JPH08162636A - Field-effect element and formation method of its electrode - Google Patents

Field-effect element and formation method of its electrode

Info

Publication number
JPH08162636A
JPH08162636A JP6315388A JP31538894A JPH08162636A JP H08162636 A JPH08162636 A JP H08162636A JP 6315388 A JP6315388 A JP 6315388A JP 31538894 A JP31538894 A JP 31538894A JP H08162636 A JPH08162636 A JP H08162636A
Authority
JP
Japan
Prior art keywords
electrode
region
insulating film
wiring
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6315388A
Other languages
Japanese (ja)
Inventor
Sung-Weon Kang
盛元 姜
Won-Gu Kang
元求 姜
Yeo-Whan Kim
如煥 金
Jong-Sun Lyu
鍾善 柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of JPH08162636A publication Critical patent/JPH08162636A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823871Complementary field-effect transistors, e.g. CMOS interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE: To provide a field-effect element and its electrode forming method capable for forming the electric contacts of an element aligning them automatically, without a contact hole forming process, in a wiring process between electrodes of a kind of silicon, metal or different kinds of metals. CONSTITUTION: Parts of an insulating film 48 on field oxide films 40 and on parts where electrode contacts of wiring electrodes, electrodes of a kind of silicon, electrodes of different kinds of metals are formed are removed, and only parts surrounding the region of a gate electrode, i.e., gate oxide films 48a, 48b are left unremoved. And a substance for wiring electrodes is applied, and the substance is patterned after that and wiring electrodes 49 are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電界効果素子の構造およ
びその電極を形成する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a field effect element and a method of forming an electrode thereof.

【0002】[0002]

【従来の技術】半導体素子の高集積化,高速化を加速し
ながら、素子の性能向上を図るための努力が継続されて
いる。
2. Description of the Related Art Efforts for improving the performance of semiconductor devices are being continued while accelerating the higher integration and higher speed of semiconductor devices.

【0003】シリコン基板を利用したプレーナ(Plana
r)技術は半導体の製造技術とともに急速度に発展して
いる。
Planar using a silicon substrate (Plana
r) Technology is rapidly developing along with semiconductor manufacturing technology.

【0004】また、シリコンCMOS(Complementary
Metal Oxide Semiconductor)素子の製造技術は現在
0.35μmのゲート線幅をもつ常用のASICライブ
ラリ(Application Specific Integrated Circuit Libr
ary)の開発および0.18μmのゲート線幅をもつ1
GDRAMの開発が進行されており、これによる工程技
術の開発が進行されている。0.18μmのゲート線幅
をもつ1GDRAMの製造工程の場合、0.18μmの
設計寸法(design rule)による工程の余裕度を確保し
なければならない。
In addition, silicon CMOS (Complementary
The manufacturing technology of Metal Oxide Semiconductor (IC) devices is currently a common ASIC library (Application Specific Integrated Circuit Libr) having a gate line width of 0.35 μm.
ary) and 1 with a gate line width of 0.18 μm
The development of GDRAM is in progress, and the process technology based on it is also in progress. In the case of a manufacturing process of a 1G DRAM having a gate line width of 0.18 μm, it is necessary to secure a process margin due to a design rule of 0.18 μm.

【0005】特に、コンタクト工程の場合、0.2μm
×0.2μm以下のコンタクトホールを形成するために
写真製版の工程および乾式エッチングの工程の開発が必
要であり、これを克服するためには半導体のコンタクト
装備の性能の向上およびこれによる工程の開発を必要と
する。
Especially in the case of the contact process, 0.2 μm
Development of photolithography process and dry etching process is required to form contact holes of 0.2 μm or less. In order to overcome this, improvement of performance of semiconductor contact equipment and development of process by it. Need.

