JPH08215861A - Joining method for amorphous alloy thin strip - Google Patents

Joining method for amorphous alloy thin strip

Info

Publication number
JPH08215861A
JPH08215861A JP4361495A JP4361495A JPH08215861A JP H08215861 A JPH08215861 A JP H08215861A JP 4361495 A JP4361495 A JP 4361495A JP 4361495 A JP4361495 A JP 4361495A JP H08215861 A JPH08215861 A JP H08215861A
Authority
JP
Japan
Prior art keywords
amorphous alloy
temperature
joined
joining
bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4361495A
Other languages
Japanese (ja)
Inventor
Junji Saida
淳治 才田
Yasusuke Tanaka
庸介 田中
Yasushi Tanaka
康司 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP4361495A priority Critical patent/JPH08215861A/en
Publication of JPH08215861A publication Critical patent/JPH08215861A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE: To obtain an amorphous bulk body with high density and high strength by joining amorphous alloy thin strips. CONSTITUTION: An amorphous alloy thin strip with a pressure of 30MPa or higher applied is heated and raised in temperature by energizing with a frequency of 100Hz-100kHz; then held for 1-20 minutes at a temperature 10-150 deg.C lower than the chrystallizing temperature; and mutually joined so as to obtain a bulk joined body. The amorphous alloy thin strip thus used contain 40-90 atomic % Fe, 50-90 atomic % Co or 80-90 atomic % Al. As a result, when joined under the conditions specified with the joining temperature as a reference, the amorphous alloy thin strips are joined with each other without causing interlayer separation or crystallization, improving the density and strength of the bulk body thus obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非晶質構造を維持した
ままの状態で非晶質合金薄帯を接合する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for joining an amorphous alloy ribbon while maintaining an amorphous structure.

【0002】[0002]

【従来の技術】非晶質合金は、合金溶湯を急冷凝固させ
て製造されるものであり、通常の溶解・鋳造法が採用で
きない。そのため、得られる非晶質合金の形態も、薄帯
或いは粉末状に限られる。このような形態からバルクを
得る手段としては、複数の薄帯を接合して一体化する方
法、粉末を焼結する方法等がある。焼結法では、結晶化
開始温度以下の温度で高圧下において非晶質合金粉末を
焼結することによってバルクを製造している。このと
き、粉末粒子の塑性変形及び構成元素の熱拡散によって
緻密化が進行する十分な高温に非晶質合金粉末を加熱す
ると、結晶化反応が進行し、得られた焼結体の物性が劣
化する。そのため、焼結温度を低く設定せざるをえず、
高密度及び高強度をもった焼結体が得られなかった。
2. Description of the Related Art Amorphous alloys are manufactured by quenching and solidifying a molten alloy, and the usual melting / casting method cannot be adopted. Therefore, the form of the obtained amorphous alloy is also limited to a ribbon or powder. As a means for obtaining a bulk from such a form, there are a method of joining and integrating a plurality of ribbons, a method of sintering powder, and the like. In the sintering method, a bulk is manufactured by sintering an amorphous alloy powder under a high pressure at a temperature equal to or lower than a crystallization start temperature. At this time, if the amorphous alloy powder is heated to a sufficiently high temperature that the densification proceeds due to the plastic deformation of the powder particles and the thermal diffusion of the constituent elements, the crystallization reaction proceeds and the physical properties of the obtained sintered body deteriorate. To do. Therefore, the sintering temperature must be set low,
A sintered body having high density and high strength could not be obtained.

【0003】非晶質合金薄帯を接合してバルク化する方
法では、接合時の温度が問題となる。一般に、低温での
接合は非常に困難であり、得られたバルク体も十分な強
度を確保できない。接合温度を高温に設定すると、結晶
化が生じ、得られたバルク体の物性を劣化させる。その
ため、樹脂等の接着剤を使用して非晶質合金薄帯を接着
している実状であり、バルク体の相対密度が非常に低
く、工業的な特性を満足するまでには至っていない。
In the method of joining amorphous alloy ribbons into a bulk, the temperature at the time of joining becomes a problem. Generally, joining at low temperature is very difficult, and the obtained bulk body cannot secure sufficient strength. When the joining temperature is set to a high temperature, crystallization occurs and the physical properties of the obtained bulk body are deteriorated. Therefore, the amorphous alloy ribbon is adhered using an adhesive such as a resin, and the relative density of the bulk body is very low, so that the industrial characteristics are not satisfied.

