JPH08189710A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH08189710A
JPH08189710A JP167895A JP167895A JPH08189710A JP H08189710 A JPH08189710 A JP H08189710A JP 167895 A JP167895 A JP 167895A JP 167895 A JP167895 A JP 167895A JP H08189710 A JPH08189710 A JP H08189710A
Authority
JP
Japan
Prior art keywords
oil
heat exchanger
compressor
refrigerant
refrigerant pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP167895A
Other languages
Japanese (ja)
Inventor
Hirotaka Nakajima
洋登 中嶋
Seiji Sakai
誠治 酒井
Tsugunori Inoue
世紀 井上
Tomohiro Iwata
友宏 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP167895A priority Critical patent/JPH08189710A/en
Publication of JPH08189710A publication Critical patent/JPH08189710A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE: To improve heating capacity and effect efficient operation by giving the enthalpy of oil to an indoor heat exchanger. CONSTITUTION: A refrigerant circulating circuit 11 is constituted of a compressor 21, a four-way switching valve 22, an outdoor heat exchanger 23, an electric expansion valve 24, an indoor heat exchanger 31 and a refrigerant pipeline 40, which are connected sequentially. The refrigerant circulating circuit 11 is constituted of a closed circuit, capable of effecting reversible operation between a cooling operation cycle and a heating operation cycle by the switching of the four-way switching valve 22. The discharging side refrigerant pipeline 4D of the compressor 21 is provided with an oil separator 50, separating oil from the discharging refrigerant of the compressor 21. An oil returning passage 5R, whose one end is connected to the oil separator 50 and whose other end is connected to the refrigerant pipeline 40 of the side of the indoor heat exchanger 31 through the four-way switching valve 22, returns oil from the oil separator 50 into the refrigerant pipeline 40.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、油分離器を備えた空気
調和装置に関し、特に、暖房能力対策に係るものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner equipped with an oil separator, and more particularly to measures for heating capacity.

【0002】[0002]

【従来の技術】従来より、空気調和装置には、特開平5
−312428号公報に開示されているように、油分離
器を備えたものがある。
2. Description of the Related Art Conventionally, an air conditioner has been disclosed in Japanese Patent Laid-Open No.
As disclosed in Japanese Patent No. 312124/1993, there is one provided with an oil separator.

【0003】この空気調和装置は、図3に概略を示すよ
うに、圧縮機(a)と四路切換弁(b)と室外熱交換器
(c)と電動膨張弁(d)と室内熱交換器(e)とが冷
媒配管(f)によって順に接続されて成る冷媒循環回路
(g)を備えている。そして、該冷媒循環回路(g)
は、四路切換弁(b)の切換えによって冷房運転サイク
ルと暖房運転サイクルとに可逆運転可能な閉回路に構成
されている。また、上記圧縮機(a)と四路切換弁
(b)と室外熱交換器(c)と電動膨張弁(d)とによ
って室外ユニット(h)が形成され、上記室内熱交換器
(e)によって室内ユニット(i)が形成されている。
This air conditioner has a compressor (a), a four-way switching valve (b), an outdoor heat exchanger (c), an electric expansion valve (d), and indoor heat exchange, as shown schematically in FIG. The refrigerant circulation circuit (g) is formed by sequentially connecting the container (e) and the container (e) through the refrigerant pipe (f). And the refrigerant circulation circuit (g)
Is configured as a closed circuit capable of reversible operation in a cooling operation cycle and a heating operation cycle by switching the four-way switching valve (b). Further, the compressor (a), the four-way switching valve (b), the outdoor heat exchanger (c), and the electric expansion valve (d) form an outdoor unit (h), and the indoor heat exchanger (e). The indoor unit (i) is formed by.

【0004】一方、上記冷媒循環回路(g)における圧
縮機(a)の吐出側冷媒配管(f)には、四路切換弁
(b)との間に油分離器(j)が接続され、該油分離器
(j)は、圧縮機(a)の吐出冷媒から油を分離してい
る。そして、上記油分離器(j)の油戻し通路(k)
は、キャピラリ(m)を備えて圧縮機(a)の吸込側冷
媒配管(f)に接続されており、図3矢符で示すよう
に、油分離器(j)が分離した油を圧縮機(a)に直接
戻している。
On the other hand, an oil separator (j) is connected between the discharge side refrigerant pipe (f) of the compressor (a) in the refrigerant circulation circuit (g) and the four way switching valve (b). The oil separator (j) separates oil from the refrigerant discharged from the compressor (a). And the oil return passage (k) of the oil separator (j)
Is equipped with a capillary (m) and is connected to the suction side refrigerant pipe (f) of the compressor (a). As shown by the arrow in FIG. 3, the oil separated by the oil separator (j) is compressed by the compressor. It returns directly to (a).

【0005】[0005]

【発明が解決しようとする課題】上述した空気調和装置
において、圧縮機(a)の吐出側に油分離器(j)を接
続し、油戻し通路(k)を圧縮機(a)の吸込側に接続
しているので、冷房運転サイクル時は、室内熱交換器
(e)の吐出側から圧縮機(a)の吸込側までの吸
入ラインの油濃度が低くなり、冷媒配管(f)の油量が
低下する。この結果、吸入ラインの圧力損失を低減する
ことができるので、冷房能力を向上させることができ
る。
In the air conditioner described above, the oil separator (j) is connected to the discharge side of the compressor (a), and the oil return passage (k) is connected to the suction side of the compressor (a). Therefore, during the cooling operation cycle, the oil concentration in the suction line from the discharge side of the indoor heat exchanger (e) to the suction side of the compressor (a) becomes low, and the oil in the refrigerant pipe (f) is reduced. The amount decreases. As a result, the pressure loss of the suction line can be reduced, and the cooling capacity can be improved.

【0006】しかしながら、暖房運転サイクル時におい
ては、室外熱交換器(c)の吐出側から圧縮機(a)
の吸込側までの吸入ラインが短くなる。つまり、上記
室外ユニット(h)と室内ユニット(i)とは相当の配
管長があるものゝ、室外熱交換器(c)と圧縮機(a)
とは1つの室外ユニット(h)に収納されており、該室
外熱交換器(c)と圧縮機(a)との間の配管長は短い
ものである。従って、暖房運転サイクル時の吸入ライン
における油による圧力損失は、さほど多くないが、上記
圧縮機(a)より吐出した油を直接圧縮機(a)に戻す
ことにしているので、油の有するエンタルピを凝縮機で
ある室内熱交換器(e)に与えることができない。
However, during the heating operation cycle, the compressor (a) is discharged from the discharge side of the outdoor heat exchanger (c).
The suction line to the suction side of becomes shorter. That is, the outdoor unit (h) and the indoor unit (i) have a considerable pipe length, the outdoor heat exchanger (c) and the compressor (a).
And are housed in one outdoor unit (h), and the pipe length between the outdoor heat exchanger (c) and the compressor (a) is short. Therefore, although the pressure loss due to the oil in the suction line during the heating operation cycle is not so large, the oil discharged from the compressor (a) is directly returned to the compressor (a). Cannot be supplied to the indoor heat exchanger (e) which is a condenser.

【0007】特に、冷房運転サイクル時においては、吸
入ラインの圧力損失が大きいと、蒸発器である室内熱交
換器(e)の蒸発温度(冷媒温度)が上昇するので、冷
房能力の低下に大きく影響することになる。これに対
し、暖房運転サイクル時においては、吸入ラインの圧力
損失が、蒸発器である室外熱交換器(c)の蒸発温度に
影響を与えても、室内熱交換器(e)の凝縮温度(冷媒
温度)にさほどの影響はなく、暖房能力への影響は少な
い。
In particular, during the cooling operation cycle, if the pressure loss in the suction line is large, the evaporation temperature (refrigerant temperature) of the indoor heat exchanger (e), which is an evaporator, rises, which greatly reduces the cooling capacity. It will affect. On the other hand, during the heating operation cycle, even if the pressure loss in the suction line affects the evaporation temperature of the outdoor heat exchanger (c), which is an evaporator, the condensation temperature of the indoor heat exchanger (e) ( Refrigerant temperature) is not so affected and heating capacity is not affected.

【0008】このことから、上述したように、油のエン
タルピを室内熱交換器(e)に与えることができないた
め、暖房能力が低下し、効率の良い運転を行うことがで
きないという問題があった。
From this, as described above, since the enthalpy of oil cannot be given to the indoor heat exchanger (e), there is a problem that the heating capacity is lowered and the efficient operation cannot be performed. .

【0009】本発明は、斯かる点に鑑みてなされたもの
で、油のエンタルピを利用側熱交換器に与えられるよう
にし、暖房能力を向上させ、効率の良い運転を行うよう
にすることを目的とするものである。
The present invention has been made in view of the above problems, and it is possible to provide the enthalpy of oil to the heat exchanger on the utilization side, improve the heating capacity, and perform efficient operation. It is intended.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明が講じた手段は、暖房運転サイクル時にお
ける圧縮機から吐出された油が利用側熱交換器に流れる
ようにしたものである。
In order to achieve the above object, the means taken by the present invention is such that oil discharged from a compressor during a heating operation cycle flows to a utilization side heat exchanger. Is.

【0011】具体的に、請求項1に係る発明が講じた手
段は、図1に示すように、先ず、圧縮機(21)と切換機
構(22)と熱源側熱交換器(23)と膨脹機構(24)と利
用側熱交換器(31)とが冷媒配管(40)によって順に接
続されて成り、上記切換機構(22)の切換えによって冷
房運転サイクルと暖房運転サイクルとに可逆運転可能な
閉回路の冷媒循環回路(11)が設けられている。そし
て、上記圧縮機(21)の吐出側冷媒配管(4D)に接続さ
れて圧縮機(21)の吐出冷媒から油を分離する油分離器
(50)が設けられている。加えて、該油分離器(50)に
一端が接続され、他端が切換機構(22)より利用側熱交
換器(31)側の冷媒配管(40)に接続されて該冷媒配管
(40)に油分離器(50)からの油を戻す油戻し通路(5
R)が設けられている。
Specifically, the means taken by the invention according to claim 1 is, as shown in FIG. 1, first, a compressor (21), a switching mechanism (22), a heat source side heat exchanger (23) and an expansion. The mechanism (24) and the utilization side heat exchanger (31) are connected in order by a refrigerant pipe (40), and a reversible operation can be performed between a cooling operation cycle and a heating operation cycle by switching the switching mechanism (22). A refrigerant circulation circuit (11) of the circuit is provided. An oil separator (50) that is connected to the discharge side refrigerant pipe (4D) of the compressor (21) and separates oil from the discharge refrigerant of the compressor (21) is provided. In addition, one end is connected to the oil separator (50), and the other end is connected to the refrigerant pipe (40) on the utilization side heat exchanger (31) side from the switching mechanism (22) to connect the refrigerant pipe (40). Oil return passage (5) that returns oil from the oil separator (50) to
R) is provided.

【0012】また、請求項2に係る発明が講じた手段
は、図2に示すように、先ず、圧縮機(21)と切換機構
(22)と熱源側熱交換器(23)と膨脹機構(24)と利用
側熱交換器(31)とが順に接続されて成り、上記切換機
構(22)の切換えによって冷房運転サイクルと暖房運転
サイクルとに可逆運転可能な閉回路の冷媒循環回路(1
1)が設けられている。上記切換機構(22)より熱源側
熱交換器(23)側の冷媒配管(40)に設けれて該冷媒配
管(40)を流れる冷媒から油を分離する油分離器(50)
が設けられている。加えて、該油分離器(50)に一端が
接続され、他端が圧縮機(21)の吸込側冷媒配管(4S)
に接続されて該吸込側冷媒配管(4S)に油分離器(50)
からの油を戻す油戻し通路(5R)が設けられている。
In the means taken by the invention according to claim 2, as shown in FIG. 2, first, the compressor (21), the switching mechanism (22), the heat source side heat exchanger (23) and the expansion mechanism ( 24) and the utilization side heat exchanger (31) are connected in sequence, and a closed circuit refrigerant circulation circuit (1) capable of reversible operation between a cooling operation cycle and a heating operation cycle by switching the switching mechanism (22).
1) is provided. An oil separator (50) provided in the refrigerant pipe (40) on the heat source side heat exchanger (23) side of the switching mechanism (22) to separate oil from the refrigerant flowing through the refrigerant pipe (40).
Is provided. In addition, one end is connected to the oil separator (50) and the other end is the suction side refrigerant pipe (4S) of the compressor (21).
Connected to the suction side refrigerant pipe (4S) to the oil separator (50)
An oil return passage (5R) for returning oil from is provided.

【0013】[0013]

【作用】上記の構成により、請求項1に係る発明では、
冷房運転サイクル時において、圧縮機(21)より吐出し
た高圧の冷媒が、熱源側熱交換器(23)で凝縮して液化
し、この液冷媒が、膨脹機構(24)で減圧した後、利用
側熱交換器(31)で蒸発して圧縮機(21)に戻る一方、
暖房運転サイクル時において、圧縮機(21)より吐出し
た高圧の冷媒が、利用側熱交換器(31)で凝縮して液化
し、この液冷媒が、膨脹機構(24)で減圧した後、熱源
側熱交換器(23)で蒸発して圧縮機(21)に戻る循環と
なる。
With the above construction, in the invention according to claim 1,
During the cooling operation cycle, the high pressure refrigerant discharged from the compressor (21) is condensed and liquefied in the heat source side heat exchanger (23), and this liquid refrigerant is decompressed by the expansion mechanism (24) before being used. While evaporating in the side heat exchanger (31) and returning to the compressor (21),
During the heating operation cycle, the high-pressure refrigerant discharged from the compressor (21) is condensed and liquefied in the utilization side heat exchanger (31), and this liquid refrigerant is decompressed by the expansion mechanism (24), and then the heat source. The circulation is returned to the compressor (21) after being evaporated in the side heat exchanger (23).

【0014】上記各運転サイクル時において、圧縮機
(21)の内部を潤滑する油は、圧縮機(21)の吐出冷媒
と共に吐出側冷媒配管(4D)から吐出され、油分離器
(50)に流入して該油分離器(50)で冷媒より分離され
る。この油分離器(50)で分離された油は、油戻し通路
(5R)を介して切換機構(22)と利用側熱交換器(31)
との間の冷媒配管(40)に戻ることになる。
In each of the above operation cycles, the oil that lubricates the inside of the compressor (21) is discharged from the discharge side refrigerant pipe (4D) together with the refrigerant discharged from the compressor (21), and is discharged to the oil separator (50). It flows in and is separated from the refrigerant in the oil separator (50). The oil separated by the oil separator (50) passes through the oil return passage (5R) and the switching mechanism (22) and the use side heat exchanger (31).
It returns to the refrigerant pipe (40) between and.

【0015】そして、冷房運転サイクル時においては、
油戻し通路(5R)から冷媒配管(40)に戻った油は、切
換機構(22)から圧縮機(21)に吸込まれることにな
る。一方、暖房運転サイクル時においては、油戻し通路
(5R)から冷媒配管(40)に戻った油は、利用側熱交換
器(31)に流れることになり、該油が有するエンタルピ
は冷媒と共に利用側熱交換器(31)に与えられることに
なる。
During the cooling operation cycle,
The oil returned from the oil return passage (5R) to the refrigerant pipe (40) is sucked into the compressor (21) from the switching mechanism (22). On the other hand, during the heating operation cycle, the oil returned from the oil return passage (5R) to the refrigerant pipe (40) flows to the use side heat exchanger (31), and the enthalpy of the oil is used together with the refrigerant. It will be provided to the side heat exchanger (31).

【0016】また、請求項2に係る発明では、冷房運転
サイクル時において、圧縮機(21)の吐出冷媒と共に吐
出側冷媒配管(4D)から吐出された油は、切換機構(2
2)を通った後、油分離器(50)に流入して該油分離器
(50)で冷媒より分離される。この油分離器(50)で分
離された油は、油戻し通路(5R)を介して圧縮機(21)
に戻ることになる。
Further, in the invention according to claim 2, the oil discharged from the discharge side refrigerant pipe (4D) together with the refrigerant discharged from the compressor (21) during the cooling operation cycle is the switching mechanism (2
After passing through 2), it flows into the oil separator (50) and is separated from the refrigerant in the oil separator (50). The oil separated by the oil separator (50) passes through the oil return passage (5R) and the compressor (21).
Will return to.

【0017】一方、暖房運転サイクル時においては、圧
縮機(21)の吐出冷媒と共に吐出側冷媒配管(4D)から
吐出された油は、切換機構(22)を通った後、利用側熱
交換器(31)に供給されることになる。上記油は、冷媒
と共に膨脹機構(24)を経て熱源側熱交換器(23)から
油分離器(50)に流入し、切換機構(22)側の冷媒配管
(40)と油戻し通路(5R)とに分流した後、合流して圧
縮機(21)に吸込まれることになる。この結果、上記油
が有するエンタルピは冷媒と共に利用側熱交換器(31)
に与えられることになる。
On the other hand, during the heating operation cycle, the oil discharged from the discharge side refrigerant pipe (4D) together with the discharge refrigerant of the compressor (21) passes through the switching mechanism (22) and then the use side heat exchanger. (31) will be supplied. The oil together with the refrigerant flows through the expansion mechanism (24) from the heat source side heat exchanger (23) into the oil separator (50), and the refrigerant mechanism (22) side refrigerant pipe (40) and the oil return passageway (5R). ), And then merge to be sucked into the compressor (21). As a result, the enthalpy contained in the oil is used together with the refrigerant in the utilization side heat exchanger (31).
Will be given to.

【0018】[0018]

【発明の効果】従って、請求項1に係る発明によれば、
油分離器(50)の油戻し通路(5R)を切換機構(22)と
利用側熱交換器(31)との間に接続するようにしたゝめ
に、暖房運転サイクル時において、圧縮機(21)より吐
出した油のエンタルピを凝縮機である利用側熱交換器
(31)に与えることができる。この結果、暖房能力を向
上させることができるので、効率の良い暖房運転を行う
ことができる。
Therefore, according to the first aspect of the present invention,
Since the oil return passage (5R) of the oil separator (50) is connected between the switching mechanism (22) and the use side heat exchanger (31), the compressor ( The enthalpy of oil discharged from 21) can be given to the utilization side heat exchanger (31) which is a condenser. As a result, since the heating capacity can be improved, efficient heating operation can be performed.

【0019】また、冷房運転サイクル時は、油分離器
(50)で分離した油を切換機構(22)を介して圧縮機
(21)に戻すので、利用側熱交換器(31)の吐出側か
ら切換機構(22)の手前までの吸入ラインの油濃度が
低くなり、冷媒配管(40)の油量を低下させることがで
きる。特に、従来の利用側熱交換器(31)の吐出側か
ら圧縮機(21)の吸込側までの吸入ラインに比して油
濃度を低減し得る吸入ライン長さが短くなるものゝ、こ
の吸入ラインの大半は室外ユニット(20)と室内ユニッ
ト(30)との間の配管長さであることから、吸入ライン
における圧力損失の低減は従来とほゞ同じにすることが
できるので、冷房能力の低下を確実に抑制することがで
きる。
Further, during the cooling operation cycle, the oil separated by the oil separator (50) is returned to the compressor (21) through the switching mechanism (22), so that the discharge side of the utilization side heat exchanger (31). The oil concentration in the suction line from to the front of the switching mechanism (22) becomes low, and the amount of oil in the refrigerant pipe (40) can be reduced. Especially, the length of the suction line that can reduce the oil concentration is shorter than that of the conventional suction line from the discharge side of the utilization side heat exchanger (31) to the suction side of the compressor (21). Since most of the line is the pipe length between the outdoor unit (20) and the indoor unit (30), the reduction of pressure loss in the suction line can be made almost the same as the conventional one, so that the cooling capacity can be improved. The decrease can be surely suppressed.

【0020】また、請求項2に係る発明によれば、請求
項1と同様に、暖房運転サイクル時において、圧縮機
(21)より吐出した油のエンタルピを凝縮機である利用
側熱交換器(31)に与えることができる。この結果、暖
房能力を向上させることができるので、効率の良い暖房
運転を行うことができる。
According to the second aspect of the present invention, as in the first aspect, the enthalpy of oil discharged from the compressor (21) during the heating operation cycle is used as a condenser on the utilization side heat exchanger ( 31) can be given to. As a result, since the heating capacity can be improved, efficient heating operation can be performed.

【0021】また、冷房運転サイクル時は、油分離器
(50)で分離した油を圧縮機(21)の吸込側冷媒配管
(4S)に戻すので、従来と同様に利用側熱交換器(31)
の吐出側から圧縮機(21)の吸込側までの吸入ライ
ンにおける圧力損失を低減することができるので、冷房
能力の向上を図ることができる。
During the cooling operation cycle, the oil separated by the oil separator (50) is returned to the suction side refrigerant pipe (4S) of the compressor (21), so that the utilization side heat exchanger (31) )
Since the pressure loss in the suction line from the discharge side to the suction side of the compressor (21) can be reduced, the cooling capacity can be improved.

【0022】[0022]

【実施例】以下、本発明の実施例を図面に基づいて詳細
に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0023】−第1実施例の構成− 図1に示すように、(10)は、所謂セパレートタイプに
構成された空気調和装置であって、一台の室外ユニット
(20)に対して一台の室内ユニット(30)が接続されて
成る冷媒循環回路(11)を備えている。
-Structure of First Embodiment-As shown in FIG. 1, (10) is a so-called separate type air conditioner, one for each outdoor unit (20). The indoor unit (30) is connected to the refrigerant circulation circuit (11).

【0024】上記室外ユニット(20)には、インバータ
により運転周波数が可変に調節されるスクロールタイプ
の圧縮機(21)と、冷房運転サイクル時には図中実線の
如く、暖房運転サイクル時には図中破線の如く切換わる
切換機構を構成する四路切換弁(22)と、冷房運転時に
凝縮器として、暖房運転時に蒸発器として機能する熱源
側熱交換器である室外熱交換器(23)と、冷媒を減圧す
るための膨脹機構を構成する電動膨張弁(24)とが設け
られている。一方、上記室内ユニット(30)には、冷房
運転時に蒸発器として、暖房運転時に凝縮器として機能
する利用側熱交換器である室内熱交換器(31)が設けら
れている。更に、上記室外熱交換器(23)には室外ファ
ン(2F)が設けられる一方、上記室内熱交換器(31)に
は室内ファン(3F)が設けられている。
The outdoor unit (20) includes a scroll type compressor (21) whose operating frequency is variably adjusted by an inverter, and a solid line in the figure during a cooling operation cycle, and a broken line in the figure during a heating operation cycle. A four-way switching valve (22) that constitutes a switching mechanism that switches as described above, an outdoor heat exchanger (23) that is a heat source side heat exchanger that functions as a condenser during cooling operation, and as an evaporator during heating operation, and a refrigerant. An electric expansion valve (24) forming an expansion mechanism for reducing the pressure is provided. On the other hand, the indoor unit (30) is provided with an indoor heat exchanger (31) which is a utilization side heat exchanger that functions as an evaporator during cooling operation and as a condenser during heating operation. Further, the outdoor heat exchanger (23) is provided with an outdoor fan (2F), while the indoor heat exchanger (31) is provided with an indoor fan (3F).

【0025】そして、上記圧縮機(21)と四路切換弁
(22)と室外熱交換器(23)と電動膨張弁(24)と室内
熱交換器(31)とが順に冷媒配管(40)によって接続さ
れ、上記冷媒循環回路(11)は、冷媒の循環により熱移
動を生ぜしめるように冷房運転サイクルと暖房運転サイ
クルとに四路切換弁(22)の切換えによって可逆運転可
能な閉回路に構成されている。
The compressor (21), the four-way switching valve (22), the outdoor heat exchanger (23), the electric expansion valve (24) and the indoor heat exchanger (31) are arranged in this order in the refrigerant pipe (40). The refrigerant circulation circuit (11) is connected by a four-way switching valve (22) in a cooling operation cycle and a heating operation cycle so that heat is transferred by circulating the refrigerant, thereby forming a closed circuit capable of reversible operation. It is configured.

【0026】また、上記電動膨張弁(24)は、冷媒が双
方向に流れるように配置されており、つまり、電動膨張
弁(24)は、冷房運転サイクルと暖房運転サイクルとで
冷媒が逆方向に流れて減圧するように構成されている。
Further, the electric expansion valve (24) is arranged so that the refrigerant flows in both directions, that is, the electric expansion valve (24) causes the refrigerant to flow in opposite directions between the cooling operation cycle and the heating operation cycle. It is configured to flow to and reduce the pressure.

【0027】[油分離器の構成]上記冷媒循環回路(11)
には、本発明の特徴とする油分離器(50)が設けれてい
る。該油分離器(50)は、圧縮機(21)の吐出側冷媒配
管(4D)に接続されており、つまり、圧縮機(21)の吐
出側と四路切換弁(22)との間の冷媒配管(40)である
吐出側冷媒配管(4D)に配置され、上記圧縮機(21)か
ら吐出された吐出冷媒から油を分離するように構成され
ている。
[Configuration of Oil Separator] The refrigerant circulation circuit (11)
Is provided with an oil separator (50) which is a feature of the present invention. The oil separator (50) is connected to the discharge side refrigerant pipe (4D) of the compressor (21), that is, between the discharge side of the compressor (21) and the four-way switching valve (22). It is arranged in the discharge side refrigerant pipe (4D) which is the refrigerant pipe (40), and is configured to separate oil from the discharged refrigerant discharged from the compressor (21).

【0028】更に、上記油分離器(50)には、油戻し通
路(5R)の一端が接続されており、該油戻し通路(5R)
の他端は、室外ユニット(20)内において、四路切換弁
(22)と室内熱交換器(31)との間の冷媒配管(40)に
接続されている。
Further, one end of an oil return passage (5R) is connected to the oil separator (50), and the oil return passage (5R) is connected.
The other end of is connected to the refrigerant pipe (40) between the four-way switching valve (22) and the indoor heat exchanger (31) in the outdoor unit (20).

【0029】上記油戻し通路(5R)は、キャピラリ(5
C)が設けれており、油分離器(50)で分離した油を上
記四路切換弁(22)と室内熱交換器(31)との間の冷媒
配管(40)に戻すように構成されている。
The oil return passage (5R) has a capillary (5R).
C) is provided and is configured to return the oil separated by the oil separator (50) to the refrigerant pipe (40) between the four-way switching valve (22) and the indoor heat exchanger (31). ing.

【0030】つまり、上記油戻し通路(5R)は、冷媒循
環回路(11)の冷房運転サイクル時において、油分離器
(50)で分離した油を四路切換弁(22)の手前から該四
路切換弁(22)及び冷媒配管(40)である圧縮機(21)
の吸込側冷媒配管(4S)を介して圧縮機(21)に戻すよ
うに構成され、また、暖房運転サイクル時において、油
分離器(50)で分離した油を冷媒配管(40)を介して室
内熱交換器(31)に供給するように構成されている。
That is, the oil return passageway (5R) is connected to the oil return passage (5R) from the front of the four-way switching valve (22) to the oil separated by the oil separator (50) during the cooling operation cycle of the refrigerant circulation circuit (11). Compressor (21) which is a path switching valve (22) and a refrigerant pipe (40)
Is configured to return to the compressor (21) via the suction side refrigerant pipe (4S), and during the heating operation cycle, the oil separated by the oil separator (50) is passed through the refrigerant pipe (40). It is configured to supply to the indoor heat exchanger (31).

【0031】−第1実施例の空調運転動作− 次に、上述した空気調和装置(10)の冷房運転及び暖房
運転の動作について説明する。
-Air-conditioning operation operation of the first embodiment-Next, the operation of the air conditioning apparatus (10) in the cooling operation and the heating operation will be described.

【0032】先ず、上記冷媒循環回路(11)の冷房運転
サイクル時においては、圧縮機(21)より吐出した高圧
の冷媒が、室外熱交換器(23)で凝縮して液化し、この
液冷媒が、電動膨張弁(24)で減圧した後、室内熱交換
器(31)で蒸発して圧縮機(21)に戻る循環となる。一
方、暖房運転サイクル時においては、圧縮機(21)より
吐出した高圧の冷媒が、室内熱交換器(31)で凝縮して
液化し、この液冷媒が、電動膨張弁(24)で減圧した
後、室外熱交換器(23)で蒸発して圧縮機(21)に戻る
循環となる。
First, during the cooling operation cycle of the refrigerant circulation circuit (11), the high-pressure refrigerant discharged from the compressor (21) is condensed and liquefied in the outdoor heat exchanger (23), and this liquid refrigerant is discharged. However, after the pressure is reduced by the electric expansion valve (24), it is circulated to be evaporated in the indoor heat exchanger (31) and returned to the compressor (21). On the other hand, during the heating operation cycle, the high-pressure refrigerant discharged from the compressor (21) is condensed and liquefied in the indoor heat exchanger (31), and this liquid refrigerant is decompressed by the electric expansion valve (24). After that, circulation is performed by evaporating in the outdoor heat exchanger (23) and returning to the compressor (21).

【0033】上記各運転サイクル時において、圧縮機
(21)の内部を潤滑する油は、図1実線の矢符で示すよ
うに、圧縮機(21)の吐出冷媒と共に吐出側冷媒配管
(4D)から吐出され、油分離器(50)に流入して該油分
離器(50)で冷媒より分離される。この油分離器(50)
で分離された油は、油戻し通路(5R)を介して四路切換
弁(22)と室内熱交換器(31)との間の冷媒配管(40)
に戻ることになる。
In each of the above operation cycles, the oil that lubricates the inside of the compressor (21) is, as shown by the solid line arrow in FIG. 1, the discharge refrigerant of the compressor (21) and the discharge side refrigerant pipe (4D). Is discharged from the refrigerant, flows into the oil separator (50), and is separated from the refrigerant in the oil separator (50). This oil separator (50)
The oil separated in the refrigerant pipe (40) between the four-way switching valve (22) and the indoor heat exchanger (31) passes through the oil return passage (5R).
Will return to.

【0034】そして、冷房運転サイクル時においては、
四路切換弁(22)が図1の実線の如く切換わっているの
で、油戻し通路(5R)から冷媒配管(40)に戻った油
は、図1実線の矢符で示すように、四路切換弁(22)か
ら吸込側冷媒配管(4S)を通って圧縮機(21)に吸込ま
れることになる。一方、暖房運転サイクル時において
は、上記四路切換弁(22)が図1の破線の如く切換わっ
ているので、油戻し通路(5R)から冷媒配管(40)に戻
った油は、図1一点鎖線の矢符で示すように、室内熱交
換器(31)に流れることになり、該油が有するエンタル
ピは冷媒と共に上記室内熱交換器(31)に与えられるこ
とになる。
During the cooling operation cycle,
Since the four-way switching valve (22) is switched as shown by the solid line in FIG. 1, the oil returned from the oil return passageway (5R) to the refrigerant pipe (40) is changed into four as shown by the solid line arrow in FIG. It is sucked into the compressor (21) from the path switching valve (22) through the suction side refrigerant pipe (4S). On the other hand, during the heating operation cycle, since the four-way switching valve (22) is switched as shown by the broken line in FIG. 1, the oil returned from the oil return passage (5R) to the refrigerant pipe (40) is As indicated by the one-dot chain line arrow, the oil flows into the indoor heat exchanger (31), and the enthalpy contained in the oil is given to the indoor heat exchanger (31) together with the refrigerant.

【0035】−第1実施例の特有の効果− 以上のように、本実施例によれば、油分離器(50)の油
戻し通路(5R)を四路切換弁(22)と室内熱交換器(3
1)との間に接続するようにしたゝめに、暖房運転サイ
クル時において、圧縮機(21)より吐出した油のエンタ
ルピを凝縮機である室内熱交換器(31)に与えることが
できる。この結果、暖房能力を向上させることができる
ので、効率の良い暖房運転を行うことができる。
-Effects peculiar to the first embodiment-As described above, according to this embodiment, the oil return passage (5R) of the oil separator (50) is connected to the four-way switching valve (22) and the indoor heat exchange. Bowl (3
Since it is connected to 1), the enthalpy of oil discharged from the compressor (21) can be supplied to the indoor heat exchanger (31), which is a condenser, during the heating operation cycle. As a result, since the heating capacity can be improved, efficient heating operation can be performed.

【0036】また、冷房運転サイクル時は、油分離器
(50)で分離した油を四路切換弁(22)を介して圧縮機
(21)に戻すので、室内熱交換器(31)の吐出側から
四路切換弁(22)の手前までの吸入ラインの油濃度が
低くなり、冷媒配管の油量を低下させることができる。
特に、従来の図3に示す室内熱交換器(e)の吐出側
から圧縮機(a)の吸込側までの吸入ラインに比して
油濃度を低減し得る吸入ライン長さが短くなるものゝ、
この吸入ラインの大半は室外ユニット(20)と室内ユニ
ット(30)との間の配管長さであることから、吸入ライ
ンにおける圧力損失の低減は従来とほゞ同じにすること
ができるので、冷房能力の低下を確実に抑制することが
できる。
Further, during the cooling operation cycle, the oil separated by the oil separator (50) is returned to the compressor (21) through the four-way switching valve (22), so the discharge of the indoor heat exchanger (31) The oil concentration in the suction line from the side to the front of the four-way switching valve (22) is reduced, and the amount of oil in the refrigerant pipe can be reduced.
Particularly, the length of the suction line that can reduce the oil concentration is shorter than that of the conventional suction line from the discharge side of the indoor heat exchanger (e) to the suction side of the compressor (a) shown in FIG. ,
Since most of this suction line is the pipe length between the outdoor unit (20) and the indoor unit (30), the reduction of pressure loss in the suction line can be made almost the same as the conventional one, so that the cooling can be performed. It is possible to reliably suppress the deterioration of the ability.

【0037】−第2実施例− 本実施例は、図2に示すように、第1実施例の油分離器
(50)が圧縮機(21)の吐出側冷媒配管(4D)に設けら
れていたのに代り、油分離器(50)が四路切換弁(22)
と室外熱交換器(23)との間に設けられたものである。
Second Embodiment In this embodiment, as shown in FIG. 2, the oil separator (50) of the first embodiment is provided in the discharge side refrigerant pipe (4D) of the compressor (21). The oil separator (50) is replaced by a four-way selector valve (22)
And the outdoor heat exchanger (23).

【0038】また、上記油分離器(50)に一端が接続さ
れた油戻し通路(5R)の他端は、圧縮機(21)の吸込側
冷媒配管(4S)に接続され、つまり、四路切換弁(22)
と圧縮機(21)の吸込側の間に接続されている。
The other end of the oil return passage (5R), one end of which is connected to the oil separator (50), is connected to the suction side refrigerant pipe (4S) of the compressor (21), that is, four-way. Switching valve (22)
And the suction side of the compressor (21).

【0039】従って、冷房運転サイクル時においては、
四路切換弁(22)が図2の実線の如く切換わっているの
で、圧縮機(21)の吐出冷媒と共に吐出側冷媒配管(4
D)から吐出された油は、図2実線の矢符で示すよう
に、四路切換弁(22)を通った後、油分離器(50)に流
入して該油分離器(50)で冷媒より分離される。この油
分離器(50)で分離された油は、油戻し通路(5R)を介
して圧縮機(21)の吸込側冷媒配管(4S)から該圧縮機
(21)に戻ることになる。
Therefore, during the cooling operation cycle,
Since the four-way switching valve (22) is switched as shown by the solid line in FIG. 2, the discharge side refrigerant pipe (4
The oil discharged from D) passes through the four-way switching valve (22) and then flows into the oil separator (50) as shown by the solid line arrow in FIG. Separated from refrigerant. The oil separated by the oil separator (50) returns from the suction side refrigerant pipe (4S) of the compressor (21) to the compressor (21) through the oil return passage (5R).

【0040】一方、暖房運転サイクル時においては、四
路切換弁(22)が図2の破線の如く切換わっているの
で、圧縮機(21)の吐出冷媒と共に吐出側冷媒配管(4
D)から吐出された油は、図2一点鎖線の矢符で示すよ
うに、四路切換弁(22)を通った後、油分離器(50)と
は反対側の冷媒配管(40)を冷媒と共に流れ、室内熱交
換器(31)に供給されることになる。その後、上記油
は、冷媒と共に電動膨張弁(24)を経て室外熱交換器
(23)から油分離器(50)に流入する。そして、この油
分離器(50)においては、上記冷媒より油が多少分離さ
れるものゝ、冷媒と油とが共に四路切換弁(22)側の冷
媒配管(40)と油戻し通路(5R)とに分流され、その
後、圧縮機(21)の吸込側冷媒配管(4S)で合流して圧
縮機(21)に吸込まれることになる。この結果、上記油
が有するエンタルピは冷媒と共に室内熱交換器(31)に
与えられることになる。
On the other hand, during the heating operation cycle, since the four-way switching valve (22) is switched as shown by the broken line in FIG. 2, the discharge side refrigerant pipe (4) is discharged together with the discharge refrigerant of the compressor (21).
The oil discharged from D) passes through the four-way switching valve (22) and then flows through the refrigerant pipe (40) on the side opposite to the oil separator (50), as shown by the dashed line arrow in FIG. It flows with the refrigerant and is supplied to the indoor heat exchanger (31). Then, the oil flows into the oil separator (50) from the outdoor heat exchanger (23) through the electric expansion valve (24) together with the refrigerant. In the oil separator (50), the oil is separated from the refrigerant to some extent, and the refrigerant and the oil are both the four-way switching valve (22) side refrigerant pipe (40) and the oil return passage (5R). ), And then merge in the suction side refrigerant pipe (4S) of the compressor (21) to be sucked into the compressor (21). As a result, the enthalpy contained in the oil is given to the indoor heat exchanger (31) together with the refrigerant.

【0041】以上のように、本実施例によれば、前実施
例と同様に、暖房運転サイクル時において、圧縮機(2
1)より吐出した油のエンタルピを凝縮機である室内熱
交換器(31)に与えることができる。この結果、暖房能
力を向上させることができるので、効率の良い暖房運転
を行うことができる。
As described above, according to this embodiment, as in the previous embodiment, during the heating operation cycle, the compressor (2
The enthalpy of oil discharged from 1) can be given to the indoor heat exchanger (31) which is a condenser. As a result, since the heating capacity can be improved, efficient heating operation can be performed.

【0042】また、冷房運転サイクル時は、油分離器
(50)で分離した油を圧縮機(21)の吸込側冷媒配管
(4S)に戻すので、従来と同様に室内熱交換器(31)の
吐出側から圧縮機(21)の吸込側までの吸入ライン
における圧力損失を低減することができるので、冷房能
力の向上を図ることができる。
Further, during the cooling operation cycle, the oil separated by the oil separator (50) is returned to the suction side refrigerant pipe (4S) of the compressor (21), so that the indoor heat exchanger (31) is the same as the conventional one. Since the pressure loss in the suction line from the discharge side to the suction side of the compressor (21) can be reduced, the cooling capacity can be improved.

【0043】−他の変形例− 尚、本実施例においては、一台の室外ユニット(20)と
一台の室内ユニット(30)とを有する空気調和装置(1
0)について説明したが、本発明は、一台の室外ユニッ
ト(20)に対して複数台の室内ユニット(30,30,…)
を有する所謂マルチタイプのものであってもよく、冷媒
循環回路(11)は実施例に限定されるものではない。
-Other Modifications- In the present embodiment, the air conditioner (1 having one outdoor unit (20) and one indoor unit (30) is provided.
0) has been described, the present invention relates to a plurality of indoor units (30, 30, ...) With respect to one outdoor unit (20).
It may be of a so-called multi-type, and the refrigerant circulation circuit (11) is not limited to the embodiment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の空気調和装置の冷媒循環回路を示す冷
媒回路図である。
FIG. 1 is a refrigerant circuit diagram showing a refrigerant circulation circuit of an air conditioner of the present invention.

【図2】他の実施例の空気調和装置の冷媒循環回路を示
す冷媒回路図である。
FIG. 2 is a refrigerant circuit diagram showing a refrigerant circulation circuit of an air conditioner of another embodiment.

【図3】従来の空気調和装置の冷媒循環回路を示す冷媒
回路図である。
FIG. 3 is a refrigerant circuit diagram showing a refrigerant circulation circuit of a conventional air conditioner.

【符号の説明】[Explanation of symbols]

10 空気調和装置 11 冷媒循環回路 20 室外ユニット 21 圧縮機 22 四路切換弁(切換機構) 23 室外熱交換器(熱源側熱交換器) 24 電動膨張弁(膨脹機構) 30 室内ユニット 31 室内熱交換器(利用側熱交換器) 40 冷媒配管 4D 吐出側冷媒配管 4S 吸込側冷媒配管 50 油分離器 5R 油戻し通路 10 Air conditioner 11 Refrigerant circulation circuit 20 Outdoor unit 21 Compressor 22 Four-way switching valve (switching mechanism) 23 Outdoor heat exchanger (heat source side heat exchanger) 24 Electric expansion valve (expansion mechanism) 30 Indoor unit 31 Indoor heat exchange Unit (use side heat exchanger) 40 Refrigerant piping 4D Discharge side refrigerant piping 4S Suction side refrigerant piping 50 Oil separator 5R Oil return passage

───────────────────────────────────────────────────── フロントページの続き (72)発明者 井上 世紀 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 岩田 友宏 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Century Inoue, 1304 Kanaoka-machi, Sakai City, Osaka Prefecture Daikin Industries, Ltd.Kanaoka Plant, Sakai Factory (72) Tomohiro Iwata 1304, Kanaoka-machi, Sakai City, Osaka Prefecture Daikin Industries, Ltd. Sakai Plant Kanaoka Factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(21)と切換機構(22)と熱源側
熱交換器(23)と膨脹機構(24)と利用側熱交換器(3
1)とが冷媒配管(40)によって順に接続されて成り、
上記切換機構(22)の切換えによって冷房運転サイクル
と暖房運転サイクルとに可逆運転可能な閉回路の冷媒循
環回路(11)と、 上記圧縮機(21)の吐出側冷媒配管(4D)に接続されて
圧縮機(21)の吐出冷媒から油を分離する油分離器(5
0)と、 該油分離器(50)に一端が接続され、他端が切換機構
(22)より利用側熱交換器(31)側の冷媒配管(40)に
接続されて該冷媒配管(40)に油分離器(50)からの油
を戻す油戻し通路(5R)とを備えていることを特徴とす
る空気調和装置。
1. A compressor (21), a switching mechanism (22), a heat source side heat exchanger (23), an expansion mechanism (24) and a utilization side heat exchanger (3).
1) and are connected in order by a refrigerant pipe (40),
It is connected to a closed circuit refrigerant circulation circuit (11) capable of reversible operation in a cooling operation cycle and a heating operation cycle by switching of the switching mechanism (22), and to the discharge side refrigerant pipe (4D) of the compressor (21). Oil separator (5 that separates oil from the refrigerant discharged from the compressor (21)
0), one end of which is connected to the oil separator (50), and the other end of which is connected to the refrigerant pipe (40) on the utilization side heat exchanger (31) side of the switching mechanism (22) to connect the refrigerant pipe (40). ) Is provided with an oil return passage (5R) for returning oil from the oil separator (50).
【請求項2】 圧縮機(21)と切換機構(22)と熱源側
熱交換器(23)と膨脹機構(24)と利用側熱交換器(3
1)とが順に接続されて成り、上記切換機構(22)の切
換えによって冷房運転サイクルと暖房運転サイクルとに
可逆運転可能な閉回路の冷媒循環回路(11)と、 上記切換機構(22)より熱源側熱交換器(23)側の冷媒
配管(40)に設けれて該冷媒配管(40)を流れる冷媒か
ら油を分離する油分離器(50)と、 該油分離器(50)に一端が接続され、他端が圧縮機(2
1)の吸込側冷媒配管(4S)に接続されて該吸込側冷媒
配管(4S)に油分離器(50)からの油を戻す油戻し通路
(5R)とを備えていることを特徴とする空気調和装置。
2. A compressor (21), a switching mechanism (22), a heat source side heat exchanger (23), an expansion mechanism (24) and a utilization side heat exchanger (3).
1) are connected in order, and a closed circuit refrigerant circulation circuit (11) capable of reversible operation between a cooling operation cycle and a heating operation cycle by switching of the switching mechanism (22) and the switching mechanism (22). An oil separator (50) that is provided in the refrigerant pipe (40) on the heat source side heat exchanger (23) side and separates oil from the refrigerant flowing through the refrigerant pipe (40), and one end of the oil separator (50) Connected to the other end of the compressor (2
1) An oil return passage (5R) connected to the suction side refrigerant pipe (4S) and returning the oil from the oil separator (50) to the suction side refrigerant pipe (4S) Air conditioner.
JP167895A 1995-01-10 1995-01-10 Air conditioner Withdrawn JPH08189710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP167895A JPH08189710A (en) 1995-01-10 1995-01-10 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP167895A JPH08189710A (en) 1995-01-10 1995-01-10 Air conditioner

Publications (1)

Publication Number Publication Date
JPH08189710A true JPH08189710A (en) 1996-07-23

Family

ID=11508178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP167895A Withdrawn JPH08189710A (en) 1995-01-10 1995-01-10 Air conditioner

Country Status (1)

Country Link
JP (1) JPH08189710A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331040A (en) * 2011-08-05 2012-01-25 海尔集团公司 Freon-free direct-current frequency conversion air conditioner and control method
CN112303957A (en) * 2020-10-15 2021-02-02 珠海格力电器股份有限公司 Oil return control method for compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102331040A (en) * 2011-08-05 2012-01-25 海尔集团公司 Freon-free direct-current frequency conversion air conditioner and control method
CN112303957A (en) * 2020-10-15 2021-02-02 珠海格力电器股份有限公司 Oil return control method for compressor
CN112303957B (en) * 2020-10-15 2021-10-08 珠海格力电器股份有限公司 Oil return control method for compressor

Similar Documents

Publication Publication Date Title
JPH07234038A (en) Multiroom type cooling-heating equipment and operating method thereof
JP3263579B2 (en) Multi-room type air conditioner and heating method
JP2000274879A (en) Air conditioner
KR19990069708A (en) Air conditioner
JP2008025901A (en) Air conditioner
JP2008025919A (en) Air conditioner
JPH04110576A (en) Heat pump type air conditioner
JPH09196489A (en) Refrigeration cycle for air conditioner
JP2001235245A (en) Freezer
JP2997504B2 (en) Air conditioner
JP2006194526A (en) Air conditioner
JP2004293904A (en) Air conditioner
JP2008121996A (en) Air conditioner
JPH08189710A (en) Air conditioner
JPH10220893A (en) Heat pump device
JP2003106693A (en) Refrigerator
KR20060100795A (en) Over cooling structure for heat pump type air conditioner
JPH0835731A (en) Heat pump
JPS6150211B2 (en)
JP2008121995A (en) Air conditioner
JP2000154941A (en) Refrigerator
JPH10253171A (en) Air conditioner
JP4279511B2 (en) Apparatus using refrigeration cycle and air conditioner
JPH11294881A (en) Dual refrigerating unit
JPH1068560A (en) Refrigeration cycle device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020402