JP3592397B2 - Heat bonding method for two kinds of members having different thermal expansion rates - Google Patents

Heat bonding method for two kinds of members having different thermal expansion rates Download PDF

Info

Publication number
JP3592397B2
JP3592397B2 JP09280595A JP9280595A JP3592397B2 JP 3592397 B2 JP3592397 B2 JP 3592397B2 JP 09280595 A JP09280595 A JP 09280595A JP 9280595 A JP9280595 A JP 9280595A JP 3592397 B2 JP3592397 B2 JP 3592397B2
Authority
JP
Japan
Prior art keywords
joining
brazing material
members
thermal expansion
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09280595A
Other languages
Japanese (ja)
Other versions
JPH08290265A (en
Inventor
光矢 細江
健一郎 塩川
貴之 佐藤
真佐人 喜多
直正 木村
勝敏 野崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP09280595A priority Critical patent/JP3592397B2/en
Publication of JPH08290265A publication Critical patent/JPH08290265A/en
Application granted granted Critical
Publication of JP3592397B2 publication Critical patent/JP3592397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、熱膨脹率を異にする二種の部材の加熱接合方法、特に、両部材の接合面間にろう材を介在させ、加熱工程と、それに次ぐ冷却工程とを用いて両部材を接合する方法に関する。
【0002】
【従来の技術】
従来、例えば永久磁石と鋼製取付台とを接合する場合、合成樹脂接着剤が用いられている(例えば、特公昭61−33339号公報参照)。
【0003】
【発明が解決しようとする課題】
しかしながら、合成樹脂接着剤による接合では、その永久磁石の昇温に伴い接合強度が著しく低下し、また接合強度のばらつきが大きいため品質管理が難しい、といった問題がある。
【0004】
本発明は前記に鑑み、前記二種の部材をろう材を用いて加熱接合するに当り、両部材の接合部に発生する熱応力を緩和すると共に両接合面間から食出したろう材の過剰分が部材外面に付着することを防止して、冷却工程での熱膨脹率が小さい方の部材が脆くてもそれに割れが発生するのを回避することができる前記加熱接合方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、熱膨脹率を異にする二種の部材の接合面間にろう材を介在させ、加熱工程と、それに次ぐ冷却工程とを用いて両部材を接合するに当り、前記冷却工程での熱膨脹率が大きい前記一方の部材の接合面を複数の小接合面より形成して、それら小接合面をろう材層を介し前記他方の部材の接合面に接合し、また前記一方の部材に、前記小接合面に隣接する凹部を形成して、前記加熱工程において前記ろう材の過剰分を前記凹部に受容させることを特徴とする。
【0006】
【作用】
前記加熱接合方法においては、均一厚さのろう材層を両接合面全域に亘って形成すべく、使用ろう材量は必要最少量よりも多目に見積られる。加熱工程では両部材が膨脹し、例えば長さが加熱前よりも長くなる。一方、ろう材は液相状態または固液共存状態となるが、そのろう材の過剰分、つまり過剰ろう材は凹部に受容されるので、両接合面間から食出した過剰ろう材が部材外面に付着することが防止される。
【0007】
冷却工程では、熱膨脹率が大きい一方の部材においては各小接合面形成部分が収縮すると共に小接合面が他方の部材の接合面にろう材層を介して接合されるので、隣接する両小接合面間の間隔は加熱前よりも大きくなり、その結果、一方の部材は、加熱前の長さよりも長い状態に拘束される。これにより、一方の部材の長さが加熱前の長さに略復元する場合に比べて両部材の接合部に発生する熱応力が緩和される。
【0008】
また両接合面間から食出した過剰ろう材が他方の部材の外面に玉状になって付着すると、その他方の部材が脆い場合には過剰ろう材の付着部を起点として他方の部材に割れが生じるが、この問題は前記凹部により解消される。
【0009】
このようにして、熱膨脹率が小さい他方の部材が脆くても、その部材に割れを生じることなく、両部材を強固に接合することができる。
【0010】
【実施例】
熱膨脹率を異にする二種の部材をろう材を用いて、加熱工程と、それに次ぐ冷却工程を経て接合するに当り、図1に示すように、冷却工程での熱膨脹率が小さい方の部材として希土類元素を含む永久磁石(合金部材)1を選定し、また冷却工程での熱膨脹率が大きい方の部材として、複数の鋼板(板材)2よりなる積層体3を選択した。
【0011】
積層体3を構成する鋼板2は、積層方向に並ぶ一端面(外面)の少なくとも一部、図示例では全部を小接合面4とする複数の接合用鋼板(接合用板材)2aと、隣接する両接合用鋼板2a間の全てに挟着されると共に隣接する両小接合面4間に凹部5を形成すべく、積層方向に並ぶ一端面(外面)6の少なくとも一部、図示例では全部を小接合面4よりも引込ませた複数の凹部用鋼板(凹部用板材)2bとよりなる。この場合、両鋼板2a,2bの他端面は同一平面上に在る。したがって、積層体3の接合面7は複数の接合用鋼板2aによる小接合面4より形成される。積層体3において、複数の接合用鋼板2aおよび凹部用鋼板2bの接合にはかしめ手段8、またはボルトおよびナットによる緊締手段が用いられる。
【0012】
永久磁石1と積層体3の両接合面9,7間に、それらの融点よりも低い温度で液相を生じる箔状、または箔材を重ねた薄板状ろう材10が介在される。この場合、均一厚さのろう材層を両接合面7,9全域に亘って形成すべく、使用ろう材量は必要最少量よりも多目に見積られる。
【0013】
加熱接合に当っては、永久磁石1、ろう材10および積層体3よりなる重ね合せ物を真空加熱炉内に設置する工程と、加熱下でろう材10を液相状態または固液共存状態にする加熱工程と、重ね合せ物を炉冷して、図2に示すように永久磁石1と積層体3とをろう材層11を介し接合して接合体12を得る冷却工程とが採用される。
【0014】
図3は前記加熱接合のメカニズムを示す。図3(a)の加熱前においては、重ね合せ物13を形成する永久磁石1、ろう材10および積層体3の長さLは等しい。図3(b)の加熱中において永久磁石1および積層体3が膨脹し、それらの長さが加熱前よりも長くなり、L>L、L>L(ただし、L>L)となる。一方、ろう材10は液相状態または固液共存状態となるが、そのろう材10の過剰分、つまり過剰ろう材aは各凹部5に受容されるので、両接合面7,9間から食出した過剰ろう材aが永久磁石1外面に付着することが防止される。
【0015】
図3(c)の冷却後においては、冷却工程で、熱膨脹率が大きい方の積層体3の各小接合面形成部分である各接合用鋼板2aが収縮すると共に各小接合面4が永久磁石1の接合面9にろう材層11を介して接合されるので、隣接する両小接合面4間の間隔bは加熱前よりも大きくなり、その結果、積層体3の永久磁石1側は、加熱前の長さLよりも長い状態に拘束され、L>L(例えば、L≒1.01×L)となる。これにより、加熱中における、例えば鋼製ブロック体の長さが、冷却後において加熱前の長さに略復元する場合に比べ、接合部に発生する熱応力が緩和される。
【0016】
また両接合面7,9間から食出した過剰ろう材aが永久磁石1外面に付着すると、その永久磁石1が脆い場合には過剰ろう材aの付着部を起点として永久磁石1に割れが生じるが、この問題は前記凹部5により解消される。
【0017】
このようにして、熱膨脹率が小さい永久磁石1が脆くても、その永久磁石1に割れを生じることなく、それ1と積層体3とを強固に接合することができる。
【0018】
ろう材10としては、前記のような希土類元素を含む永久磁石1の磁気特性を低下させない加熱温度T、つまりT≦650℃で、接合力を発揮するものでなければならない。また、この接合力は、加熱下において、ろう材10が固相状態である場合には、その拡散性により発現し、一方、ろう材10が液相状態または固液共存状態である場合にはその濡れ性により発現することが必要である。
【0019】
このような観点からろう材10としては、希土類元素系合金より構成された高活性なものが用いられる。この希土類元素系合金においては、非晶質相の体積分率Vfが50%≦Vf≦100%であることが望ましい。その理由は、次の通りである。即ち、非晶質相は、酸化の起点となるような粒界層が存在しないので耐酸化性が著しく高く、また酸化物の混在も僅少であり、その上偏析がなく組成が均一である、といった特性を有するので、ろう材層11の強度向上を図る上で有効であるからである。
【0020】
この場合、希土類元素にはY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される少なくとも一種が該当し、それらは単体、または混合物であるMm(ミッシュメタル)、Di(ジジミウム)の形態で用いられる。また合金元素AEは希土類元素と共晶反応を行うもので、その合金元素AEには、Cu、Al、Ga、Co、Fe、Ag、Ni、Au、Mn、Zn、Pd、Sn、Sb、Pb、Bi、GeおよびInから選択される少なくとも一種が該当する。合金元素AEの含有量は5原子%≦AE≦50原子%に設定される。二種以上の合金元素AEを含有する場合には、それらの合計含有量が5原子%≦AE≦50原子%となる。ただし、合金元素AEの含有量がAE>50原子%では、ろう材10としての希土類元素系合金の活性が損われ、一方、AE<5原子%では、固液共存状態において液相を十分に確保することができなくなる。
【0021】
希土類元素系合金における共晶合金を例示すれば表1の通りである。
【0022】
【表1】

Figure 0003592397
【0023】
また希土類元素系合金における亜、過共晶合金としては以下のものを挙げることができる。各化学式において、数値の単位は原子%である(これは以下同じ)。
(a) Nd60Cu40合金、Nd75Cu25合金、Nd80Cu20合金、Nd50Cu50合金……液相発生温度520℃(図4参照)
(b) Sm75Cu25合金、Sm65Cu35合金……液相発生温度597℃
(c) Nd90Al10合金(液相発生温度634℃)、Nd80Co20合金(液相発生温度599℃)、La85Ga15合金(液相発生温度550℃)
さらに三元系合金としては、Nd65FeCu30合金(液相発生温度501℃)およびNd70Cu25Al合金(液相発生温度474℃)を挙げることができる。
【0024】
加熱時間hは、それが長過ぎる場合には永久磁石1および積層体3の特性変化を招来するので、h≦10時間であることが望ましく、生産性向上の観点からはh≦1時間である。
〔実施例1〕
先ず、以下に述べる方法で、非晶質相の体積分率VfがVf=100%であるろう材用箔材を製造した。
【0025】
純度99.9%のNdと、純度99.9%のCuと、純度99.9%のAlとを、Nd70Cu26Al合金が得られるように秤量し、次いでその秤量物を真空溶解炉を用いて溶解し、その後鋳造を行ってインゴットを得た。
【0026】
このインゴットから約50gの原料を採取し、これを石英ノズル内で高周波溶解して溶湯を調製し、次いで溶湯を石英ノズルのスリットから、その下方で高速回転するCu製冷却ロール外周面にアルゴンガス圧により噴出させて超急冷し、幅30mm、厚さ50μmのNd70Cu26Al合金よりなる薄帯を得た。
【0027】
この場合の製造条件は次の通りである。石英ノズルの内径:40mm;スリットの寸法:幅 0.25mm;長さ 30mm;アルゴンガス圧:1.5kgf/cm、溶湯温度;670℃;スリットと冷却ロールとの距離:1.0mm;冷却ロールの周速:13m/sec ;溶湯の冷却速度 約10K/sec .
図5は薄帯のX線回折結果を示し、この薄帯においては2θ≒32°に幅広のハローパターンが観察され、このことから薄帯の金属組織は非晶質単相組織であることが判明した。また薄帯は高い靱性を有し、180°密着曲げが可能であった。
【0028】
次に、Nd70Cu26Al合金よりなる非晶質薄帯から、縦100mm、横20mm、厚さ50μmの箔材を切出した。
【0029】
永久磁石1として、縦100mm、横20mm、厚さ6mmのNdFeB系永久磁石(住友特殊金属社製、商品名NEOMAX−28UH、キュリー点=310℃)を選定した。また積層体3として、縦40mm、横20mm、厚さ0.4mmの接合用冷間圧延鋼板2aと、縦35mm、横20mm、厚さ0.2mmの凹部用冷間圧延鋼板2bとを図1に示すように積層してなり、且つ縦40mm、横20mm、長さ100mmの直方体状の積層体を選定した。この場合、小接合面4の面積は20mm×0.4mm=8mm、凹部5の深さは40mm−35mm=5mm、幅は0.2mm、長さは20mmである。
【0030】
図1に示すように、積層体3の接合面7上に、1枚の箔材(厚さ50μm)よりなるろう材10または2枚以上の箔材を重ね合せてなるろう材10を、またそのろう材10の上に永久磁石1をその接合面9を下向きにしてそれぞれ重ね合せ、その重ね合せ物を真空加熱炉内に設置して、加熱温度T=530℃、加熱時間h=20分間の加熱工程、それに次ぐ炉冷よりなる冷却工程を行って、図2に示すように永久磁石1と積層体3とをろう材層9を介し接合した接合体12の例1〜5を得た。この加熱接合処理においては、加熱温度TがT=530℃であって液相発生温度474℃を超えているので、ろう材10は液相状態となる。
【0031】
表2は、接合体12の例1〜5に関する、ろう材10の厚さ(箔材の厚さ50μm×使用枚数)、永久磁石1外面への過剰ろう材aの付着の有無および永久磁石の割れの有無を示す。
【0032】
【表2】
Figure 0003592397
【0033】
表2から明らかなように、例1〜5においては、永久磁石1外面への過剰ろう材aの付着および永久磁石1の割れは生じておらず、永久磁石1と積層体3とがろう材層11を介して強固に接合されていた。これは、前記のように、凹部5を持つ積層体3を用いたことにより、過剰ろう材の食出しが防止されると共に加熱工程後の冷却工程で接合部に生じる熱応力が緩和されたからである。
【0034】
比較のため、凹部を持たない積層体として、接合用冷間圧延板2aと同一寸法、したがって縦40mm、横20mm、厚さ0.4mmの冷間圧延鋼板を積層してなり、且つ縦40mm、横20mm、長さ100mmの直方体状の積層体を用い、前記と同様の方法で5種の接合体を得た。これら接合体において、ろう材の厚さが50〜500μmである場合には異常はなかったが、ろう材の厚さを550μmに設定すると、両接合面間から過剰ろう材が食出して永久磁石外面に玉状になって付着し、その結果、永久磁石に割れが発生した。
【0035】
また比較のため、積層体3の代りに、炭素鋼(JIS S35C)よりなり、且つ積層体3と同一寸法のブロック体を用い、前記と同様の方法で5種の接合体を得た。これらの接合体においては、ろう材の厚さ、即ち、50〜550μmに関係なく、全ての永久磁石全体に割れが発生し、特に熱応力が集中する各永久磁石の周辺部は割れが大きかった。これは永久磁石とブロック体との熱膨脹率の差が大きいことに起因する。
【0036】
なお、積層体3もブロック体と略同様の熱膨脹率を有するが、積層構造により前記のような熱応力緩和効果が得られるので、ブロック体を用いた場合の問題は回避される。
〔実施例2〕
実施例1で述べたNd70Cu26Al合金よりなる非晶質薄帯から、縦10mm、横10mm、厚さ50μmの箔材を切出した。
【0037】
永久磁石1として、縦10mm、横10mm、厚さ3mmのNdFeB系永久磁石(住友特殊金属社製、商品名NEOMAX−28UH、キュリー点=310℃)1を選定した。また積層体3として、縦15mm、横10mm、厚さ0.3mmの接合用冷間圧延鋼板2aと、縦13mm、横10mm、厚さ0.1mmの凹部用冷間圧延鋼板2bとを図6に示すように(図1の場合と同様に)積層してなり、且つ縦10.3mm、横10mm、長さ15mmの直方体状の積層体を選定した。この場合、小接合面4の面積は10mm×0.3mm=3mm、凹部5の深さは15mm−13mm=2mm、幅は0.1mm、長さは10mmである。
【0038】
そして、1つの積層体3の接合面7上に1枚の箔材(50μm)よりなるろう材10または2枚以上の箔材を重ね合せてなるろう材10を、またろう材10の上に一方の接合面9を下向きにした永久磁石1を、さらに永久磁石1の他方の接合面9上に、前記同様のろう材10を、さらにまたろう材10の上にもう1つの積層体3をその接合面7を下向きにしてそれぞれ重ね合せて重ね合せ物を作製した。次いで、重ね合せ物を真空加熱炉内に設置し、加熱温度T=530℃、加熱時間h=20分間の加熱工程、それに次ぐ炉冷よりなる冷却工程を行って、図7に示すように2つの積層体3により永久磁石1を挟むようにそれら1,3をろう材層11を介し接合した接合体12の例1〜5を得た。この加熱接合処理においては、前記同様に加熱温度TがT=530℃であるからろう材10は液相状態となる。これらの例1〜5においては、永久磁石1外面への過剰ろう材aの付着および永久磁石1の割れは生じていなかった。なお、両積層体3に存する貫通孔14は引張り試験においてチャックとの連結に用いられる。
【0039】
比較のため、凹部を持たない積層体として、接合用冷間圧延鋼板2aと同一寸法、したがって縦15mm、横10mm、厚さ0.3mmの冷間圧延鋼板を積層してなり、且つ縦9.9mm、横10mm、長さ15mmの直方体状の積層体を用い、前記と同様の寸法で接合体の例1a〜5aを得た。これらの例1a〜5aにおいて、厚さが550μmのろう材を用いた例5aでは、過剰ろう材の永久磁石外面への付着および永久磁石の割れが発生していた。
【0040】
次いで、例1〜5、1a〜5aについて室温下で引張り試験を行ったところ、表3の結果を得た。
【0041】
【表3】
Figure 0003592397
【0042】
表3において、例1〜4および例1a〜4aの引張強さはろう材層の破断による値である。対応する例1と1a、例2と2a、例3と3a、例4と4aを比較すると、例1a〜2aの方が例1〜4よりも僅かではあるが接合強度が高い。これは例1a〜4aの方が例1〜4よりも積層体接合面の面積が大きいことに起因する。
【0043】
例5と5aとを比べると、それらの接合強度には大きな差が生じている。これは、例5が健全であるので、その破断がろう材層11において発生しているのに対し、例5aでは永久磁石に割れが生じているので、その破断が永久磁石において発生していることに起因する。なお、例1〜5の接合強度は、高温下、例えば150℃の加熱下においても、室温下のそれと略同じである。
【0044】
前記接合技術は、図8,9に示すように、回転機としてのモータのロータ15において、その成層鉄心(積層体)3に対する永久磁石1の接合に適用され、回転数が10000rpm 以上である高速回転モータの実現を可能にするものである。
【0045】
成層鉄心3を構成する複数の鋼板(板材)2は、積層方向に並ぶ外周面(外面)の少なくとも一部を小接合面4とする複数の接合用冷間圧延鋼板(接合用板材)2aと、隣接する両接合用冷間圧延鋼板2a間の全てに挟着されると共に凹部5を形成すべく、積層方向に並ぶ外周面(外面)6の少なくとも一部、図示例では全部を小接合面4よりも引込ませた複数の凹部用冷間圧延鋼板(凹部用板材)2bとよりなる。したがって、成層鉄心3の複数の接合面7は複数の接合用冷間圧延鋼板2aによる小接合面4より形成される。
【0046】
図中、16は回転軸であり、その回転軸16は成層鉄心3にスプライン結合され、その成層鉄心3の一端部が回転軸16に溶接17される。この場合、回転軸16を成層鉄心3にスプラインを介し圧入してもよい。
【0047】
図10は成層鉄心3の他例を示す。その成層鉄心3の複数の接合面7は、複数の冷間圧延鋼板(板材)2における積層方向に並ぶ外周面(外面)の少なくとも一部である小接合面4より形成される。接合面7の両側に凹部5が形成され、それら凹部5は各小接合面4に隣接して積層方向に延びている。
【0048】
この成層鉄心3に前記同様の方法で永久磁石1を接合したところ、過剰ろう材aの永久磁石1外面への付着および永久磁石1の割れは発生しなかった。
【0049】
接合条件は次の通りである。成層鉄心:長さ104mm、冷間圧延鋼板の厚さ0.4mm、小接合面の面積19mm×0.4mm=7.6mm、凹部の深さ3mm、幅0.5mm、長さ104mm;永久磁石:縦104mm、横20mm、厚さ5mmのNdFeB系永久磁石(住友特殊金属社製、商品名NEOMAX−28UH、キュリー点=310℃);ろう材:非晶質Nd70Cu26Al合金よりなる、縦104mm、横20mm、厚さ50μmの箔材を用い、ろう材の厚さを、箔材を重ね合わせることにより100,200,500,550μmの4段階に変化させた;永久磁石に対する押圧手段:永久磁石1個当り、押圧力1.5kgのスプリングを2本使用;加熱温度T:530℃;加熱時間h:40分間.
なお、永久磁石1には、前記加熱接合処理後において着磁処理が施される。
【0050】
【発明の効果】
本発明によれば、前記のように特定された手段を用いることによって、熱膨脹率を異にする二種の部材を、加熱工程後の冷却工程での熱膨脹率が小さい方の部材が脆い場合にもその部材における割れ発生を回避して、強固に加熱接合することができる。
【図面の簡単な説明】
【図1】永久磁石、ろう材および積層体の重ね合せ関係の一例を示す斜視図である。
【図2】接合体の一例を示す要部断面図である。
【図3】加熱接合メカニズムを示す説明図である。
【図4】Cu−Nd系状態図の要部を示す。
【図5】Nd70Cu26Al合金のX線回折図である。
【図6】永久磁石、ろう材および積層体の重ね合せ関係の他例を示す斜視図である。
【図7】接合体の他例を示す斜視図である。
【図8】要部を拡大したモータ用ロータの断面図で、その破断位置は図9に8−8線で示す。
【図9】要部を破断した、図8の9−9矢視図である。
【図10】成層鉄心の要部斜視図である。
【符号の説明】
1 永久磁石、合金部材(他方の部材)
2 鋼板(板材)
2a 接合用鋼板(接合用板材)
2b 凹部用鋼板(凹部用板材)
3 積層体、成層鉄心(一方の部材)
4 小接合面
5 凹部
6 端面、外周面(外面)
7,9 接合面
10 ろう材
11 ろう材層
a 過剰分[0001]
[Industrial applications]
The present invention relates to a method for heating and joining two members having different coefficients of thermal expansion, in particular, a brazing material is interposed between the joining surfaces of the two members, and the two members are joined using a heating step and a cooling step subsequent thereto. On how to do it.
[0002]
[Prior art]
Conventionally, when a permanent magnet and a steel mounting base are joined, for example, a synthetic resin adhesive has been used (for example, see Japanese Patent Publication No. 61-33939).
[0003]
[Problems to be solved by the invention]
However, joining with a synthetic resin adhesive has problems that the joining strength is remarkably reduced as the temperature of the permanent magnet is increased, and quality control is difficult due to large variation in joining strength.
[0004]
In view of the above, the present invention reduces the thermal stress generated at the joint between the two members while heating and joining the two members by using the brazing material, and at the same time, reduces the excess amount of the brazing material that is edible from between the two joining surfaces. It is an object of the present invention to provide the above-mentioned heat bonding method, which can prevent a member having a smaller coefficient of thermal expansion in a cooling step from being cracked even if the member is brittle in the cooling step by preventing the member from adhering to the outer surface of the member. I do.
[0005]
[Means for Solving the Problems]
In the present invention, a brazing material is interposed between the joining surfaces of two members having different coefficients of thermal expansion, and a heating process and a cooling process subsequent thereto are used to join both members. The joining surface of the one member having a large coefficient of thermal expansion is formed from a plurality of small joining surfaces, and these small joining surfaces are joined to the joining surface of the other member via a brazing material layer, and to the one member, A concave portion adjacent to the small joining surface is formed, and the excess amount of the brazing material is received in the concave portion in the heating step.
[0006]
[Action]
In the above-mentioned heat joining method, the amount of the brazing material to be used is estimated to be larger than the necessary minimum amount in order to form a brazing material layer having a uniform thickness over the entire joint surface. In the heating step, both members expand, for example, their length becomes longer than before heating. On the other hand, the brazing material is in a liquid phase state or a solid-liquid coexisting state, but the excess amount of the brazing material, that is, the excess brazing material is received in the concave portion, so that the excess brazing material edible from between the two joining surfaces is exposed to the outer surface of the member. Is prevented.
[0007]
In the cooling step, in one member having a large coefficient of thermal expansion, each small joint surface forming portion contracts, and the small joint surface is joined to the joint surface of the other member via the brazing material layer. The spacing between the surfaces is greater than before heating, so that one member is constrained to a longer length than before heating. Thus, the thermal stress generated at the joint between the two members is reduced as compared with the case where the length of one member is substantially restored to the length before heating.
[0008]
If the excess brazing material escaping from between the two joining surfaces adheres to the outer surface of the other member in a ball shape, if the other member is brittle, the other member is cracked starting from the attachment portion of the excess brazing material. However, this problem is solved by the recess.
[0009]
In this way, even if the other member having a small coefficient of thermal expansion is brittle, the two members can be firmly joined without causing cracks in the member.
[0010]
【Example】
When two kinds of members having different thermal expansion rates are joined by using a brazing material through a heating step and a subsequent cooling step, as shown in FIG. 1, a member having a smaller thermal expansion rate in the cooling step is used. Was selected as a permanent magnet (alloy member) 1 containing a rare earth element, and a laminate 3 composed of a plurality of steel plates (plate materials) 2 was selected as a member having a larger coefficient of thermal expansion in a cooling step.
[0011]
The steel plate 2 constituting the laminate 3 is adjacent to a plurality of bonding steel plates (bonding plate materials) 2a having at least a part of one end surface (outer surface) arranged in the laminating direction, all of which are small bonding surfaces 4 in the illustrated example. At least a part of one end face (outer face) 6 arranged in the laminating direction, and in the illustrated example, all of the one end face (outer face) 6 sandwiched between all the two joining steel plates 2a and forming the concave portion 5 between the two adjacent small joining faces 4. It is composed of a plurality of recessed steel plates (recessed plate materials) 2b that are drawn in from the small joint surface 4. In this case, the other end surfaces of both steel plates 2a and 2b are on the same plane. Therefore, the joint surface 7 of the laminate 3 is formed from the small joint surfaces 4 made of the plurality of joining steel plates 2a. In the laminate 3, a caulking means 8 or a tightening means using bolts and nuts is used for joining the plurality of joining steel sheets 2a and the recessed steel sheets 2b.
[0012]
Between the joining surfaces 9 and 7 of the permanent magnet 1 and the laminated body 3, a foil-like brazing material 10 that generates a liquid phase at a temperature lower than the melting point thereof or a thin plate-like brazing material 10 in which foil materials are stacked is interposed. In this case, in order to form a brazing material layer having a uniform thickness over the entire joint surfaces 7 and 9, the amount of the brazing material to be used is estimated to be larger than the required minimum amount.
[0013]
In the heat joining, a step of installing a superimposed product composed of the permanent magnet 1, the brazing material 10 and the laminate 3 in a vacuum heating furnace, and the step of bringing the brazing material 10 into a liquid state or a solid-liquid coexisting state under heating. 2 and a cooling step of furnace-cooling the superposed material and joining the permanent magnet 1 and the laminate 3 via the brazing material layer 11 to obtain a joined body 12 as shown in FIG. .
[0014]
FIG. 3 shows the mechanism of the heat bonding. Before the heating in FIG. 3A, the lengths L 1 of the permanent magnet 1, the brazing material 10, and the laminate 3 forming the superimposed product 13 are equal. During the heating shown in FIG. 3B, the permanent magnet 1 and the laminate 3 expand, the length thereof becomes longer than before heating, and L 2 > L 1 , L 3 > L 1 (where L 3 > L). 2 ) On the other hand, although the brazing material 10 is in a liquid phase state or a solid-liquid coexisting state, the excess amount of the brazing material 10, that is, the excess brazing material a is received in each concave portion 5, so that the brazing material 10 is eroded from between the joint surfaces 7 and 9. The discharged excess brazing material a is prevented from adhering to the outer surface of the permanent magnet 1.
[0015]
After the cooling shown in FIG. 3 (c), in the cooling step, the respective joining steel plates 2a which are the respective small joining surface forming portions of the laminate 3 having the larger coefficient of thermal expansion contract and the respective small joining surfaces 4 become permanent magnets. 1 is joined through the brazing material layer 11 via the brazing material layer 11, so that the distance b between the adjacent small joining surfaces 4 becomes larger than before heating, and as a result, the permanent magnet 1 side of the laminate 3 is is constrained to a long state than the length L 1 before heating, the L 4> L 1 (e.g., L 4 ≒ 1.01 × L 1 ). Thereby, the thermal stress generated at the joint is reduced, for example, as compared with the case where the length of the steel block body during heating is substantially restored to the length before heating after cooling.
[0016]
Further, when the excess brazing material a that has erupted from between the joining surfaces 7 and 9 adheres to the outer surface of the permanent magnet 1, if the permanent magnet 1 is brittle, the permanent magnet 1 is cracked starting from the portion where the excess brazing material a is attached. However, this problem is solved by the recess 5.
[0017]
In this way, even if the permanent magnet 1 having a small coefficient of thermal expansion is brittle, the permanent magnet 1 can be firmly joined to the laminate 3 without causing cracks in the permanent magnet 1.
[0018]
The brazing material 10 must exhibit a bonding force at a heating temperature T that does not degrade the magnetic properties of the permanent magnet 1 containing a rare earth element as described above, that is, at T ≦ 650 ° C. Further, this bonding force is manifested by its diffusivity when the brazing material 10 is in a solid state under heating, and when the brazing material 10 is in a liquid phase state or a solid-liquid coexisting state under heating. It is necessary to express by the wettability.
[0019]
From such a viewpoint, a highly active material made of a rare earth element alloy is used as the brazing material 10. In this rare earth element alloy, it is desirable that the volume fraction Vf of the amorphous phase is 50% ≦ Vf ≦ 100%. The reason is as follows. That is, since the amorphous phase does not have a grain boundary layer serving as a starting point of oxidation, the oxidation resistance is extremely high, and the mixture of oxides is small, and the composition is uniform without segregation. This is because it is effective in improving the strength of the brazing material layer 11.
[0020]
In this case, the rare earth element corresponds to at least one selected from Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. Alternatively, it is used in the form of a mixture of Mm (misch metal) and Di (didium). The alloying element AE performs a eutectic reaction with a rare earth element, and the alloying element AE includes Cu, Al, Ga, Co, Fe, Ag, Ni, Au, Mn, Zn, Pd, Sn, Sb, and Pb. , Bi, Ge and In. The content of the alloying element AE is set to 5 atomic% ≦ AE ≦ 50 atomic%. When two or more alloying elements AE are contained, the total content thereof is 5 atomic% ≦ AE ≦ 50 atomic%. However, when the content of the alloying element AE is AE> 50 at%, the activity of the rare earth element alloy as the brazing filler metal 10 is impaired. On the other hand, when the AE is less than 5 at%, the liquid phase is sufficiently formed in the solid-liquid coexistence state. It cannot be secured.
[0021]
Table 1 shows an example of a eutectic alloy in a rare earth element alloy.
[0022]
[Table 1]
Figure 0003592397
[0023]
The following may be mentioned as the hypo- and hypereutectic alloys in the rare earth element alloys. In each chemical formula, the unit of the numerical value is atomic% (the same applies hereinafter).
(A) Nd 60 Cu 40 alloy, Nd 75 Cu 25 alloy, Nd 80 Cu 20 alloy, Nd 50 Cu 50 alloy ... liquid phase generation temperature 520 ° C. (see FIG. 4)
(B) Sm 75 Cu 25 alloy, Sm 65 Cu 35 alloy ...... liquid phase generation temperature 597 ° C.
(C) Nd 90 Al 10 alloy (liquid phase generation temperature 634 ° C.), Nd 80 Co 20 alloy (liquid phase generation temperature 599 ° C.), La 85 Ga 15 alloy (liquid phase generation temperature 550 ° C.)
Further, examples of the ternary alloy include an Nd 65 Fe 5 Cu 30 alloy (liquid phase generation temperature 501 ° C.) and a Nd 70 Cu 25 Al 5 alloy (liquid phase generation temperature 474 ° C.).
[0024]
The heating time h is desirably h ≦ 10 hours, because if it is too long, it causes a change in the characteristics of the permanent magnet 1 and the laminate 3. From the viewpoint of improving productivity, h ≦ 1 hour. .
[Example 1]
First, a brazing foil material having an amorphous phase volume fraction Vf of 100% was produced by the method described below.
[0025]
Nd having a purity of 99.9%, Cu having a purity of 99.9%, and Al having a purity of 99.9% are weighed so as to obtain an Nd 70 Cu 26 Al 4 alloy, and then the weighed material is melted in vacuum. Melting was performed using a furnace, and then casting was performed to obtain an ingot.
[0026]
Approximately 50 g of the raw material was collected from this ingot, and this was melted at a high frequency in a quartz nozzle to prepare a molten metal. Then, the molten metal was passed through the slit of the quartz nozzle, and the argon gas was applied to the outer peripheral surface of a Cu cooling roll rotating at high speed below the slit. It was jetted out by pressure and super-quenched to obtain a ribbon made of Nd 70 Cu 26 Al 4 alloy having a width of 30 mm and a thickness of 50 μm.
[0027]
The manufacturing conditions in this case are as follows. Inner diameter of quartz nozzle: 40 mm; dimensions of slit: width 0.25 mm; length 30 mm; argon gas pressure: 1.5 kgf / cm 2 , molten metal temperature: 670 ° C .; distance between slit and cooling roll: 1.0 mm; Circumferential speed of roll: 13 m / sec; cooling speed of molten metal: about 10 5 K / sec.
FIG. 5 shows the results of X-ray diffraction of the ribbon. In this ribbon, a broad halo pattern was observed at 2θ ≒ 32 °, which indicates that the metal structure of the ribbon was an amorphous single-phase structure. found. Further, the ribbon had high toughness and could be bent 180 ° in close contact.
[0028]
Next, a foil material having a length of 100 mm, a width of 20 mm, and a thickness of 50 μm was cut out of an amorphous ribbon made of an Nd 70 Cu 26 Al 4 alloy.
[0029]
As the permanent magnet 1, an NdFeB-based permanent magnet having a length of 100 mm, a width of 20 mm, and a thickness of 6 mm (manufactured by Sumitomo Special Metals Co., Ltd., trade name NEOMAX-28UH, Curie point = 310 ° C.) was selected. As the laminate 3, a cold-rolled steel plate 2a for joining having a length of 40 mm, a width of 20 mm and a thickness of 0.4 mm and a cold-rolled steel plate 2b for a recess having a length of 35 mm, a width of 20 mm and a thickness of 0.2 mm are shown in FIG. And a rectangular parallelepiped laminate having a length of 40 mm, a width of 20 mm, and a length of 100 mm was selected. In this case, the area of the small joining surface 4 is 20 mm × 0.4 mm = 8 mm 2 , the depth of the recess 5 is 40 mm−35 mm = 5 mm, the width is 0.2 mm, and the length is 20 mm.
[0030]
As shown in FIG. 1, a brazing material 10 made of one foil material (thickness: 50 μm) or a brazing material 10 formed by laminating two or more foil materials on a bonding surface 7 of the laminate 3, The permanent magnet 1 is superimposed on the brazing material 10 with the bonding surface 9 facing downward, and the superimposed material is placed in a vacuum heating furnace, where a heating temperature T = 530 ° C. and a heating time h = 20 minutes. 2 and a cooling step consisting of furnace cooling were performed to obtain Examples 1 to 5 of bonded bodies 12 in which the permanent magnet 1 and the laminate 3 were bonded via the brazing material layer 9 as shown in FIG. . In this heat joining process, since the heating temperature T is T = 530 ° C. and exceeds the liquid phase generation temperature 474 ° C., the brazing material 10 is in the liquid phase state.
[0031]
Table 2 shows the thickness of the brazing material 10 (the thickness of the foil material 50 μm × the number of sheets used), the presence or absence of the excessive brazing material a on the outer surface of the permanent magnet 1, and the number of the permanent magnets in Examples 1 to 5 of the joined body 12. Indicates the presence or absence of cracks.
[0032]
[Table 2]
Figure 0003592397
[0033]
As is clear from Table 2, in Examples 1 to 5, no excessive brazing material a adhered to the outer surface of the permanent magnet 1 and no cracking of the permanent magnet 1 occurred, and the permanent magnet 1 and the laminated body 3 formed a brazing material. It was firmly joined via the layer 11. This is because, as described above, the use of the laminate 3 having the concave portions 5 prevents the exudation of the excessive brazing material and alleviates the thermal stress generated at the joint in the cooling step after the heating step. is there.
[0034]
For comparison, as a laminate having no concave portion, a cold-rolled steel plate having the same dimensions as the cold-rolled plate 2a for joining, that is, 40 mm in length, 20 mm in width, and 0.4 mm in thickness is laminated, and 40 mm in length, Using a rectangular parallelepiped laminate having a width of 20 mm and a length of 100 mm, five types of joined bodies were obtained in the same manner as described above. In these joints, there was no abnormality when the thickness of the brazing material was 50 to 500 μm, but when the thickness of the brazing material was set to 550 μm, the excess brazing material was eroded from between the two joining surfaces, and the permanent magnet The beads adhered to the outer surface in a ball shape, and as a result, cracks occurred in the permanent magnet.
[0035]
For comparison, five kinds of joined bodies were obtained in the same manner as described above using a block body made of carbon steel (JIS S35C) and having the same dimensions as the laminated body 3 instead of the laminated body 3. In these joints, cracks occurred in all the permanent magnets irrespective of the thickness of the brazing material, that is, 50 to 550 μm, and the cracks were particularly large in the peripheral portion of each permanent magnet where thermal stress was concentrated. . This is due to the large difference in the coefficient of thermal expansion between the permanent magnet and the block.
[0036]
The laminate 3 also has substantially the same coefficient of thermal expansion as the block, but since the above-described effect of relaxing the thermal stress is obtained by the laminate structure, the problem of using the block is avoided.
[Example 2]
A foil material having a length of 10 mm, a width of 10 mm, and a thickness of 50 μm was cut out of the amorphous ribbon made of the Nd 70 Cu 26 Al 4 alloy described in Example 1.
[0037]
As the permanent magnet 1, a NdFeB-based permanent magnet (manufactured by Sumitomo Special Metals Co., Ltd., trade name NEOMAX-28UH, Curie point = 310 ° C.) 1 having a length of 10 mm, a width of 10 mm, and a thickness of 3 mm was selected. As the laminate 3, a cold-rolled steel plate 2a for joining having a length of 15 mm, a width of 10 mm and a thickness of 0.3 mm and a cold-rolled steel plate 2b for a recess having a length of 13 mm, a width of 10 mm and a thickness of 0.1 mm are shown in FIG. (See FIG. 1) and a rectangular parallelepiped laminate having a length of 10.3 mm, a width of 10 mm, and a length of 15 mm was selected. In this case, the area of the small joint surface 4 is 10 mm × 0.3 mm = 3 mm 2 , the depth of the concave portion 5 is 15 mm−13 mm = 2 mm, the width is 0.1 mm, and the length is 10 mm.
[0038]
Then, a brazing material 10 made of one foil material (50 μm) or a brazing material 10 formed by laminating two or more foil materials on the bonding surface 7 of one laminated body 3 is placed on the brazing material 10 again. A permanent magnet 1 with one joining surface 9 facing downward, a brazing material 10 similar to the above on the other joining surface 9 of the permanent magnet 1, and another laminated body 3 on the brazing material 10. The superposed articles were produced by superposing each other with the bonding surface 7 facing downward. Next, the superimposed product was placed in a vacuum heating furnace, and a heating step of heating temperature T = 530 ° C. and a heating time h = 20 minutes, followed by a cooling step of furnace cooling, was performed, as shown in FIG. Examples 1 to 5 of joined bodies 12 in which the permanent magnets 1 were sandwiched by three laminated bodies 3 and the first and third bodies were joined via a brazing material layer 11 were obtained. In this heat joining process, the brazing material 10 is in a liquid phase state because the heating temperature T is T = 530 ° C. as described above. In these Examples 1 to 5, the attachment of the excessive brazing material a to the outer surface of the permanent magnet 1 and the cracking of the permanent magnet 1 did not occur. In addition, the through-holes 14 present in both the laminates 3 are used for connection with a chuck in a tensile test.
[0039]
For comparison, a cold rolled steel sheet having the same dimensions as the cold-rolled steel sheet 2a for joining, that is, 15 mm in length, 10 mm in width, and 0.3 mm in thickness, is laminated as a laminate having no concave portion, and the vertical length is 9. Using a rectangular parallelepiped laminate having a size of 9 mm, a width of 10 mm, and a length of 15 mm, Examples 1a to 5a of the joined body were obtained with the same dimensions as above. In these Examples 1a to 5a, in Example 5a using a brazing material having a thickness of 550 μm, the excessive brazing material was attached to the outer surface of the permanent magnet and the permanent magnet was cracked.
[0040]
Next, when a tensile test was performed at room temperature on Examples 1 to 5 and 1a to 5a, the results shown in Table 3 were obtained.
[0041]
[Table 3]
Figure 0003592397
[0042]
In Table 3, the tensile strengths of Examples 1 to 4 and Examples 1a to 4a are values obtained by breaking the brazing material layer. Comparing the corresponding Examples 1 and 1a, Examples 2 and 2a, Examples 3 and 3a, and Examples 4 and 4a, Examples 1a to 2a have higher bonding strengths, albeit slightly, than Examples 1-4. This is because Examples 1a to 4a have a larger area of the laminate bonding surface than Examples 1 to 4.
[0043]
When Examples 5 and 5a are compared, a large difference occurs in their bonding strength. This is because, since Example 5 is sound, the fracture occurs in the brazing material layer 11, whereas in Example 5a, the permanent magnet has a crack, and the fracture occurs in the permanent magnet. Due to that. Note that the bonding strengths of Examples 1 to 5 are substantially the same even at a high temperature, for example, at 150 ° C. under heating at room temperature.
[0044]
As shown in FIGS. 8 and 9, the joining technique is applied to the joining of the permanent magnet 1 to the laminated iron core (laminated body) 3 in the rotor 15 of the motor as a rotating machine, and has a high speed of 10,000 rpm or more. This enables the realization of a rotary motor.
[0045]
The plurality of steel plates (sheet materials) 2 constituting the laminated core 3 include a plurality of joining cold-rolled steel plates (joining plate materials) 2 a having at least a part of an outer peripheral surface (outer surface) arranged in the laminating direction as a small joining surface 4. At least a part of the outer peripheral surface (outer surface) 6 arranged in the laminating direction, in the illustrated example, is entirely a small joint surface so as to be sandwiched between all the adjacent cold-rolled steel sheets 2a for joining and to form the concave portion 5. 4 and a plurality of recessed cold-rolled steel plates (recess plate materials) 2b. Therefore, the plurality of joining surfaces 7 of the laminated core 3 are formed from the small joining surfaces 4 of the plurality of cold-rolled steel plates 2a for joining.
[0046]
In the figure, reference numeral 16 denotes a rotating shaft, which is spline-coupled to the laminated core 3, and one end of the laminated core 3 is welded 17 to the rotating shaft 16. In this case, the rotating shaft 16 may be press-fitted into the laminated core 3 via a spline.
[0047]
FIG. 10 shows another example of the laminated core 3. The plurality of joint surfaces 7 of the laminated iron core 3 are formed from the small joint surfaces 4 which are at least a part of the outer peripheral surface (outer surface) of the plurality of cold-rolled steel plates (sheet materials) 2 arranged in the laminating direction. Concave portions 5 are formed on both sides of the joint surface 7, and the concave portions 5 extend in the stacking direction adjacent to each small joint surface 4.
[0048]
When the permanent magnet 1 was joined to the laminated core 3 in the same manner as described above, no adhesion of the excessive brazing material a to the outer surface of the permanent magnet 1 and no cracking of the permanent magnet 1 occurred.
[0049]
The joining conditions are as follows. Laminated core: length 104 mm, thickness of cold-rolled steel sheet 0.4 mm, area of small joint surface 19 mm × 0.4 mm = 7.6 mm 2 , recess depth 3 mm, width 0.5 mm, length 104 mm; permanent Magnet: NdFeB-based permanent magnet having a length of 104 mm, a width of 20 mm and a thickness of 5 mm (manufactured by Sumitomo Special Metals Co., Ltd., trade name NEOMAX-28UH, Curie point = 310 ° C.); brazing material: amorphous Nd 70 Cu 26 Al 4 alloy The thickness of the brazing material was changed in four steps of 100, 200, 500, and 550 μm by laminating the foil materials, using a foil material having a length of 104 mm, a width of 20 mm, and a thickness of 50 μm. Means: Two springs with a pressing force of 1.5 kg are used per permanent magnet; heating temperature T: 530 ° C .; heating time h: 40 minutes.
The permanent magnet 1 is subjected to a magnetizing process after the heat bonding process.
[0050]
【The invention's effect】
According to the present invention, by using the means specified above, the two members having different thermal expansion rates can be used when the member having the smaller thermal expansion coefficient in the cooling step after the heating step is brittle. Also, it is possible to avoid the occurrence of cracks in the member and to perform strong heat bonding.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a superposition relationship between a permanent magnet, a brazing material, and a laminate.
FIG. 2 is a sectional view of a main part showing an example of a joined body.
FIG. 3 is an explanatory view showing a heat bonding mechanism.
FIG. 4 shows a main part of a Cu—Nd system phase diagram.
FIG. 5 is an X-ray diffraction diagram of a Nd 70 Cu 26 Al 4 alloy.
FIG. 6 is a perspective view showing another example of the overlapping relationship of the permanent magnet, the brazing material, and the laminate.
FIG. 7 is a perspective view showing another example of the joined body.
FIG. 8 is a cross-sectional view of the motor rotor in which a main part is enlarged, and its broken position is indicated by line 8-8 in FIG.
9 is a sectional view taken along the line 9-9 in FIG. 8, with a main part cut away.
FIG. 10 is a perspective view of a main part of a laminated iron core.
[Explanation of symbols]
1 Permanent magnet, alloy member (the other member)
2 Steel plate (plate material)
2a Steel plate for bonding (plate material for bonding)
2b Steel plate for recess (plate material for recess)
3 Laminated body, laminated iron core (one member)
4 Small joining surface 5 Recess 6 End surface, outer peripheral surface (outer surface)
7, 9 joining surface 10 brazing material 11 brazing material layer a excess

Claims (8)

熱膨脹率を異にする二種の部材(1,3)の接合面(9,7)間にろう材(10)を介在させ、加熱工程と、それに次ぐ冷却工程とを用いて両部材(1,3)を接合するに当り、前記冷却工程での熱膨脹率が大きい前記一方の部材(3)の接合面(7)を複数の小接合面(4)より形成して、それら小接合面(4)をろう材層(11)を介し前記他方の部材(1)の接合面(9)に接合し、また前記一方の部材(3)に、前記小接合面(4)に隣接する凹部(5)を形成して、前記加熱工程において前記ろう材(10)の過剰分(a)を前記凹部(5)に受容させることを特徴とする、熱膨脹率を異にする二種の部材の加熱接合方法。A brazing material (10) is interposed between the joining surfaces (9, 7) of the two members (1, 3) having different thermal expansion rates, and both members (1) are used by using a heating step and a cooling step subsequent thereto. , 3), the joining surface (7) of the one member (3) having a large coefficient of thermal expansion in the cooling step is formed from a plurality of small joining surfaces (4), and these small joining surfaces (4) are formed. 4) is joined to the joining surface (9) of the other member (1) via the brazing material layer (11), and the one member (3) is provided with a concave portion (4) adjacent to the small joining surface (4). (5) forming the heating step, wherein the excess (a) of the brazing material (10) is received in the recess (5) in the heating step; Joining method. 前記一方の部材は、複数の板材(2)よりなる積層体(3)であり、それら板材(2)は、積層方向に並ぶ外面の少なくとも一部を前記小接合面(4)とする複数の接合用板材(2a)と、隣接する両接合用板材(2a)間に挟着される共に前記凹部(5)を形成すべく、積層方向に並ぶ外面(6)の少なくとも一部を前記小接合面(4)よりも引込ませた複数の凹部用板材(2b)とよりなる、請求項1記載の熱膨脹率を異にする二種の部材の加熱接合方法。The one member is a laminate (3) composed of a plurality of plate members (2), and the plate members (2) have at least a part of an outer surface arranged in the laminating direction as the small joint surface (4). At least a part of the outer surface (6) arranged in the laminating direction is sandwiched between the joining plate (2a) and the adjacent joining plate (2a) to form the concave portion (5) by the small joining. 2. The method according to claim 1, comprising a plurality of recessed plate members (2b) which are recessed from the surface (4). 前記一方の部材は複数の板材(2)よりなる積層体(3)であり、その積層体(3)の接合面(7)は、複数の前記板材(2)における積層方向に並ぶ外面の少なくとも一部である小接合面(4)より形成され、前記凹部(5)は各小接合面(4)に隣接して積層方向に延びている、請求項1記載の熱膨脹率を異にする二種の部材の加熱接合方法。The one member is a laminate (3) composed of a plurality of plate members (2), and a bonding surface (7) of the laminate (3) is at least an outer surface of the plurality of plate members (2) arranged in the laminating direction. 2. The thermal expansion coefficient according to claim 1, wherein the small expansion surface is formed as a part, and the concave portion extends in the laminating direction adjacent to each of the small bonding surfaces. Heat bonding method for various members. 前記ろう材(10)は希土類元素系合金よりなる、請求項1,2または3記載の熱膨脹率を異にする二種の部材の加熱接合方法。4. The method as claimed in claim 1, wherein the brazing material is made of a rare earth element alloy. 前記ろう材(10)において、希土類元素はY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、YbおよびLuから選択される少なくとも一種であり、合金元素AEはCu、Al、Ga、Co、Fe、Ag、Ni、Au、Mn、Zn、Pd、Sn、Sb、Pb、Bi、GeおよびInから選択される少なくとも一種であって、その合金元素AEの含有量が5原子%≦AE≦50原子%である、請求項4記載の熱膨脹率を異にする二種の部材の加熱接合方法。In the brazing material (10), the rare earth element is at least one selected from the group consisting of Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu. element AE is at least one selected Cu, Al, Ga, Co, Fe, Ag, Ni, Au, Mn, Zn, Pd, Sn, Sb, Pb, Bi, Ge, and in, the alloy element AE 5. The method for heating and joining two members having different coefficients of thermal expansion according to claim 4, wherein the content of is 5 atomic% ≦ AE ≦ 50 atomic%. 前記積層体(3)における板材(2)は鋼板であり、前記冷却工程での熱膨脹率が小さい前記他方の部材(1)は、希土類元素を含む合金部材である、請求項2,3,4または5記載の熱膨脹率を異にする二種の部材の加熱接合方法。The plate member (2) in the laminate (3) is a steel plate, and the other member (1) having a small coefficient of thermal expansion in the cooling step is an alloy member containing a rare earth element. Or a method of heating and joining two members having different coefficients of thermal expansion according to 5. 前記希土類元素を含む合金部材は永久磁石(1)である、請求項6記載の熱膨脹率を異にする二種の部材の加熱接合方法。The method according to claim 6, wherein the alloy member containing the rare earth element is a permanent magnet (1). 前記積層体(3)は、回転機のロータ(15)における成層鉄心である、請求項2,3,4,5,6または7記載の熱膨脹率を異にする二種の部材の加熱接合方法。The method according to claim 2, 3, 4, 5, 6, or 7, wherein the laminate (3) is a laminated core in a rotor (15) of a rotating machine. .
JP09280595A 1995-04-18 1995-04-18 Heat bonding method for two kinds of members having different thermal expansion rates Expired - Fee Related JP3592397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09280595A JP3592397B2 (en) 1995-04-18 1995-04-18 Heat bonding method for two kinds of members having different thermal expansion rates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09280595A JP3592397B2 (en) 1995-04-18 1995-04-18 Heat bonding method for two kinds of members having different thermal expansion rates

Publications (2)

Publication Number Publication Date
JPH08290265A JPH08290265A (en) 1996-11-05
JP3592397B2 true JP3592397B2 (en) 2004-11-24

Family

ID=14064635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09280595A Expired - Fee Related JP3592397B2 (en) 1995-04-18 1995-04-18 Heat bonding method for two kinds of members having different thermal expansion rates

Country Status (1)

Country Link
JP (1) JP3592397B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100322239B1 (en) * 1998-09-18 2002-07-02 김충섭 Joining jig for joining dissimilar substrates
JP3724447B2 (en) * 2002-04-01 2005-12-07 日産自動車株式会社 Rotor structure and manufacturing method thereof
JP5469307B2 (en) 2008-01-23 2014-04-16 株式会社三井ハイテック Rotor laminated iron core
DE102013220562A1 (en) * 2013-10-11 2015-04-16 Robert Bosch Gmbh Assembly for an electrical machine, method for manufacturing an assembly and electrical machine with an assembly
JP6653974B2 (en) 2015-10-29 2020-02-26 株式会社小松製作所 Machine parts and manufacturing method thereof
JP6464114B2 (en) * 2016-05-20 2019-02-06 ファナック株式会社 Rotor structure of rotating electric machine and rotating electric machine

Also Published As

Publication number Publication date
JPH08290265A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
US6214480B1 (en) Article made by joining two members together, and a brazing filler metal
EP0786854B1 (en) Rotor for rotating machine, method of manufacturing same, and magnet unit
US5693203A (en) Sputtering target assembly having solid-phase bonded interface
JP3592397B2 (en) Heat bonding method for two kinds of members having different thermal expansion rates
JP3047752B2 (en) Manufacturing method of titanium clad steel sheet
JP2003136278A (en) Phosphor copper solder material, brazing sheet and manufacturing method thereof and passage structure of heat exchanger
JP3373950B2 (en) Heat bonding method of two kinds of members having different thermal expansion coefficients
JP3802586B2 (en) Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients
JP3592425B2 (en) Rare earth alloy brazing filler metal
JP3631808B2 (en) Rotor for rotating machine, method for manufacturing the rotor, and magnet unit
JP2000239837A (en) Method for separating sputtering target assembled body subjected to solid phase diffusion joining
JPH0565272B2 (en)
JP3645925B2 (en) Joined body and joining method of permanent magnet and different kind of member
JP3535256B2 (en) Rotor for rotating machine and method of manufacturing the same
JP3759198B2 (en) Joining method of workpieces
JP3382392B2 (en) Brazing material
JP2546589B2 (en) Method for producing titanium clad steel sheet by continuous hot rolling
JPH08309581A (en) Joined body comprising two members to be joined
JPH07110426B2 (en) Method for manufacturing tantalum / copper / stainless steel (carbon steel) clad
JPH01162502A (en) Method for lamination rolling of titanium or titanium alloy
JP3759186B2 (en) Brazing method for joined members
JP2005264316A (en) Aluminum alloy sheet for laminated metal mold
JP2001225176A (en) Producing method for hip joined body of beryllium and copper alloy and hip joined body
JPH0669630B2 (en) Method for producing titanium clad steel sheet using nickel as an intermediate contact material
JPH08118066A (en) Production of joined body consisting of permanent magnet having rust preventability and member of different material kind

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees