JPS61288047A - Manufacture of permanent magnet alloy - Google Patents

Manufacture of permanent magnet alloy

Info

Publication number
JPS61288047A
JPS61288047A JP60128757A JP12875785A JPS61288047A JP S61288047 A JPS61288047 A JP S61288047A JP 60128757 A JP60128757 A JP 60128757A JP 12875785 A JP12875785 A JP 12875785A JP S61288047 A JPS61288047 A JP S61288047A
Authority
JP
Japan
Prior art keywords
permanent magnet
alloy
aging treatment
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60128757A
Other languages
Japanese (ja)
Inventor
Akio Kobayashi
明男 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP60128757A priority Critical patent/JPS61288047A/en
Publication of JPS61288047A publication Critical patent/JPS61288047A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Abstract

PURPOSE:To manufacture a permanent magnet alloy having extremely high maximum energy product by age-treating under specific conditions a rare earth element-B-Fe alloy having specific average grain size. CONSTITUTION:An alloy powder consisting of, as essential elements, R (where R is one or more kinds among rate earth elements including Y), B, and Fe containing inevitable impurities and having 1-50mu average grain size is compacted. The resulting green compact of the above alloy powder is sintered at 900-1,200 deg.C in vacuum or in a gaseous atmosphere containing one kind selected from Ar, He, N2 and a gaseous mixture of N2 and Ar. The sintered compact is then subjected to heating, holding and cooling treatments two or more times under the same atmosphere with adjusting the holding temp. to 400-850 deg.C, followed by age treatment in which final cooling is carried out down to <=350 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、R−B−re系永久磁石合金の磁気特性(特
に最大エネルギー積(BH)MAX)を改善する製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a manufacturing method for improving the magnetic properties (particularly the maximum energy product (BH) MAX) of an R-B-re permanent magnet alloy.

〔従来の技術〕[Conventional technology]

近年、従来のam−Co系磁石に比較し、より高磁気特
性を有し、かつ資源的にも高価なSmやCOを含まない
Nd−B−Fe系永久磁石が発明された。(佐用ほか;
 J 、 Appl 、 Pkys 、 55(6) 
15March 1984. P2O83〜2087及
び特開昭59−46008号公報、同59−64733
号公報、同59−217304号公報、同59−222
564号公報参照 )その中でも、焼結後の時効処理に
ついて詳細に言及しているものは、特開昭59−217
304 号公報であり、それによれば焼結後の冷却速度
を20℃/分以上とするとともK 350℃から焼結温
度以下を昇温、保持、冷却処理することを規定し、冷却
過程を連続的に冷却することあるいは多段階に冷却(冷
却速度0.2℃/分〜20℃/秒)することを提案して
いる。
In recent years, Nd-B-Fe-based permanent magnets have been invented that have higher magnetic properties than conventional am-Co-based magnets and do not contain Sm or CO, which are expensive resources. (Sayo et al.;
J, Appl, Pkys, 55(6)
15March 1984. P2O83-2087 and JP-A-59-46008, JP-A No. 59-64733
No. 59-217304, No. 59-222
(Refer to Publication No. 564) Among them, the one that mentions in detail the aging treatment after sintering is JP-A No. 59-217.
304, which stipulates that the cooling rate after sintering should be at least 20°C/min, and that the temperature should be raised from K350°C to below the sintering temperature, maintained, and cooled, and the cooling process should be continuous. It is proposed to cool the material directly or in multiple stages (cooling rate 0.2°C/min to 20°C/sec).

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

しかし、これら従来の方法による時効処理では4πI−
H曲線の第2象限における角型性が未だ不充分で十分満
足できる磁気特性、特に最大エネルギー積((BH) 
MAX )が得られるには至っていない。(1!施例に
おける最高値で29.2MGOeと本合金系の持つポテ
ンシャル40MGOe以上に比べると未だ不十分なもの
である。) 本発明は、上述した従来技術の問題点を解消し。
However, in the aging treatment by these conventional methods, 4πI-
The squareness in the second quadrant of the H curve is still insufficient, but the magnetic properties are sufficiently satisfactory, especially the maximum energy product ((BH)
MAX) has not yet been achieved. (The highest value in Example 1! is 29.2 MGOe, which is still insufficient compared to the potential of 40 MGOe or more of this alloy system.) The present invention solves the problems of the prior art described above.

最大エネルギー積が高く磁気特性の優れたR−B−Fe
系永久磁石合金の製造方法を提供することを目的とする
ものである。
R-B-Fe with high maximum energy product and excellent magnetic properties
The object of the present invention is to provide a method for producing a permanent magnet alloy.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の永久磁石合金の製造方法は、必須元素としてル
(但しルはYを含む希土類元素の内1211以上)、B
′j6よぴ不可避の不純物を含むFeからなる平均粒度
1〜50μmの合金粉末を成形し、900〜1200℃
で焼結した後、保持温度を400〜850℃と子る加熱
、策持、冷却処理を2回以上行ない、最終冷却を350
℃以下迄行う時効処理からなることを特徴とするもので
ある。
The method for producing a permanent magnet alloy of the present invention includes Ru (where Ru is 1211 or more of the rare earth elements including Y), B
An alloy powder made of Fe containing unavoidable impurities with an average particle size of 1 to 50 μm is molded and heated at 900 to 1200°C.
After sintering at a temperature of 400 to 850°C, heating, holding, and cooling treatments are performed at least twice to maintain a temperature of 400 to 850°C, and the final cooling is performed at a temperature of 350°C.
It is characterized by an aging treatment that is carried out to temperatures below ℃.

さらに、前記時効処理を真空中、Ar 、 He 、 
N2あ−・るいは(Ar+NZ)ガス雰囲気中で行うも
のである6また、焼結後1時効処理前に850℃〜前記
焼結温度以下の温度に加熱し、保持後、“350℃以下
まで冷却する処理を行うことにより一層磁気特性は向上
する。
Furthermore, the aging treatment is performed in vacuum, using Ar, He,
It is carried out in a N2A-rui (Ar+NZ) gas atmosphere.6Also, after sintering and before aging treatment, it is heated to a temperature of 850℃ to below the sintering temperature, and after being held, it is heated to a temperature of 350℃ or below. By performing the cooling process, the magnetic properties are further improved.

〔作 用〕[For production]

以下1本発明の製造方法を詳述すると時効処理に先立ち
、所定成分を有する磁石合金が、公知の方法(例えば特
開昭59−46008号、特開昭 59−64733号
、同59−217304号公報参照)で準備される。す
なわち、電解鉄(純度99.9wt%以上)、B(純度
99wt%以上)およびNd (純度99.7wt% 
 以上)などの原料を所定の成分となるように秤量し。
The manufacturing method of the present invention will be described in detail below. Prior to aging treatment, a magnetic alloy having predetermined components is prepared by a known method (for example, JP-A-59-46008, JP-A-59-64733, JP-A-59-217304). (see official bulletin). That is, electrolytic iron (purity 99.9 wt% or more), B (purity 99 wt% or more), and Nd (purity 99.7 wt%
Weigh the raw materials (above) etc. so that they have the specified ingredients.

て高周波溶解し、水冷銅鋳WVC鋳造し1合金インゴッ
トを得る。合金インゴットをスタンプ・ミル。
The alloy was subjected to high frequency melting and water-cooled copper WVC casting to obtain an alloy ingot. Stamping and milling alloy ingots.

ジ1−・クラッシャーおよびジェット・ミルなどの粉砕
手段により平均粒度l〜50μmに粉砕する。
Grind to an average particle size of 1 to 50 μm using a grinding means such as a di-crusher and a jet mill.

1μm未満あるいは50μmを越えると磁気特性、とく
に、保磁力が低下するためである。得られた微粉に必要
に応じパラフィン・ステアリン酸、ステアリン酸金属塩
(金属としてCa、 Mg ;ルl 、 Zn )など
を添加し成形用原料とし、7JO圧成形する。成形圧力
は0.5〜10t/dが好ましい。また、成形時、必要
に応じて磁界(例えば5KOe以上)を印加する・と印
加方向に異方性化し、高磁気特性が得られる6得られた
成形体を真空、不活性カスなどの非酸化性ガス雰囲気あ
るいはH2などの還元性ガス雰囲気中にて、900〜1
200℃にて焼結する。酸化性ガス雰囲気および900
℃未満1200℃を越える温度では凡成分が酸化したり
、所定の密度が得られないため高い磁気特性が得られな
いからである。
This is because if the thickness is less than 1 μm or more than 50 μm, the magnetic properties, especially the coercive force, will deteriorate. Paraffin/stearic acid, stearic acid metal salts (metals include Ca, Mg, Lull, Zn), etc. are added to the obtained fine powder as necessary to form a molding raw material, and the mixture is subjected to 7JO pressure molding. The molding pressure is preferably 0.5 to 10 t/d. In addition, during molding, if necessary, a magnetic field (for example, 5 KOe or more) is applied to create anisotropy in the direction of application, resulting in high magnetic properties. 6. 900 to 1 in a reactive gas atmosphere or a reducing gas atmosphere such as H2.
Sinter at 200°C. Oxidizing gas atmosphere and 900
This is because if the temperature is lower than 1200°C, the basic components will be oxidized or the desired density will not be obtained, making it impossible to obtain high magnetic properties.

焼結後、時効処理に先立ち真空中あるいは不活性ガスあ
るいは還元性ガスなどの非酸化性ガス雰囲気中で850
℃から前記焼結温度以下の温度に加熱し、0.5〜10
時間保持し、350℃以下迄冷却速度20℃/分〜80
0℃/秒で冷却する処理を行うことにより、磁気特性は
飛躍的に同上する。焼結温度3よび10時間を越えると
結晶粒が成長し、保磁力が低下し、850℃未満および
0.5時間未満では、本処理の効果が少いためである。
After sintering and prior to aging treatment, it is heated to 850°C in a vacuum or in a non-oxidizing gas atmosphere such as an inert gas or a reducing gas.
℃ to a temperature below the sintering temperature, 0.5 to 10
Hold for a period of time and cool down to 350°C or less at a cooling rate of 20°C/min to 80°C.
By performing the cooling process at 0° C./second, the magnetic properties are dramatically improved. This is because when the sintering temperature exceeds 3 and 10 hours, crystal grains grow and the coercive force decreases, and when the sintering temperature is less than 850° C. and less than 0.5 hours, the effect of this treatment is small.

また、20℃/分未満、800℃/秒を越えると保磁力
が低下し、十分な効果を得るためには、冷却速度を20
℃/分〜800℃/秒とし、350℃以下迄の冷却が必
要である。
Also, if the cooling rate is less than 20°C/min or more than 800°C/sec, the coercive force will decrease.
C/min to 800°C/sec, and cooling to 350°C or lower is required.

以上述べた方法で作成した磁石合金に本発明による特定
の時効処理を施すことにより従来の製造方法に比較し著
しく磁気特性とくに最大エネルギー積(BH)MAxが
改善される。
By subjecting the magnetic alloy produced by the method described above to the specific aging treatment according to the present invention, the magnetic properties, particularly the maximum energy product (BH) MAX, are significantly improved compared to conventional manufacturing methods.

本−明の時効処理においては、先ずTI = 400〜
850℃に加熱する。400℃未満および850℃を越
えると、保磁力が低下するためである。保持時間はt!
=9.5〜20時間が良い。0.5時間未満では効果が
不十分で20時間を越えると角凰性が低下するからであ
る。
In the aging treatment of this invention, first TI = 400 ~
Heat to 850°C. This is because coercive force decreases at temperatures below 400°C and above 850°C. The retention time is t!
=9.5 to 20 hours is good. This is because if the heating time is less than 0.5 hours, the effect will be insufficient, and if the heating time exceeds 20 hours, the sharpness will decrease.

保持後の冷却速度はV1=gQ、1°C/分〜20℃/
秒が好211ましく上記範囲外では特性が低下する。な
お、冷却は350℃以下迄行うと、効果的である。以上
の熱処理を2回以上行うことにより著しく (BH)M
Axが向上するが、1回目の加熱保持条件(Tx)<t
t)に比較し、2回目の加熱保持条件(TzXH)は条
件T1≧Tz、H≦t2を満足することが好ましい。
The cooling rate after holding is V1=gQ, 1°C/min to 20°C/
211 seconds is preferable, but outside the above range the characteristics deteriorate. Note that cooling to 350° C. or lower is effective. By performing the above heat treatment two or more times, (BH)M
Although Ax improves, the first heating holding condition (Tx) < t
t), the second heating and holding condition (TzXH) preferably satisfies the conditions T1≧Tz and H≦t2.

なお、1回目の加熱冷却の熱処理以後の加熱−冷却は継
続的に行っても良く、室温迄冷却しても良“ い。室温
迄冷却すると製品の機械加工や、着磁作業が可能となり
、次の加熱−冷却処理により表面の雰囲気ガスとの反応
により防錆処理も同時に実施でき、また、着磁状態を脱
磁状態へと変えることもできる。熱脱磁が可能なことは
本磁石のキエリ一温度が300〜600℃に存在するた
めである。
Note that heating and cooling after the first heating and cooling heat treatment may be performed continuously, or may be cooled to room temperature.When the product is cooled to room temperature, machining and magnetization work of the product becomes possible. Through the following heating-cooling treatment, rust prevention treatment can be performed at the same time by reaction with atmospheric gas on the surface, and the magnetized state can also be changed to a demagnetized state.The ability of this magnet to be thermally demagnetized is This is because the Chieri temperature is between 300 and 600°C.

以上の如く焼結後、850℃から焼結温度以下の温度に
加熱保持後350℃以下迄冷却し、さらに保持温度を4
00〜850℃とする加熱、保持、冷却処理を2回以上
行う時効処理により、磁気特性が向上。
After sintering as described above, heat and hold from 850°C to a temperature below the sintering temperature, cool to 350°C or below, and further maintain the temperature at 450°C.
Magnetic properties are improved by aging treatment, which involves heating, holding, and cooling treatments at 00 to 850°C two or more times.

するのであり、この時効処理は真空中Ar t He 
r N2 tN2とArとの混合ガスの内から選択した
1穐のガス雰囲気中で行うと良い。酸化性ガス雰囲気中
では合金成分中のルが酸化し、特性が低下するためであ
る。
This aging treatment is carried out in a vacuum using Art He
It is preferable to carry out the process in a gas atmosphere of one gas selected from a mixed gas of r N2 tN2 and Ar. This is because, in an oxidizing gas atmosphere, ru in the alloy components is oxidized and the properties deteriorate.

上記時効処理は特開昭59−222564号公報に開示
されている如くの永久磁石合金に3いて、効果が大なる
ものである。すなわち原子百分比で40〜90俤のFe
、2〜28%のB、8〜30%の1も(Yを含む希土類
金属)を必須成分とじ:かつ下記所定俤以下のA元素の
1種以上(但し、2種以上含む場合のA元素の含量は当
核含有A7(:素のうち最大値を有するものの値以下)
を含有した永久磁石合金である。
The above-mentioned aging treatment is effective for permanent magnetic alloys such as those disclosed in Japanese Patent Application Laid-Open No. 59-222564. That is, 40 to 90 yen of Fe in terms of atomic percentage
, 2 to 28% B, and 8 to 30% 1 (rare earth metals including Y) as essential components: and one or more of the A elements below the specified amount below (however, A element when containing two or more types) The content of is the core containing A7 (: below the value of the element with the maximum value)
It is a permanent magnet alloy containing.

TI  4.5%以下 Ni  8−以下  Co  
50%以下Bi  5  %以下 V9.5%以下  
Nb12,5%以下Ta10.5%以下 Cr8.5%
以下  Mo  95%以下W  9.5%以下 fV
LN8%以下  AU−95%以下Sb  2.5fi
以下 Ge7%以下  Sn  3.5%以下Zt  
5.5%以下 Hf5.5%以下  Cu  3.5%
以下8 2.0%以下 C4%以下  Ca8%以下M
g  8  %以下 8d8%以下  01チ以下P 
3.5%以下 上記、永久磁石合金の組成内では、従来のハード・フェ
ライト出方の磁気q#性(BH) MAx4MGOa以
上の特性が得られる。
TI 4.5% or less Ni 8- or less Co
50% or less Bi 5% or less V9.5% or less
Nb 12.5% or less Ta 10.5% or less Cr 8.5%
Below Mo 95% or below W 9.5% or below fV
LN 8% or less AU-95% or less Sb 2.5fi
Ge 7% or less Sn 3.5% or less Zt
5.5% or less Hf 5.5% or less Cu 3.5%
Below 8 2.0% or less C4% or less Ca8% or less M
g 8% or less 8d8% or less 01chi or less P
3.5% or less Within the composition of the permanent magnet alloy mentioned above, characteristics superior to the magnetic q# property (BH) MAx4MGOa of conventional hard ferrite formation can be obtained.

上記本発明によれば、磁気特性と< K (BH)MA
)1が改善される。
According to the present invention, magnetic properties and <K (BH)MA
) 1 is improved.

〔実施例〕〔Example〕

次に本発明の実施例について脱明Tるが1本発明はこれ
ら実施例に限定されるものではない。
Next, examples of the present invention will be explained, but the present invention is not limited to these examples.

比較例1 原料として純度99.9wt慢の電解鉄、99.0wt
%のB右よびbとしてl[[99,7wt%以上のNd
を使用して組成(原子チ)で13%Nd−7%B−残F
eの最終焼結体を得る様に秤量して不活性ガス(Ar 
)中で溶解し合金インゴットを得た。合金インゴットな
ジ3−クラッシャー、ブラウン・ミルおよびジェットミ
ルを便用し、平均粒径4.1βmの成形用原料として成
形圧4.5 t / C1dでCa4) (20KOe
 ) 中テg7.形。
Comparative Example 1 Electrolytic iron with purity of 99.9wt and 99.0wt as raw material
%B right and b as l[[99,7wt% or more Nd
Using a composition (atomic Q) of 13%Nd-7%B-remaining F
Weigh and inert gas (Ar) to obtain the final sintered body of e.
) to obtain an alloy ingot. Using an alloy ingot di-3-crusher, Brown mill, and jet mill, Ca4) (20KOe
) Middle Tee G7. shape.

し成形体を得た。得られた成形体を真!2! (10−
’Torr)中で、1110℃×2時間の焼結を行い1
温まで急冷した。次に第3図に示すようICArガス(
大気圧)中で従来法の時効処理すなわち、室温(RT 
)から2℃/分で加熱し700℃X2Hの定温度処理後
、RTまで5℃/分で冷却する処理を行い所定寸法(1
0X10X10m)に加工後磁気特性の測定に供した。
A molded body was obtained. The obtained molded body is true! 2! (10-
Sintering was carried out at 1110°C for 2 hours in a
It was quickly cooled to warm temperature. Next, as shown in Figure 3, ICAr gas (
Conventional aging treatment at room temperature (atmospheric pressure)
) to 700°C x 2 hours at a constant temperature of 700°C for 2 hours.
After processing to a size of 0 x 10 x 10 m), the magnetic properties were measured.

結果を第1表中、11kLIK示Tように(BH)M黛
31、5 MGOc t’ アz タ。
The results are shown in Table 1 as shown in 11kLIK (BH) M 31, 5 MGOc t' az ta.

以下余白 第   2   表 実施例1 時効処理として第1図に示す如<、RTから2℃/分で
加熱し700’CXIHの処理後、RTまで5℃/分で
冷却する1次時効処理後、再度2℃/分で加熱し、69
0℃XIHの処理後RTまで5℃/分で冷却する2次時
効処理を行う以外は全て比較例1と同様に行った。結果
を第1衣中阻2として示す。(BH)MAxは33.1
 MGOeとなり従来法に比較し、約5%向上した。な
お、1次時効処理後、所定寸法に加工し着ai (30
KOa ) L、たものを2次時効処理を行った結果、
脱磁および適度な酸化皮膜の形成が可能なることを認め
た。
The following is a margin: Table 2 Example 1 As shown in Fig. 1, after the primary aging treatment, heating at 2°C/min from RT to 700'CXIH, cooling at 5°C/min to RT. Heat again at 2°C/min, 69
Everything was carried out in the same manner as in Comparative Example 1, except that after the 0° C. The results are shown as 1st clothes middle block 2. (BH) MAX is 33.1
MGOe was improved by about 5% compared to the conventional method. In addition, after the primary aging treatment, it is processed to the specified dimensions and attached to ai (30
As a result of secondary aging treatment of KOa) L,
It was confirmed that demagnetization and formation of an appropriate oxide film were possible.

比較例2,3 実施例1の時効処理に2ける第1次保持温度(T 1’
冨700℃)および第2次保持温IJ[(T2x 69
0’C)ヲ比較例2ではT1■870℃、T2xg5Q
℃とし、比較例3 テ!ITI = 370℃、 T2
1360 ℃とした以外は、  ・実施例1と同様に行
りた。結果を第1表中、陽3(比較例2)、1k4(比
較例3)として示す。この場合、得られる磁気特性は(
BH) MAx21.5 MCK)e。
Comparative Examples 2 and 3 First holding temperature (T 1') in aging treatment 2 of Example 1
700°C) and secondary holding temperature IJ [(T2x 69
0'C) In comparative example 2, T1■870℃, T2xg5Q
℃, Comparative Example 3 Te! ITI = 370℃, T2
- The same procedure as in Example 1 was carried out except that the temperature was 1360°C. The results are shown as positive 3 (comparative example 2) and 1k4 (comparative example 3) in Table 1. In this case, the magnetic properties obtained are (
BH) MAX21.5 MCK)e.

21.3MGOeとなり低いものである。21.3 MGOe, which is low.

実施例2 本例は、第2図に示す如く、焼結後Arガス(大気圧)
中で中間熱処理(RTから2℃/分で加熱し1050℃
X2H後、25℃/分でRTまでの冷却)を行った後、
実施例1で行った時効処理、すなわちArガス(大気圧
)中で、l(、Tから2℃/分で加熱し、700℃XI
Hの処理後RTまで5℃/分で冷却する1次時効処理後
、再度RTから2℃/分て加熱し、690℃XIHの処
理後、凡Tまで5℃/分で冷却する2次時効処理を行う
ものである。すなわち、焼結と時効処理の間に中間熱処
理(1050’CX2H)を行う以外は実施例1と同じ
である。
Example 2 In this example, as shown in Fig. 2, Ar gas (atmospheric pressure) was used after sintering.
Intermediate heat treatment (heated at 2°C/min from RT to 1050°C)
After cooling to RT at 25°C/min after X2H,
The aging treatment performed in Example 1, that is, in Ar gas (atmospheric pressure), heating at 2°C/min from T to 700°C
After the primary aging treatment in which the temperature is cooled at 5°C/min to RT, the temperature is heated again at 2°C/min from RT, and after the treatment at 690°C, the secondary aging is cooled at 5°C/min to approximately T. It performs processing. That is, it is the same as Example 1 except that intermediate heat treatment (1050'CX2H) is performed between sintering and aging treatment.

結果を第1表中階5として示すように(BH) MAX
は34.5MGOe テ;f:zす、従来法に比較シ、
約10es向上した。
The results are shown as middle floor 5 in Table 1 (BH) MAX
is 34.5MGOe, compared to the conventional method.
Improved by about 10es.

比較例4,5 中間熱処理での保持温度(To)をTo −1130℃
(比較例4 ) 、To −800℃(比[例5 ) 
ト変11シた以外は実施例2と同様に行った結果を第1
表中階6(比較例4)、N17(比較例5)として示す
Comparative Examples 4 and 5 Holding temperature (To) in intermediate heat treatment To -1130°C
(Comparative Example 4), To -800°C (Ratio [Example 5)
The results obtained in the same manner as in Example 2 except that 11 changes were made are shown in the first example.
They are shown as Nakaya 6 (Comparative Example 4) and N17 (Comparative Example 5) in the table.

従来方法(比較例1 31.5MGOe )に比較し、
優れているものの本発明方法(実施例1 33.1 M
GOe実施例2 34.5MGOe )に比べると31
.8〜32.5MGOeと低い。
Compared to the conventional method (Comparative Example 1 31.5 MGOe),
Although the method of the present invention is superior (Example 1 33.1 M
31 compared to GOe Example 2 (34.5MGOe)
.. It is low at 8 to 32.5 MGOe.

実施例3〜7 時効処理に2ける雰囲気ガスの種類を変更した以外は実
施例1(Arガス、大気圧)と同様に行った結果を第2
表に示す。(BH) MAXは33.2〜33,5MG
Oeであり比較例での特性値21.3〜32.5MGO
eに比べ命と優れている。
Examples 3 to 7 The results were obtained in the same manner as in Example 1 (Ar gas, atmospheric pressure) except that the type of atmospheric gas in aging treatment 2 was changed.
Shown in the table. (BH) MAX is 33.2~33.5MG
Oe and characteristic value 21.3-32.5MGO in comparative example
It is much better than e.

〔発明の効果〕〔Effect of the invention〕

本発明の熱処理方法によって得られた永久磁石合金の磁
気特性は従来方法のものに比較し、最大エネルギー積(
BH) MAXが極めて大きくその工業的価値は大であ
る。
The magnetic properties of the permanent magnet alloy obtained by the heat treatment method of the present invention are the maximum energy product (
BH) MAX is extremely large and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】 1、必須元素として、R(但し、RはYを含む希土類元
素の内1種以上)、Bおよび不可避の不純物を含むFe
からなる平均粒度1〜50μmの合金粉末を成形し、9
00〜1200℃で焼結した後、保持温度を400〜8
50℃とする加熱、保持、冷却処理を2回以上行い、最
終冷却を350℃以下迄に行う時効処理からなることを
特徴とする永久磁石合金の製造方法。 2、時効処理を真空中あるいは、Ar、He、N_2、
N_2とArとの混合ガスの内から選択した1種のガス
雰囲気中で行うことを特徴とする特許請求の範囲第1項
記載の永久磁石合金の製造方法。 3、焼結後、850℃〜前記焼結温度以下の温度に加熱
保持後350℃以下まで冷却し、前記時効処理を行うこ
とを特徴とする特許請求の範囲第1項記載の永久磁石の
製造方法。 4、時効処理を真空中あるいは、Ar、He、N_2、
N_2とArとの混合ガスの内から選択した1種のガス
雰囲気中で行うことを特徴とする特許請求の範囲第3項
記載の永久磁石の製造方法。
[Claims] 1. Fe containing R (where R is one or more rare earth elements including Y), B, and unavoidable impurities as essential elements;
An alloy powder with an average particle size of 1 to 50 μm consisting of
After sintering at 00 to 1200℃, the holding temperature is 400 to 8
A method for producing a permanent magnet alloy, which comprises heating to 50°C, holding, and cooling twice or more, and aging treatment to final cooling to 350°C or lower. 2. Aging treatment in vacuum or Ar, He, N_2,
2. The method for producing a permanent magnet alloy according to claim 1, wherein the process is carried out in an atmosphere of one type of gas selected from a mixed gas of N_2 and Ar. 3. After sintering, the permanent magnet is heated and held at a temperature of 850° C. to below the sintering temperature, cooled to 350° C. or below, and then subjected to the aging treatment. Method. 4. Aging treatment in vacuum or Ar, He, N_2,
4. The method for manufacturing a permanent magnet according to claim 3, wherein the method is carried out in an atmosphere of one type of gas selected from a mixed gas of N_2 and Ar.
JP60128757A 1985-06-13 1985-06-13 Manufacture of permanent magnet alloy Pending JPS61288047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60128757A JPS61288047A (en) 1985-06-13 1985-06-13 Manufacture of permanent magnet alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60128757A JPS61288047A (en) 1985-06-13 1985-06-13 Manufacture of permanent magnet alloy

Publications (1)

Publication Number Publication Date
JPS61288047A true JPS61288047A (en) 1986-12-18

Family

ID=14992710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60128757A Pending JPS61288047A (en) 1985-06-13 1985-06-13 Manufacture of permanent magnet alloy

Country Status (1)

Country Link
JP (1) JPS61288047A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293908A (en) * 1985-10-19 1987-04-30 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPH01164007A (en) * 1987-12-21 1989-06-28 Toshiba Corp Manufacture of permanent magnet
EP0414376A2 (en) * 1989-07-24 1991-02-27 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a rare earth-iron-boron permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6293908A (en) * 1985-10-19 1987-04-30 Tohoku Metal Ind Ltd Manufacture of rare-earth magnet
JPH01164007A (en) * 1987-12-21 1989-06-28 Toshiba Corp Manufacture of permanent magnet
EP0414376A2 (en) * 1989-07-24 1991-02-27 Shin-Etsu Chemical Co., Ltd. Method for the preparation of a rare earth-iron-boron permanent magnet

Similar Documents

Publication Publication Date Title
KR100360533B1 (en) Method for producing high silicon steel, and silicon steel
US4601875A (en) Process for producing magnetic materials
US5908513A (en) Cast alloy used for production of rare earth magnet and method for producing cast alloy and magnet
CN101370606B (en) Rare earth sintered magnet and method for producing same
EP1479787B2 (en) Sinter magnet made from rare earth-iron-boron alloy powder for magnet
US5352302A (en) Method of producing a rare-earth permanent magnet
JPH01219143A (en) Sintered permanent magnet material and its production
JPH04245403A (en) Rare earth-fe-co-b-based anisotropic magnet
JP2665590B2 (en) Rare earth-iron-boron based alloy thin plate for magnetic anisotropic sintered permanent magnet raw material, alloy powder for magnetic anisotropic sintered permanent magnet raw material, and magnetic anisotropic sintered permanent magnet
JP3594084B2 (en) Rare earth alloy ribbon manufacturing method, rare earth alloy ribbon and rare earth magnet
EP1632299B1 (en) Method for producing rare earth based alloy powder and method for producing rare earth based sintered magnet
JPS61288047A (en) Manufacture of permanent magnet alloy
US4375996A (en) Rare earth metal-containing alloys for permanent magnets
JPH0146575B2 (en)
CN113223797A (en) Rare earth cobalt permanent magnet, method and apparatus for manufacturing the same
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
JPH0146574B2 (en)
JP2745042B2 (en) Rare earth-iron-boron alloy thin plate, alloy powder and method for producing permanent magnet
JPH04247604A (en) Rare earth-fe-co-b anisotropic magnet
JPS63115304A (en) High-performance rare-earth cast magnet
JPH07109504A (en) Production of raw powder for anisotropic bond magnet
US20230352220A1 (en) Sintered rare-earth magnet and method of manufacture
WO2022209466A1 (en) Method for producing r-t-b-based sintered magnet
JPH0475303B2 (en)
JPS6077961A (en) Permanent magnet material and its manufacture