JPH08141781A - Joining material for brazing - Google Patents

Joining material for brazing

Info

Publication number
JPH08141781A
JPH08141781A JP28035494A JP28035494A JPH08141781A JP H08141781 A JPH08141781 A JP H08141781A JP 28035494 A JP28035494 A JP 28035494A JP 28035494 A JP28035494 A JP 28035494A JP H08141781 A JPH08141781 A JP H08141781A
Authority
JP
Japan
Prior art keywords
bonding material
brazing
rare earth
alloy
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28035494A
Other languages
Japanese (ja)
Other versions
JP3382392B2 (en
Inventor
Katsutoshi Nozaki
勝敏 野崎
Naomasa Kimura
直正 木村
Mitsuya Hosoe
光矢 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP28035494A priority Critical patent/JP3382392B2/en
Priority to EP95108943A priority patent/EP0691175B1/en
Priority to DE69522390T priority patent/DE69522390T2/en
Priority to US08/480,269 priority patent/US5830585A/en
Publication of JPH08141781A publication Critical patent/JPH08141781A/en
Priority to US09/063,531 priority patent/US6214480B1/en
Application granted granted Critical
Publication of JP3382392B2 publication Critical patent/JP3382392B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a joining material capable of securely brazing members to be joined. CONSTITUTION: This joining material for brazing consists of a rare earth element contg. the alloy element AE to induce an eutectic reaction with rare earth elements at AE<=50atm.% and the volumetric fraction Vf of the amorphous phase thereof is Vf>=50%. The liquid phase generated by the joining material exhibits excellent wettability with the members to be joined which are various kinds of materials. The joining material has high oxidation resistance and uniform compsn. according to formation of the amorphous phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はろう接用接合材、特に、
希土類元素系合金よりなる接合材に関する。
BACKGROUND OF THE INVENTION The present invention relates to a brazing joint material, and more particularly,
The present invention relates to a bonding material made of a rare earth element-based alloy.

【0002】[0002]

【従来の技術】例えば、希土類元素を含む永久磁石は、
非常に脆いため機械加工性が悪く、また高温下に曝され
ると、金属組織が変化するためそれに伴い磁気特性が低
下する、といった性質を有する。
2. Description of the Related Art For example, a permanent magnet containing a rare earth element is
It is very brittle and has poor machinability, and when exposed to high temperatures, it has a property that the metal structure changes and the magnetic properties deteriorate accordingly.

【0003】そのため、例えば永久磁石をモータの金属
製ロータに取付ける場合、あり差し構造、ねじ止め、溶
接等の取付手段を採用することができないので、従来は
接着剤が用いられている。
Therefore, for example, when attaching a permanent magnet to a metal rotor of a motor, it is not possible to adopt attachment means such as an insertion structure, screwing, welding, etc. Therefore, an adhesive has been conventionally used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、接着剤
を用いると、永久磁石の濡れ性が悪いため接着強度が低
く、また温度上昇に伴いその接着強度が著しく低下す
る、といった問題を生ずる。このような状況下ではモー
タの高速回転化の要請に到底対応することはできない。
However, the use of an adhesive causes problems that the adhesive strength is low because the wettability of the permanent magnet is poor, and that the adhesive strength is significantly reduced as the temperature rises. Under such circumstances, it is impossible to meet the demand for high-speed rotation of the motor.

【0005】本発明は前記に鑑み、二つの被接合部材、
例えば金属部材を強固にろう接することが可能な合金系
接合材を提供することを目的とする。
In view of the above, the present invention provides two members to be joined,
For example, it is an object to provide an alloy-based bonding material capable of firmly brazing a metal member.

【0006】[0006]

【課題を解決するための手段】本発明に係るろう接用接
合材は、希土類元素と共晶反応を生じる合金元素AEを
AE≦50原子%含有する希土類元素系合金よりなり、
非晶質相の体積分率VfがVf≧50%であることを特
徴とする。
A bonding material for brazing according to the present invention comprises a rare earth element-based alloy containing AE ≦ 50 atom% of an alloying element AE that causes a eutectic reaction with a rare earth element,
It is characterized in that the volume fraction Vf of the amorphous phase is Vf ≧ 50%.

【0007】[0007]

【作用】ろう接時には希土類元素と合金元素AEとが共
晶反応を生じるため、接合材が液相状態または固液共存
状態となる温度は比較的低くなる。これにより、ろう接
による両被接合部材の特性変化を回避することができ
る。
Since the rare earth element and the alloy element AE undergo a eutectic reaction during brazing, the temperature at which the joining material is in a liquid phase state or a solid-liquid coexisting state is relatively low. This makes it possible to avoid a change in the characteristics of both members to be joined due to brazing.