【0004】[0004]

【発明が解決しようとする課題】焼結法及び接合法の何
れにおいても、前述したように多くの問題がある。特に
結晶化開始温度以下の低温で成形を必須とする非晶質合
金材料では、非晶質合金本来の優れた特性が結晶化等に
よって損なわれがちであり、工業的な要求を満足する製
品を得ることが困難である。しかしながら、各種機能材
料に対するニーズが高まっている近年、バルク状の非晶
質合金部材についても同様に特性の優れたものが望まれ
ており、高周波通電などによりプラズマ放電現象を利用
したプラズマ放電接合法が注目されている。この方法で
は、短時間の接合が可能であり、材料に与える熱影響は
大幅に緩和される。また、薄帯間で発生するプラズマ等
によって表面酸化皮膜層が除去されるため、接合強度も
向上する。
As described above, there are many problems in both the sintering method and the joining method. In particular, for amorphous alloy materials that require molding at a temperature lower than the crystallization start temperature, the excellent characteristics inherent to the amorphous alloy tend to be impaired by crystallization, etc., and products that satisfy industrial requirements should be provided. Hard to get. However, in recent years, when the needs for various functional materials have increased, it is desired that bulk-shaped amorphous alloy members also have excellent characteristics. Therefore, a plasma discharge bonding method using a plasma discharge phenomenon by high-frequency energization or the like is desired. Is attracting attention. With this method, bonding for a short time is possible, and the thermal effect on the material is significantly reduced. Further, since the surface oxide film layer is removed by plasma or the like generated between the ribbons, the bonding strength is also improved.

【0005】しかし、一般にプラズマ放電接合では、電
流及び電圧を制御して材料を接合している。この点、非
晶質合金では、材料に応じて電気抵抗が異なる。そのた
め、たとえ同一の電圧を印加しても材料の昇温速度が異
なり、結果として接合温度を一定にすることが困難とな
る。更に、非晶質合金は、組成によって結晶化温度が大
きく異なり、しかも結晶化によって材料特性が著しく変
化するため、接合時に厳密な温度管理が必要とされる。
本発明は、このような要求に応えるべく案出されたもの
であり、非晶質合金の物性との関連で高周波接合の条件
を制御することにより、非晶質合金材料に対する熱影響
を極力排除し、短時間で複数の非晶質合金薄帯を効率よ
く接合された高密度及び高強度の接合体を得ることを目
的とする。
However, in general, in plasma discharge bonding, materials are bonded by controlling current and voltage. In this respect, the amorphous alloy has different electric resistance depending on the material. Therefore, even if the same voltage is applied, the temperature rising rate of the material is different, and as a result, it becomes difficult to keep the bonding temperature constant. Further, the crystallization temperature of an amorphous alloy greatly differs depending on the composition, and the material properties change remarkably due to crystallization, so strict temperature control is required at the time of joining.
The present invention has been devised to meet such a requirement, and by controlling the conditions of high frequency bonding in relation to the physical properties of the amorphous alloy, the thermal effect on the amorphous alloy material is eliminated as much as possible. Then, an object is to obtain a high-density and high-strength joined body in which a plurality of amorphous alloy ribbons are efficiently joined in a short time.

【0006】[0006]

【課題を解決するための手段】本発明の接合方法は、そ
の目的を達成するため、30MPa以上の圧力を加えて
いる非晶質合金薄帯を、周波数100Hz〜100kH
zの通電により加熱昇温し、結晶化温度より10〜15
0℃低い温度に非晶質合金薄帯を1〜20分保持するこ
とを特徴とする。非晶質合金薄帯には、Fe:40〜9
0原子%,Co:50〜90原子%又はAl:80〜9
0原子%を含むものが使用される。
In order to achieve the object, the joining method according to the present invention is applied to an amorphous alloy ribbon, to which a pressure of 30 MPa or more is applied, at a frequency of 100 Hz to 100 kHz.
The temperature is raised by heating by energization of z, and the temperature is 10-15
It is characterized in that the amorphous alloy ribbon is held at a temperature lower by 0 ° C. for 1 to 20 minutes. Fe: 40-9 in the amorphous alloy ribbon
0 atomic%, Co: 50 to 90 atomic% or Al: 80 to 9
Those containing 0 atom% are used.

【0007】[0007]

【作用】本発明者等は、高周波電流を供給して非晶質合
金薄帯を接合する際、投入する電流や電圧に代えて接合
温度に基づいて接合条件を制御するとき、接合体の特性
が均一になることを見い出した。本発明は、この知見を
ベースにして完成されたものであり、結晶化を起こすこ
となく、高密度及び高強度の非晶質合金バルクを得るの
に必要な最適条件を確立した。また、投入する電流の周
波数を適正に制御するとき、接合に消費されるエネルギ
ーの効率が向上し、表皮効果等によって接合時に薄帯間
の接合強度が高まり、しかも結晶相の析出が抑制される
ことを見い出した。この条件下で、接合時の圧力及び通
電時間を接合条件として特定することにより、出発時の
非晶質構造を替えることなく、高密度のバルク状接合体
が製造できることを解明した。
The present inventors have found that when joining an amorphous alloy ribbon by supplying a high-frequency current, when the joining conditions are controlled based on the joining temperature instead of the applied current or voltage, the characteristics of the joined body are It was found to be uniform. The present invention has been completed based on this finding, and has established the optimum conditions necessary for obtaining a dense and high-strength amorphous alloy bulk without causing crystallization. Further, when the frequency of the applied current is properly controlled, the efficiency of energy consumed for bonding is improved, the bonding strength between the ribbons is increased at the time of bonding due to the skin effect, and the precipitation of the crystal phase is suppressed. I found a thing. Under these conditions, it was clarified that a high-density bulk-like bonded body can be manufactured without changing the amorphous structure at the time of starting by specifying the bonding pressure and energization time as the bonding conditions.

【0008】接合される非晶質合金薄帯は、所定の内部
形状をもった型に充填した後、加圧下で所定の高周波電
流を供給することにより接合される。高周波電流の周波
数が100Hz以上であれば、一般に表皮効果といわれ
ている現象が発生し、主として薄帯の表面に電流が流れ
る。このとき、薄帯表面の接触抵抗や表面酸化物皮膜等
による抵抗のため、表面部分での発熱が大きくなり、接
合反応が促進される。この状態で加圧されていることか
ら、接合されたバルク体の相対密度が向上する。バルク
体の相対密度は、加圧力を30MPa以上に設定すると
き顕著に向上する。本発明に従った接合法は、材料全体
を均一に加熱して接合する従来法と異なり、非晶質合金
薄帯の表面部及び周辺部が集中的に発熱し、内部はほと
んど発熱しない。そのため、通電による発熱は、非晶質
合金薄帯の接合に効率よく消費され、通電時間を極めて
短時間に設定でき、非晶質構造を劣化させることがな
い。
The amorphous alloy ribbons to be joined are filled in a mold having a prescribed internal shape and then joined by supplying a prescribed high frequency current under pressure. If the frequency of the high-frequency current is 100 Hz or higher, a phenomenon generally called a skin effect occurs, and the current mainly flows on the surface of the ribbon. At this time, due to the contact resistance on the surface of the ribbon and the resistance due to the surface oxide film, the heat generation on the surface portion becomes large and the bonding reaction is accelerated. Since the pressure is applied in this state, the relative density of the joined bulk body is improved. The relative density of the bulk body is significantly improved when the applied pressure is set to 30 MPa or more. In the joining method according to the present invention, unlike the conventional method in which the entire material is uniformly heated and joined, heat is concentrated on the surface portion and the peripheral portion of the amorphous alloy ribbon, and almost no heat is generated inside. Therefore, the heat generated by energization is efficiently consumed for joining the amorphous alloy ribbons, the energization time can be set to an extremely short time, and the amorphous structure is not deteriorated.

【0009】また、急激な加熱及び放電によって非晶質
合金薄帯の表面にある酸化物皮膜が破壊され、活性度の
高い表面状態になる。急速加熱及び薄帯間の放電により
酸化物皮膜が破壊されることは、得られたバルク体を観
察したとき、接合界面に酸化物等の介在物がみられない
ことによって確認される。この点でも、接合反応が促進
され、接合強度の高いバルク体が得られる。しかも、加
圧状態で非晶質合金薄帯が接合されることから、得られ
た接合体の密度も向上する。投入電流の周波数は、接合
時のエネルギー効率を向上させ、表皮効果等によって接
合時に薄帯間の接合強度を高め、且つ結晶相の析出を抑
制するために、100Hz〜100kHzの範囲に定め
られる。100Hzに満たない周波数では、粒子間に発
生するプラズマ放電等が弱く、薄帯表面にある酸化皮膜
が十分に除去されない。その結果、薄帯間の接合反応が
促進されず、接合強度に劣る接合体が得られる。逆に1
00kHzを超える周波数では、特殊な設備を必要と
し、周辺の機器に電波障害等の悪影響を与える。
Further, the oxide film on the surface of the amorphous alloy ribbon is destroyed by the rapid heating and discharge, and the surface state becomes highly active. The fact that the oxide film is destroyed by the rapid heating and the discharge between the ribbons is confirmed by the fact that no inclusions such as oxides are observed at the bonding interface when the obtained bulk body is observed. Also in this respect, the bonding reaction is promoted and a bulk body having high bonding strength can be obtained. In addition, since the amorphous alloy ribbons are bonded under pressure, the density of the obtained bonded body is also improved. The frequency of the applied current is set in the range of 100 Hz to 100 kHz in order to improve the energy efficiency at the time of joining, increase the joining strength between the ribbons at the time of joining due to the skin effect, and suppress the precipitation of the crystal phase. If the frequency is less than 100 Hz, plasma discharge or the like generated between particles is weak and the oxide film on the surface of the ribbon cannot be sufficiently removed. As a result, the bonding reaction between the ribbons is not promoted, and a bonded body with poor bonding strength is obtained. Conversely 1
A frequency over 00 kHz requires special equipment and adversely affects peripheral equipment such as radio interference.

【0010】高周波通電に使用する装置としては、所定
の電力が出力可能な高周波電流発生装置がある。高電圧
で高電流を短時間供給するためには、たとえば所定電圧
に耐えるコンデンサ等に電気を充電し、充電した電力を
被接合材料である非晶質合金薄帯に放電する。或いは、
パルス電流発生器を使用して、高電圧で高電流を短時間
供給することも可能である。通電時には、得られる接合
体の相対密度を向上させるため、圧力30MPa以上で
非晶質合金薄帯を加圧することが必要である。この加圧
によって、表面酸化皮膜が除去され、且つジュール熱に
よって表面が加熱・軟化状態になっているため、非晶質
合金薄帯が相互に密に結合し、高密度の接合体となる。
加圧力が30MPa未満では、非晶質合金薄帯を相互に
押し付ける力が不足し、得られる接合体の密度が向上し
ない。
As a device used for high-frequency power supply, there is a high-frequency current generator capable of outputting a predetermined electric power. In order to supply a high current at a high voltage for a short time, for example, a capacitor that withstands a predetermined voltage is charged with electricity, and the charged power is discharged to an amorphous alloy ribbon which is a material to be joined. Alternatively,
It is also possible to supply a high current at a high voltage for a short time using a pulse current generator. At the time of energization, it is necessary to press the amorphous alloy ribbon at a pressure of 30 MPa or higher in order to improve the relative density of the obtained joined body. By this pressurization, the surface oxide film is removed, and the surface is heated and softened by Joule heat, so that the amorphous alloy ribbons are tightly bonded to each other to form a high-density bonded body.
When the applied pressure is less than 30 MPa, the force for pressing the amorphous alloy ribbons against each other is insufficient, and the density of the obtained joined body is not improved.

【0011】本発明に従って接合される非晶質合金薄帯
は、その形状に特段の制約を受けるものではない。接合
される薄帯間の電気抵抗は、必要とする発熱を得る上か
ら10mΩ以上が好ましい。電気抵抗が著しく低い場合
には、たとえばセラミックス等の高抵抗接合インサート
材を介在させ、或いは薄帯表面に高抵抗薄膜をつける手
段を採用することができる。材質的には、後述する実施
例から明らかなように、Fe:40〜90原子%,C
o:50〜90原子%又はAl:80〜90原子%を含
むものが良い。焼結雰囲気には、大気を使用することも
できるが、粉末粒子表面の酸化を抑制するために不活性
雰囲気,真空雰囲気等が好ましい。
The shape of the amorphous alloy ribbon joined according to the present invention is not particularly limited. The electrical resistance between the thin ribbons to be joined is preferably 10 mΩ or more from the viewpoint of obtaining the required heat generation. When the electric resistance is extremely low, it is possible to employ a means for interposing a high resistance joining insert material such as ceramics or for providing a high resistance thin film on the surface of the ribbon. As for the material, as is clear from the examples described later, Fe: 40 to 90 atom%, C
It is preferable to contain o: 50 to 90 atomic% or Al: 80 to 90 atomic%. Although air may be used as the sintering atmosphere, an inert atmosphere, a vacuum atmosphere or the like is preferable in order to suppress the oxidation of the powder particle surface.

【0012】[0012]

【実施例】【Example】

実施例1:各種非晶質合金薄帯から切り出された厚さ5
0μm及び10mm角の薄片100枚を工具鋼製の型の
内部に積層し、真空雰囲気にセットし、表1に示す条件
下で接合した。条件1〜8が本発明に従ったものであ
り、条件9〜13は本発明で規定した範囲から一つ又は
複数の条件が外れる例である。非晶質合金材料として
は、次に示すものを使用した(単位:原子%)。 Fe系 Fe90Zr10 Fe75Si1015 Fe65Si2510 Fe62Mo2018 Fe46Cr16Mo2018 Fe40Ni40146 Fe40Ni38Mo418 Fe73.5Si13.59 Cu1 Nb3 Co系 Co90Zr10 Co75Si1510 Co50Cr3020 Co70.5Fe4.5 Si1015 Co66Fe4 Ni1 Si1415 Al系 Al9010 Al85Ni510 Al84Ni10Ce4 Mg2 Al85Zr5 Ni10 Ni系 Ni90Zr10 Ni75Si817 Ni64Pd1620 Ni70Mo2010 Cu系 Cu60Zr40 Cu50Ti50 Mo系 Mo75Si520 Mo801010
Example 1: Thickness 5 cut from various amorphous alloy ribbons
100 pieces of 0 μm and 10 mm square thin pieces were laminated inside a tool steel mold, set in a vacuum atmosphere, and joined under the conditions shown in Table 1. Conditions 1 to 8 are in accordance with the present invention, and Conditions 9 to 13 are examples in which one or more conditions are out of the range specified in the present invention. The following materials were used as the amorphous alloy material (unit: atomic%). Fe-based Fe 90 Zr 10 Fe 75 Si 10 B 15 Fe 65 Si 25 B 10 Fe 62 Mo 20 C 18 Fe 46 Cr 16 Mo 20 C 18 Fe 40 Ni 40 P 14 B 6 Fe 40 Ni 38 Mo 4 B 18 Fe 73.5 Si 13.5 B 9 Cu 1 Nb 3 Co system Co 90 Zr 10 Co 75 Si 15 B 10 Co 50 Cr 30 C 20 Co 70.5 Fe 4.5 Si 10 B 15 Co 66 Fe 4 Ni 1 Si 14 B 15 Al system Al 90 Y 10 Al 85 Ni 5 Y 10 Al 84 Ni 10 Ce 4 Mg 2 Al 85 Zr 5 Ni 10 Ni System Ni 90 Zr 10 Ni 75 Si 8 B 17 Ni 64 Pd 16 P 20 Ni 70 Mo 20 C 10 Cu System Cu 60 Zr 40 Cu 50 Ti 50 Mo type Mo 75 Si 5 B 20 Mo 80 P 10 B 10

【0013】[0013]

【表1】 [Table 1]

【0014】得られたバルク体について、非晶質状態,
層間剥離,相対密度等を調査した。その結果、条件1〜
5,8で接合したものにあっては、何れの非晶質合金薄
帯から得られたバルク体であっても、層間剥離を起こす
ことなく、非晶質構造を維持しており且つ相対密度が9
5%以上であった。条件6,7で得られたバルク体は、
同様に層間剥離を起こすことなく、非晶質構造を維持し
ており、相対密度が90〜95%の範囲にあった。これ
に対し、条件9〜13で得られたバルク体は、相対密度
が90%に達せず、或いは結晶化が生じていた。この対
比から明らかなように、本発明で規定した範囲を満足す
る条件下で非晶質合金薄帯を接合するとき、90%以上
の相対密度を維持したままで高密度のバルク体が得られ
ることが判った。
Regarding the obtained bulk body, an amorphous state,
Delamination and relative density were investigated. As a result, condition 1
In the case of the bonded bodies of Nos. 5 and 8, the bulk structure obtained from any of the amorphous alloy ribbons maintains the amorphous structure without delamination and has a relative density. Is 9
It was 5% or more. The bulk body obtained under the conditions 6 and 7 is
Similarly, the amorphous structure was maintained without delamination, and the relative density was in the range of 90 to 95%. On the other hand, in the bulk body obtained under the conditions 9 to 13, the relative density did not reach 90%, or crystallization occurred. As is clear from this comparison, when joining the amorphous alloy ribbons under the conditions satisfying the range specified in the present invention, a high-density bulk body can be obtained while maintaining the relative density of 90% or more. I knew that.

【0015】実施例2:厚さ25μmで20mm角のF
75Si1015(原子%),Co72.5Si12.515(原
子%)及びAl85Ni510(原子%)の非晶質合金薄
帯100枚それぞれに高周波電流を供給して、薄帯が相
互に接合したバルク体を得た。接合条件は、圧力を30
0MPa,周波数を5kHz,放電時間を15分の一定
に保ち、接合温度が相対密度に与える影響を調査した。
なお、接合温度は、投入電気量により調整した。得られ
たバルク体の相対密度を、温度差(=結晶化温度−接合
温度)で整理したところ、図1に示す関係が成立してい
た。図1における評価は、実施例1と同じ基準を採用し
た。結晶化温度から接合温度の低下分が150℃より大
きいと接合体の相対密度を低下させ、逆に10℃未満で
あると結晶化が検出された。このことから、接合温度の
適正範囲は、温度差(=結晶化温度−接合温度)で10
〜150℃の範囲にあることが判る。また、より相対密
度の大きな接合体を得るためには、100℃以下の温度
差が好ましい。
Example 2 F of 20 mm square with a thickness of 25 μm
e 75 Si 10 B 15 (atomic%), Co 72.5 Si 12.5 B 15 (atomic%), and Al 85 Ni 5 Y 10 (atomic%) 100 amorphous alloy ribbons were respectively supplied with high frequency current, A bulk body was obtained in which the ribbons were joined together. Bonding conditions are pressure 30
The influence of the junction temperature on the relative density was investigated by keeping 0 MPa, the frequency 5 kHz, and the discharge time constant for 15 minutes.
The joining temperature was adjusted by the amount of electricity input. When the relative density of the obtained bulk body was arranged by the temperature difference (= crystallization temperature-junction temperature), the relationship shown in FIG. 1 was established. For the evaluation in FIG. 1, the same criteria as in Example 1 were adopted. When the decrease in the joining temperature from the crystallization temperature was higher than 150 ° C, the relative density of the joined body was lowered, and conversely, when it was lower than 10 ° C, crystallization was detected. Therefore, the proper range of the bonding temperature is 10 in terms of temperature difference (= crystallization temperature-bonding temperature).
It can be seen that the temperature is in the range of up to 150 ° C. Further, in order to obtain a bonded body having a higher relative density, a temperature difference of 100 ° C. or less is preferable.

【0016】実施例3:実施例2と同じ非晶質合金薄帯
を、結晶化温度より50℃低い温度になるまで通電加熱
し、バルク状の接合体を得た。そして、供給電流の周波
数と接合体の相対密度との関係を調査した。調査結果を
示す図2から、周波数が100Hz〜100kHzのと
きに、高密度のバルク状接合体が得られることが判る。
なかでも、周波数1〜100kHzの電流を供給したと
き、相対密度95%以上の高品質接合体が得られた。な
お、本実施例では実施例1と同じ基準で評価し、その他
の条件は実施例2と同じ条件を採用した。
Example 3 The same amorphous alloy ribbon as in Example 2 was electrically heated to a temperature lower by 50 ° C. than the crystallization temperature to obtain a bulk bonded body. Then, the relationship between the frequency of the supplied current and the relative density of the bonded body was investigated. It can be seen from FIG. 2 showing the investigation results that a high-density bulk-like bonded body can be obtained when the frequency is 100 Hz to 100 kHz.
Above all, when a current having a frequency of 1 to 100 kHz was supplied, a high quality bonded body having a relative density of 95% or more was obtained. In this example, the same criteria as in Example 1 were evaluated, and the other conditions were the same as in Example 2.

【0017】実施例4:実施例2と同じ非晶質合金薄帯
に圧力500MPaを加え、結晶化温度より30℃低い
接合温度となるように、周波数3kHzの電流を0.5
〜25分供給し、バルク状接合体を製造した。そして、
電流供給時間が接合体の相対密度に及ぼす影響を調査し
た。調査結果を示す図3にみられるように、電流供給時
間の適正範囲は1〜20分であり、より高密度の接合体
を得るためには3〜20分の通電時間が好ましいことが
判った。なお、本実施例では実施例1と同じ基準で評価
し、その他の条件は実施例2と同じ条件を採用した。
Example 4 A pressure of 500 MPa was applied to the same amorphous alloy ribbon as in Example 2, and a current having a frequency of 3 kHz was set to 0.5 so that the bonding temperature was 30 ° C. lower than the crystallization temperature.
It was supplied for -25 minutes to manufacture a bulk bonded body. And
The effect of current supply time on the relative density of the joint was investigated. As shown in FIG. 3 showing the investigation result, the proper range of the current supply time is 1 to 20 minutes, and it was found that the energization time of 3 to 20 minutes is preferable in order to obtain a higher density joined body. . In this example, the same criteria as in Example 1 were evaluated, and the other conditions were the same as in Example 2.

【0018】実施例5:実施例2と同じ非晶質合金薄帯
に、結晶化温度より70℃低い接合温度となるように、
周波数7kHzの電流を10分間供給し、バルク状接合
体を製造した。そして、非晶質合金薄帯に加えた圧力が
接合体の相対密度に与える影響を調査した。調査結果を
示す図4から、30MPa以上の圧力を加えることによ
り、得られた接合体の相対密度が向上していることが判
る。また、より高密度の接合体を得るためには、非晶質
合金を100MPa以上で加圧することが好ましいこと
が判る。なお、図4では、実施例1と同じ評価基準で接
合体を評価した。
Example 5: The same amorphous alloy ribbon as in Example 2 was used so that the bonding temperature was 70 ° C. lower than the crystallization temperature.
A current having a frequency of 7 kHz was supplied for 10 minutes to manufacture a bulk-like bonded body. Then, the influence of the pressure applied to the amorphous alloy ribbon on the relative density of the joined body was investigated. It can be seen from FIG. 4 showing the investigation result that the relative density of the obtained joined body is improved by applying a pressure of 30 MPa or more. Further, it is understood that it is preferable to press the amorphous alloy at 100 MPa or more in order to obtain a bonded body with higher density. In addition, in FIG. 4, the joined body was evaluated according to the same evaluation criteria as in Example 1.

【0019】実施例6:それぞれの厚みが25〜75μ
mで8mm角のFe系,Co系及びAl系非晶質合金薄
帯150枚を使用し、種々の添加元素及び組成範囲で加
圧力200MPaで保持し、結晶化温度より120℃低
い接合温度となるように周波数800ヘルツの電流を1
0分間供給し、バルク状の接合体を製造した。得られた
バルク体の非晶質状態及び相対密度を調査した。調査結
果を示す表3にみられるように、何れの主成分とする組
成範囲においても非晶質構造を保持したままで高密度の
バルク体が製造された。なお、表2では、実施例1と同
じ評価基準を採用した。
Example 6: Each thickness is 25 to 75 μm
Using 150 sheets of Fe-based, Co-based, and Al-based amorphous alloy ribbons of 8 mm square with m, held at a pressure of 200 MPa with various additive elements and composition ranges, and a bonding temperature 120 ° C lower than the crystallization temperature. 1 frequency current of 800 hertz
It was supplied for 0 minutes to produce a bulk bonded body. The amorphous state and relative density of the obtained bulk body were investigated. As shown in Table 3 showing the investigation results, a high-density bulk body was manufactured while maintaining the amorphous structure in any composition range containing the main components. In Table 2, the same evaluation criteria as in Example 1 were adopted.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】以上に説明したように、本発明において
は、接合温度を基準として特定される条件下で高周波通
電することにより、結晶化等の組織変化を生じることな
く各種の非晶質合金薄帯を短時間で接合し、バルク体を
得ている。得られたバルク体は、当初の非晶質構造を維
持しており、しかも高密度及び高強度をもっている。こ
のように本発明によるとき、非晶質本来の物性を呈する
バルク体を生産性良く安価に製造できる。得られた非晶
質合金のバルク体は、高強度が要求される部品を始めと
して、耐食性材料,磁性材料,意匠材料等の広範囲な分
野で使用される。
As described above, according to the present invention, various amorphous alloys can be formed without causing a structural change such as crystallization by applying a high frequency current under the conditions specified with reference to the joining temperature. A thin body is joined in a short time to obtain a bulk body. The obtained bulk body maintains the original amorphous structure and has high density and high strength. As described above, according to the present invention, a bulk body exhibiting the original physical properties of an amorphous material can be manufactured with good productivity and at low cost. The obtained amorphous alloy bulk body is used in a wide range of fields such as parts requiring high strength, corrosion resistant materials, magnetic materials, and design materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】 非晶質合金薄帯を接合してバルク体を製造す
る際、結晶化温度と接合温度との温度差が接合体の相対
密度に与える影響を表したグラフ
FIG. 1 is a graph showing the influence of the temperature difference between the crystallization temperature and the joining temperature on the relative density of the joined body when the amorphous alloy ribbon is joined to manufacture the bulk body.

【図2】 非晶質合金薄帯を接合してバルク体を製造す
る際、周波数が接合体の相対密度に与える影響を表した
グラフ
FIG. 2 is a graph showing the influence of frequency on the relative density of a bonded body when a bulk body is manufactured by bonding amorphous alloy ribbons.

【図3】 非晶質合金薄帯を接合してバルク体を製造す
る際、通電時間が接合体の相対密度に与える影響を表し
たグラフ
FIG. 3 is a graph showing the effect of current application time on the relative density of a bonded body when a bulk body is manufactured by bonding amorphous alloy ribbons.

【図4】 非晶質合金薄帯を接合してバルク体を製造す
る際、印加した圧力が接合体の相対密度に与える影響を
表したグラフ
FIG. 4 is a graph showing the influence of the applied pressure on the relative density of the bonded body when manufacturing the bulk body by bonding the amorphous alloy ribbons.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B23K 20/22 B23K 20/22 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location B23K 20/22 B23K 20/22

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 30MPa以上の圧力を加えている非晶
質合金薄帯を、周波数100Hz〜100kHzの通電
により加熱昇温し、結晶化温度より10〜150℃低い
温度に非晶質合金薄帯を1〜20分保持することを特徴
とする非晶質合金薄帯の接合方法。
1. An amorphous alloy ribbon which is heated at a frequency of 100 Hz to 100 kHz and heated to a temperature lower than the crystallization temperature by 10 to 150 ° C. by heating the amorphous alloy ribbon under a pressure of 30 MPa or more. For 1 to 20 minutes, a method for joining amorphous alloy ribbons.
【請求項2】 Fe:40〜90原子%,Co:50〜
90原子%又はAl:80〜90原子%を含む非晶質合
金薄帯を使用する請求項1記載の接合方法。
2. Fe: 40-90 atomic%, Co: 50-
The joining method according to claim 1, wherein an amorphous alloy ribbon containing 90 atomic% or Al: 80 to 90 atomic% is used.
JP4361495A 1995-02-08 1995-02-08 Joining method for amorphous alloy thin strip Withdrawn JPH08215861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4361495A JPH08215861A (en) 1995-02-08 1995-02-08 Joining method for amorphous alloy thin strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4361495A JPH08215861A (en) 1995-02-08 1995-02-08 Joining method for amorphous alloy thin strip

Publications (1)

Publication Number Publication Date
JPH08215861A true JPH08215861A (en) 1996-08-27

Family

ID=12668725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4361495A Withdrawn JPH08215861A (en) 1995-02-08 1995-02-08 Joining method for amorphous alloy thin strip

Country Status (1)

Country Link
JP (1) JPH08215861A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214704A (en) * 2007-03-06 2008-09-18 Tohoku Univ Amorphous metal or metal glass joined body
JP2010184283A (en) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd Joining method and joining structure for aluminum base material
JP2010184284A (en) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd Method and structure for joining aluminum base material
CN112590196A (en) * 2020-12-11 2021-04-02 中国空间技术研究院 3D printing method and device based on pulse current

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214704A (en) * 2007-03-06 2008-09-18 Tohoku Univ Amorphous metal or metal glass joined body
JP2010184283A (en) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd Joining method and joining structure for aluminum base material
JP2010184284A (en) * 2009-02-13 2010-08-26 Nissan Motor Co Ltd Method and structure for joining aluminum base material
CN112590196A (en) * 2020-12-11 2021-04-02 中国空间技术研究院 3D printing method and device based on pulse current

Similar Documents

Publication Publication Date Title
EP3436618B1 (en) Sputtering target assembly having a graded interlayer and methods of making
CN104975264B (en) Sputtering target for magnetic recording film and method for producing same
CN110257679B (en) Preparation method of molybdenum-based alloy coating
JP4873544B2 (en) Manufacturing method of joined body
WO2004011696A1 (en) Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
JPH08215861A (en) Joining method for amorphous alloy thin strip
JPH07178568A (en) Electrode for resistance welding and its manufacture
AU2020101497A4 (en) Molybdenum-based alloy coating and substrate having the alloy coating
JP3947918B2 (en) Metal sintered body and method for producing the same
JP3441197B2 (en) Paste joining material for brazing
JPH08192278A (en) Method for joining thin strip of amorphous alloy
EP0723031B1 (en) High-density bulky body of amorphous alloy excellent in strength and magnetic property and joining method for manufacturing thereof
JP3592397B2 (en) Heat bonding method for two kinds of members having different thermal expansion rates
JPH08193203A (en) Method for sintering amorphous alloy powder
JP3802586B2 (en) Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients
JPS62188707A (en) Hard facing method for integrally forming sintered hard layer on surface of ferrous metallic sheet
GB2093386A (en) Magnetic head
JPH0978108A (en) Manufacture of amorphous alloy porous body
JP2003001302A (en) Production method for aluminum-dispersed reinforced copper strip
JPH0885803A (en) Method of sintering amorphous alloy
JPH01111303A (en) Manufacture of rare earth magnet
JP2000328240A (en) Sputtering target for forming magneto-optical recording medium film and its production
JPH0885802A (en) Method of sintering refractory material
JP3382392B2 (en) Brazing material
JPH08112680A (en) Method for joining two kinds of members varying in coefficient of thermal expansion by heating

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507