger than the number of layers, the manufacturing process cost is increased, but the property improvement is not so increased. For this reason, in the present invention, the number of the catalyst films is preferably 10 or less.

【0024】請求項6記載の発明は、金属粒子が0.0
1%以上30%以下含有され、この金属粒子の平均粒径
が0.1μm以下であることを特徴とする請求項1から
5までのいずれかに記載の光触媒膜である。
According to a sixth aspect of the present invention, when the metal particles have a particle diameter of 0.0
The photocatalyst film according to any one of claims 1 to 5, wherein the content is 1% or more and 30% or less, and the average particle size of the metal particles is 0.1 µm or less.

【0025】本発明において、光触媒膜に金属粒子を含
有させることで、触媒反応により生成した電子を金属粒
子に移動させて酸化−還元部位の分離を行い、見かけ上
の光触媒効率の向上を図れる。なお、本発明では、金属
粒子の含有量を0.01%以上30%以下と規定した
が、含有量が0.01%未満であると酸化−還元部位の
分離による効率向上が小さくなり、含有量が30%を超
えると、相対的にTiO の量が低下して全体の効率が
低下するためである。なお、金属粒子としては、特に、
空気浄化や水浄化等へ適用する場合には化学的安定性と
いう点から、Pt、Au、Ag、Ru、Rh、Pd、O
s、Irなどの金属粒子を含有させると良い。
In the present invention, the photocatalyst film contains metal particles.
The electrons generated by the catalytic reaction
To separate the oxidation-reduction sites,
Of the photocatalyst efficiency can be improved. In the present invention, metal
The content of the particles was defined as 0.01% or more and 30% or less.
Is less than 0.01%,
The efficiency improvement by separation is small, and the content exceeds 30%
, Relatively TiO 2The overall efficiency is reduced
It is because it falls. In addition, especially as metal particles,
When applied to air purification and water purification, chemical stability and
From this point, Pt, Au, Ag, Ru, Rh, Pd, O
It is preferable to contain metal particles such as s and Ir.

【0026】また、光触媒膜に金属のりん酸塩を添加し
ても良く、金属のりん酸塩を含有させる場合には、0.
1%以上50%以下の範囲で含有させると良い。含有量
が0.1%未満では十分な量を吸着できないことから光
触媒反応の効率が悪く、含有量が50%を超えると、T
iO量が相対的に低下して光触媒効率が低下するため
である。
In addition, a metal phosphate may be added to the photocatalyst film.
It is good to make it contain in the range of 1% or more and 50% or less. If the content is less than 0.1%, a sufficient amount cannot be adsorbed, so that the efficiency of the photocatalytic reaction is poor. If the content exceeds 50%, T
This is because the amount of iO 2 is relatively reduced and the photocatalytic efficiency is reduced.

【0027】光が良く当たる膜表面では光触媒により分
解反応が重点的に起こり、光が相対的に当たりにくい膜
内部では吸着を起こしたほうが膜全体としての光触媒効
率は向上するため、表面および内部において金属のりん
酸塩含有量を変化させると良い。具体的には、金属りん
酸塩の含有量は、膜表面で0.1%以上、膜内部で50
%以下とすると良い。りん酸塩の含有量が膜表面で0.
1%未満であると、膜表面の吸着量が少なすぎて光触媒
効率が低下し、膜内部でりん酸塩の含有量が50%を超
えると、膜内部での分解効率が低下しすぎて光触媒効率
が低下するためである。
On the surface of the film which is well exposed to light, the decomposition reaction mainly occurs due to the photocatalyst, and when the film is hardly exposed to light, the photocatalytic efficiency of the entire film is improved by adsorbing. It is advisable to change the phosphate content. Specifically, the content of the metal phosphate is 0.1% or more on the film surface and 50% in the film.
% Or less. Phosphate content of 0.1 at the membrane surface.
If it is less than 1%, the amount of adsorption on the membrane surface is too small to lower the photocatalytic efficiency, and if the phosphate content exceeds 50% inside the membrane, the decomposition efficiency inside the membrane is too low and the photocatalytic efficiency becomes too low. This is because the efficiency is reduced.

【0028】請求項7記載の発明は、ゼオライトが、
0.1%以上50%以下含有されていることを特徴とす
る請求項1から6までのいずれかに記載の光触媒膜であ
る。
The invention according to claim 7 is characterized in that the zeolite is
The photocatalyst film according to any one of claims 1 to 6, wherein the content is 0.1% or more and 50% or less.

【0029】本発明において、光触媒膜に含有されるゼ
オライトの含有量を0.1%以上50%以下と規定した
が、含有量が0.1%未満であると十分な量を吸着でき
ず光触媒効率が悪い。一方、含有量が50%を超えると
TiO量が相対的に低下して光触媒効率が低下するた
めである。
In the present invention, the content of zeolite contained in the photocatalyst membrane is specified to be 0.1% or more and 50% or less. If the content is less than 0.1%, a sufficient amount cannot be adsorbed and the photocatalyst cannot be adsorbed. ineffective. On the other hand, if the content exceeds 50%, the amount of TiO 2 relatively decreases, and the photocatalytic efficiency decreases.

【0030】また、ゼオライトの含有量についても、上
記金属粒子と同様に、光が良く当たる膜表面では光触媒
により分解反応が重点的に起こるようにし、光が相対的
に当たりにくい膜内部では吸着を起こすようにして、膜
全体としての反応効率を向上させるため、光触媒膜の表
面および内部でのゼオライト含有量を変化させると良
い。具体的には、ゼオライト含有量を膜表面で0.1%
以上、膜内部で50%以下とすると良い。含有量が膜表
面で0.1%より小さいと膜表面の吸着量が少なすぎ光
触媒効率が低下してしまい、膜内部でゼオライト含有量
が50%より大きいと、膜内部での分解効率が低下して
光触媒効率が低下するためである。
As for the content of zeolite, as in the case of the above-mentioned metal particles, the decomposition reaction is mainly caused by the photocatalyst on the membrane surface to which light is well irradiated, and the adsorption is caused inside the membrane where light is relatively hard to hit. In this way, in order to improve the reaction efficiency of the whole membrane, it is preferable to change the zeolite content on the surface and inside the photocatalyst membrane. Specifically, the zeolite content was 0.1% on the membrane surface.
As described above, the content is preferably set to 50% or less inside the film. If the content is less than 0.1% on the membrane surface, the amount of adsorption on the membrane surface is too small and the photocatalytic efficiency decreases, and if the zeolite content is more than 50% inside the membrane, the decomposition efficiency inside the membrane decreases. This is because the photocatalytic efficiency decreases.

【0031】請求項8記載の光触媒膜の製造方法は、T
iOを主成分とした原料にバインダを添加してスラリ
ーを作製し、このスラリーを基板上にスリップキャスト
法を用いて塗布した後、焼結したことを特徴とする。
The method for manufacturing a photocatalyst film according to claim 8 is characterized in that
A binder is added to a raw material containing iO 2 as a main component to prepare a slurry. The slurry is applied on a substrate by a slip casting method, and then sintered.

【0032】本発明によれば、スリップキャスト法を用
いて光触媒膜をコーティングしているため、光触媒膜の
膜表面および膜内部の気孔率および気孔径分布を容易に
制御することができる。従って、光触媒膜を連続的に、
平易な方法で作製する事が可能であることから、製造コ
ストの低減を図ることができる。
According to the present invention, since the photocatalytic film is coated using the slip casting method, the porosity and pore size distribution on the surface and inside of the photocatalytic film can be easily controlled. Therefore, the photocatalyst film is continuously
Since it can be manufactured by a simple method, the manufacturing cost can be reduced.

【0033】また、光触媒膜を多数回焼成すると製造コ
ストが高くなるが、本発明によれば、一回の焼成で光触
媒膜を作製することできることから、製造コストの低減
を図れる。また、総焼成時間を短縮することで、TiO
の粒成長を抑制し、光触媒効率の低下を防ぐことがで
きる。
Further, if the photocatalyst film is fired many times, the manufacturing cost increases. However, according to the present invention, the photocatalyst film can be manufactured by one firing, so that the manufacturing cost can be reduced. Also, by shortening the total firing time, TiO 2
2 can be suppressed and a decrease in photocatalytic efficiency can be prevented.

【0034】一方、焼結を多数回の焼成により行う場合
には、各層を異なる焼成温度でコーティングすること
で、各層の気孔率および気孔径を容易に制御することが
可能となる。なお、多数回焼成する場合には、焼成温度
が600℃より高いとTiOの焼結が促進し、比表面
積が低下して光触媒効率が低下してしまうため最高焼成
温度を600℃以下にすると良い。
On the other hand, when sintering is performed by firing many times, the porosity and pore diameter of each layer can be easily controlled by coating each layer at a different firing temperature. In the case of firing many times, if the firing temperature is higher than 600 ° C., the sintering of TiO 2 is promoted, and the specific surface area is reduced, so that the photocatalytic efficiency is lowered. good.

【0035】また、TiOスラリー中に有機バインダ
成分を添加し、各層で添加濃度を変えることにより焼成
前の各層の密度を制御する事が可能になる。このため、
有機バインダ成分濃度を調整することで、必ずしも多数
回焼成を繰り返す必要がなくなる。
Further, the density of each layer before firing can be controlled by adding an organic binder component to the TiO 2 slurry and changing the addition concentration in each layer. For this reason,
By adjusting the concentration of the organic binder component, it is not necessary to repeat the firing many times.

【0036】なお、バインダを添加する場合には、バイ
ンダ成分濃度を70%以下とすると良い。濃度が70%
を超えると、TiO粒子間距離が広がりすぎて実質的
な強度が低下し、またバインダコストが高価となり製造
コストが引き上がってしまうためである。
When a binder is added, the binder component concentration is preferably set to 70% or less. 70% concentration
If the ratio exceeds 2,000, the distance between the TiO 2 particles is too large, and the substantial strength is reduced. Also, the binder cost becomes high and the production cost rises.

【0037】請求項9記載の発明は、原料として、平均
粒径が100nm以下であるTiO の一次粒子を用い
たことを特徴とする請求項8記載の光触媒膜の製造方法
である。
According to a ninth aspect of the present invention, as a raw material, an average
TiO with a particle size of 100 nm or less 2Using primary particles
The method for producing a photocatalyst film according to claim 8, wherein
It is.

【0038】TiO膜を構成するTiOの平均粒径
は、細かいほど一個一個の粒子の比表面積が高くなるた
め、表面への被分解物質の吸着および反応等が起こりや
すく光触媒効率が高い。平均粒径が100nmを超える
と光触媒効率が低下してしまうため、本発明において、
TiOの一次粒子の平均粒径を100nm以下と規定
した。
The smaller the average particle size of TiO 2 constituting the TiO 2 film is, the higher the specific surface area of each particle becomes, so that adsorption and reaction of the substance to be decomposed on the surface are likely to occur, and the photocatalytic efficiency is high. If the average particle size exceeds 100 nm, the photocatalytic efficiency is reduced.
The average particle size of the primary particles of TiO 2 was specified to be 100 nm or less.

【0039】請求項10記載の発明は、TiOの一次
粒子を凝集させて、凝集体の平均粒径を0.2μm以下
とした二次粒子を用いたことを特徴とする請求項9また
は10に記載の光触媒膜の製造方法である。
According to a tenth aspect of the present invention, the primary particles of TiO 2 are agglomerated to use secondary particles having an average particle diameter of 0.2 μm or less. 3. The method for producing a photocatalyst film described in 1.

【0040】本発明において、TiOの一次粒子を凝
集させた凝集体である二次粒子の平均粒径を0.2μm
以下に規定したが、平均粒径が0.2μmを超えると十
分な比表面積が得られず、従って紫外線照射下での光触
媒性能も十分でない。また、TiOをコーティングす
る際に均質にコーティングすることが困難となるためで
ある。
In the present invention, the average particle size of the secondary particles, which are aggregates obtained by aggregating the primary particles of TiO 2 , is 0.2 μm.
As specified below, if the average particle size exceeds 0.2 μm, a sufficient specific surface area cannot be obtained, and thus the photocatalytic performance under ultraviolet irradiation is not sufficient. Another reason is that it is difficult to uniformly coat TiO 2 .

【0041】[0041]

【発明の実施の形態】以下、本発明の実施形態につい
て、実施例1〜実施例10および比較例1〜比較例10
を用いて具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to Examples 1 to 10 and Comparative Examples 1 to 10.
This will be specifically described with reference to FIG.

【0042】実施例1(図1) 本実施例では、まず、溶媒である水に結晶粒子径6nm
の酸化チタンを添加して、濃度30%の酸化チタンゾル
を作製した。この酸化チタンゾルに対して、有機バイン
ダであるポリエチレングリコールをそれぞれ10%、2
0%、40%、60%添加し、各々スラリーを作製し
た。
Example 1 (FIG. 1) In this example, first, a crystal particle diameter of 6 nm was added to water as a solvent.
Was added to prepare a titanium oxide sol having a concentration of 30%. To this titanium oxide sol, 10% of polyethylene glycol as an organic binder was added, and
0%, 40%, and 60% were added to prepare slurries, respectively.

【0043】次に、アルミナを主成分とする3次元網目
構造を有する開気孔率85%の基材上に有機バインダ添
加量が多い、低濃度のスラリーから順番にディップコー
ティングし、各層の厚さを0.5μmとし、密度が異な
る4層からなるTiO膜を形成した。その後、大気中
550℃で1時間焼成して4層からなる厚さ2.0μm
のTiO膜を得た。
Next, dip coating is performed on a base material having a three-dimensional network structure containing alumina as a main component and having an open porosity of 85% in order from a low-concentration slurry containing a large amount of an organic binder, and a thickness of each layer. Was set to 0.5 μm, and a TiO 2 film composed of four layers having different densities was formed. Then, it is baked at 550 ° C. for 1 hour in the air and has a thickness of 2.0 μm including four layers.
It was obtained of the TiO 2 film.

【0044】熱処理後、走査型電子顕微鏡でコーティン
グ膜の断面を観察したところ、4層の異なる気孔率を有
するTiO膜が観察された。
After the heat treatment, the cross section of the coating film was observed with a scanning electron microscope. As a result, four TiO 2 films having different porosity were observed.

【0045】なお、実施例1における4層からなる触媒
膜の各層における気孔率および気孔径を調査する目的
で、有機バインダ濃度が異なるスラリーを一層のみコー
ティングしたもので、同様に熱処理を行い気孔率および
気孔径を測定した。なお、有機バインダ添加量を10
%、20%、40%、60%とした4種類の光触媒膜を
作製した。その結果、有機バインダを10%添加した場
合には、気孔率および気孔径は15%、5nmであり、
有機バインダを20%、30%または40%添加した場
合には、気孔率および気孔径が、それぞれ30%、10
0nm、50%、2μm、70%、4μmとなってい
た。
For the purpose of investigating the porosity and pore diameter of each layer of the four-layer catalyst film in Example 1, only one layer of a slurry having a different organic binder concentration was coated, and heat treatment was performed in the same manner. And the pore diameter was measured. The amount of the organic binder added was 10
%, 20%, 40%, and 60% were prepared. As a result, when 10% of the organic binder is added, the porosity and the pore diameter are 15% and 5 nm,
When the organic binder is added in an amount of 20%, 30% or 40%, the porosity and the pore diameter become 30% and 10%, respectively.
0 nm, 50%, 2 μm, 70%, 4 μm.

【0046】従って、本実施例により作製された4層か
らなる触媒膜は、気孔率が膜表面で80%以下、膜内部
で10%以上であり、触媒膜の表面から内部にかけて気
孔率が低下し、また、気孔径が膜表面で5μm以下、膜
内部で2nm以上の分布であることから、本発明の範囲
内となっていた。
Accordingly, the porosity of the four-layer catalyst film produced according to this embodiment is 80% or less on the film surface and 10% or more on the inside of the film, and the porosity decreases from the surface to the inside of the catalyst film. In addition, the pore size distribution was 5 μm or less on the film surface and 2 nm or more inside the film, and thus was within the scope of the present invention.

【0047】比較例1(図1) 本比較例では、3種類のTiO膜を作製した。なお製
造方法は、実施例1とほぼ同様の方法を用いたものであ
る。
Comparative Example 1 (FIG. 1) In this comparative example, three types of TiO 2 films were produced. The manufacturing method is substantially the same as that of the first embodiment.

【0048】まず最初は、酸化チタンゾルに対して有機
バインダを10%添加したスラリーを一層のみコーティ
ングしたTiO膜を作製した。
First, a TiO 2 film was prepared by coating only one layer of a slurry in which 10% of an organic binder was added to titanium oxide sol.

【0049】次に、焼成温度および時間を変化させた触
媒膜を作製した。具体的には、大気中で800℃、2時
間焼成して気孔率をほぼ0%としたTiO膜を作製し
た。
Next, a catalyst film having different firing temperatures and times was prepared. Specifically, a TiO 2 film having a porosity of almost 0% was produced by baking in air at 800 ° C. for 2 hours.

【0050】さらに最後に、有機バインダの添加量を増
やして、気孔率が80%より多いものを作製しようと試
みたが、触媒膜からのTiO粒子の脱落が多く、健全
な膜を作製することが出来なかった。
Finally, an attempt was made to increase the amount of the organic binder to produce a film having a porosity of more than 80%. However, a large amount of TiO 2 particles fell off from the catalyst film, and a sound film was formed. I couldn't do that.

【0051】実施例1および比較例1の上記各TiO
膜について、光触媒効率を評価した。光触媒効率は、ア
ンモニアの分解効率の測定により評価したものであり、
具体的には、TiOを担持したアルミナを主成分とす
る3次元網目構造を有する開気孔率85%の基材に、ブ
ラックライト(平均波長370nm、強度3mW/cm
)の光を当てながら、アンモニア濃度を100ppm
および流量を0.5l/minとしたアンモニアガスを
基材の一方から流入した。そして、流入側と反対の出口
側におけるアンモニア濃度を測定した。この結果を図1
に示す。
Each of the above TiO 2 of Example 1 and Comparative Example 1
The membrane was evaluated for photocatalytic efficiency. The photocatalytic efficiency was evaluated by measuring the decomposition efficiency of ammonia,
Specifically, a base material having an open porosity of 85% and having a three-dimensional network structure mainly composed of alumina carrying TiO 2 and black light (average wavelength 370 nm, intensity 3 mW / cm)
2 ) While applying light, adjust the ammonia concentration to 100 ppm.
Ammonia gas at a flow rate of 0.5 l / min was introduced from one of the substrates. Then, the ammonia concentration at the outlet side opposite to the inflow side was measured. This result is shown in FIG.
Shown in

【0052】図1に示すように、有機バインダの添加量
を10%とした酸化チタン膜を一層とした場合、および
気孔率を0%とした場合には、いずれも出口側のアンモ
ニア濃度が60%近い値となっており、アンモニアの分
解効率が悪かった。一方、触媒膜の気孔率および気孔径
を本発明の範囲内の分布とすることで、出口側のアンモ
ニア濃度がほぼ0%となっており、アンモニアの分解効
率が良く、光触媒性能が優れていることが判明した。
As shown in FIG. 1, the ammonia concentration at the outlet side was 60% when the titanium oxide film with the added amount of the organic binder was 10% and when the porosity was 0%. %, And the ammonia decomposition efficiency was poor. On the other hand, by setting the porosity and the pore diameter of the catalyst film within the range of the present invention, the ammonia concentration on the outlet side is almost 0%, the ammonia decomposition efficiency is good, and the photocatalytic performance is excellent. It has been found.

【0053】実施例2(図2) 本実施例では、光触媒膜を構成するTiOの一次粒子
の粒子径について調査したものであり、実施例1と同様
の方法を用いて、結晶粒子径が6nmの酸化チタンゾル
を用いた。
Example 2 (FIG. 2) In this example, the primary particle size of TiO 2 constituting the photocatalyst film was investigated, and the crystal particle size was determined using the same method as in Example 1. A 6 nm titanium oxide sol was used.

【0054】比較例2(図2) 本比較例では、実施例2の粒子径6nmの酸化チタンゾ
ルの代わりに平均粒径0.2μmの酸化チタン粉末を使
用し、一次粒子の粒径が大きいTiO多結晶球状粒子
をアルミナ焼結体の表面に形成したものである。
Comparative Example 2 (FIG. 2) In this comparative example, a titanium oxide powder having an average particle diameter of 0.2 μm was used instead of the titanium oxide sol having a particle diameter of 6 nm of Example 2, and TiO having a large primary particle diameter was used. Two polycrystalline spherical particles are formed on the surface of an alumina sintered body.

【0055】上記実施例2および比較例2について、実
施例1と同様の評価条件下で、アンモニアガスの分解性
能を評価した。この結果を図2に示す。
The decomposition performance of ammonia gas in Example 2 and Comparative Example 2 was evaluated under the same evaluation conditions as in Example 1. The result is shown in FIG.

【0056】図2に示すように、実施例2では、出口側
のアンモニア濃度がほぼ0%となっておりアンモニア分
解効率が優れていたが、比較例2では、一次粒子の平均
粒径が、本発明の範囲内の100nmを超えた大きいも
のを適用しているため、十分な比表面積が得られず、ア
ンモニア分解効率が低下していた。
As shown in FIG. 2, in Example 2, the ammonia concentration on the outlet side was almost 0% and the ammonia decomposition efficiency was excellent, but in Comparative Example 2, the average particle diameter of the primary particles was Since a large one exceeding 100 nm within the range of the present invention was applied, a sufficient specific surface area could not be obtained, and ammonia decomposition efficiency was lowered.

【0057】実施例3(図3) 本実施例では、酸化チタンの一次粒子を凝集させた二次
粒子の粒子径について調査した。
Example 3 (FIG. 3) In this example, the particle diameter of secondary particles obtained by aggregating primary particles of titanium oxide was investigated.

【0058】実施例1の粒子径6nmの酸化チタンゾル
中に塩酸を添加してpHを調整し、二次粒子の凝集度を
変え、二次粒子の粒径を0.05μm、0.10μm、
0.20μmとした。その他の条件は実施例1と同様と
した。
The pH was adjusted by adding hydrochloric acid to the titanium oxide sol having a particle diameter of 6 nm in Example 1 to change the degree of aggregation of the secondary particles, and the particle diameters of the secondary particles were 0.05 μm, 0.10 μm,
It was set to 0.20 μm. Other conditions were the same as in Example 1.

【0059】比較例3(図3) 本比較例では、実施例3と同様に酸化チタンゾル中に塩
酸を添加し、二次粒子の粒径を0.40μmとして凝集
度を高くし、アルミナ焼結体の表面にTiO多層膜を
形成したものである。
Comparative Example 3 (FIG. 3) In this comparative example, as in Example 3, hydrochloric acid was added to the titanium oxide sol, the particle size of the secondary particles was set to 0.40 μm, the degree of aggregation was increased, and alumina sintering was performed. A TiO 2 multilayer film is formed on the body surface.

【0060】上記実施例3および比較例3について、実
施例1と同様の条件下で、アンモニアガスの分解性能を
評価した。この結果を図3に示す。
The decomposition performance of ammonia gas in Example 3 and Comparative Example 3 was evaluated under the same conditions as in Example 1. The result is shown in FIG.

【0061】図3に示すように、二次粒子の粒径を0.
02μm以下とした実施例3では、出口側のアンモニア
濃度がほぼ0%となっており、アンモニアの分解効率が
優れていたが、二次粒子の粒径が0.02μmを超える
比較例3では、十分な比表面積が得られずアンモニア分
解効率が低下していた。
As shown in FIG.
In Example 3 in which the concentration was 02 μm or less, the ammonia concentration on the outlet side was almost 0%, and the decomposition efficiency of ammonia was excellent. However, in Comparative Example 3 in which the particle size of the secondary particles exceeded 0.02 μm, A sufficient specific surface area was not obtained, and the ammonia decomposition efficiency was reduced.

【0062】実施例4(図4、図5) 本実施例では、実施例1とほぼ同様の方法を用いて、4
層の異なる気孔率、気孔径を有するTiO膜を形成し
た。TiO膜を形成する際、コーティング時間を変え
ることで、TiO膜の各層の膜厚を0.2μm、0.
4μm、1.0μmと変化させた。
Embodiment 4 (FIGS. 4 and 5) In this embodiment, a method similar to that of Embodiment 1
TiO 2 films having different porosity and pore diameter of the layers were formed. When the TiO 2 film is formed, the thickness of each layer of the TiO 2 film is set to 0.2 μm, 0.
It was changed to 4 μm and 1.0 μm.

【0063】また、TiO膜の各層の膜厚を変えて、
膜厚全体の厚さを1μm、2μm、3μm、5μmとし
たTiO膜を作製した。
Further, by changing the thickness of each layer of the TiO 2 film,
A TiO 2 film having a total thickness of 1 μm, 2 μm, 3 μm, and 5 μm was produced.

【0064】比較例4(図4、図5) 本比較例では、実施例4のコーティング時間を変化させ
て、TiO膜の各層の膜厚を0.1μmとした。
Comparative Example 4 (FIGS. 4 and 5) In this comparative example, the thickness of each layer of the TiO 2 film was set to 0.1 μm by changing the coating time of Example 4.

【0065】また、TiO膜の各層の膜厚を変えて、
膜厚全体の厚さを7μmとしたTiO膜を形成した。
By changing the thickness of each layer of the TiO 2 film,
A TiO 2 film having a total thickness of 7 μm was formed.

【0066】上記実施例4および比較例4について、ア
ンモニアガスの分解性能を評価した。なお、条件は実施
例1と同様として、その結果を図4、5に示す。
With respect to Example 4 and Comparative Example 4, the decomposition performance of ammonia gas was evaluated. The conditions are the same as in Example 1, and the results are shown in FIGS.

【0067】図4に示すように、TiO膜が5μmを
超える場合には、アンモニア分解効率が低下していた。
As shown in FIG. 4, when the TiO 2 film exceeded 5 μm, the ammonia decomposition efficiency was lowered.

【0068】また、図5に示すように、TiO膜中の
各層の膜厚が0.2μm以上の場合には、出口アンモニ
ア濃度がほぼ0%であったが、0.2μm未満の場合に
は、アンモニア分解効率が低下していた。
As shown in FIG. 5, when the thickness of each layer in the TiO 2 film was 0.2 μm or more, the outlet ammonia concentration was almost 0%, but when the thickness was less than 0.2 μm. Had a reduced ammonia decomposition efficiency.

【0069】実施例5(図6) 本実施例では、実施例1の有機バインダ添加スラリーに
加えて、さらに5%、15%、25%、30%、50
%、60%、65%の有機バインダを添加したスラリー
を作製し、低濃度のものより順にコーティングした。そ
の他は、実施例1と全く同様とし、アルミナ焼結体の表
面にTiO多層コーティング膜を形成した。なお本実
施例では、TiO膜の積層数を、4層、8層、10層
とした。
Example 5 (FIG. 6) In this example, in addition to the organic binder-added slurry of Example 1, 5%, 15%, 25%, 30%, 50%
%, 60%, and 65% of an organic binder were added, and the slurry was coated in order of decreasing concentration. Others were exactly the same as in Example 1, and a TiO 2 multilayer coating film was formed on the surface of the alumina sintered body. In this example, the number of stacked TiO 2 films was set to 4, 8, and 10.

【0070】比較例5(図6) 本比較例では、実施例5と同様のスラリーを用いて、1
層のTiO膜および11層のTiO多層コーティン
グ膜を形成した。
Comparative Example 5 (FIG. 6) In this comparative example, the same slurry as in Example 5 was used to obtain 1
A layer of TiO 2 film and 11 layers of TiO 2 multilayer coating film were formed.

【0071】上記実施例5および比較例5について、ア
ンモニアガスの分解性能を評価した。なお、条件は実施
例1と同様とした。また、1層からなるTiO膜を形
成した場合の製造コストを1とし、積層数を変化させた
場合の製造コストについて評価した。その結果を図6に
示す。
With respect to Example 5 and Comparative Example 5, the decomposition performance of ammonia gas was evaluated. The conditions were the same as in Example 1. Further, the manufacturing cost when a TiO 2 film composed of one layer was formed was set to 1, and the manufacturing cost when the number of stacked layers was changed was evaluated. FIG. 6 shows the result.

【0072】図6に示すように、TiO膜の積層数を
4層以上とした場合には、アンモニア分解効率が優れて
いるが、TiO膜が1層、すなわち、膜表面の膜内部
とで均一のスラリーを適用した場合には、製造コストを
低減できるものの、十分なアンモニア分解効率を得るこ
とができなかった。また、TiO膜の積層数を増やす
につれて製造コストも増加するため、アンモニア分解効
率および製造コストの両側面を考慮すると、TiO
は4層〜10層の積層数とすると良い。
As shown in FIG. 6, when the number of laminated TiO 2 films is four or more, the ammonia decomposition efficiency is excellent, but one TiO 2 film, that is, the inside of the film on the film surface and When a uniform slurry was used, the production cost could be reduced, but sufficient ammonia decomposition efficiency could not be obtained. Since the manufacturing cost increases as the number of stacked TiO 2 films increases, the number of stacked TiO 2 films is preferably 4 to 10 in consideration of both sides of the ammonia decomposition efficiency and the manufacturing cost.

【0073】実施例6(図7) 本実施例では、実施例1の20%有機バインダ添加スラ
リーを一層コーティングした後、熱処理工程を4回繰り
返した。熱処理温度は、1回目550℃、2回目500
℃、3回目400℃、4回目300℃とし、各層の気孔
率、気孔径を制御した他は、実施例1と同様の方法でア
ルミナ焼結体の表面にTiO多層膜を形成した。
Example 6 (FIG. 7) In this example, the heat treatment step was repeated four times after coating the slurry containing the organic binder of 20% of Example 1 further. The heat treatment temperature is 550 ° C. for the first time and 500 times for the second time.
A third TiO 2 multilayer film was formed on the surface of the alumina sintered body in the same manner as in Example 1 except that the temperature was set to 400 ° C. for the third time, to 400 ° C. for the fourth time, and to control the porosity and the pore diameter of each layer.

【0074】比較例6(図7) 本比較例では、1回目の熱処理を700℃で行い、2回
目以降は実施例6と同様とした。
Comparative Example 6 (FIG. 7) In this comparative example, the first heat treatment was performed at 700 ° C., and the second and subsequent heat treatments were the same as in Example 6.

【0075】また、比較例として熱処理回数を1回と
し、550℃の温度で焼結を行った。
As a comparative example, sintering was performed at a temperature of 550 ° C. with one heat treatment.

【0076】上記実施例6および比較例6について、ア
ンモニアガスの分解性能を評価した。なお、評価条件は
実施例1と同様とした。その結果を図7に示す。
For Example 6 and Comparative Example 6, the decomposition performance of ammonia gas was evaluated. The evaluation conditions were the same as in Example 1. FIG. 7 shows the result.

【0077】図7に示すように、4回の熱処理により各
層の気孔率および気孔径を制御することで、アンモニア
の分解効率を向上することができる。
As shown in FIG. 7, by controlling the porosity and pore diameter of each layer by four heat treatments, the decomposition efficiency of ammonia can be improved.

【0078】実施例7(図8) 本実施例では、濃度30%の結晶粒子径6nmのチタニ
アゾルを用い、スリップキャスト法によってコージェラ
イト多孔質基材上にTiO膜を付着させた。
Example 7 (FIG. 8) In this example, a titania sol having a crystal particle diameter of 6 nm with a concentration of 30% was used, and a TiO 2 film was adhered on a cordierite porous substrate by a slip casting method.

【0079】なお、スリップキャスト法は、基材上に連
続的にTiO膜を形成させるものであり、具体的には
以下に示すような方法である。
Incidentally, the slip casting method is to form a TiO 2 film continuously on a substrate, and specifically, the following method.

【0080】チタニアの結晶粒子径分布が、1nmから
100nmまで広く分布した出発原料を用い、濃度30
%のチタニアゾル中にバインダ成分を添加し、粘性を2
0cps程度に調整した。大気中にて十分乾燥させたコ
ージェライト多孔質基材を上記ゾル中に浸漬し、水分を
多孔質基材上に含ませ、チタニア粒子のみを基材表面に
残すようにコーティングする方法である。
Using a starting material having a titania crystal particle size distribution widely distributed from 1 nm to 100 nm, a concentration of 30
% Of titania sol with a binder component,
It was adjusted to about 0 cps. In this method, a cordierite porous substrate sufficiently dried in the air is immersed in the sol, water is contained on the porous substrate, and coating is performed so that only the titania particles remain on the substrate surface.

【0081】このスリップキャスト法を用いて、基材上
にTiO膜を形成した後、500℃の熱処理を加え、
膜の表面から内部に向かって、気孔径および気孔率を変
化させたTiO膜を形成した。
After forming a TiO 2 film on the base material using this slip casting method, a heat treatment at 500 ° C.
A TiO 2 film having a changed pore diameter and porosity was formed from the surface to the inside of the film.

【0082】比較例7(図8) 本比較例では、スリップキャスト法のかわりに吹き付け
法を用いて、実施例7と同様にコージェライト多孔質基
材上にTiO膜を形成した。
Comparative Example 7 (FIG. 8) In this comparative example, a TiO 2 film was formed on a cordierite porous substrate in the same manner as in Example 7 by using a spraying method instead of the slip casting method.

【0083】上記実施例7および比較例7について、ア
ンモニアガスの分解性能を評価した。その結果を図8に
示す。なお、評価条件は実施例1と同様とした。
For Example 7 and Comparative Example 7, the decomposition performance of ammonia gas was evaluated. FIG. 8 shows the result. The evaluation conditions were the same as in Example 1.

【0084】図8に示すように、比較例7の吹き付け法
を用いた場合には、アンモニアの分解性能が低下してい
たが、スリップキャスト法を用いた場合にはアンモニア
の分解性能が向上していた。
As shown in FIG. 8, when the spraying method of Comparative Example 7 was used, the decomposition performance of ammonia was reduced, but when the slip casting method was used, the decomposition performance of ammonia was improved. I was

【0085】実施例8(図9) 実施例1の粒子径6nmの酸化チタンゾルに加えて、P
t、Au、Ag、Ru、Rh、Pd、Os、Irなどの
金属アルコキシドの少なくとも一種の粒子を添加した他
は、実施例1と全く同様の方法を用いて、アルミナ焼結
体の表面にTiO多層膜を形成した。
Example 8 (FIG. 9) In addition to the titanium oxide sol having a particle diameter of 6 nm of Example 1, P
Except that at least one type of metal alkoxide particles such as t, Au, Ag, Ru, Rh, Pd, Os, and Ir was added, TiO 2 was added to the surface of the alumina sintered body using the same method as in Example 1. Two multilayer films were formed.

【0086】比較例8(図9) 本比較例では、実施例8の金属アルコキシドを添加せず
にTiO多層膜を形成したものである。
Comparative Example 8 (FIG. 9) In this comparative example, a TiO 2 multilayer film was formed without adding the metal alkoxide of Example 8.

【0087】上記実施例8および比較例8について、ア
ンモニアガスの分解性能を評価した。なお、評価条件
は、アンモニア濃度を200ppmおよび流量を0.5
l/minとしたアンモニアガスを基材の一方から流入
し、流入側と反対の出口側におけるアンモニア濃度を測
定したものである。その結果を図9に示す。
The decomposition performance of ammonia gas in Example 8 and Comparative Example 8 was evaluated. The evaluation conditions were that the ammonia concentration was 200 ppm and the flow rate was 0.5.
1 / min ammonia gas was introduced from one side of the substrate, and the ammonia concentration at the outlet side opposite to the inflow side was measured. FIG. 9 shows the result.

【0088】図9に示すように、金属を添加しない場合
には、金属を添加した実施例8の場合と比較して、出口
アンモニア濃度が高く、アンモニア分解効率が低かっ
た。
As shown in FIG. 9, when the metal was not added, the outlet ammonia concentration was higher and the ammonia decomposition efficiency was lower than in the case of Example 8 in which the metal was added.

【0089】実施例9(図10) 実施例1の粒子径6nmの酸化チタンゾルに加えて、ゼ
オライトを添加してアルミナ基材に酸化チタンゾルをデ
ィップコートした。その際、TiO膜の膜表面で0.
2%、膜内部で35%、または、膜表面で0.3%、膜
内部で35%となるようにゼオライト添加量を調整し
た。その他は、実施例1と同様とした。
Example 9 (FIG. 10) In addition to the titanium oxide sol having a particle diameter of 6 nm of Example 1, zeolite was added to dip coat the titanium oxide sol on an alumina substrate. At this time, the surface of the TiO 2 film has a thickness of 0.1 mm.
The amount of zeolite added was adjusted to 2%, 35% inside the membrane, 0.3% on the membrane surface, and 35% inside the membrane. Others were the same as Example 1.

【0090】比較例9(図10) 本比較例では、実施例9と同様の方法を用いて、膜表面
で0.2%、膜内部で35%となるようにゼオライト添
加量を調整した。
Comparative Example 9 (FIG. 10) In this comparative example, the amount of zeolite added was adjusted to 0.2% on the membrane surface and 35% inside the membrane using the same method as in Example 9.

【0091】上記実施例9および比較例9について、ア
ンモニアガスの分解性能を評価した。なお、評価条件は
実施例8と同様とした。その結果を図10に示す。
The decomposition performance of ammonia gas in Example 9 and Comparative Example 9 was evaluated. The evaluation conditions were the same as in Example 8. The result is shown in FIG.

【0092】図10に示すように、ゼオライトの添加量
が膜表面で0.1%以上および膜内部で50%以下であ
る実施例9の場合には、比較例9に比較してアンモニア
分解効率が低かった。
As shown in FIG. 10, in the case of Example 9 in which the amount of zeolite added was 0.1% or more at the membrane surface and 50% or less inside the membrane, the ammonia decomposition efficiency was higher than that of Comparative Example 9. Was low.

【0093】実施例10(図11) 本実施例では、実施例1の粒子径6nmの酸化チタンゾ
ルに加えて、金属のりん酸塩を添加してアルミナ基材に
酸化チタンゾルをディップコートした。その際に、膜表
面で0.2%、膜内部で35%、または膜表面で0.3
%、膜内部で35%となるように金属のりん酸塩添加量
を調整した。その他は、実施例1と同様とした。
Example 10 (FIG. 11) In this example, in addition to the titanium oxide sol having a particle diameter of 6 nm of Example 1, a metal phosphate was added to dip coat the titanium oxide sol on an alumina substrate. At that time, 0.2% on the film surface, 35% inside the film, or 0.3% on the film surface
% And the amount of metal phosphate added was adjusted to 35% inside the film. Others were the same as Example 1.

【0094】比較例10(図11) 本比較例では、実施例10と同様の方法を用い、膜表面
で0.3%、膜内部で35%となるように金属のりん酸
塩添加量を調整した。
Comparative Example 10 (FIG. 11) In this comparative example, the same method as that of Example 10 was used, and the amount of metal phosphate added was 0.3% on the film surface and 35% inside the film. It was adjusted.

【0095】上記実施例10および比較例10につい
て、アンモニアガスの分解性能を評価した。なお、評価
条件は実施例8と同様とした。その結果を図11に示
す。
With respect to Example 10 and Comparative Example 10, the decomposition performance of ammonia gas was evaluated. The evaluation conditions were the same as in Example 8. The result is shown in FIG.

【0096】図11に示すように、りん酸塩添加量が膜
表面で0.1%以上、膜内部で50%以下とすることに
より、アンモニアガスの分解性能を向上できる。
As shown in FIG. 11, the decomposition performance of ammonia gas can be improved by setting the addition amount of phosphate to 0.1% or more on the film surface and 50% or less inside the film.

【0097】[0097]

【発明の効果】以上説明したように、本発明の光触媒膜
およびその製造方法によれば、気孔率および気孔径を膜
表面と膜内部とで異なる分布とすることで、膜表面から
膜内部まで光を効率良く透過し、かつ膜内部で効率良く
ガスの吸着を行えることから、効率的な被分解物質の吸
着および分解が可能となるため、光触媒性能を大幅に向
上させた光触媒膜を得ることができる。
As described above, according to the photocatalyst film and the method for producing the same of the present invention, the porosity and the pore diameter are differently distributed between the film surface and the inside of the film, so that from the film surface to the inside of the film. Obtaining a photocatalyst film with significantly improved photocatalytic performance because it allows efficient transmission of light and efficient gas adsorption inside the film, enabling efficient adsorption and decomposition of decomposed substances. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を説明する図で、実施例1お
よび比較例1のTiO多層化膜と光触媒効率の関係を
示す図。
FIG. 1 is a diagram illustrating an embodiment of the present invention, and is a diagram illustrating a relationship between a TiO 2 multilayered film of Example 1 and Comparative Example 1 and photocatalytic efficiency.

【図2】実施例2および比較例2における、TiO
中のTiO粒子径と光触媒効率との関係を示す図。
FIG. 2 is a diagram showing the relationship between the TiO 2 particle diameter in the TiO 2 film and the photocatalytic efficiency in Example 2 and Comparative Example 2.

【図3】実施例3および比較例3における、TiO
中の二次粒子径と光触媒効率との関係を示す図。
FIG. 3 is a graph showing the relationship between the secondary particle diameter in the TiO 2 film and the photocatalytic efficiency in Example 3 and Comparative Example 3.

【図4】実施例4および比較例4における、TiO
の膜厚と光触媒効率との関係を示す図。
FIG. 4 is a graph showing the relationship between the thickness of a TiO 2 film and photocatalytic efficiency in Example 4 and Comparative Example 4.

【図5】実施例4および比較例4における、TiO
中の各層の膜厚と光触媒効率との関係を示す図。
FIG. 5 is a diagram showing the relationship between the thickness of each layer in the TiO 2 film and the photocatalytic efficiency in Example 4 and Comparative Example 4.

【図6】実施例5および比較例5における、TiO
の積層数と光触媒効率および製造コストとの関係を示す
図。
FIG. 6 is a diagram showing the relationship between the number of stacked TiO 2 films, photocatalytic efficiency, and manufacturing cost in Example 5 and Comparative Example 5.

【図7】実施例6および比較例6における、熱処理回数
および熱処理温度と光触媒効率との関係を示す図。
FIG. 7 is a graph showing the relationship between the number of heat treatments, the heat treatment temperature, and the photocatalytic efficiency in Example 6 and Comparative Example 6.

【図8】実施例7および比較例7における、TiO
コーティング方法と光触媒効率との関係を示す図。
FIG. 8 is a diagram showing the relationship between the TiO 2 film coating method and the photocatalytic efficiency in Example 7 and Comparative Example 7.

【図9】実施例8および比較例8における、TiO
中への金属粒子添加と光触媒効率との関係を示す図。
FIG. 9 is a graph showing the relationship between the addition of metal particles to the TiO 2 film and the photocatalytic efficiency in Example 8 and Comparative Example 8.

【図10】実施例9および比較例9における、TiO
膜中へのゼオライト添加量と光触媒効率との関係を示す
図。
FIG. 10 shows TiO 2 in Example 9 and Comparative Example 9.
The figure which shows the relationship between the zeolite addition amount in a film | membrane, and photocatalytic efficiency.

【図11】実施例10および比較例10における、Ti
膜中へのりん酸塩添加量と光触媒効率との関係を示
す図。
FIG. 11 shows Ti in Example 10 and Comparative Example 10.
Phosphate amount to O 2 film and shows the relationship between the photocatalytic efficiency.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01J 20/18 B01J 23/40 M 21/06 23/48 M 23/40 27/16 M 23/48 29/06 M 27/16 35/02 J 29/06 B01D 53/36 E 35/02 ZABJ (72)発明者 亀田 常治 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 (72)発明者 須山 章子 神奈川県川崎市川崎区浮島町2番1号 株 式会社東芝浜川崎工場内 (72)発明者 西田 勝利 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 (72)発明者 伊藤 義康 神奈川県横浜市鶴見区末広町二丁目4番地 株式会社東芝京浜事業所内 Fターム(参考) 4D006 GA01 GA41 MA08 MA22 MA24 MA31 MB01 MB04 MB14 MB19 MC03X NA39 NA46 NA62 PB70 4D048 AA08 AB03 BA03X BA07X BA12X BA30X BA31X BA32X BA33X BA34X BA41X BA44X BB09 EA01 4G066 AA23B AA61B BA03 BA05 BA23 BA25 CA02 DA01 DA07 FA15 FA22 FA28 4G069 AA03 AA08 BA01B BA04A BA04B BA07A BA07B BA13B BA48A BB02A BB02B BB14B BC32A BC32B BC33A BC33B BC70A BC70B BC71A BC71B BC72A BC72B BC73A BC73B BC74A BC74B BC75A BC75B CA01 CA05 CA10 CA17 DA06 EA08 EB11 EB12X EB12Y EB15X EB15Y EB17X EB17Y EB18X EB18Y EC14X EC14Y EC27 EC28 FA03 FB15 FB23 FB30 FC08 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B01J 20/18 B01J 23/40 M 21/06 23/48 M 23/40 27/16 M 23/48 29 / 06 M 27/16 35/02 J 29/06 B01D 53/36 E 35/02 ZABJ (72) Inventor Tsuneji Kameda 2-4 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Pref. Toshiba Keihin Works Co., Ltd. (72) Inventor Akiko Suyama 2-1 Ukishima-cho, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Inside the Toshiba Hamakawasaki Plant (72) Inventor Katsutoshi Nishida 2-4 Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa Prefecture Toshiba Keihin Plant (72 ) Inventor Yoshiyasu Ito 2-4, Suehirocho, Tsurumi-ku, Yokohama-shi, Kanagawa F-term in Keihin Plant, Toshiba Corporation 4D006 GA01 GA41 MA08 MA22 MA24 MA31 MB01 MB04 MB14 MB19 MC03X NA39 NA46 NA62 PB7 0 4D048 AA08 AB03 BA03X BA07X BA12X BA30X BA31X BA32X BA33X BA34X BA41X BA44X BB09 EA01 4G066 AA23B AA61B BA03 BA05 BA23 BA25 CA02 DA01 DA07 FA15 FA22 FA28 4G069 AA03 AA08 BA01B33BBC BCA BC72A BC72B BC73A BC73B BC74A BC74B BC75A BC75B CA01 CA05 CA10 CA17 DA06 EA08 EB11 EB12X EB12Y EB15X EB15Y EB17X EB17Y EB18X EB18Y EC14X EC14Y EC27 EC28 FA03 FB15 FB23 FB30 FC08

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 TiOを主成分とした光触媒膜であっ
て、この光触媒膜の気孔率は、膜表面で80%以下、膜
内部で10%以上の分布を有し、かつ、平均気孔径は、
膜表面で5μm以下、膜内部で2nm以上の分布を有す
ることを特徴とする光触媒膜。
1. A photocatalytic film containing TiO 2 as a main component, wherein the porosity of the photocatalytic film has a distribution of 80% or less on the film surface, 10% or more inside the film, and an average pore diameter. Is
A photocatalytic film having a distribution of 5 μm or less on the film surface and 2 nm or more inside the film.
【請求項2】 光触媒膜の膜表面から膜内部に向かい、
気孔率および平均気孔径が減少していることを特徴とす
る請求項1記載の光触媒膜。
2. The photocatalytic film is directed from the film surface to the inside of the film.
The photocatalyst film according to claim 1, wherein the porosity and the average pore diameter are reduced.
【請求項3】 光触媒膜の厚さが、5μm以下であるこ
とを特徴とする請求項1または2に記載の光触媒膜。
3. The photocatalyst film according to claim 1, wherein the thickness of the photocatalyst film is 5 μm or less.
【請求項4】 光触媒膜は多層構造からなり、この多層
構造を形成する各層の膜厚が0.2μm以上であること
を特徴とする請求項1または2に記載の光触媒膜。
4. The photocatalyst film according to claim 1, wherein the photocatalyst film has a multilayer structure, and each layer forming the multilayer structure has a thickness of 0.2 μm or more.
【請求項5】 各層は、10層以下であることを特徴と
する請求項4に記載の光触媒膜。
5. The photocatalyst film according to claim 4, wherein each layer has 10 or less layers.
【請求項6】 金属粒子が0.01%以上30%以下含
有され、この金属粒子の平均粒径が0.1μm以下であ
ることを特徴とする請求項1から5までのいずれかに記
載の光触媒膜。
6. The method according to claim 1, wherein the metal particles are contained in an amount of 0.01% or more and 30% or less, and the average particle diameter of the metal particles is 0.1 μm or less. Photocatalytic film.
【請求項7】 ゼオライトが、0.1%以上50%以下
含有されていることを特徴とする請求項1から6までの
いずれかに記載の光触媒膜。
7. The photocatalytic film according to claim 1, wherein zeolite is contained in an amount of 0.1% or more and 50% or less.
【請求項8】 TiOを主成分とした原料にバインダ
を添加してスラリーを作製し、このスラリーを基板上に
スリップキャスト法を用いて塗布した後、焼結したこと
を特徴とする光触媒膜の製造方法。
8. A photocatalytic film obtained by adding a binder to a raw material mainly composed of TiO 2 to form a slurry, applying the slurry to a substrate by using a slip casting method, and then sintering the slurry. Manufacturing method.
【請求項9】 原料として、平均粒径が100nm以下
であるTiOの一次粒子を用いたことを特徴とする請
求項8記載の光触媒膜の製造方法。
9. The method according to claim 8, wherein primary particles of TiO 2 having an average particle diameter of 100 nm or less are used as a raw material.
【請求項10】 TiOの一次粒子を凝集させて、凝
集体の平均粒径を0.2μm以下とした二次粒子を用い
たことを特徴とする請求項9または10に記載の光触媒
膜の製造方法。
10. The photocatalyst film according to claim 9, wherein primary particles of TiO 2 are aggregated to use secondary particles having an average particle size of 0.2 μm or less. Production method.
JP2000280570A 2000-09-14 2000-09-14 Photocatalytic membrane Expired - Fee Related JP4163374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000280570A JP4163374B2 (en) 2000-09-14 2000-09-14 Photocatalytic membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000280570A JP4163374B2 (en) 2000-09-14 2000-09-14 Photocatalytic membrane

Publications (2)

Publication Number Publication Date
JP2002085967A true JP2002085967A (en) 2002-03-26
JP4163374B2 JP4163374B2 (en) 2008-10-08

Family

ID=18765381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000280570A Expired - Fee Related JP4163374B2 (en) 2000-09-14 2000-09-14 Photocatalytic membrane

Country Status (1)

Country Link
JP (1) JP4163374B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279366A (en) * 2004-03-29 2005-10-13 Mitsubishi Materials Corp Porous photocatalyst film
JP2006263896A (en) * 2005-03-25 2006-10-05 Kansai Tlo Kk Magnetic metal carrier for separation, purification or detection of nucleic acid
JP2010120800A (en) * 2008-11-18 2010-06-03 Toyota Central R&D Labs Inc Spherical oxide semiconductor particle, and aggregate and photoelectrode using the same
WO2010095756A1 (en) * 2009-02-18 2010-08-26 新日本製鐵株式会社 Surface-treated precoated metal sheet, process for producing same, and surface-treating solution
JP2011092876A (en) * 2009-10-30 2011-05-12 Ngk Insulators Ltd Method for manufacturing nanofiltration membrane
US8309484B2 (en) * 2006-06-01 2012-11-13 Carrier Corporation Preparation and manufacture of an overlayer for deactivation resistant photocatalysts
KR101218871B1 (en) * 2005-12-07 2013-01-07 센트럴 제팬 레일웨이 컴퍼니 Photocatalyst-carrier and its manufacturing process
US8513157B2 (en) 2006-06-01 2013-08-20 Carrier Corporation Deactivation resistant photocatalysts
US8795588B2 (en) 2006-06-01 2014-08-05 Carrier Corporation Systems and methods for removal of contaminants from fluid streams
JP2018167999A (en) * 2017-03-29 2018-11-01 文修 斎藤 Porous sintered body and air purification device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8263543B2 (en) 2009-04-17 2012-09-11 The Procter & Gamble Company Fabric care compositions comprising organosiloxane polymers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427440A (en) * 1990-05-23 1992-01-30 Babcock Hitachi Kk Planar catalyst and manufacture thereof
JPH07144128A (en) * 1993-09-30 1995-06-06 Mazda Motor Corp Hydrocarbon adsorbent, catalyst and device for purifying exhaust gas
JPH0899041A (en) * 1993-12-09 1996-04-16 Agency Of Ind Science & Technol Photocatalyst of titanium oxide porous thin film and preparation of the same
JPH08196903A (en) * 1995-01-24 1996-08-06 Agency Of Ind Science & Technol Porous photocatalyst and manufacture thereof
JPH11216365A (en) * 1997-10-20 1999-08-10 Tao:Kk Photocatalyst, photocatalyst device and housing apparatus
JP2000051712A (en) * 1998-08-13 2000-02-22 Hitachi Metals Ltd Photocatalyst body
JP2001070802A (en) * 1999-09-03 2001-03-21 Toshiba Corp Photocatalyst film and its production
JP2002001126A (en) * 2000-06-22 2002-01-08 Yamaha Corp Photo-oxidation catalyst and method for manufacturing the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427440A (en) * 1990-05-23 1992-01-30 Babcock Hitachi Kk Planar catalyst and manufacture thereof
JPH07144128A (en) * 1993-09-30 1995-06-06 Mazda Motor Corp Hydrocarbon adsorbent, catalyst and device for purifying exhaust gas
JPH0899041A (en) * 1993-12-09 1996-04-16 Agency Of Ind Science & Technol Photocatalyst of titanium oxide porous thin film and preparation of the same
JPH08196903A (en) * 1995-01-24 1996-08-06 Agency Of Ind Science & Technol Porous photocatalyst and manufacture thereof
JPH11216365A (en) * 1997-10-20 1999-08-10 Tao:Kk Photocatalyst, photocatalyst device and housing apparatus
JP2000051712A (en) * 1998-08-13 2000-02-22 Hitachi Metals Ltd Photocatalyst body
JP2001070802A (en) * 1999-09-03 2001-03-21 Toshiba Corp Photocatalyst film and its production
JP2002001126A (en) * 2000-06-22 2002-01-08 Yamaha Corp Photo-oxidation catalyst and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005279366A (en) * 2004-03-29 2005-10-13 Mitsubishi Materials Corp Porous photocatalyst film
JP2006263896A (en) * 2005-03-25 2006-10-05 Kansai Tlo Kk Magnetic metal carrier for separation, purification or detection of nucleic acid
KR101218871B1 (en) * 2005-12-07 2013-01-07 센트럴 제팬 레일웨이 컴퍼니 Photocatalyst-carrier and its manufacturing process
US8309484B2 (en) * 2006-06-01 2012-11-13 Carrier Corporation Preparation and manufacture of an overlayer for deactivation resistant photocatalysts
US8513157B2 (en) 2006-06-01 2013-08-20 Carrier Corporation Deactivation resistant photocatalysts
US8795588B2 (en) 2006-06-01 2014-08-05 Carrier Corporation Systems and methods for removal of contaminants from fluid streams
JP2010120800A (en) * 2008-11-18 2010-06-03 Toyota Central R&D Labs Inc Spherical oxide semiconductor particle, and aggregate and photoelectrode using the same
WO2010095756A1 (en) * 2009-02-18 2010-08-26 新日本製鐵株式会社 Surface-treated precoated metal sheet, process for producing same, and surface-treating solution
JP2011092876A (en) * 2009-10-30 2011-05-12 Ngk Insulators Ltd Method for manufacturing nanofiltration membrane
JP2018167999A (en) * 2017-03-29 2018-11-01 文修 斎藤 Porous sintered body and air purification device
JP7065378B2 (en) 2017-03-29 2022-05-12 文修 斎藤 Porous sintered body and air purification equipment

Also Published As

Publication number Publication date
JP4163374B2 (en) 2008-10-08

Similar Documents

Publication Publication Date Title
JP4803180B2 (en) Titanium oxide photocatalyst, its production method and use
JP4957244B2 (en) Titanium oxide photocatalyst, method for producing the same, and use thereof
TWI457177B (en) Photocatalyst, method for preparing the same and photocatalyst device
JP6352527B2 (en) Photocatalytic functional film and method for producing the same
JP3894144B2 (en) Titanium oxide photocatalyst and its production method and application
JP2001070800A (en) Photocatalyst film composition and photocatalyst body using the same
JP2002085967A (en) Photocatalyst membrane and method of producing the same
JP2007144403A (en) Composite type particulate photocatalyst, method for manufacturing the same and coating agent and photocatalytically-active member using the same
JP2015116526A (en) Photocatalytic complex, production method thereof, and photocatalytic deodorization system including photocatalytic complex
JP2001070802A (en) Photocatalyst film and its production
JP2004283646A (en) Photocatalyst and method for producing photocatalyst
JP5740947B2 (en) Visible light responsive photocatalyst, hydrophilic member containing the same, and production method thereof
JP2005254128A (en) Photocatalyst particle and method of immobilizing it, and photocatalytic member
US8343282B2 (en) Photocatalytic auto-cleaning process of stains
JP2002113369A (en) Photocatalyst and method of manufacturing the same
JP2007117999A (en) Titanium oxide-based photocatalyst and its use
CN1887416A (en) Microwave process and application of foamed nickel supported and modified nanometer TiO2
JPH10286456A (en) Adsorbing functional body
JP2000126613A (en) Production of photocatalyst
JP2001232190A (en) Photocatalyst membrane and method for producing the same
CN111437803A (en) Nano TiO with grain size less than 10nm2Method for preparing a coating structure
KR102175462B1 (en) Visible light-activated photocatalyst and preparation method thereof
EP1831131B1 (en) Photocatalytic auto-cleaning process of stains
WO2023079766A1 (en) Photocatalyst antibacterial deodorizing material, method for producing same, antibacterial deodorizing material, and antibacterial deodorizing filter
JP2008043848A (en) Optical semiconductor fine particle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees