JPH05182851A - Manufacture of rare earth elements-fe-b magnet - Google Patents

Manufacture of rare earth elements-fe-b magnet

Info

Publication number
JPH05182851A
JPH05182851A JP3159799A JP15979991A JPH05182851A JP H05182851 A JPH05182851 A JP H05182851A JP 3159799 A JP3159799 A JP 3159799A JP 15979991 A JP15979991 A JP 15979991A JP H05182851 A JPH05182851 A JP H05182851A
Authority
JP
Japan
Prior art keywords
hot working
capsule
metal capsule
alloy ingot
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3159799A
Other languages
Japanese (ja)
Inventor
Masanori Azuma
正則 東
Nobutomo Masuda
信友 益田
Yoichi Takahashi
洋一 高橋
Takeshi Hasegawa
猛 長谷川
Tsuguaki Oki
継秋 大木
Tsukasa Yuri
司 由利
Atsushi Hanaki
敦司 花木
Eiji Iwamura
栄治 岩村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3159799A priority Critical patent/JPH05182851A/en
Publication of JPH05182851A publication Critical patent/JPH05182851A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PURPOSE:To search for manufacturing requirement to enhance magnetic properties in terms of hot working which uses metal capsules. CONSTITUTION:An alloy cast ingot, which contains at least a rare earth element, Fe and B, is sealed in a metal capsule. The alloy ingot is subjected to hot working at a specified hot working temperature ranging from 800 to 1100 deg.C in a state where the ingot contains liquid phase, and the hot working is carried out at a total working rate of above 70%. Furthermore, there is adopted a metal capsule whose strength exceeds 10kg/mm<2> at the working temperature, which forms a high orientation alloy structure. It is also more effective to select appropriate types of rare earth elements and addition elements, to add a water-cooling process during hot working, to add heat treatment during hot working, to specify the thickness of the capsule and to use a release agent.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は配向性の優れた合金組織
を有する希土類元素−Fe−B系磁石の製造方法に関
し、詳細には希土類元素含有合金材料から形成される鋳
塊を金属カプセル内に封入して熱間加工を行なうに際
し、該カプセル強度等を規定することにより、磁気特性
の優れた希土類永久磁石を製造する方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth element-Fe-B magnet having an alloy structure with excellent orientation, and more specifically, to a cast ingot formed from a rare earth element-containing alloy material in a metal capsule. The present invention relates to a method for producing a rare earth permanent magnet having excellent magnetic characteristics by defining the capsule strength and the like when performing hot working by encapsulating in.

【0002】[0002]

【従来の技術】フェライト磁石およびアルニコ磁石に次
ぐ第3の永久磁石として、希土類磁石が注目を集めてい
る。この希土類磁石は電気製品や精密機器類の小型化や
高精度化に寄与し得る優れた磁気的性能を発揮するもの
と期待され、物性研究面および生産面共に活発な進展を
見せている。
2. Description of the Related Art Rare earth magnets have been attracting attention as a third permanent magnet after ferrite magnets and alnico magnets. This rare earth magnet is expected to exhibit excellent magnetic performance that can contribute to miniaturization and high precision of electric products and precision instruments, and is actively making progress in both physical property research and production.

【0003】中でも近年特に期待されているのは希土類
元素−Fe−B系例えばNd−Fe−BやPr−Fe−
B等の永久磁石であり、最近に至ってCuやAgを第4
番目の構成元素として加えることや、それ以外に更に他
の微量添加元素を加えることも検討されている。本発明
の対象とする永久磁石組成はそれらすべてのケースを含
むほか、Ga,In,Sn等を含有することもあり、そ
の詳細については後述するが、以下の説明においては希
土類元素−Fe−B系(以下RE−Fe−B系磁石と略
称する)の3元系磁石を便宜上代表的に取上げて述べる
こととする。
Of particular interest in recent years is the rare earth element-Fe-B system such as Nd-Fe-B or Pr-Fe-.
It is a permanent magnet such as B, and has recently come to contain Cu and Ag in the fourth
The addition of the element as the second constituent element, and addition of other trace elements in addition to the above are also being considered. The permanent magnet composition targeted by the present invention includes all of these cases and may also contain Ga, In, Sn, etc., the details of which will be described later, but in the following description, rare earth element-Fe-B. For convenience sake, a ternary magnet of a system (hereinafter, simply referred to as RE-Fe-B system magnet) will be representatively described.

【0004】RE−Fe−B系磁石の製造方法として
は、当初次の二方法が検討された。第1の方法は焼結法
であるが、この方法には、焼結工程に先立って合金の
粉末化処理が必要であること、粉末状であるため酸化
を受け易く、焼結体中に持込まれる酸素が磁気的性能に
悪影響を与えること、焼結時に添加される成形助剤に
基づく炭素分の混入によって磁気的性能が低下するこ
と、焼結前の生成形体は低強度であり、ハンドリング
性が悪いこと、といった幾つかの欠点がある為、RE−
Fe−B系磁石に期待されている特性が十分に発揮され
るには至っていない。
The following two methods were initially studied as the method for producing the RE-Fe-B magnet. The first method is a sintering method, but this method requires powdering of the alloy prior to the sintering step, and since it is powdery, it is susceptible to oxidation and is brought into a sintered body. Oxygen has a negative effect on the magnetic performance, the magnetic performance deteriorates due to the incorporation of carbon content from the molding aids added during sintering, the green body before sintering has low strength, and is easy to handle. There are some drawbacks such as badness, so RE-
The characteristics expected of the Fe-B magnet have not been fully exhibited.

【0005】第2の方法は急冷薄片を作った後熱可塑性
樹脂等を用いてボンド磁石とする方法であり、上記欠点
を伴なわない代り、生産性が低い、原理的に等方性
磁石しか得られず、従って残留磁束密度と保磁力の積で
示される最大エネルギー積[以下(BH)max で表わ
す]が低く、角形性(S.Q.)も良くない、といった
欠点が生じる。そこで積極的に異方性化するための手段
として、急冷薄片を2段階ホットプレス処理(機械的配
向処理)に付すことも考えられた。しかし生産性が更に
低いものとなるため、量産の必要性を考えると現実的な
方法ではない。
The second method is a method of forming a quenched thin piece and then forming a bonded magnet by using a thermoplastic resin or the like. Instead of the above-mentioned drawbacks, only a low productivity, in principle isotropic magnet is used. Therefore, the maximum energy product [hereinafter represented by (BH) max] represented by the product of the residual magnetic flux density and the coercive force is low, and the squareness (SQ) is not good. Therefore, as a means for positively anisotropy, it has been considered to subject the quenched thin piece to a two-step hot press treatment (mechanical orientation treatment). However, this is not a practical method considering the necessity of mass production, since the productivity will be lower.

【0006】そこで第3の方法として、鋳造された合金
に熱間加工(圧延,鍛造,押出し等)を加え、結晶粒の
微細化を達成して保磁力の増大を実現すると共に、結晶
軸を特定の方向に並べて磁気的な異方化を画るという手
段が開発された。
Therefore, as a third method, hot working (rolling, forging, extrusion, etc.) is applied to the cast alloy to achieve the refinement of the crystal grains to increase the coercive force and the crystal axis. A means has been developed for lining up in a specific direction to draw magnetic anisotropy.

【0007】[0007]

【発明が解決しようとする課題】上記熱間加工を行なう
にしても、合金鋳塊の熱間加工によって結晶粒を微細化
して保磁力の向上に努めると共に、機械的配向による磁
気的異方性の向上を図るには、鋳塊中に液相が生成する
ほどの高熱条件の下で熱間圧延を行なう必要がある。し
かしながらこの様な高熱を与え合金鋳塊を言わば半溶融
状態にして熱間圧延を行なおうとすれば、合金鋳塊が圧
延ロールの表面に融着し、操業不能に至る。そこで合金
鋳塊をそれよりは高融点の素材からなる金属カプセルに
封入して両者を分離しておくことが考えられた。
Even if the hot working is performed, the alloy ingot is hot worked to refine the crystal grains to improve the coercive force and the magnetic anisotropy due to the mechanical orientation. In order to improve the hot rolling, it is necessary to carry out hot rolling under a high heat condition such that a liquid phase is generated in the ingot. However, if the alloy ingot is subjected to such a high melting state in a so-called semi-molten state and hot rolling is performed, the alloy ingot is fused to the surface of the rolling roll, and the operation becomes impossible. Therefore, it has been considered that the alloy ingot is enclosed in a metal capsule made of a material having a higher melting point than that of the alloy ingot to separate the two.

【0008】本発明は、金属カプセルを用いる熱間加工
において、磁気特性を更に向上させる為の製造要件を探
索して完成されたものである。
The present invention was completed by searching for manufacturing requirements for further improving magnetic properties in hot working using metal capsules.

【0009】[0009]

【課題を解決する為の手段】上記研究の結果完成された
本発明の方法は、少なくとも希土類元素,FeおよびB
を含有する合金鋳塊を金属カプセル内に封入した状態で
熱間加工する工程を含む、RE−Fe−B系磁石の製造
方法において、熱間加工温度を800 〜1100℃として前記
合金鋳塊が液相を含む状態で熱間加工を行なうと共に、
このときの総加工率が70%以上となる様に熱間加工を施
すこととし、且つ上記加工温度における強度が10kg/mm2
以上の金属カプセル材を使用することによって、高配向
性合金組織を形成する点に要旨を有するものである。
The method of the present invention, which has been completed as a result of the above-mentioned research, has at least a rare earth element, Fe and B.
In a method for producing a RE-Fe-B magnet, which comprises a step of hot working an alloy ingot containing a metal capsule, the alloy ingot having a hot working temperature of 800 to 1100 ° C. While performing hot working in a state containing a liquid phase,
At this time, hot working is performed so that the total working rate is 70% or more, and the strength at the working temperature is 10 kg / mm 2
The point is to form a highly oriented alloy structure by using the above metal encapsulant.

【0010】これによって高配向性合金組織を形成する
ことに成功し、ここに提供されるRE−Fe−B系磁石
は優れた磁気的特性を発揮する。また合金鋳塊として、
PrおよびNdから選ばれる1種以上の希土類元素、F
eおよびBを含有する他、Ga,InおよびSnよりな
る群から選択される1種以上の元素を必須成分として含
有する合金鋳塊を用い、且つ熱間加工の任意の時期にカ
プセル表面を水冷することも有効であり、こうした要件
を付与することによって、本発明の効果をより有効に発
揮させることができる。
As a result, a highly oriented alloy structure was successfully formed, and the RE-Fe-B magnet provided here exhibits excellent magnetic properties. Also, as an alloy ingot,
One or more rare earth elements selected from Pr and Nd, F
In addition to containing e and B, an alloy ingot containing at least one element selected from the group consisting of Ga, In and Sn as an essential component is used, and the capsule surface is water-cooled at any time during hot working. It is also effective to do so, and by imparting such requirements, the effects of the present invention can be more effectively exhibited.

【0011】更に熱間加工が完了した後、800〜11
00℃で熱処理を施し、その後に更に400〜600℃
で熱処理することも有効であり、この様な工程を付加す
ることによって磁気特性を更に向上させることができ
る。
After the hot working is completed, 800 to 11
Heat treatment at 00 ℃, then 400-600 ℃
It is also effective to heat-treat, and the magnetic characteristics can be further improved by adding such a step.

【0012】本発明は上述の如く、合金鋳塊を、所定の
強度を有する金属カプセル内に封入して熱間加工するこ
とを必須要件とするものであるが、金属カプセルによる
効果を最も有効に発揮させる為には、金属カプセルの上
下の各板厚は圧延仕上げ厚みにして0.5 〜5mmとなる様
にして熱間加工するのが好ましい。
As described above, the present invention makes it essential to enclose the alloy ingot in a metal capsule having a predetermined strength and perform hot working. However, the effect of the metal capsule is most effective. In order to exert the effect, it is preferable to perform hot working so that the upper and lower plate thicknesses of the metal capsules are 0.5 to 5 mm as the rolling finish thickness.

【0013】尚本発明で用いる金属カプセルの材質とし
ては、ステンレス鋼,高マンガン鋼または炭素鋼等のい
ずれをも用いることができるが、ステンレス鋼や高マン
ガン鋼の様に強度の高い金属材を用いる場合は水冷をせ
ずとも十分に必要とする強度が得られるが、炭素鋼の様
に比較的強度の低い金属材を用いる場合は水冷をして強
度を高めることが効果的である。またいずれの金属材を
用いるにしても、ボロンナイトライドおよび薄板状のAl
2O3 −SiO2複合酸化物の剥離剤を金属カプセルと合金鋳
塊の間に介在させることは有効であり(具体的にはボロ
ンナイトライドを塗布した後薄板状のAl2O3 −SiO2複合
酸化物で包む)、これによって合金鋳塊と金属カプセル
の反応が回避され熱間加工後に良好な形状の磁石材が容
易に取り出せる。
As the material of the metal capsule used in the present invention, any of stainless steel, high manganese steel, carbon steel and the like can be used, but a metal material having high strength such as stainless steel or high manganese steel is used. When used, sufficient strength can be obtained without water cooling, but when a metal material having relatively low strength such as carbon steel is used, it is effective to increase the strength by water cooling. Whichever metal material is used, boron nitride and thin plate Al
It is effective to interpose a release agent for the 2 O 3 -SiO 2 complex oxide between the metal capsule and the alloy ingot (specifically, after applying boron nitride, a thin plate-shaped Al 2 O 3 -SiO 2 (2 ) Wrap with complex oxide), which avoids the reaction between the alloy ingot and the metal capsule, and makes it possible to easily take out a magnet material having a good shape after hot working.

【0014】水冷をする時期については限定されず、前
述の如く熱間加工の任意の時期に行なえばよいが、最も
効果的な時期は熱間加工の直前であって、且つその条件
は「合金鋳塊を封入した金属カプセルを加熱後、0〜30
℃の水で金属カプセルの板厚1mm当たり0.5 〜3秒冷却
する」ことである。
The time of water cooling is not limited, and it may be performed at any time of hot working as described above, but the most effective time is immediately before hot working and the condition is "alloy." After heating the metal capsule containing the ingot, 0-30
Cooling with water at 0 ° C for 0.5 to 3 seconds per 1 mm of metal capsule plate thickness.

【0015】[0015]

【作用】本発明は上述の如く構成されるが、要するに、
金属カプセルの強度を規定することによって、カプセル
内部の磁石材の加工変形を大きくして磁石材の結晶配向
を増し、高(BH)max 化を図ったものである。本発明
のRE−Fe−B系磁石を構成する合金組成について説
明する。
The present invention is constructed as described above, but in short,
By defining the strength of the metal capsule, the work deformation of the magnet material inside the capsule is increased, the crystal orientation of the magnet material is increased, and the high (BH) max is achieved. The alloy composition of the RE-Fe-B magnet of the present invention will be described.

【0016】まず希土類元素としては、Yの他、La,
Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,D
y,Ho,Er,Tm,YbおよびLuといったランタ
ン系列希土類元素が汎用されるが、必要であればアクチ
ニウム系列元素を利用することもでき、これらの中から
1種または2種以上を組合わせて用いる。これらのうち
特に有効なものは、Prおよび/またはNdである。
First, as rare earth elements, in addition to Y, La,
Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, D
Lanthanum series rare earth elements such as y, Ho, Er, Tm, Yb and Lu are commonly used, but if necessary, actinium series elements can be used, and one or more of them can be used in combination. To use. Particularly effective among these are Pr and / or Nd.

【0017】本発明のRE−Fe−B系磁石は、上記希
土類元素およびBの他、残部は実質的にFeであるが、
Feの一部に替えてGa,In,Sn,Co,Al,C
u,Ag,Nb,V等を含有することも効果的である。
特にGa,InおよびSnよりなる群から選択される1
種以上を含有させることは、磁気特性の向上に極めて有
効である。即ちGa,Sn,In等の添加は、熱間加工
時にR2−Fe14−B(原子比、例えばPr2Fe14B)
からなる第1相(以下、単に第1相と呼ぶことがある)
の周囲にREリッチの薄膜相乃至粒界相を形成し、それ
による効果として圧延中に第1相の結晶方位が極めて良
く揃い、磁束密度(Br)や保磁力(iHc)の向上に
寄与する。またCoは磁性の温度特性改善のために効果
があり、Alは保磁力の低下を抑制する効果があり、C
uは保磁力を上昇させる効果があり、Ag,Nb,V等
は組織を微細化する効果がある。
In the RE-Fe-B system magnet of the present invention, the rest is substantially Fe in addition to the above-mentioned rare earth element and B,
Ga, In, Sn, Co, Al, C instead of part of Fe
It is also effective to contain u, Ag, Nb, V and the like.
In particular, 1 selected from the group consisting of Ga, In and Sn
The inclusion of one or more species is extremely effective in improving the magnetic properties. That is, the addition of Ga, Sn, In, etc. is such that R 2 —Fe 14 —B (atomic ratio, for example, Pr 2 Fe 14 B) is added during hot working.
The first phase consisting of (hereinafter sometimes simply referred to as the first phase)
A RE-rich thin film phase or grain boundary phase is formed around the alloy, and as a result, the crystal orientation of the first phase is extremely well aligned during rolling, which contributes to the improvement of magnetic flux density (Br) and coercive force (iHc). .. Further, Co has an effect of improving temperature characteristics of magnetism, Al has an effect of suppressing a decrease in coercive force, and C
u has the effect of increasing the coercive force, and Ag, Nb, V, etc. have the effect of refining the structure.

【0018】本発明に係るRE−Fe−B系磁石におけ
る各元素の組成比については格別の限定を受けないが、
一般的には下記の基準に従って選定することが推奨され
る。希土類元素の組成範囲は、単独または合計で10〜35
重量%が適当であり、10重量%未満ではα鉄と同一構造
の立方晶組織となってiHcの低下等を招き、良好な磁
気的特性は得られない。また熱間加工性が低下し、熱間
加工時に割れを生じ易くなる。一方上限については35重
量%を超えると、REリッチ相の過剰や第1相体積率の
不足等を招き、これが磁束密度の低下等となって現わ
れ、良好な磁気的特性を発揮することができなくなる。
The composition ratio of each element in the RE-Fe-B system magnet according to the present invention is not particularly limited,
Generally, it is recommended to select according to the following criteria. The composition range of rare earth elements is 10 to 35 in total or in total.
An appropriate amount is 10% by weight, and if it is less than 10% by weight, a cubic crystal structure having the same structure as that of α-iron will be formed, resulting in lowering of iHc, and good magnetic properties cannot be obtained. Further, the hot workability is deteriorated, and cracks are likely to occur during hot working. On the other hand, when the upper limit is more than 35% by weight, the RE-rich phase becomes excessive and the volume fraction of the first phase becomes insufficient, which appears as a decrease in magnetic flux density, and good magnetic properties can be exhibited. Disappear.

【0019】Bは0.8 〜1重量%が好ましく、0.8 重量
%未満では第1相体積率の不足が生じ、磁束密度の低下
を招く。他方上限については、磁気特性を担わないRE
1−Fe4−B4相の出現によるiHcの低下を防止する
という観点から1重量%を目安とすればよい。
B is preferably 0.8 to 1% by weight, and if it is less than 0.8% by weight, the volume fraction of the first phase is insufficient and the magnetic flux density is lowered. On the other hand, regarding the upper limit, RE that does not bear magnetic characteristics
1 wt% from the viewpoint of preventing a decrease in iHc due to the emergence of 1 -Fe 4 -B 4 phase may be a standard.

【0020】本発明に係る磁石は、上記必須成分の他、
残部は基本的にはFeおよび不可避不純物からなる。ま
たFeの一部に替えてGa,In,Sn等の元素を含有
させることが特に効果的であることは上述した通りであ
るが、これらを添加する場合には総和で0.2 〜0.8 重量
%とするのが好ましく、0.2 重量%未満では(Ga,S
n,In)含有Rリッチ相が少なくなり、第1相の結晶
方位配向の不足が発生する。一方0.8 重量%を超える
と、(Ga,Sn,In)含有REリッチ相の過剰や前
記第1相の体積率の不足を生じ、磁束密度の低下を招
く。
The magnet according to the present invention, in addition to the above essential components,
The balance basically consists of Fe and inevitable impurities. As described above, it is particularly effective to contain elements such as Ga, In and Sn in place of part of Fe, but when these are added, the total amount is 0.2 to 0.8% by weight. If less than 0.2% by weight (Ga, S
The n-, In-containing R-rich phase is reduced, and the crystal orientation of the first phase is insufficient. On the other hand, when it exceeds 0.8% by weight, excess of (Ga, Sn, In) -containing RE rich phase and insufficient volume ratio of the first phase are caused, resulting in reduction of magnetic flux density.

【0021】尚、従来の粉末焼結磁石でGaを添加した
例は報告されているが、2重量%程度添加しないとiH
c≧15KOe が得られていなかった。またSn添加の粉末
焼結磁石も報告されているが、この場合には焼結温度を
下げる為に添加されており、iHcを上げる為にDyが
複合添加されており、更に粒界の磁気特性を高めるAl
も添加されている。即ち、本願発明におけるGa,I
n,Sn等の適正な総添加量0.2 〜0.8 重量%程度で
は、これまでの粉末焼結材では充分な効果が得られてい
なかったのである。
It has been reported that Ga has been added to a conventional powder sintered magnet, but if it is not added in an amount of about 2 wt.
c ≧ 15 KOe was not obtained. Also, a powder sintered magnet containing Sn has been reported, but in this case, it is added to lower the sintering temperature, Dy is added in combination to increase iHc, and the magnetic properties of grain boundaries are further added. Which enhances
Has also been added. That is, Ga, I in the present invention
With an appropriate total addition amount of n, Sn, etc. of about 0.2 to 0.8% by weight, sufficient effects have not been obtained with the conventional powder sintered materials.

【0022】これに対し、本願発明では、前述し、また
後に詳述する製造工程を加えることによって、上記程度
の添加範囲であってもその効果が最大限に発揮されるの
である。この様に、Ga,In,Sn等による添加効果
を最大限に発揮させるのが、本発明の特徴の1つでもあ
る。
On the other hand, in the present invention, by adding the manufacturing steps described above and in detail later, even if the addition range is within the above range, the effect is maximized. Thus, it is one of the features of the present invention that the additive effect of Ga, In, Sn, etc. is maximized.

【0023】上記の様な組成からなる合金鋳塊は金属カ
プセルに収納して熱間加工されるが、本発明の熱間加工
は前記合金鋳塊中に液相を生成する程の高温で行なわれ
る事に鑑み、金属カプセルとしては、合金鋳塊より高融
点の材料、例えば融点1500℃以上の軟鋼、構造用鋼、更
にはステンレス鋼や高合金鋼等が使用される。また本発
明では、後記実施例にも示す様に、加熱温度における金
属カプセルの強度を10kg/mm2以上とする必要がある。こ
れは10kg/mm2以下では、合金鋳塊の方が金属カプセルよ
りも強度が高くなり、熱間加工時に金属カプセルの方が
変形が進み、結晶の配向を良好にするといわれている静
水圧成分が小さくなるためである。従ってこうした観点
からすれば、ステンレス鋼や高マンガン鋼の様に強度が
十分に高い材質を金属カプセルに用いるのがよい。但
し、炭素鋼の様に強度の低い材質を金属カプセルとして
用いても、後述する水冷工程を付加することによって、
加工に必要な十分な強度を達成することができる。尚ス
テンレス鋼や高マンガン鋼を用いる場合であっても、水
冷工程を付加してもよいが、冷却が過度になると割れが
発生するという不都合が生じることがあり、水冷はでき
るだけ必要最小限にとどめるべきである。
The alloy ingot having the composition as described above is housed in a metal capsule and hot-worked. The hot-working of the present invention is carried out at such a high temperature that a liquid phase is formed in the alloy ingot. In view of the above, as the metal capsule, a material having a higher melting point than the alloy ingot, for example, mild steel having a melting point of 1500 ° C. or higher, structural steel, stainless steel, high alloy steel, or the like is used. Further, in the present invention, as shown in Examples described later, the strength of the metal capsule at the heating temperature needs to be 10 kg / mm 2 or more. At 10 kg / mm 2 or less, the alloy ingot has a higher strength than the metal capsule, and the metal capsule undergoes more deformation during hot working, which is said to improve the crystal orientation. Is smaller. Therefore, from such a viewpoint, it is preferable to use a material having sufficiently high strength such as stainless steel or high manganese steel for the metal capsule. However, even if a low strength material such as carbon steel is used as the metal capsule, by adding a water cooling step described later,
A sufficient strength required for processing can be achieved. Even if stainless steel or high manganese steel is used, a water cooling step may be added, but if cooling is excessive, it may cause inconvenience of cracking, and water cooling should be kept to the minimum necessary. Should be.

【0024】合金鋳塊を上記の様な各種金属カプセルに
封入するに当たっては、合金鋳塊と金属カプセルの接触
界面に剥離剤を介在させるのが好ましい。即ち、合金鋳
塊を金属カプセルに封入して圧延を行なう際には、合金
鋳塊の融液が金属カプセルの内表面に融着し、更に合金
成分の拡散等が起こって合金鋳塊と金属カプセルが一体
化するという問題が生じることがあるが、上記剥離剤を
用いることによってこうした問題を解消できる。上記の
様な一体化が生じると、圧延終了後に両者を分割する
ことができず、機械加工による切断で分離する必要が生
じるため切断ロスによる歩留り低下を招いたり、上記
拡散による物性変化の為に金属カプセルの割れを招いて
内部の半溶融合金鋳塊の一部が飛び出したり、或は合
金鋳塊の方が合金組成の希釈を受けて表面割れを生じ、
割れ片が金属カプセル側に付着し、更に該割れ部分の除
去の為に希土類磁石の切削加工を行なうことなどによる
歩留り低下を招き、更には割れが顕著になったときは
不良品として再溶融にまわさなければならない、等とい
った多くの欠点が生じる。こうした剥離剤としてはガラ
ス系各種剥離剤,ボロンナイトライド,アルミナ,サイ
アロン,ジルコニアの如く高熱下においても安定してそ
の作用を発揮するものが望まれるが、液相を含む半溶融
状態になった合金鋳塊と金属カプセルを熱延条件下にお
いて一体化させない様に防護作用を発揮するものであれ
ば全て本発明に適用される。特に好ましい剥離剤の形態
は、ボロンナイトライドを塗布した後薄板状のAl2O3
SiO2複合酸化物で包むことである。
In encapsulating the alloy ingot in various metal capsules as described above, it is preferable to interpose a release agent at the contact interface between the alloy ingot and the metal capsule. That is, when the alloy ingot is encapsulated in a metal capsule and rolled, the melt of the alloy ingot is fused to the inner surface of the metal capsule, and further diffusion of alloy components occurs to cause alloy ingot and metal The problem that the capsules are integrated may occur, but such a problem can be solved by using the release agent. When the integration as described above occurs, it is not possible to divide the two after the rolling is completed, and it is necessary to separate them by cutting by machining, which leads to a decrease in yield due to cutting loss, and because of the change in physical properties due to the diffusion. Part of the semi-molten alloy ingot inside may be caused by cracking of the metal capsule, or the alloy ingot may undergo surface dilution due to dilution of the alloy composition,
Fragment adheres to the metal capsule side, and the yield is reduced due to cutting of the rare earth magnet to remove the cracked part.When cracking becomes noticeable, it is remelted as a defective product. Many drawbacks arise, such as having to turn around. As such a release agent, it is desirable to use various release agents such as glass-based release agents, boron nitride, alumina, sialon, and zirconia that can stably exhibit their action even under high heat. However, it becomes a semi-molten state containing a liquid phase. As long as the alloy ingot and the metal capsule exhibit a protective action so as not to be integrated under the hot rolling condition, they are all applicable to the present invention. A particularly preferred form of the stripping agent is a thin plate-like Al 2 O 3 − after applying boron nitride.
It is to wrap it with a SiO 2 composite oxide.

【0025】本発明では、熱間加工時に金属カプセルを
水冷することもあるが、これは上述の如く金属カプセル
強度を高め加工浸透圧を大きくして、内部の磁石材の加
工変形を大きくし、該磁石材の結晶配向を増し、高(B
H)max 化を図る為である。このときの水冷の時期につ
いては、特に限定するものではなく、熱間加工スケジュ
ールに応じて適当な時期を選べばよいが、熱間加工の初
期段階から上記効果を発揮させるという立場からすれ
ば、熱間加工の直前、即ち加熱後熱間加工に至るまでの
間が好ましい。またこの時の最適な水冷条件は、金属カ
プセルを所定の温度に加熱した後、0〜30℃の水でカ
プセルの板厚1mm当たり0.3 〜3秒冷却することであ
る。これは0.5 秒未満では金属カプセルの対表面部分の
強度が上がるだけで合金鋳塊に係る静水圧の効果は期待
できず、3秒を超えるとカプセル内の合金鋳塊の温度が
下がり結晶の配向が悪くなると共に割れの発生も多くな
り好ましくないからである。
In the present invention, the metal capsule may be water-cooled during hot working, which increases the strength of the metal capsule and increases the working osmotic pressure to increase the working deformation of the magnet material inside, as described above. The crystal orientation of the magnet material is increased to a high (B
H) This is for maximization. The time of water cooling at this time is not particularly limited, and an appropriate time may be selected according to the hot working schedule, but from the standpoint of exhibiting the above effect from the initial stage of hot working, Immediately before hot working, that is, after heating until hot working is preferable. The optimum water cooling condition at this time is that the metal capsule is heated to a predetermined temperature and then cooled with water at 0 to 30 ° C. for 0.3 to 3 seconds per mm plate thickness of the capsule. If the time is less than 0.5 seconds, the effect of hydrostatic pressure on the alloy ingot cannot be expected because the strength of the surface of the metal capsule is increased, and if the time exceeds 3 seconds, the temperature of the alloy ingot in the capsule decreases and the crystal orientation. This is not preferable because the deterioration of the film quality and the occurrence of cracks increase.

【0026】尚カプセル上下板厚が厚すぎると熱間圧延
時にカプセル上下板のみが変形し、加工圧力は内部に浸
透しにくく、且つ磁石材の細粒化が達成されにくい。こ
うした観点から、カプセルの上下板厚は加工仕上げ厚み
が5mm以下となる様に熱間加工するのがよい。一方カプ
セルの上下板厚が薄すぎると、熱間加工時にカプセルに
ふくれが発生し、中部の磁石材は加工変形が起こりに
く、その為に磁気特性の向上が望めなくなる。こうした
観点から、カプセル上下板厚の下限は0.5 mmの仕上げ厚
にするのがよい。また熱間加工前の上下板厚は、圧下率
や仕上げ厚を考慮して設定すればよいが、5〜50mmを
目安にすればよい。
If the capsule upper and lower plates are too thick, only the capsule upper and lower plates will be deformed during hot rolling, the processing pressure will not easily penetrate into the inside, and the fine granulation of the magnet material will be difficult to achieve. From this point of view, it is preferable that the upper and lower plate thicknesses of the capsules are hot worked so that the finished thickness is 5 mm or less. On the other hand, if the thickness of the upper and lower plates of the capsule is too thin, the capsule will bulge during hot working, and the magnet material in the middle part will not be easily deformed, so that improvement of magnetic properties cannot be expected. From this point of view, the lower limit of the upper and lower plate thickness of the capsule is preferably 0.5 mm. Further, the upper and lower plate thickness before hot working may be set in consideration of the rolling reduction and the finishing thickness, but 5 to 50 mm may be used as a guide.

【0027】熱間加工を実施する場合の温度は、熱間加
工スケジュールを考慮して適宜定めれば良いが、下限温
度は前に述べた理由によって合金鋳塊中に液相を生成さ
せる必要があること、および熱間加工時の割れ発生を防
止することから800℃以上としなければならず、好ま
しくは850℃以上である。一方上限については、11
00℃を超えると、合金磁石が溶融してシャーベット状
となり、熱間加工ができなくなることから、1100℃
以下とする必要がある。
The temperature for carrying out the hot working may be appropriately determined in consideration of the hot working schedule, but the lower limit temperature is required to generate a liquid phase in the alloy ingot for the reason described above. In order to prevent the occurrence of cracks during hot working, the temperature must be 800 ° C or higher, preferably 850 ° C or higher. On the other hand, regarding the upper limit, 11
If the temperature exceeds 00 ° C, the alloy magnet will melt and become sherbet-shaped, making hot working impossible.
Must be:

【0028】本発明における熱間加工スケジュールは、
1パスの加工毎に再加熱して温度の定常化を図る方式
(以下多ヒート・多パスという)、或は熱間加工を始め
る際に一度加熱した後は多段パスの間再加熱しない方式
のいずれも採用することができる。
The hot working schedule in the present invention is
It is a method of reheating for each processing of one pass to stabilize the temperature (hereinafter referred to as multi-heat / multi-pass), or a method of not heating again during multi-pass after heating once when hot working is started. Either can be adopted.

【0029】尚多ヒート・多パスのときは1パス毎に金
属カプセルを再加熱しており、加工抵抗が少ない、
加工効果が安定する、といった利点を有するが、生産性
に劣るという欠点がある。これに対し1ヒート・多パス
のときは上記,の効果は若干低下するが、所謂リバ
ース加工によって速やかに所望の多パスを完了すること
ができるので、熱間加工前の温度をやや高めに設定して
おけば加工スケジュールの後段になっても希望の加工温
度を維持することができ、且つ優れた生産性を発揮する
ことができる。またパス数は多ヒート・多パス及び1ヒ
ート・多パスのいずれにおいても少なくとも2パス以上
であることが望まれる。パス数の上限については特に限
定されず、希望の板厚に到達し得るパス数で熱間加工を
終了すれば良い。
In the case of multiple heat and multiple passes, the metal capsule is reheated for each pass, so that the processing resistance is small.
Although it has the advantage that the processing effect is stable, it has the drawback of being inferior in productivity. On the other hand, in the case of 1-heat / multi-pass, the above effects are slightly reduced, but the desired multi-pass can be completed promptly by so-called reverse processing, so the temperature before hot working is set to be slightly higher. If so, the desired processing temperature can be maintained even after the latter stage of the processing schedule, and excellent productivity can be exhibited. In addition, it is desirable that the number of passes is at least two or more in both multi-heat / multi-pass and one-heat / multi-pass. The upper limit of the number of passes is not particularly limited, and hot working may be completed with the number of passes that can reach the desired plate thickness.

【0030】上記説明における多パス加工は、例えば圧
延について説明すれば、圧延装置に対して金属カプセル
を常にひとつの方向から導く一方向圧延方式や、各パス
毎に交互に往復させる所謂リバース圧延等の両方を含む
趣旨である。
The multi-pass processing in the above description will be described, for example, in terms of rolling. A unidirectional rolling method in which the metal capsule is always guided from one direction to the rolling apparatus, a so-called reverse rolling in which the metal capsule is alternately reciprocated for each pass, etc. It is meant to include both.

【0031】次に熱間加工による加工率は、希望板厚に
到達するまでという観点から定めるのでなく、図8(A),
(B) に示す様に圧延総加工率が70%を超えることによ
って(BH)max が永久磁石としての最低希望値(20
MGOe)を超え、且つiHcも永久磁石として十分に
高い値(10KOe)を超えるという観点から70%を
下限と定めた。尚毎パスは15%を超える様な加工を施
すことが望まれる。
Next, the working rate by hot working is not determined from the standpoint of reaching the desired plate thickness, but as shown in FIG.
As shown in (B), when the total rolling processing rate exceeds 70%, (BH) max becomes the minimum desired value (20) for a permanent magnet.
70% is set as the lower limit from the viewpoint of exceeding MGOe) and iHc exceeding a sufficiently high value (10 KOe) as a permanent magnet. It is desirable that each pass be processed so as to exceed 15%.

【0032】本発明によって得られるRE−Fe−B系
磁石は、長尺板材においては、板幅方向は勿論のこと、
長手方向においても良好な結晶軸配向性が得られ、幅方
向及び長さ方向全体に亘って磁気異方性を示す。
The RE-Fe-B system magnet obtained by the present invention is not limited to the plate width direction in the long plate material,
Good crystal axis orientation is obtained also in the longitudinal direction, and magnetic anisotropy is exhibited in the entire width direction and length direction.

【0033】本発明では上述の如く、熱間加工した後
に、800〜1100℃で熱処理し、更に400〜60
0℃で熱処理することが好ましい実施態様として挙げら
れる。これは後記実施例でも明らかにするが、この2段
の熱処理によって組織の微細化が達成され、磁石の特性
がより一層向上するからである。前記熱間加工の温度条
件との関係では、この熱処理の採用により、熱間加工温
度が低くなって磁気特性が若干劣った場合でも、その回
復が可能であり、逆に本発明で採用しているRE−Fe
−B系の合金系などでは、850℃以上で熱間圧延を終
了した場合よりもかえって、850℃未満で熱間圧延を
終了した場合の方が、この熱処理を施すことにより、む
しろiHc を高めることが可能であることも本発明者達
は知見しており、場合によっては、この熱処理の採用に
より800〜950℃の低温加工化に道を開くものとも
なり得るものである。尚この様な熱処理は、熱間加工終
了後に室温まで冷却してから行なってもよく、熱間加工
終了後にある程度温度の下がった状態でそのまま熱処理
工程に移行してもよい。またこの熱処理は複数行なうこ
とが好ましく、このことによって共晶組織の球状化が達
成され、iHcの向上に寄与する。
In the present invention, as described above, after hot working, heat treatment is performed at 800 to 1100 ° C., and further 400 to 60.
A preferred embodiment is heat treatment at 0 ° C. This will be clarified in Examples described later, but this is because the two-step heat treatment achieves a finer structure and further improves the characteristics of the magnet. In relation to the temperature condition of the hot working, by adopting this heat treatment, even if the hot working temperature is lowered and the magnetic properties are slightly inferior, it is possible to recover it, and conversely, it is adopted in the present invention. RE-Fe
In the case of -B type alloy system, iHc is increased by performing this heat treatment when the hot rolling is completed at less than 850 ° C, rather than when the hot rolling is completed at 850 ° C or more. The present inventors have also found that this is possible, and in some cases, the adoption of this heat treatment may open the way to low-temperature processing at 800 to 950 ° C. Such heat treatment may be performed after cooling to room temperature after the hot working is completed, or may be directly transferred to the heat treatment step after the hot working is finished and the temperature is lowered to some extent. Further, it is preferable to perform this heat treatment a plurality of times, whereby spheroidization of the eutectic structure is achieved, which contributes to the improvement of iHc.

【0034】[0034]

【実施例】実施例1 表1に示す組成の鋳塊を製造した。Example 1 An ingot having the composition shown in Table 1 was produced.

【0035】[0035]

【表1】 [Table 1]

【0036】得られた鋳塊を図6に示す切断線Sに沿っ
て切断し、複数本の合金鋳塊4を得た。尚鋳塊における
柱状晶Pの形成方向は図中に示した通りである。
The obtained ingot was cut along a cutting line S shown in FIG. 6 to obtain a plurality of alloy ingots 4. The direction of formation of columnar crystals P in the ingot is as shown in the figure.

【0037】合金鋳塊4をステンレス鋼製,高マンガン
鋼製および炭素鋼製の夫々の金属カプセル5に封入し、
図7に示す様な圧延素材6を形成した。このとき剥離剤
として、(ボロンナイトライド+薄板状のAl2O3 −SiO2
複合酸化物)を用い、これを合金鋳塊4と金属カプセル
5の間に介在させた。該圧延素材6を圧延温度1000
℃、1パスの圧延圧下率30%で4パス、全圧下率76
%の熱間圧延を施した。この時炭素鋼製のカプセルに封
入した圧延素材6については、1〜3パスの圧延を施す
前に夫々13,10,7秒間25℃の水で冷却した。ま
た熱間加工時の金属カプセルの強度は、ステンレス鋼製
のもの15kg/mm2、高マンガン鋼製にもの20kg/mm2
炭素鋼製(水冷)のもの20kg/mm2、炭素鋼製(水冷な
し)のもの2.5kg/mm2 であった。熱間加工後、1050
℃(1段目)および475℃(2段目)の2段の熱処理
を施し、得られた磁石材の磁気特性を調査した。その結
果を表2に示すが、本発明の要件を満足するものは優れ
た磁気特性が得られているのが分かる。
The alloy ingot 4 is enclosed in metal capsules 5 made of stainless steel, high manganese steel and carbon steel,
Rolled material 6 as shown in FIG. 7 was formed. At this time, as a release agent, (boron nitride + thin plate-like Al 2 O 3 -SiO 2
A composite oxide) was used and was interposed between the alloy ingot 4 and the metal capsule 5. Roll the rolling material 6 at a rolling temperature of 1000
℃, 1 pass, rolling reduction of 30%, 4 passes, total reduction of 76
% Hot rolling was performed. At this time, the rolling material 6 encapsulated in the carbon steel capsule was cooled with water at 25 ° C. for 13, 10 and 7 seconds, respectively, before rolling for 1 to 3 passes. The strength of the metal capsule during hot working, as 15 kg / mm 2 made of stainless steel, of also made high manganese steel 20 kg / mm 2,
Those 20 kg / mm 2 made of carbon steel (water cooling) was 2.5 kg / mm 2 made of carbon steel (without water cooling). After hot working, 1050
Two-step heat treatments of ℃ (first step) and 475 ° C (second step) were performed, and the magnetic properties of the obtained magnet material were investigated. The results are shown in Table 2, and it can be seen that those satisfying the requirements of the present invention have excellent magnetic properties.

【0038】[0038]

【表2】 [Table 2]

【0039】実施例2 表3に示す組成の鋳塊を製造した。Example 2 An ingot having the composition shown in Table 3 was produced.

【0040】[0040]

【表3】 [Table 3]

【0041】得られた鋳塊から実施例1と同様にして、
複数本の合金鋳塊4を得た。合金鋳塊4の外表面に窒化
硼素を塗布した後、S10製の金属カプセルに封入し、
図7に示した様な圧延素材6を形成した。該圧延素材6
を1000℃で10時間保持後水中に浸漬してカプセル
表面部を水冷(約15秒)し、1パスの圧下率を様々に
設定し、数パスの熱間圧延を行なった。また水冷を行わ
ない場合についても同様の熱間圧延を行なった。
From the obtained ingot, in the same manner as in Example 1,
A plurality of alloy ingots 4 were obtained. After coating the outer surface of the alloy ingot 4 with boron nitride, it is enclosed in a metal capsule made of S10,
Rolled material 6 as shown in FIG. 7 was formed. The rolled material 6
Was held at 1000 ° C. for 10 hours, then immersed in water to cool the surface of the capsule with water (about 15 seconds), various reduction ratios for one pass were set, and hot rolling was performed for several passes. Further, similar hot rolling was performed even when water cooling was not performed.

【0042】熱間圧延時のカプセル表面温度、荷重およ
び圧延トルク電流の経時変化を図1(A) 〜(C) に示す。
尚図1(A) は、圧延ロールの直径Dとカプセル圧延材肉
厚Tの比(D/T)が5/25の場合のであり、図1
(B) は同じく6/1、図1(C)は同じく6/9の場合の
である。また図中の数値(例えば、170H,130H
等)は圧延後の厚み(単位:mm)を示し、荷重および圧
延トルク電流は300mm幅に換算した値である。これら
の結果から、表面水冷を行なうことによって、圧延素材
に対する圧延浸透圧を大きくできることが分かる。
The changes over time in the capsule surface temperature, load and rolling torque current during hot rolling are shown in FIGS. 1 (A) to 1 (C).
Note that FIG. 1A shows the case where the ratio (D / T) of the diameter D of the rolling roll and the wall thickness T of the rolled capsule material is 5/25.
(B) is the case of 6/1, and FIG. 1 (C) is the case of 6/9. Also, the numerical values in the figure (for example, 170H, 130H
Etc.) shows the thickness (unit: mm) after rolling, and the load and rolling torque current are values converted into a width of 300 mm. From these results, it can be seen that by performing surface water cooling, the rolling osmotic pressure on the rolling material can be increased.

【0043】実施例3 前記実施例2に準じて各厚みに熱間圧延した鋳塊を室温
まで冷却した後金属カプセル5を剥離し、7mmφ×7mm
hの磁気測定用サンプルを切り出し、直流磁気記録計で
磁気特性を測定した。尚比較の為、下記表4に示す組成
のCu添加R−Fe−B系合金の磁気特性についても測
定した。
Example 3 Ingots hot-rolled to various thicknesses according to Example 2 were cooled to room temperature, and then the metal capsules 5 were peeled off to obtain 7 mmφ × 7 mm
A magnetic measurement sample of h was cut out and the magnetic characteristics were measured with a DC magnetic recorder. For comparison, the magnetic properties of the Cu-added R-Fe-B alloys having the compositions shown in Table 4 below were also measured.

【0044】[0044]

【表4】 [Table 4]

【0045】その結果を図2(A) 〜(D) に示す。尚図2
(D) に示した耐熱温度(HR)は下記数式によって求め
られた値である。 HR=-112.1+10.4 ×iHc+0.8 ×S.Q. 図2の結果から明らかな様に、本発明方法を実施するに
当たっては磁石材にGaを添加することが極めて効果的
であることが分かる。
The results are shown in FIGS. 2 (A) to 2 (D). Figure 2
The heat resistant temperature (HR) shown in (D) is a value obtained by the following mathematical formula. HR = -112.1 + 10.4 × iHc + 0.8 × S. Q. As is clear from the results of FIG. 2, it is extremely effective to add Ga to the magnet material in carrying out the method of the present invention.

【0046】実施例4 前記表3に示した鋳塊を用いて実施例2に示した手順に
従い、圧下率が70%以上となるまで熱間圧延し、実施
例3に示した手順に従って磁気特性を測定した。この
際、水冷を行なわないものについても同様の測定を行な
い、水冷の有無による磁気特性への影響について調査し
た。
Example 4 Using the ingots shown in Table 3 above, hot rolling was performed according to the procedure shown in Example 2 until the rolling reduction reached 70% or more, and the magnetic properties were obtained according to the procedure shown in Example 3. Was measured. At this time, the same measurement was carried out for those that were not water-cooled, and the influence of the presence or absence of water cooling on the magnetic properties was investigated.

【0047】その結果は図3(A) 〜(C) に示すが、熱間
加工時に水冷工程を付加することは、磁気特性向上に極
めて効果的であることが分かる。これは前記図1(A) 〜
(C)に示した様に、カプセル水冷を行なうことによって
圧延素材に効果的に圧延荷重を付与することができる為
と考えられる。
The results are shown in FIGS. 3 (A) to 3 (C). It is understood that adding a water cooling step during hot working is extremely effective in improving the magnetic characteristics. This is shown in Fig. 1 (A)-
As shown in (C), it is considered that the rolling load can be effectively applied to the rolling material by performing the capsule water cooling.

【0048】実施例5 実施例2に準じて熱間圧延時のカプセル上下板の仕上厚
を変えて熱間圧延し(熱間加工率は80〜87%)、得
られた磁石材の磁気特性に与える影響について調査し
た。その結果を図4(A) 〜(C) に示すが、本発明を実施
するに当たっては、カプセル上下板の仕上厚をできるだ
け薄くするのが良いことが分かる。但し、圧延時にカプ
セルにふくれが発生しない様に0.5mm 以上とすべきであ
ることは上述した通りである。
Example 5 According to Example 2, hot rolling was performed by changing the finishing thickness of the capsule upper and lower plates during hot rolling (hot working rate was 80 to 87%), and the magnetic properties of the obtained magnet material were obtained. Was investigated for the effect on. The results are shown in FIGS. 4 (A) to 4 (C), and it is understood that in carrying out the present invention, it is preferable to make the finishing thickness of the capsule upper and lower plates as thin as possible. However, as described above, the thickness should be 0.5 mm or more so that the capsule does not bulge during rolling.

【0049】実施例6 熱間圧延後に1000℃で6時間保持した後、室温まで
空冷し、その後400〜600℃の温度で2時間保持す
る以外は、実施例2に示した方法に準じて前記表3のの
組成の磁石を製造した。
Example 6 According to the method described in Example 2, except that after hot rolling, the temperature was held at 1000 ° C. for 6 hours, air-cooled to room temperature, and then held at a temperature of 400 to 600 ° C. for 2 hours. A magnet having the composition shown in Table 3 was manufactured.

【0050】この磁石の熱処理前後の磁気特性の変化
は、図5に示す通りである。尚図5には、1000℃で
6時間保持しただけの磁気特性についても示した。
The change in magnetic characteristics of this magnet before and after heat treatment is as shown in FIG. In addition, FIG. 5 also shows the magnetic characteristics of only holding at 1000 ° C. for 6 hours.

【0051】図5から明らかな様に、高温での熱処理を
1000℃の温度で行なった後、低温での熱処理を40
0〜600℃の温度範囲で行なった場合、磁気特性の向
上が著しいのがよく分かる。
As is apparent from FIG. 5, after the heat treatment at a high temperature is performed at a temperature of 1000 ° C., the heat treatment at a low temperature is performed at 40 ° C.
It can be clearly seen that the magnetic properties are remarkably improved when the heating is performed in the temperature range of 0 to 600 ° C.

【0052】実施例7 下記表5に示す各組成の鋳塊を製造し、実施例2に準じ
て熱間圧延して熱間加工磁石を得た後、実施例3と同様
にして磁気特性を調査した。その結果を表5に併記する
が、特にGa,In,Sn等を添加したものは、優れた
磁気特性を示しているのがよく分かる。
Example 7 Ingots having the respective compositions shown in Table 5 below were produced, hot-rolled according to Example 2 to obtain hot-worked magnets, and magnetic properties were determined in the same manner as in Example 3. investigated. The results are also shown in Table 5. It can be clearly seen that particularly those containing Ga, In, Sn, etc. exhibit excellent magnetic characteristics.

【0053】[0053]

【表5】 [Table 5]

【0054】[0054]

【発明の効果】以上述べた如く本発明によれば、熱間加
工時における強度の高い金属カプセルを用いることによ
って、加圧方向への結晶の磁化容易軸の配合の度合をた
かめることができ、磁気特性の優れた希土類元素−Fe
−B系磁石を安定して生産することができる様になっ
た。また金属カプセルへの水冷工程を付加することも磁
気特性の向上に寄与することができる。
As described above, according to the present invention, by using a metal capsule having high strength during hot working, it is possible to increase the degree of compounding of the easy axis of magnetization of the crystal in the pressing direction, Rare earth element-Fe with excellent magnetic properties
-It has become possible to stably produce B magnets. In addition, adding a water cooling step to the metal capsule can also contribute to the improvement of magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱間圧延時のカプセル表面温度、荷重および圧
延トルク電流の経時変化を示すグラフである。
FIG. 1 is a graph showing changes with time in capsule surface temperature, load, and rolling torque current during hot rolling.

【図2】各磁石材の成品厚と磁気特性の関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between the product thickness of each magnet material and the magnetic characteristics.

【図3】水冷の有無が磁気特性に与える影響を示すグラ
フである。
FIG. 3 is a graph showing the influence of the presence or absence of water cooling on the magnetic characteristics.

【図4】熱間圧延時のカプセル上下板の仕上厚さと磁石
材の磁気特性との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the finished thickness of the capsule upper and lower plates and the magnetic characteristics of the magnet material during hot rolling.

【図5】熱処理後の磁気特性の変化を示すグラフであ
る。
FIG. 5 is a graph showing changes in magnetic properties after heat treatment.

【図6】鋳造片の切断線を示す斜視図である。FIG. 6 is a perspective view showing a cutting line of a cast piece.

【図7】金属カプセル内に合金鋳塊を封入したときの概
念を示す斜視断面図である。
FIG. 7 is a perspective sectional view showing a concept when an alloy ingot is enclosed in a metal capsule.

【図8】圧延総加工率と磁気特性の関係を示すグラフで
ある。
FIG. 8 is a graph showing the relationship between the total rolling rate and magnetic properties.

【符号の説明】[Explanation of symbols]

4 合金鋳塊 5 金属カプセル 6 圧延素材 4 Alloy ingot 5 Metal capsule 6 Rolled material

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年1月8日[Submission date] January 8, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】 圧延ロールの直径Dとカプセル圧延材肉厚T
の比(D/T)が5/25の場合の熱間圧延時のカプセ
ル表面温度、荷重および圧延トルク電流の経時変化を示
すグラフである。
FIG. 1 Diameter D of rolling roll and thickness T of capsule rolled material
6 is a graph showing changes with time in capsule surface temperature, load, and rolling torque current during hot rolling when the ratio (D / T) is 5/25.

【図2】 圧延ロールの直径Dとカプセル圧延材肉厚T
の比(D/T)が6/1の場合の熱間圧延時のカプセル
表面温度、荷重および圧延トルク電流の経時変化を示す
グラフである。
[Fig. 2] Diameter D of rolling roll and thickness T of capsule rolled material
3 is a graph showing changes with time in capsule surface temperature, load, and rolling torque current during hot rolling when the ratio (D / T) is 6/1.

【図3】 圧延ロールの直径Dとカプセル圧延材肉厚T
の比(D/T)が6/9の場合の熱間圧延時のカプセル
表面温度、荷重および圧延トルク電流の経時変化を示す
グラフである。
[Fig. 3] Diameter D of rolling roll and thickness T of rolled capsule material
3 is a graph showing changes with time in capsule surface temperature, load, and rolling torque current during hot rolling when the ratio (D / T) is 6/9.

【図4】 各磁石材の成品厚と(BH)max の関係を示
すグラフである。
FIG. 4 is a graph showing the relationship between the product thickness of each magnet material and (BH) max .

【図5】 各磁石材の成品厚とiHcの関係を示すグラ
フである。
FIG. 5 is a graph showing the relationship between the product thickness of each magnet material and iHc.

【図6】 各磁石材の成品厚とS.Q.の関係を示すグ
ラフである。
FIG. 6 shows the product thickness of each magnet material and S.I. Q. It is a graph which shows the relationship of.

【図7】 各磁石材の成品厚とHRの関係を示すグラフ
である。
FIG. 7 is a graph showing the relationship between the product thickness of each magnet material and HR.

【図8】 水冷の有無が(BH)max に与える影響を示
すグラフである。
FIG. 8 is a graph showing the influence of the presence or absence of water cooling on (BH) max .

【図9】 水冷の有無がiHcに与える影響を示すグラ
フである。
FIG. 9 is a graph showing the effect of water cooling on iHc.

【図10】 水冷の有無がS.Q.に与える影響を示す
グラフである。
FIG. 10 shows the presence or absence of S. Q. It is a graph which shows the influence which it has on.

【図11】 熱間圧延時のカプセル上下板の仕上厚さと
磁石材の(BH)maxとの関係を示すグラフである。
FIG. 11 is a graph showing the relationship between the finished thickness of the capsule upper and lower plates and (BH) max of the magnet material during hot rolling.

【図12】 熱間圧延時のカプセル上下板の仕上厚さと
磁石材のiHcとの関係を示すグラフである。
FIG. 12 is a graph showing the relationship between the finished thickness of the capsule upper and lower plates and iHc of the magnet material during hot rolling.

【図13】 熱間圧延時のカプセル上下板の仕上厚さと
磁石材のS.Q.との関係を示すグラフである。
FIG. 13: Finished thickness of capsule upper and lower plates during hot rolling and S. Q. It is a graph which shows the relationship with.

【図14】 熱処理後の磁気特性の変化を示すグラフで
ある。
FIG. 14 is a graph showing changes in magnetic properties after heat treatment.

【図15】 鋳造片の切断線を示す斜視図である。FIG. 15 is a perspective view showing a cutting line of a cast piece.

【図16】 金属カプセル内に合金鋳塊を封入したとき
の概念を示す斜視図である。
FIG. 16 is a perspective view showing the concept of encapsulating an alloy ingot in a metal capsule.

【図17】 圧延総加工率と(BH)max の関係を示す
グラフである。
FIG. 17 is a graph showing the relationship between the total rolling processing rate and (BH) max .

【図18】 圧延総加工率とiHcの関係を示すグラフ
である。
FIG. 18 is a graph showing the relationship between the total rolling rate and iHc.

【符号の説明】 4 合金鋳塊 5 金属カプセル 6 圧延素材[Explanation of code] 4 Alloy ingot 5 Metal capsule 6 Rolled material

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図6】 [Figure 6]

【図1】 [Figure 1]

【図9】 [Figure 9]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図10】 [Figure 10]

【図4】 [Figure 4]

【図16】 FIG. 16

【図5】 [Figure 5]

【図7】 [Figure 7]

【図8】 [Figure 8]

【図11】 FIG. 11

【図12】 [Fig. 12]

【図13】 [Fig. 13]

【図14】 FIG. 14

【図15】 FIG. 15

【図17】 FIG. 17

【図18】 FIG. 18

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大木 継秋 神戸市西区狩場台1−7−7 (72)発明者 由利 司 神戸市垂水区福田4−6−23−C301 (72)発明者 花木 敦司 神戸市東灘区北青木2−6−10−W6608 (72)発明者 岩村 栄治 神戸市灘区新在家南町2−2−5 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Tsutsuaki Oki 1-7-7 Karibadai, Nishi-ku, Kobe (72) Inventor Yuji Yuji 4-6-23-C301, Fukuda, Tarumi-ku, Kobe (72) Inventor Hanaki Atsushi 2-6-10-W6608 Kitaoki, Higashinada-ku, Kobe-shi (72) Inventor Eiji Iwamura 2-2-5, Minami-cho, Nara-ku, Nada-ku, Kobe

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 少なくとも希土類元素,FeおよびBを
含有する合金鋳塊を金属カプセル内に封入した状態で熱
間加工する工程を含む、希土類元素−Fe−B系磁石の
製造方法において、熱間加工温度を800 〜1100℃として
前記合金鋳塊が液相を含む状態で熱間加工を行なうと共
に、このときの総加工率が70%以上となる様に熱間加工
を施すこととし、且つ上記加工温度における強度が10kg
/mm2以上の金属カプセルを使用することによって、高配
向性合金組織を形成することを特徴とする希土類元素−
Fe−B系磁石の製造方法。
1. A method for manufacturing a rare earth element-Fe-B magnet, comprising a step of hot working an alloy ingot containing at least a rare earth element, Fe and B in a metal capsule. Hot working is performed in a state where the working temperature is 800 to 1100 ° C. and the alloy ingot contains a liquid phase, and hot working is performed so that the total working rate at this time is 70% or more, and 10kg strength at processing temperature
/ rare earth element characterized by forming a highly oriented alloy structure by using a metal capsule of / mm 2 or more-
Method for manufacturing Fe-B magnet.
【請求項2】 合金鋳塊として、PrおよびNdから選
ばれる1種以上の希土類元素、FeおよびBを含有する
他、Ga,InおよびSnよりなる群から選択される1
種以上の元素を必須成分として含有する合金鋳塊を用
い、且つ熱間加工の任意の時期にカプセル表面を水冷
し、高配向性合金組織を形成することを特徴とする請求
項1に記載の製造方法。
2. The alloy ingot contains at least one rare earth element selected from Pr and Nd, Fe and B, and is selected from the group consisting of Ga, In and Sn.
The alloy ingot containing at least one element as an essential component is used, and the capsule surface is water-cooled at an arbitrary time of hot working to form a highly oriented alloy structure. Production method.
【請求項3】 熱間加工が完了した後、800 〜1100℃で
熱処理を施し、その後更に400 〜600 ℃で熱処理する請
求項1または2に記載の製造方法。
3. The method according to claim 1, wherein after the hot working is completed, heat treatment is performed at 800 to 1100 ° C., and then heat treatment is further performed at 400 to 600 ° C.
【請求項4】 熱間加工仕上げ時の金属カプセルの上下
の各板厚が0.5 〜5mmとなる様に熱間加工する請求項1
〜3のいずれかに記載の製造方法。
4. The hot working is carried out so that the upper and lower plate thicknesses of the metal capsule at the time of hot working finishing are 0.5 to 5 mm.
The manufacturing method in any one of -3.
【請求項5】 金属カプセルの材質として、ステンレス
鋼または高マンガン鋼を選び、該金属カプセル内に、ボ
ロンナイトライドおよび薄板状のAl2O3−SiO2複合酸化
物からなる剥離剤を介在させて合金鋳塊を封入する請求
項1,3または4のいずれかに記載の製造方法。
5. A stainless steel or a high manganese steel is selected as the material of the metal capsule, and a release agent composed of boron nitride and a thin plate-shaped Al 2 O 3 —SiO 2 composite oxide is interposed in the metal capsule. The manufacturing method according to claim 1, wherein the alloy ingot is encapsulated by a method.
【請求項6】 金属カプセルの材質として炭素鋼を選
び、該金属カプセル内に、ボロンナイトライドおよび薄
板状のAl2O3 −SiO2複合酸化物からなる剥離剤を介在さ
せて合金鋳塊を封入すると共に、合金鋳塊を封入した金
属カプセルを加熱後、0〜30℃の水で金属カプセルの板
厚1mm当たり0.5 〜3秒冷却してから熱間加工する請求
項1〜4のいずれかに記載の製造方法。
6. Carbon steel is selected as the material of the metal capsule, and an alloy ingot is formed in the metal capsule with a release agent consisting of boron nitride and a thin plate of Al 2 O 3 —SiO 2 composite oxide interposed. 5. Encapsulation, heating the metal capsule encapsulating the alloy ingot, cooling with water at 0 to 30 ° C. for 0.5 to 3 seconds per 1 mm plate thickness of the metal capsule, and then hot working. The manufacturing method described in.
JP3159799A 1990-08-23 1991-06-03 Manufacture of rare earth elements-fe-b magnet Withdrawn JPH05182851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3159799A JPH05182851A (en) 1990-08-23 1991-06-03 Manufacture of rare earth elements-fe-b magnet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22371090 1990-08-23
JP2-223710 1990-08-23
JP3159799A JPH05182851A (en) 1990-08-23 1991-06-03 Manufacture of rare earth elements-fe-b magnet

Publications (1)

Publication Number Publication Date
JPH05182851A true JPH05182851A (en) 1993-07-23

Family

ID=26486494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3159799A Withdrawn JPH05182851A (en) 1990-08-23 1991-06-03 Manufacture of rare earth elements-fe-b magnet

Country Status (1)

Country Link
JP (1) JPH05182851A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003239A1 (en) * 1986-10-31 1988-05-05 Kyoiku Haguruma Kogyo Kabushiki-Kaisha Gear having small relative curvature at contact point
US9859055B2 (en) 2012-10-18 2018-01-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rare-earth magnet
US10199145B2 (en) 2011-11-14 2019-02-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for producing the same
US10468165B2 (en) 2013-06-05 2019-11-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for manufacturing same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1988003239A1 (en) * 1986-10-31 1988-05-05 Kyoiku Haguruma Kogyo Kabushiki-Kaisha Gear having small relative curvature at contact point
US10199145B2 (en) 2011-11-14 2019-02-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for producing the same
US9859055B2 (en) 2012-10-18 2018-01-02 Toyota Jidosha Kabushiki Kaisha Manufacturing method for rare-earth magnet
US10468165B2 (en) 2013-06-05 2019-11-05 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for manufacturing same
US10748684B2 (en) 2013-06-05 2020-08-18 Toyota Jidosha Kabushiki Kaisha Rare-earth magnet and method for manufacturing same

Similar Documents

Publication Publication Date Title
US8557057B2 (en) Rare earth permanent magnet and its preparation
EP1845539B1 (en) Method for preparing rare earth permanent magnet material
JP4702546B2 (en) Rare earth permanent magnet
KR102219024B1 (en) Preparation of rare earth permanent magnet
JP4371188B2 (en) High specific electric resistance rare earth magnet and method for manufacturing the same
CN111613410B (en) Neodymium-iron-boron magnet material, raw material composition, preparation method and application
JP2727507B2 (en) Permanent magnet and manufacturing method thereof
JP4700578B2 (en) Method for producing high resistance rare earth permanent magnet
US5352302A (en) Method of producing a rare-earth permanent magnet
JPH05182851A (en) Manufacture of rare earth elements-fe-b magnet
EP3625807B1 (en) Hot deformed magnet, and a method for preparing said hot deformed magnet
JP2794755B2 (en) Manufacturing method of rare earth element-transition element-B magnet
JPH06302417A (en) Permanent magnet and its manufacture
JPH01100242A (en) Permanent magnetic material
JP2794754B2 (en) Manufacturing method of rare earth element-transition element-B magnet
JP2581179B2 (en) Method for producing rare earth-B-Fe sintered magnet with excellent corrosion resistance
JPH0645168A (en) Manufacture of r-fe-b magnet
JP2551797B2 (en) Method of manufacturing permanent magnet material
JPH04321206A (en) Manufacture of rare earth element-fe-b-based magnet
JPS61288047A (en) Manufacture of permanent magnet alloy
JP2022093885A (en) Manufacturing method of rare-earth magnet
JPH09260171A (en) Manufacture of rare earth permanent magnet
JPH0617104A (en) Production of permanent magnet
CN117099180A (en) Method for producing R-T-B sintered magnet
JPH05279784A (en) Fe-co type magnetic material having high strength and high elongation and its production

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980903