【0006】図8は従来の典型的なCMOSの構造を図
示している断面図であり、図9は図8のn−MOSFE
T部分の平面図である。
FIG. 8 is a cross-sectional view showing the structure of a conventional typical CMOS, and FIG. 9 is an n-MOSFE of FIG.
It is a top view of a T portion.

【0007】図面において、参照番号1,7,11は電
極を示しており、番号2,3,8は絶縁膜を示してお
り、番号4,6,12,13は高濃度の領域を、番号
9,10はウェルを、また番号14は基板を、それぞれ
示している。
In the drawings, reference numerals 1, 7, and 11 represent electrodes, reference numerals 2, 3, and 8 represent insulating films, and reference numerals 4, 6, 12, and 13 represent high-concentration regions. Reference numerals 9 and 10 represent wells, and reference numeral 14 represents a substrate.

【0008】従来例では、図8および図9に示すよう
に、ケイ素類の電極または金属類(または異種の金属
類)の電極(4),(6),(7),(11),(1
2),(13)を配線電極(1)と電気的に連結するた
めに、絶縁膜(2)を形成し、コンタクトホール(5)
を形成した後に、金属物質または導電性の配線物質によ
ってコンタクトホールを詰めなけれならない。
In the conventional example, as shown in FIGS. 8 and 9, electrodes of silicons or electrodes of metals (or different kinds of metals) (4), (6), (7), (11), ( 1
Insulating film (2) is formed to electrically connect 2) and (13) to wiring electrode (1), and contact hole (5) is formed.
After forming the contact holes, the contact holes must be filled with a metal material or a conductive wiring material.

【0009】コンタクトホールを形成するためには、絶
縁膜(2)の表面にフォトレジストパターンを形成した
後、絶縁膜(2)を蝕刻しなければならない。
In order to form the contact hole, it is necessary to etch the insulating film (2) after forming a photoresist pattern on the surface of the insulating film (2).

【0010】このような従来の技術によると、回路の集
積度が増加することにより、コンタクトホールの形成の
ためのフォトレジストパターンの形成の工程およびコン
タクトホールエッチング工程は、工程の余裕度を悪化さ
せ、歩留りの向上の主要な障害要素として作用する。
According to such a conventional technique, since the degree of integration of the circuit is increased, the process of forming the photoresist pattern for forming the contact hole and the process of etching the contact hole deteriorate the process margin. Acts as a major impediment to yield improvement.

【0011】[0011]

【発明が解決しようとする課題及び課題を解決するため
の手段】本発明は、ケイ素類、金属または異種の金属類
の電極間の配線工程において、コンタクトホールの形成
工程を実行せずに、素子の電気的なコンタクトを自動整
列して形成することができる電界効果素子およびその電
極形成方法を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a device in which a contact hole forming step is not performed in a wiring process between electrodes of silicons, metals or different kinds of metals. It is an object of the present invention to provide a field effect element and an electrode forming method thereof capable of automatically forming electrical contacts of the above.

【0012】本発明の一つの特徴によると、素子隔離用
の絶縁膜(フィールド酸化膜)と、ゲート電極の領域
と、配線用の電極と電気的にそれぞれ連結されるソース
電極の領域およびドレイン電極の領域とを備えた本発明
の電界効果素子は、前記ゲート電極の領域を取り囲むよ
うに形成され、しかも前記ソース電極の領域の中で前記
ゲート電極の領域と隣接する一部分の上と、前記ドレイ
ン電極の領域の中で前記ゲート電極の領域と隣接する一
部分の上とに形成された絶縁膜を、さらに備えるととも
に、前記配線用の電極のそれぞれが、前記素子隔離用の
絶縁膜の上と、前記絶縁膜によって覆われていない前記
ソース電極の領域および前記ドレイン電極の領域の残り
の表面上と、前記絶縁膜上とに直接的に形成される一
方、それらの相互間は前記素子隔離用の絶縁膜と前記絶
縁膜によってそれぞれ電気的に絶縁される。
According to one feature of the present invention, a device isolation insulating film (field oxide film), a gate electrode region, a source electrode region and a drain electrode electrically connected to the wiring electrode, respectively. A field effect element of the present invention, which is formed so as to surround the region of the gate electrode, and further, in the region of the source electrode adjacent to the region of the gate electrode, and the drain. While further comprising an insulating film formed on a portion adjacent to the gate electrode region in the electrode region, each of the wiring electrodes, on the insulating film for element isolation, Directly formed on the remaining surface of the region of the source electrode and the region of the drain electrode not covered by the insulating film and on the insulating film, and between them. It is electrically insulated each insulating film of the serial device for isolating and by the insulating film.

【0013】本発明の素子は前記ゲート電極の領域に電
気的に連結される他の一つの配線電極を付加的に備える
ことができる。
The device of the present invention may additionally include another wiring electrode electrically connected to the region of the gate electrode.

【0014】本発明の他の特徴によると、本発明の電極
の形成方法は、素子隔離用の絶縁膜と、ゲート電極の領
域と、配線用の電極と電気的にそれぞれ連結されるソー
ス電極の領域および、ドレイン電極の領域が形成された
基板上に絶縁膜を形成する工程と、前記絶縁膜の中で前
記ゲート電極の領域を取り囲む部分のみ残して残りの部
分を除去して、前記素子隔離用の絶縁膜の表面と、前記
ソース電極の領域の表面の一部および、前記ドレイン電
極の領域の表面の一部が露出されるようにする工程と、
配線電極用の物質を塗布しパターニングして配線電極を
形成する工程をと、を包含する。
According to another aspect of the present invention, in the method of forming an electrode of the present invention, a device isolation insulating film, a gate electrode region, and a source electrode electrically connected to a wiring electrode are respectively formed. Region and a region where the drain electrode region is formed, a step of forming an insulating film on the substrate, and removing only the portion of the insulating film surrounding the region of the gate electrode and removing the remaining portion to isolate the device. A surface of the insulating film for use, a part of the surface of the region of the source electrode, and a part of the surface of the region of the drain electrode are exposed,
And forming a wiring electrode by applying a material for the wiring electrode and patterning it.

【0015】本発明の電極の形成方法は、前記ゲート電
極の領域と前記配線電極との間の電気的な連結の必要性
に応じて、前記絶縁膜の除去工程が前記ゲート電極の領
域上の前記絶縁膜の一部を除去してゲート電極の領域の
表面の一部を露出させる工程を付加的に包含することが
できる。
In the method of forming an electrode according to the present invention, the step of removing the insulating film is performed on the area of the gate electrode depending on the necessity of electrical connection between the area of the gate electrode and the wiring electrode. A step of removing a part of the insulating film to expose a part of the surface of the region of the gate electrode may be additionally included.

【0016】本発明の電極の形成方法は、前記絶縁膜の
除去工程と配線電極用の物質塗布工程との間に、前記ソ
ース電極の領域の前記露出された表面上と前記ドレイン
電極の領域の前記露出された表面上にケイ化物を形成す
る工程を付加的に包含することができる。
In the method for forming an electrode of the present invention, between the step of removing the insulating film and the step of applying the substance for the wiring electrode, the exposed surface of the source electrode region and the drain electrode region are formed. The step of forming a silicide on the exposed surface may be additionally included.

【0017】本発明の電極の形成方法における、コンタ
クトの最小長さは前記絶縁膜の厚さによって決定され
る。
In the electrode forming method of the present invention, the minimum contact length is determined by the thickness of the insulating film.

【0018】以上のような、本発明によると、ケイ素類
の電極、金属または異種金属の電極の間の配線工程にお
いてコンタクトホールの形成工程を実行しないで、素子
の電気的なコンタクトを自動整列することができるよう
になる。
As described above, according to the present invention, the electrical contact of the device is automatically aligned without performing the step of forming the contact hole in the wiring step between the electrodes of silicon and the electrodes of the metal or the dissimilar metals. Will be able to.

【0019】[0019]

【実施例】以下、添付の図面を参照して本発明について
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the accompanying drawings.

【0020】図1は、本発明の望ましい実施例にかかる
CMOS素子の構造を示す断面図であり、図2は図1の
n−MOSFET部分を示す平面図である。
FIG. 1 is a sectional view showing a structure of a CMOS device according to a preferred embodiment of the present invention, and FIG. 2 is a plan view showing an n-MOSFET portion of FIG.

【0021】図1および図2において、参照番号15,
19,20,26は電極を示しており、番号17,21
は絶縁膜を示しており、番号16,18,24は高濃度
の領域を、番号22,23はウェルを、それぞれ示して
いる。
In FIGS. 1 and 2, reference numeral 15,
Reference numerals 19, 20, and 26 denote electrodes, and numbers 17, 21
Indicates an insulating film, numbers 16, 18, and 24 indicate high-concentration regions, and numbers 22 and 23 indicate wells, respectively.

【0022】図1および図2を参照して、ケイ素類また
は金属類の電極(20),(26)の電気的な絶縁のた
めの部分のみに絶縁膜(21),(25)が形成されて
おり、配線電極(15),(19)等はコンタクトホー
ルを介さず、ケイ素類の電極または金属類(異種の金属
類)の電極(16),(18),(24)等とそれぞれ
直接的に接続されている。
Referring to FIGS. 1 and 2, insulating films (21) and (25) are formed only on portions for electrically insulating the electrodes (20) and (26) of silicon or metal. The wiring electrodes (15), (19), etc. do not go through contact holes but directly with the electrodes of silicon or the electrodes (16), (18), (24) of metals (different metals), respectively. Connected to each other.

【0023】したがって、絶縁膜(21),(25)は
配線電極(15),(19)とゲート電極(20),
(26)をそれぞれ電気的に絶縁させる。
Therefore, the insulating films (21) and (25) are connected to the wiring electrodes (15) and (19) and the gate electrode (20),
(26) are electrically insulated from each other.

【0024】これをもって、コンタクトホールの写真製
版工程およびエッチング工程からなるコンタクトホール
の形成工程を実行せずに、電極がケイ素類の電極,金属
類(異種の金属類)の電極(16),(18),(2
4)等と電気的に連結される。
With this, without performing the contact hole forming process including the photolithography process and the etching process of the contact hole, the electrodes are electrodes of silicons and electrodes (16) of metal (different metals), ( 18), (2
4) etc. are electrically connected.

【0025】図3は、従来のCMOS素子と本発明にか
かるCMOS素子のコンタクト抵抗の計算結果をそれぞ
れ示す図であり、設計の寸法(コンタクトの最小の長
さ;L)に対する、配線の電極がアルミニウムで形成さ
れている場合のコンタクト抵抗を示している。
FIG. 3 is a diagram showing the calculation results of the contact resistances of the conventional CMOS device and the CMOS device according to the present invention, respectively, showing that the wiring electrodes correspond to the design size (minimum contact length; The contact resistance when formed of aluminum is shown.

【0026】既存のコンタクトホール構造の場合には、
よく知られているように、コンタクトの最小長さLの減
少にともなって、コンタクト抵抗が急激に増加する傾向
が見られる。
In the case of the existing contact hole structure,
As is well known, there is a tendency for the contact resistance to rapidly increase as the minimum contact length L decreases.

【0027】反面、本発明による構造の場合には、既存
のコンタクトホールの構造と比較するとき、最小長さL
が0.5μm以上のときのコンタクト抵抗は既存の構造
の場合のコンタクト抵抗の約1/2であり、最小長さL
が0.08μmのときにはコンタクト抵抗は既存の構造
の場合の約1/5となり、コンタクト抵抗の減少効果は
約400%となることがわかる。
On the other hand, in the case of the structure according to the present invention, when compared with the structure of the existing contact hole, the minimum length L
Is 0.5 μm or more, the contact resistance is about 1/2 of the contact resistance of the existing structure, and the minimum length L
It can be seen that when is 0.08 μm, the contact resistance is about ⅕ of the existing structure, and the contact resistance reducing effect is about 400%.

【0028】このように、本発明によると、そのコンタ
クト抵抗の改善率が大幅に増加する。すなわち、コンタ
クトの最小長さLの減少によってコンタクト抵抗が増大
するが、本発明では、既存の構造に比べて増大の割合が
小さく、コンタクト抵抗の増大が改善されている。
As described above, according to the present invention, the improvement rate of the contact resistance is significantly increased. That is, although the contact resistance increases as the minimum length L of the contact decreases, the increase rate of the contact resistance is improved in the present invention as compared with the existing structure.

【0029】図4ないし図7は、本発明の実施例により
CMOS素子の配線の電極を形成する方法を工程の順番
にしたがって示した断面図である。
4 to 7 are sectional views showing a method of forming an electrode of a wiring of a CMOS device according to an embodiment of the present invention in the order of steps.

【0030】図4ないし図7を参照して本実施例につい
て説明すると、次のようである。
This embodiment will be described below with reference to FIGS. 4 to 7.

【0031】図4は、標準CMOSの製造工程により、
基板上に素子の絶縁のためのフィールド酸化膜(40)
が形成された後に、不純物がドーピングされたウェル
(45),(46)の表面上にソースおよびドレイン
(43),(47)、そしてコンタクト用の不純物ドー
ピング(39参照)、ゲート酸化膜(41)、ゲート電
極(42)が形成されたことを図示している。
FIG. 4 shows a process of manufacturing a standard CMOS.
Field oxide film (40) for insulating devices on the substrate
Are formed, the source and drains (43) and (47) are formed on the surfaces of the wells (45) and (46) that are doped with impurities, and the impurity doping for contact (see 39) and the gate oxide film (41) are performed. ) And the gate electrode (42) is formed.

【0032】図5を参照して、図4に図示した基板上に
配線の電極を形成する目的で酸化膜または窒化膜などの
絶縁膜(48)を形成する。
Referring to FIG. 5, an insulating film (48) such as an oxide film or a nitride film is formed on the substrate shown in FIG. 4 for the purpose of forming wiring electrodes.

【0033】続いて、図6に示すように、配線の電極、
ケイ素類の電極、異種の金属類の電極の接触が形成され
る部分の上およびフィールド酸化膜(40)の上の絶縁
膜(48)を除去してゲート酸化膜(48a),(48
b)のみを残す。
Then, as shown in FIG. 6, wiring electrodes,
The gate oxide films (48a), (48) are formed by removing the insulating film (48) on the portion where the contact of the electrodes of silicons, the electrodes of different metals is formed and on the field oxide film (40).
leave only b).

【0034】このとき、ゲート電極と配線電極との間の
電気的な連結が必要な場合には、ゲート電極のコンタク
ト連結部分の表面を露出させる。
At this time, when electrical connection between the gate electrode and the wiring electrode is required, the surface of the contact connecting portion of the gate electrode is exposed.

【0035】また、露出されたコンタクト部分の電気的
な特性を改善しようする場合には、その表面に高濃度の
イオンを注入するイオン注入工程、ケイ化物の形成工程
またはこれに相当する工程を実行することもできる。
Further, in order to improve the electrical characteristics of the exposed contact portion, an ion implantation step of implanting a high concentration of ions on the surface thereof, a silicide formation step or a step corresponding thereto is executed. You can also do it.

【0036】最終的に、図7に示すように、配線電極用
の物質を塗布し、パターニングして配線電極(49)を
形成する。
Finally, as shown in FIG. 7, a wiring electrode material is applied and patterned to form a wiring electrode (49).

【0037】これをもって、配線電極(49)は電極
(39),(43),(47)または電極(42),
(44)等と電気的に連結された構造をとる。
With this, the wiring electrode (49) becomes the electrode (39), (43), (47) or the electrode (42),
(44) and the like are electrically connected.

【0038】[0038]

【発明の効果】以上において説明にしたように、本発明
によると、コンタクトホールの形成工程を実行せずに、
コンタクトの上に配線電極が自動整列されるので、コン
タクトの最小長さLが縮小される程コンタクトの形成工
程を容易に実行することができるばかりでなく、コンタ
クトホールの整列が不必要となる。
As described above, according to the present invention, the contact hole forming step is not performed,
Since the wiring electrodes are automatically aligned on the contacts, the process of forming the contacts can be performed more easily as the minimum length L of the contacts is reduced, and the alignment of the contact holes becomes unnecessary.

【0039】これをもって、本発明のコンタクトの形成
工程によると、従来の工程に比べ工程の余裕度を大幅に
増加することができ、コンタクト面積の増加によってコ
ンタクト抵抗も大幅に減少させることができ、その結
果、回路の性能を改善することができる。
Thus, according to the contact forming process of the present invention, the margin of the process can be significantly increased as compared with the conventional process, and the contact resistance can be greatly reduced by increasing the contact area. As a result, the performance of the circuit can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の望ましい実施例にかかるCMOS素子
の構造を示す断面図である。
FIG. 1 is a sectional view showing a structure of a CMOS device according to a preferred embodiment of the present invention.

【図2】図1のn−MOSFET部分を示す平面図であ
る。
FIG. 2 is a plan view showing an n-MOSFET portion of FIG.

【図3】従来のCMOS素子と本発明にかかるCMOS
素子のコンタクト抵抗の計算結果を示す図である。
FIG. 3 shows a conventional CMOS device and a CMOS according to the present invention.
It is a figure which shows the calculation result of the contact resistance of an element.

【図4】本発明の実施例によりCMOS素子の配線の電
極を形成する方法を示す断面図である。
FIG. 4 is a cross-sectional view showing a method of forming an electrode of a wiring of a CMOS device according to an embodiment of the present invention.

【図5】本発明の実施例によりCMOS素子の配線の電
極を形成する方法を示す断面図である。
FIG. 5 is a cross-sectional view showing a method of forming an electrode of a wiring of a CMOS device according to an embodiment of the present invention.

【図6】本発明の実施例によりCMOS素子の配線の電
極を形成する方法を示す断面図である。
FIG. 6 is a cross-sectional view showing a method of forming an electrode of a wiring of a CMOS device according to an embodiment of the present invention.

【図7】本発明の実施例によりCMOS素子の配線の電
極を形成する方法を示す断面図である。
FIG. 7 is a cross-sectional view showing a method of forming an electrode of a wiring of a CMOS device according to an embodiment of the present invention.

【図8】従来の典型的なCMOSの構造を図示している
断面図である。
FIG. 8 is a cross-sectional view illustrating the structure of a conventional typical CMOS.

【図9】図8のn−MOSFET部分を示す平面図であ
る。
9 is a plan view showing an n-MOSFET portion of FIG. 8. FIG.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/8238 27/092 H01L 27/08 321 F (72)発明者 柳 鍾善 大韓民国大田直轄市儒城区漁隱洞ハンビト アパート122−902─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical display location H01L 21/8238 27/092 H01L 27/08 321 F (72) Inventor Yanagi Zhongshan, Republic of Korea Daejeon, Daejeon Yuihui-dong Hanbito Apartment 122-902

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 素子隔離用の絶縁膜と、ゲート電極領域
と、配線用の電極と電気的にそれぞれ連結されるソース
電極の領域および、ドレイン電極の領域と、を備えた電
界効果素子において、 前記ゲート電極の領域を取り囲むように形成され、しか
も前記ソース電極の領域の中で前記ゲート電極の領域と
隣接する一部分の上と、前記ドレイン電極の領域の中で
前記ゲート電極の領域と隣接する一部分の上とに形成さ
れた絶縁膜を、さらに備えるとともに、 前記配線用の電極のそれぞれが、前記素子隔離用の絶縁
膜の上と、前記絶縁膜によって覆われていない前記ソー
ス電極の領域および前記ドレイン電極の領域の残りの表
面上と、前記絶縁膜上とに直接的に形成される一方、そ
れらの相互間は前記素子隔離用の絶縁膜と前記絶縁膜に
よってそれぞれ電気的に絶縁されることを特徴とする電
界効果素子。
1. A field effect element comprising an element isolation insulating film, a gate electrode region, a source electrode region and a drain electrode region electrically connected to a wiring electrode, respectively. It is formed so as to surround the region of the gate electrode, and on a part of the region of the source electrode adjacent to the region of the gate electrode, and adjacent to the region of the gate electrode in the region of the drain electrode. An insulating film formed on a part of the insulating film is further provided, and each of the wiring electrodes has a region of the source electrode not covered by the insulating film for isolating the element and the insulating film, and It is formed directly on the remaining surface of the region of the drain electrode and on the insulating film, and between them is separated by the insulating film for element isolation and the insulating film. Re field effect device, wherein electrically be insulated.
【請求項2】 前記ゲート電極の領域に電気的に連結さ
れる他の一つの配線電極を付加的に備えることを特徴と
する請求項1記載の電界効果素子。
2. The field effect device according to claim 1, further comprising another wiring electrode electrically connected to the region of the gate electrode.
【請求項3】 素子隔離用の絶縁膜と、ゲート電極の領
域と、配線用の電極と電気的にそれぞれ連結されるソー
ス電極の領域および、ドレイン電極の領域が形成された
基板上に絶縁膜を形成する工程と、 前記絶縁膜の中で前記ゲート電極の領域を取り囲む部分
のみ残して残りの部分を除去して、前記素子隔離用の絶
縁膜の表面と、前記ソース電極の領域の表面の一部およ
び、前記ドレイン電極の領域の表面の一部が露出される
ようにする工程と、 配線電極用の物質を塗布しパターニングして配線電極を
形成する工程をと、を包含することを特徴とする電界効
果素子の電極形成方法。
3. An insulating film on a substrate on which an insulating film for element isolation, a region of a gate electrode, a region of a source electrode electrically connected to an electrode for wiring, and a region of a drain electrode are formed. And a part of the insulating film that surrounds the region of the gate electrode is removed, and the remaining part is removed, and the surface of the insulating film for device isolation and the surface of the region of the source electrode are removed. And a step of exposing a part of the surface of the drain electrode region, and a step of applying a wiring electrode material and patterning it to form a wiring electrode. Forming method of electrode of field effect element.
【請求項4】 前記ゲート電極の領域と前記配線電極と
の間の電気的な連結の必要性に応じて、前記絶縁膜の除
去工程が前記ゲート電極の領域上の前記絶縁膜の一部を
除去してゲート電極の領域の表面の一部を露出させる工
程を付加的に包含することを特徴とする請求項3記載の
電界効果素子の電極形成方法。
4. The step of removing the insulating film removes a part of the insulating film on the region of the gate electrode according to the necessity of electrical connection between the region of the gate electrode and the wiring electrode. The method for forming an electrode of a field effect element according to claim 3, further comprising a step of removing the surface of the gate electrode to expose a part of the surface.
【請求項5】 前記絶縁膜の除去工程と配線電極用の物
質塗布工程との間に、前記ソース電極の領域の前記露出
された表面上と前記ドレイン電極の領域の前記露出され
た表面上にケイ化物を形成する工程を付加的に包含する
ことを特徴とする請求項3記載の電界効果素子の電極形
成方法。
5. Between the step of removing the insulating film and the step of applying a material for a wiring electrode, the exposed surface of the region of the source electrode and the exposed surface of the region of the drain electrode are formed. The method for forming an electrode of a field effect element according to claim 3, further comprising a step of forming a silicide.
【請求項6】 コンタクトの最小長さを前記絶縁膜の厚
さによって決定することを特徴とする請求項3、4また
は5記載の電界効果素子の電極形成方法。
6. The method for forming an electrode of a field effect element according to claim 3, wherein the minimum length of the contact is determined by the thickness of the insulating film.
JP6315388A 1994-12-05 1994-12-19 Field-effect element and formation method of its electrode Pending JPH08162636A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR94-32826 1994-12-05
KR1019940032826A KR0149889B1 (en) 1994-12-05 1994-12-05 Field effect device and method for forming electrodes of the same

Publications (1)

Publication Number Publication Date
JPH08162636A true JPH08162636A (en) 1996-06-21

Family

ID=19400352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6315388A Pending JPH08162636A (en) 1994-12-05 1994-12-19 Field-effect element and formation method of its electrode

Country Status (2)

Country Link
JP (1) JPH08162636A (en)
KR (1) KR0149889B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737704B1 (en) * 1999-09-13 2004-05-18 Shindengen Electric Manufacturing Co., Ltd. Transistor and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226965A (en) * 1987-03-17 1988-09-21 Nec Corp Semiconductor device
JPH021942A (en) * 1988-06-09 1990-01-08 Mitsubishi Electric Corp Semiconductor device and its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63226965A (en) * 1987-03-17 1988-09-21 Nec Corp Semiconductor device
JPH021942A (en) * 1988-06-09 1990-01-08 Mitsubishi Electric Corp Semiconductor device and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737704B1 (en) * 1999-09-13 2004-05-18 Shindengen Electric Manufacturing Co., Ltd. Transistor and method of manufacturing the same
US6872611B2 (en) 1999-09-13 2005-03-29 Shindengen Electric Manufacturing Co., Ltd. Method of manufacturing transistor

Also Published As

Publication number Publication date
KR0149889B1 (en) 1999-03-20
KR960026751A (en) 1996-07-22

Similar Documents

Publication Publication Date Title
KR100278273B1 (en) A method for forming contact holes in semiconductor device
US4933297A (en) Method for etching windows having different depths
JPH1092933A (en) Manufacture of semiconductor device
JP2000216400A (en) Semiconductor integrated circuit device and its manufacture
JPH0629317A (en) Semiconductor device and manufacture thereof
KR0120572B1 (en) Semiconductor device and manufacture of the same
US5939758A (en) Semiconductor device with gate electrodes having conductive films
JPH11330262A (en) Manufacture of semiconductor device
JPH08162636A (en) Field-effect element and formation method of its electrode
JPH08181223A (en) Manufacture of semiconductor device
JP2817226B2 (en) Method for manufacturing semiconductor device
KR100219549B1 (en) Method for manufacturing a semiconductor device having landing pad
KR100273314B1 (en) Semiconductor device manufacturing method
JPH05259182A (en) Self-aligned contact window
KR100290486B1 (en) Method of manufacturing transistor of semiconductor device
KR100280528B1 (en) Internal wiring formation method of semiconductor device
KR0140726B1 (en) Method of manufacture semiconductor device
KR0167669B1 (en) Method for fabricating semiconductor device
KR0167662B1 (en) Method for fabricating semiconductor device
JP2985202B2 (en) Method for manufacturing MOS type semiconductor device
JPS62128542A (en) Manufacture of semiconductor device
JP2000068228A (en) Semiconductor device and manufacture of the same
JPH02156542A (en) Semiconductor device and manufacture thereof
JP2002118166A (en) Semiconductor device and its fabricating method
KR970023733A (en) Method for manufacturing a semiconductor device having a self-aligned source / drain contact structure

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980519