【0008】一方、希土類元素を主成分とする接合材よ
り生じた液相は高活性であって、種種の材質の被接合部
材に対して優れた濡れ性を発揮する。また非晶質相は、
酸化の起点となるような粒界層が存在しないので耐酸化
性が著しく高く、また酸化物の混在も僅少であり、その
上偏析がなく組成が均一である、といった特性を有す
る。このように優れた濡れ性を有し、また非晶質相の体
積分率VfがVf≧50%(100%を含む)である接
合材を用いることによって両被接合部材を強固にろう接
することができる。
On the other hand, the liquid phase generated from the bonding material containing a rare earth element as a main component is highly active and exhibits excellent wettability with respect to members to be bonded made of various materials. The amorphous phase is
Since there is no grain boundary layer that serves as the starting point of oxidation, the oxidation resistance is extremely high, the oxides are rarely mixed, and the composition is uniform without segregation. By using a bonding material having excellent wettability and having a volume fraction Vf of the amorphous phase of Vf ≧ 50% (including 100%), both members to be bonded are firmly brazed. You can

【0009】ただし、合金元素AEの含有量がAE>5
0原子%であると、固液共存状態における液相の体積分
率Vfが低くなるため接合強度が低下する。このことか
ら、合金元素AEの含有量は、希土類元素との関係にお
いて共晶組成またはそれに近い組成となるように設定す
るのが望ましい。
However, if the content of the alloy element AE is AE> 5
When it is 0 atom%, the volume fraction Vf of the liquid phase in the solid-liquid coexisting state becomes low, and the bonding strength decreases. From this, it is desirable that the content of the alloy element AE is set so as to have a eutectic composition or a composition close thereto in relation to the rare earth element.

【0010】[0010]

【実施例】接合材を構成する希土類元素系合金は、基本
的には主成分である希土類元素と、その希土類元素と共
晶反応を行う合金元素AEとから構成される。希土類元
素はY、La、Ce、Pr、Nd、Sm、Eu、Gd、
Tb、Dy、Ho、Er、Tm、Yb、Mm(ミッシュ
メタル)、Di(ジジムまたはジジミウム)およびLu
から選択される少なくとも一種である。また合金元素A
Eは、Cu、Al、Ga、Co、Fe、Ag、Ni、A
u、Mn、Zn、Pd、Sn、Sb、Pb、Bi、Ge
およびInから選択される少なくとも一種である。その
合金元素AEの含有量はAE≦50原子%に設定され
る。二種以上の合金元素AEを含有する場合には、それ
らの合計含有量がAE≦50原子%となる。また合金元
素の下限値は、固液共存状態における液相確保上、AE
=5原子%であることが望ましい。
EXAMPLE A rare earth element-based alloy constituting a bonding material is basically composed of a main component rare earth element and an alloy element AE which causes a eutectic reaction with the rare earth element. The rare earth elements are Y, La, Ce, Pr, Nd, Sm, Eu, Gd,
Tb, Dy, Ho, Er, Tm, Yb, Mm (Misch metal), Di (Didym or Didymium) and Lu
It is at least one selected from. In addition, alloy element A
E is Cu, Al, Ga, Co, Fe, Ag, Ni, A
u, Mn, Zn, Pd, Sn, Sb, Pb, Bi, Ge
And at least one selected from In. The content of the alloy element AE is set to AE ≦ 50 atomic%. When two or more alloy elements AE are contained, the total content of them is AE ≦ 50 atom%. In addition, the lower limit of the alloying element is AE in order to secure the liquid phase in the solid-liquid coexisting state.
= 5 atom% is desirable.

【0011】希土類元素系合金における共晶合金を例示
すれば表1の通りである。
Table 1 shows examples of eutectic alloys in rare earth element-based alloys.

【0012】[0012]

【表1】 また希土類元素系合金における亜、過共晶合金としては
以下のものを挙げることができる。各化学式において、
数値の単位は原子%である(これは以下同じ)。Nd60
Cu40合金、Nd75Cu25合金、Nd80Cu20合金、N
50Cu50合金、Nd90Al10合金、Nd80Co20
金、Sm75Cu25合金、Sm65Cu35合金、La85Ga
15合金。さらに三元系合金としては、Nd65Fe5 Cu
30合金(液相発生温度510℃)およびNd70Cu25
5 合金(液相発生温度474℃)を挙げることができ
る。
[Table 1] Examples of the hypoeutectic and hypereutectic alloys in the rare earth element-based alloys include the following. In each chemical formula,
The unit of the numerical value is atomic% (the same applies below). Nd 60
Cu 40 alloy, Nd 75 Cu 25 alloy, Nd 80 Cu 20 alloy, N
d 50 Cu 50 alloy, Nd 90 Al 10 alloy, Nd 80 Co 20 alloy, Sm 75 Cu 25 alloy, Sm 65 Cu 35 alloy, La 85 Ga
15 alloy. Furthermore, as a ternary alloy, Nd 65 Fe 5 Cu
30 alloy (liquid phase generation temperature 510 ° C) and Nd 70 Cu 25 A
15 alloy (liquid phase generation temperature 474 ° C.) can be mentioned.

【0013】二つの被接合部材のろう接に当っては、両
部材を接合材を介して重ね合せ、次いでその重ね合せ物
を真空加熱炉内に設置して、加熱下で接合材を液相状態
または固液共存状態にし、その後炉冷する、といった方
法が採用される。
In brazing two members to be joined, the two members are superposed with a joining material interposed therebetween, and then the superposed product is placed in a vacuum heating furnace, and the joining material undergoes liquid phase heating under heating. A method is adopted in which the state or the solid-liquid coexisting state is set, and then the furnace is cooled.

【0014】このろう接時には希土類元素と合金元素A
Eとが共晶反応を生じるため、接合材が液相状態または
固液共存状態となる温度は比較的低くなる。これによ
り、ろう接による被接合部材の特性変化を回避すること
ができる。
During this brazing, the rare earth element and the alloy element A
Since the eutectic reaction occurs with E, the temperature at which the bonding material is in the liquid phase state or the solid-liquid coexisting state is relatively low. As a result, it is possible to avoid changes in the characteristics of the members to be joined due to brazing.

【0015】一方、希土類元素を主成分とする接合材よ
り生じた液相は高活性であって、種種の材質の被接合部
材に対して優れた濡れ性を発揮する。また非晶質相は、
酸化の起点となるような粒界層が存在しないので耐酸化
性が著しく高く、また酸化物の混在も僅少であり、その
上偏析がなく組成が均一である、といった特性を有す
る。このように優れた濡れ性を有し、また非晶質相の体
積分率VfがVf≧50%(100%を含む)である接
合材を用いることによって両被接合部材を強固にろう接
することができる。
On the other hand, the liquid phase generated from the bonding material containing a rare earth element as a main component is highly active, and exhibits excellent wettability with respect to members to be bonded made of various kinds of materials. The amorphous phase is
Since there is no grain boundary layer that serves as the starting point of oxidation, the oxidation resistance is extremely high, the oxides are rarely mixed, and the composition is uniform without segregation. By using a bonding material having excellent wettability and having a volume fraction Vf of the amorphous phase of Vf ≧ 50% (including 100%), both members to be bonded are firmly brazed. You can

【0016】加熱時間tは、それが長過ぎる場合には被
接合部材の特性変化を招来するので、t≦10時間であ
ることが望ましく、生産性向上の観点からはt≦1時間
である。
If the heating time t is too long, the characteristics of the members to be joined are changed. Therefore, it is desirable that t≤10 hours, and from the viewpoint of improving productivity, t≤1 hour.

【0017】接合材の製造に当っては液体急冷法、例え
ば単ロール法が適用される。即ち、 (a)希土類系合金組成の溶湯を調製する。(b)溶湯
を、高速回転するCu製冷却ロール外周面に噴出させて
超急冷し、これにより非晶質相の体積分率VfがVf≧
50%である薄い帯状接合材を得る。
A liquid quenching method, for example, a single roll method is applied to the production of the bonding material. That is, (a) a molten metal having a rare earth alloy composition is prepared. (B) The molten metal is jetted onto the outer surface of the Cu-made cooling roll that rotates at a high speed and is rapidly cooled, whereby the volume fraction Vf of the amorphous phase is Vf ≧.
A thin band-shaped bonding material that is 50% is obtained.

【0018】接合材の厚さは、冷却ロールの回転数、溶
湯の噴出圧、溶湯の噴出温度等によって制御され、通常
10〜150μmである。この場合、接合材は非晶質相
を有することから高靱性であり、したがって薄帯状に成
形されても破断することがなく、連続的に量産される。
The thickness of the bonding material is controlled by the number of rotations of the cooling roll, the molten metal ejection pressure, the molten metal ejection temperature, etc., and is usually 10 to 150 μm. In this case, the bonding material has a high toughness because it has an amorphous phase, and therefore, it does not break even if formed into a thin strip shape, and is continuously mass-produced.

【0019】また前記高靱性化に伴い、被接合部材の接
合面の形状に合致させるべく、帯状接合材に打抜き加工
等を施して所定形状の接合材を得ることも容易である。 〔実施例1〕純度99.9%のNdと純度99.9%の
Cuとを、図1に示すように共晶組成を有するNd70
30合金が得られるように秤量し、次いでその秤量物を
真空溶解炉を用いて溶解し、その後鋳造を行ってインゴ
ットを得た。
With the increase in toughness, it is easy to obtain a joining material having a predetermined shape by subjecting the belt-like joining material to punching or the like so as to match the shape of the joining surface of the members to be joined. Example 1 Nd 70 C having a eutectic composition of Nd having a purity of 99.9% and Cu having a purity of 99.9% as shown in FIG.
The u 30 alloy was weighed so as to obtain, then the weighed material was melted using a vacuum melting furnace, and then cast to obtain an ingot.

【0020】このNd70Cu30合金よりなるインゴット
から約200gの原料を採取し、これを石英ノズル内で
高周波溶解して溶湯を調製し、次いで溶湯を石英ノズル
のスリットから、その下方で高速回転するCu製冷却ロ
ール外周面にアルゴンガス圧により噴出させて超急冷
し、幅30mm、厚さ70μmの極薄の帯状接合材を得
た。
About 200 g of a raw material was sampled from an ingot made of this Nd 70 Cu 30 alloy, and this was melted at high frequency in a quartz nozzle to prepare a molten metal, and then the molten metal was rotated at a high speed below the slit of the quartz nozzle. Ultra-thin band-like bonding material having a width of 30 mm and a thickness of 70 μm was obtained by jetting it with argon gas pressure onto the outer peripheral surface of the Cu cooling roll and performing ultra-cooling.

【0021】この場合の製造条件は次の通りである。即
ち、石英ノズルの内径 40mm、スリットの寸法 幅
0.25mm、長さ 30mm、アルゴンガス圧 1.0kg
f/cm2 、溶湯温度 670℃、スリットと冷却ロール
との距離 1.0mm、冷却ロールの周速 20m/sec
、溶湯の冷却速度 約105 K/sec である。
The manufacturing conditions in this case are as follows. That is, the inner diameter of the quartz nozzle is 40 mm, the size of the slit is the width
0.25mm, length 30mm, argon gas pressure 1.0kg
f / cm 2 , melt temperature 670 ° C., distance between slit and cooling roll 1.0 mm, peripheral speed of cooling roll 20 m / sec
The cooling rate of the molten metal is about 10 5 K / sec.

【0022】図2はNd70Cu30合金よりなるインゴッ
トおよび帯状接合材のX線回折結果を示し、帯状接合材
においては2θ≒30°に幅広のハローパターンが観察
され、このことから帯状接合材は非晶質単相組織を有
し、したがって非晶質相の体積分率VfがVf=100
%であることが判明した。また帯状接合材は高い靱性を
有し、180°密着曲げが可能であった。
FIG. 2 shows the X-ray diffraction results of the ingot made of Nd 70 Cu 30 alloy and the band-shaped bonding material. In the band-shaped bonding material, a wide halo pattern was observed at 2θ≈30 °, which indicates that the band-shaped bonding material was obtained. Has an amorphous single-phase structure, and therefore the volume fraction Vf of the amorphous phase is Vf = 100.
%. Further, the band-shaped bonding material had high toughness and was capable of 180 ° contact bending.

【0023】ろう接作業に当り、図3に示すように帯状
接合材より縦10mm、横10mm、厚さ70μmの極薄の
板状非晶質接合材1を切出した。
In brazing, as shown in FIG. 3, an extremely thin plate-like amorphous bonding material 1 having a length of 10 mm, a width of 10 mm and a thickness of 70 μm was cut out from the band-shaped bonding material.

【0024】一方の被接合部材として、縦10mm、横1
0mm、厚さ3mmのNdFeB系永久磁石(住友特殊金属
社製、商品名NEOMAX−28UH)2を選定し、ま
た他方の被接合部材として、厚さ0.3mmの冷間圧延鋼
板4を積層してなり、且つ縦10mm、横10mm、長さ1
5mmの直方体状の積層体3を選定した。この場合、各鋼
板4の接合にはかしめ手段5が用いられている。
One member to be joined has a length of 10 mm and a width of 1
0 mm, 3 mm thick NdFeB system permanent magnet (Sumitomo Special Metals Co., Ltd., trade name NEOMAX-28UH) 2 was selected, and the cold-rolled steel plate 4 having a thickness of 0.3 mm was laminated as the other member to be joined. And length 10mm, width 10mm, length 1
A 5 mm rectangular parallelepiped laminate 3 was selected. In this case, the caulking means 5 is used for joining the steel plates 4.

【0025】図3に示すように、1つの積層体3の鋼板
端面よりなる接合面6上に1つの非晶質接合材1を、ま
た非晶質接合材1の上に永久磁石2を、さらに永久磁石
2の上にもう1つの非晶質接合材1を、さらにまた非晶
質接合材1の上にもう1つの積層体3をその接合面6を
下向きにしてそれぞれ重ね合わせて重ね合せ物を作製し
た。次いで、その重ね合せ物を真空加熱炉内に設置し、
加熱温度T=530℃、加熱時間t=20分間の加熱工
程、それに次ぐ炉冷よりなる冷却工程を行って、図4に
示すように2つの積層体3により永久磁石2を挟むよう
にそれら2,3を非晶質接合材1より形成された結晶質
の接合層7を介しろう接した接合体8を得た。このろう
接処理においては、加熱温度TがT=530℃であっ
て、図1に示す共晶点520℃を超えているので、非晶
質接合材1は液相状態となる。なお、両積層体3に存す
る貫通孔9は引張り試験においてチャックとの連結に用
いられる。
As shown in FIG. 3, one amorphous bonding material 1 is formed on the bonding surface 6 formed by the steel plate end surfaces of one laminated body 3, and one permanent magnet 2 is formed on the amorphous bonding material 1. Further, another amorphous bonding material 1 is further laminated on the permanent magnet 2, and another laminated body 3 is further laminated on the amorphous bonding material 1 with the bonding surface 6 facing downward. The thing was made. Then, the stack is placed in a vacuum heating furnace,
A heating step at a heating temperature T = 530 ° C. and a heating time t = 20 minutes, followed by a cooling step consisting of furnace cooling, is performed so that the permanent magnets 2 are sandwiched by two laminated bodies 3 as shown in FIG. , 3 were brazed through the crystalline bonding layer 7 formed of the amorphous bonding material 1 to obtain a bonded body 8. In this brazing process, the heating temperature T is T = 530 ° C. and exceeds the eutectic point 520 ° C. shown in FIG. 1, so that the amorphous bonding material 1 is in a liquid phase state. The through holes 9 present in both laminates 3 are used for connection with the chuck in the tensile test.

【0026】比較のため、前記インゴットにマイクロカ
ッタによる切断加工を施して、Nd 70Cu30合金よりな
り、且つ縦10mm、横10mm、厚さ0.25mm(マイク
ロカッタによる限界厚さ)の薄板状結晶質接合材を製作
し、この結晶質接合材を用いて前記と同様の方法で図4
に示す接合体8と同一構造の接合体を得た。
For comparison, a microcap
Nd after cutting with a cutter 70Cu30Better than alloy
10 mm long, 10 mm wide, and 0.25 mm thick (microphone
Manufacture of thin plate-like crystalline bonding material with limit thickness by locator)
Then, using this crystalline bonding material, the same method as described above is performed.
A joined body having the same structure as the joined body 8 shown in FIG.

【0027】さらに比較のため、前記同様の永久磁石2
と前記同様の2つの積層体3とをエポキシ樹脂系接着剤
(日本チバガイギ社製、商品名アラルダイト)を介し重
ね合せて前記同様の重ね合せ物を作製した。次いで、そ
の重ね合せ物を乾燥炉内に設置して、加熱温度200
℃、加熱時間60分間の加熱工程、それに次ぐ炉冷より
なる接合処理を行って、2つの積層体3と永久磁石2と
をエポキシ樹脂系接着剤を介して接合した前記同様の接
合体を得た。
For comparison, a permanent magnet 2 similar to the above is used for comparison.
And two laminates 3 similar to the above were laminated via an epoxy resin adhesive (manufactured by Nippon Ciba-Geigi Co., Ltd., trade name Araldite) to produce a laminate similar to the above. Then, the stack is placed in a drying oven and heated to a heating temperature of 200
A bonding process similar to the above, in which the two laminated bodies 3 and the permanent magnets 2 are bonded via an epoxy resin adhesive by performing a bonding process consisting of a heating step at a temperature of 60 ° C. for 60 minutes and then furnace cooling It was

【0028】非晶質接合材1を用いた接合体8、結晶質
接合材を用いた接合体およびエポキシ樹脂系接着剤を用
いた接合体について室温下および150℃の加熱下で引
張り試験を行ったところ、表2の結果を得た。
A tensile test was conducted on the bonded body 8 using the amorphous bonding material 1, the bonded body using the crystalline bonding material and the bonded body using the epoxy resin adhesive at room temperature and under heating at 150 ° C. As a result, the results shown in Table 2 were obtained.

【0029】[0029]

【表2】 表2から明らかなように、非晶質接合材1を用いた接合
体8は、室温下および150℃の加熱下において、エポ
キシ樹脂系接着剤を用いた接合体に比べて接合強度が高
く、その接合強度は両環境下において殆ど変わらず、ま
たそのばらつきも小さかった。接着剤を用いた接合体は
室温下における接合強度が低い上にそのばらつきが大き
く、また150℃の加熱下ではその接合強度が室温下の
それの3分の1に低下する。
[Table 2] As is clear from Table 2, the bonded body 8 using the amorphous bonding material 1 has higher bonding strength than the bonded body using the epoxy resin adhesive at room temperature and under heating at 150 ° C. The bonding strength was almost the same under both environments, and the variation was small. The jointed body using the adhesive has a low joint strength at room temperature and has a large variation, and the joint strength decreases to one-third of that at room temperature when heated at 150 ° C.

【0030】また非晶質接合材1を用いた接合体8は結
晶質接合材を用いた接合体よりも前記両温度下において
接合強度が高い。これは、非晶質接合材1が優れた耐酸
化性を有し、また酸化物量も僅少であり、さらに均一組
成を有する、ということに起因する。
Further, the bonded body 8 using the amorphous bonding material 1 has a higher bonding strength than the bonded body using the crystalline bonding material at the above both temperatures. This is because the amorphous bonding material 1 has excellent oxidation resistance, a small amount of oxide, and a uniform composition.

【0031】さらに非晶質接合材1の厚さは結晶質接合
材の厚さの3分の1以下であるから、食出し量は僅かで
あってろう接処理後の後処理が容易である。
Further, since the thickness of the amorphous bonding material 1 is less than one third of the thickness of the crystalline bonding material, the amount of corrosion is small and the post-treatment after the brazing treatment is easy. .

【0032】NdFeB系永久磁石、SmCo系永久磁
石等の希土類元素を含む永久磁石2は、接合処理時の加
熱温度TがT>650℃になると、その磁気特性、特に
保磁力 IC (磁化の強さI=0)が低下傾向となる。
ただし、残留磁束密度Brおよび保磁力 BC (磁束密
度B=0)は殆ど変わらず、したがって最大磁気エネル
ギ積(BH)maxは略一定である。非晶質接合材1を
用いたろう接処理において、その加熱温度TはT=53
0℃であってT≦650℃であるから、永久磁石2の磁
気特性を変化させるようなことはない。
The permanent magnet 2 containing a rare earth element such as NdFeB type permanent magnet or SmCo type permanent magnet has its magnetic characteristics, especially coercive force I H C (magnetization) when the heating temperature T during the joining process becomes T> 650 ° C. Strength I = 0) tends to decrease.
However, the residual magnetic flux density Br and coercive force B H C (magnetic flux density B = 0) Most unchanged, thus the maximum magnetic energy product (BH) max is substantially constant. In the brazing process using the amorphous bonding material 1, the heating temperature T is T = 53.
Since 0 ° C. and T ≦ 650 ° C., the magnetic characteristics of the permanent magnet 2 are not changed.

【0033】また前記永久磁石2の濡れ性の悪さは、そ
の結晶粒界に希土類元素濃度、この実施例ではNd濃度
の高い相が存在していることに起因する。非晶質接合材
1を用いたろう接処理において、その非晶質接合材1は
液相状態となっており、そのNdを主成分とするNd70
Cu30合金より生じた液相は、高活性であると共に前記
結晶粒界に存するNd濃度の高い相と主成分を共通にす
ることから永久磁石2に対して優れた濡れ性を発揮し、
また前記高活性化に伴い鋼板4よりなる積層体3に対す
る濡れ性も極めて良好である。
The poor wettability of the permanent magnet 2 is due to the presence of a rare earth element concentration, that is, a phase having a high Nd concentration in the crystal grain boundaries. In the brazing process using the amorphous bonding material 1, the amorphous bonding material 1 is in a liquid phase state, and Nd whose main component is Nd 70
The liquid phase generated from the Cu 30 alloy exhibits high wettability with respect to the permanent magnet 2 since it is highly active and shares the main component with the phase having a high Nd concentration existing in the crystal grain boundary.
Further, the wettability with respect to the laminated body 3 made of the steel sheet 4 is also very good due to the high activation.

【0034】したがって、前記のような非晶質接合材1
を用いることによって、永久磁石2の磁気特性を損うこ
となく、その永久磁石2と積層体3とを強固に接合する
ことができる。
Therefore, the amorphous bonding material 1 as described above is used.
By using, it is possible to firmly bond the permanent magnet 2 and the laminated body 3 without impairing the magnetic characteristics of the permanent magnet 2.

【0035】前記接合技術は、回転電機としてのモータ
において、ロータの成層鉄心に対する永久磁石2のろう
接に適用され、回転数が10000rpm 以上である高速
回転モータの実現を可能にするものである。 〔実施例2〕実施例1と同様の単ロール法を採用して各
種組成の混相接合材および非晶質接合材を製造し、また
各接合材を用い実施例1と同様のろう接処理を行って各
種接合体を得、さらに各接合体について実施例1と同様
の引張り試験を行った。また実施例1と同様に各種組成
のインゴットより結晶質接合材を製作して比較を行っ
た。
The joining technique is applied to brazing of the permanent magnet 2 to the laminated iron core of the rotor in a motor as a rotary electric machine, and enables realization of a high-speed rotary motor having a rotation speed of 10,000 rpm or more. [Example 2] The same single roll method as in Example 1 was adopted to produce mixed phase bonding materials and amorphous bonding materials of various compositions, and the same brazing treatment as in Example 1 was performed using each bonding material. This was performed to obtain various bonded bodies, and the same tensile test as in Example 1 was performed on each bonded body. Also, similar to Example 1, a crystalline bonding material was manufactured from ingots of various compositions and compared.

【0036】表3は各種接合材の組成等、ろう接処理条
件および接合体の接合強度を示す。
Table 3 shows the brazing treatment conditions such as the composition of various joining materials and the joining strength of the joined body.

【0037】[0037]

【表3】 表3において、接合材の例1は非晶質相と結晶質相との
混相よりなる金属組織を備えた混相接合材であるが、非
晶質相の体積分率Vfが75%であって、Vf≧50%
の条件を満たしているので結晶質接合材の例1aに比べ
て組成が均一であり、その結果、接合体の接合強度が高
くなる。また接合材の例2,3は何れも非晶質接合材で
あり、一方、接合材の例2a,3aは何れも結晶質接合
材である。この場合にも、非晶質接合材2,3を用いる
と好結果が得られることが判る。
[Table 3] In Table 3, Example 1 of the joining material is a multi-phase joining material having a metal structure composed of a mixed phase of an amorphous phase and a crystalline phase, and the volume fraction Vf of the amorphous phase is 75%. , Vf ≧ 50%
Since the above condition is satisfied, the composition is more uniform than that of the crystalline bonding material of Example 1a, and as a result, the bonding strength of the bonded body is increased. In addition, Examples 2 and 3 of the bonding material are both amorphous bonding materials, while Examples 2a and 3a of the bonding material are both crystalline bonding materials. Also in this case, it is understood that good results can be obtained by using the amorphous bonding materials 2 and 3.

【0038】なお、前記接合材は前記永久磁石以外の金
属部材と他の金属部材とのろう接等にも用いられる。
The joining material is also used for brazing a metal member other than the permanent magnet to another metal member.

【0039】[0039]

【発明の効果】本発明によれば、前記のように特定され
た構成を具備させることにより、比較的低温域にて液相
を生じて2つの被接合部材を強固にろう接することが可
能な接合材を提供することができる。
According to the present invention, by providing the above-specified structure, it is possible to firmly braze two members to be joined by generating a liquid phase in a relatively low temperature range. A bonding material can be provided.

【0040】特に、この接合材は、その組成の選定によ
り、希土類元素を含む永久磁石と異種金属部材との接合
において、永久磁石の磁気特性を損うことなく接合強度
を高め得る、といった利点を有する。
In particular, this bonding material has an advantage that the bonding strength can be increased without deteriorating the magnetic characteristics of the permanent magnet in the bonding of the permanent magnet containing the rare earth element and the dissimilar metal member by selecting the composition thereof. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】Cu−Nd系状態図の要部を示す。FIG. 1 shows a main part of a Cu—Nd system phase diagram.

【図2】帯状接合体およびNd70Cu30合金インゴット
に関するX線回折図である。
FIG. 2 is an X-ray diffraction diagram for a band-shaped bonded body and an Nd 70 Cu 30 alloy ingot.

【図3】積層体と接合材との重ね合せ関係を示す斜視図
である。
FIG. 3 is a perspective view showing a superposition relationship between a laminated body and a bonding material.

【図4】接合体の斜視図である。FIG. 4 is a perspective view of a joined body.

【符号の説明】[Explanation of symbols]

1 接合材 2 永久磁石 3 積層体 7 接合層 8 接合体 DESCRIPTION OF SYMBOLS 1 Bonding material 2 Permanent magnet 3 Laminated body 7 Bonding layer 8 Bonded body

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年1月23日[Submission date] January 23, 1996

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】接合材の製造に当っては液体急冷法、例え
ば単ロール法が適用される。即ち、 (a)希土類元素系合金組成の溶湯を調製する。(b)
溶湯を、高速回転するCu製冷却ロール外周面に噴出さ
せて超急冷し、これにより非晶質相の体積分率VfがV
f≧50%である薄い帯状接合材を得る。
A liquid quenching method, for example, a single roll method is applied to the production of the bonding material. That is, (a) a molten metal having a rare earth element alloy composition is prepared. (B)
The molten metal is jetted onto the outer surface of the Cu-made cooling roll that rotates at a high speed to perform ultra-quench cooling, whereby the volume fraction Vf of the amorphous phase is V
A thin band-shaped bonding material with f ≧ 50% is obtained.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0037[Name of item to be corrected] 0037

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0037】[0037]

【表3】 表3において、接合材の例1は非晶質相と結晶質相との
混相よりなる金属組織を備えた混相接合材であるが、非
晶質相の体積分率Vfが75%であって、Vf≧50%
の条件を満たしているので結晶質接合材の例1aに比べ
て組成が均一であり、その結果、接合体の接合強度が高
くなる。また接合材の例2,3は何れも非晶質接合材で
あり、一方、接合材の例2a,3aは何れも結晶質接合
材である。この場合にも、非晶質接合材の例2,3を用
いると好結果が得られることが判る。
[Table 3] In Table 3, Example 1 of the joining material is a multi-phase joining material having a metal structure composed of a mixed phase of an amorphous phase and a crystalline phase, and the volume fraction Vf of the amorphous phase is 75%. , Vf ≧ 50%
Since the above condition is satisfied, the composition is more uniform than that of the crystalline bonding material of Example 1a, and as a result, the bonding strength of the bonded body is increased. In addition, Examples 2 and 3 of the bonding material are both amorphous bonding materials, while Examples 2a and 3a of the bonding material are both crystalline bonding materials. Also in this case, it can be seen that good results can be obtained by using Examples 2 and 3 of the amorphous bonding material.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 希土類元素と共晶反応を生じる合金元素
AEをAE≦50原子%含有する希土類元素系合金より
なり、非晶質相の体積分率VfがVf≧50%であるこ
とを特徴とするろう接用接合材。
1. A rare earth element-based alloy containing AE ≦ 50 atomic% of an alloying element AE that causes a eutectic reaction with a rare earth element, and a volume fraction Vf of an amorphous phase is Vf ≧ 50%. Bonding material for brazing.
【請求項2】 前記合金元素AEはCu、Al、Ga、
Co、Fe、Ag、Ni、Au、Mn、Zn、Pd、S
n、Sb、Pb、Bi、GeおよびInから選択される
少なくとも一種である、請求項1記載のろう接用接合
材。
2. The alloy element AE is Cu, Al, Ga,
Co, Fe, Ag, Ni, Au, Mn, Zn, Pd, S
The brazing material for brazing according to claim 1, which is at least one selected from n, Sb, Pb, Bi, Ge and In.
【請求項3】 前記希土類元素系合金は共晶組成を有す
る、請求項1または2記載のろう接用接合材。
3. The brazing joint material according to claim 1, wherein the rare earth element-based alloy has a eutectic composition.
【請求項4】 希土類元素を含む永久磁石と異種金属部
材との接合に用いられる、請求項1,2または3記載の
ろう接用接合材。
4. The brazing joint material according to claim 1, which is used for joining a permanent magnet containing a rare earth element and a dissimilar metal member.
JP28035494A 1994-06-09 1994-11-15 Brazing material Expired - Fee Related JP3382392B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP28035494A JP3382392B2 (en) 1994-11-15 1994-11-15 Brazing material
EP95108943A EP0691175B1 (en) 1994-06-09 1995-06-09 Article made by joining two members together, and a brazing filler metal
DE69522390T DE69522390T2 (en) 1994-06-09 1995-06-09 Item made by joining two components and brazing filler metal
US08/480,269 US5830585A (en) 1994-06-09 1995-06-17 Article made by joining two members together, and a brazing filler metal
US09/063,531 US6214480B1 (en) 1994-06-09 1998-04-21 Article made by joining two members together, and a brazing filler metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28035494A JP3382392B2 (en) 1994-11-15 1994-11-15 Brazing material

Publications (2)

Publication Number Publication Date
JPH08141781A true JPH08141781A (en) 1996-06-04
JP3382392B2 JP3382392B2 (en) 2003-03-04

Family

ID=17623841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28035494A Expired - Fee Related JP3382392B2 (en) 1994-06-09 1994-11-15 Brazing material

Country Status (1)

Country Link
JP (1) JP3382392B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061038A (en) * 2009-09-10 2011-03-24 Toyota Central R&D Labs Inc Rare-earth magnet, method for manufacturing the same, and magnet composite member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011061038A (en) * 2009-09-10 2011-03-24 Toyota Central R&D Labs Inc Rare-earth magnet, method for manufacturing the same, and magnet composite member

Also Published As

Publication number Publication date
JP3382392B2 (en) 2003-03-04

Similar Documents

Publication Publication Date Title
US5830585A (en) Article made by joining two members together, and a brazing filler metal
EP0786854B1 (en) Rotor for rotating machine, method of manufacturing same, and magnet unit
JP2007273815A (en) Method for manufacturing r-fe-b rare earth elements sintered magnet
US4049475A (en) SECo5 -Permanent magnet joined to at least one iron mass and method of fabricating such a permanent magnet
EP0921533A1 (en) Method of producing laminated permanent magnet
JP3592425B2 (en) Rare earth alloy brazing filler metal
JP3441197B2 (en) Paste joining material for brazing
JPH08141781A (en) Joining material for brazing
JP3592397B2 (en) Heat bonding method for two kinds of members having different thermal expansion rates
JP3802586B2 (en) Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients
JP3373950B2 (en) Heat bonding method of two kinds of members having different thermal expansion coefficients
US4473400A (en) Magnetic metallic glass alloy
JP3759198B2 (en) Joining method of workpieces
JPH08118066A (en) Production of joined body consisting of permanent magnet having rust preventability and member of different material kind
JP3472358B2 (en) Permanent magnet for heat bonding and method of manufacturing the same
JPH08309581A (en) Joined body comprising two members to be joined
JP3631809B2 (en) Joining method of workpieces
JP3382383B2 (en) Bonding material for metal members
JP3759186B2 (en) Brazing method for joined members
JPH08116633A (en) Bonded body of permanent magnet and member of different kind of material and bonding method
JP2004040973A (en) Rotor device
JP3007561B2 (en) Method of joining R-Fe-B permanent magnet and yoke
JPH09199362A (en) Method for manufacturing connector having permanent magnetic material
JPH05182851A (en) Manufacture of rare earth elements-fe-b magnet
JPH08215861A (en) Joining method for amorphous alloy thin strip

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20071220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081220

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091220

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091220

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101220

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees