JPH09260171A - Manufacture of rare earth permanent magnet - Google Patents

Manufacture of rare earth permanent magnet

Info

Publication number
JPH09260171A
JPH09260171A JP8066009A JP6600996A JPH09260171A JP H09260171 A JPH09260171 A JP H09260171A JP 8066009 A JP8066009 A JP 8066009A JP 6600996 A JP6600996 A JP 6600996A JP H09260171 A JPH09260171 A JP H09260171A
Authority
JP
Japan
Prior art keywords
capsule
alloy
rare earth
cooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8066009A
Other languages
Japanese (ja)
Inventor
Osamu Kobayashi
理 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8066009A priority Critical patent/JPH09260171A/en
Publication of JPH09260171A publication Critical patent/JPH09260171A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PROBLEM TO BE SOLVED: To prevent lowering of an yield due to a crack by having a cooling process by relaxing a stress due to a a difference in the thermal expansion coefficients between an alloy and a capsule after hot working. SOLUTION: A rare-earth alloy having R (R denotes at least one kind or more of rare earth elements including Y), Fe and B as basic components or rare earth alloy powder are encapsulated for being subjected to hot working. Then, after hot working, a cooling process for selaxing a stress due to a difference in thermal expansion between the alloy and the capsule is carried out. Here, the cooling process for relaxing a stress due to a difference in the thermal expansion coefficients of the alloy and the capsule is made to be a process of gradual cooling at a cooling speed of 0.01 to 2 deg.C/min. Further, it is to be process of cooling while applying a compression stress to a work material. Therefore, a large-sized magnet with a high mechanical strength can be stably produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、希土類元素、鉄及
びBを基本成分とする希土類合金または希土類合金粉末
をカプセルに入れて熱間加工する永久磁石の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a permanent magnet in which a rare earth alloy or a rare earth alloy powder containing a rare earth element, iron and B as basic components is encapsulated and hot worked.

【0002】[0002]

【従来の技術】永久磁石は、外部から電気的エネルギー
を供給しないで磁界を発生するための材料であり、高透
磁率材料とは逆に保磁力が大きく、また残留磁束密度も
高いものが適し、一般家庭の各種電気製品から大型コン
ピューターの周辺端末機器まで、幅広い分野で使用され
ている重要な電気・電子材料の1つである。
2. Description of the Related Art A permanent magnet is a material for generating a magnetic field without supplying electric energy from the outside, and it is suitable that it has a large coercive force and a high residual magnetic flux density, which is the opposite of a high magnetic permeability material. , It is one of the important electrical and electronic materials used in a wide range of fields from various household electric appliances to peripheral devices for large computers.

【0003】現在使用されている永久磁石のうち希土類
永久磁石は、極めて高い保磁力とエネルギー積を持つ永
久磁石として多くの研究開発がなされている。そしてこ
の希土類永久磁石の製造方法としては、特公昭61−3
4242号公報等にあるように焼結法によるものや、特
公平4−20975号公報等にあるように急冷薄片を樹
脂結合法で磁石にする方法、さらに、特公平4−202
42号公報等の2段階ホットプレス法と呼ばれる方法が
知られていた。
Among the permanent magnets currently in use, rare earth permanent magnets have been extensively researched and developed as permanent magnets having extremely high coercive force and energy product. And as a method for manufacturing this rare earth permanent magnet, Japanese Patent Publication No. 61-3
No. 4242, etc., a method using a sintering method, as in Japanese Patent Publication No. 4-20975, etc., a method in which a quenched thin piece is made into a magnet by a resin bonding method, and further, Japanese Patent Publication No. 4-202.
A method called a two-step hot pressing method such as Japanese Patent No. 42 has been known.

【0004】また、特開昭62−276803号公報等
の希土類と鉄とBを基本成分とする合金を熱間加工する
ことにより、結晶粒を微細化しまたその結晶軸を特定の
方向に配向せしめて、磁気特性と機械的強度に優れた希
土類−鉄系永久磁石を得る方法も知られていた。そして
この方法においては、特開平1−171204号公報に
あるように金属カプセルで合金を覆って熱間加工を行う
方法が、加熱中の雰囲気管理も不要であり量産に向く方
法として開示されている。
Further, by hot working an alloy containing a rare earth element, iron and B as the basic components as disclosed in JP-A-62-276803, the crystal grains are made finer and the crystal axes thereof are oriented in a specific direction. A method of obtaining a rare earth-iron-based permanent magnet excellent in magnetic properties and mechanical strength has also been known. In this method, as disclosed in Japanese Unexamined Patent Publication No. 1-171204, a method of covering the alloy with a metal capsule and performing hot working is disclosed as a method suitable for mass production without the need for atmosphere management during heating. .

【0005】この希土類合金をカプセルにいれて熱間加
工する希土類磁石の製造方法においてはさらに次のよう
な方法が知られていた。
The following method has been known as a method for producing a rare earth magnet in which this rare earth alloy is encapsulated and hot-worked.

【0006】(1)特開平2−3901号公報2頁右下
欄7〜16行には、希土類元素と鉄とボロンとを基本成
分とする合金の鋳塊を熱間加工する工程を含む希土類−
Fe−B系磁石の製造方法において、剥離剤(ガラス潤
滑剤、BN、アルミナ等)を介して金属カプセルに鋳塊
を封入した上で熱間加工を行うことにより磁石と金属カ
プセルの反応を防止でき、割れ発生の防止に効果がある
ことが開示されている。
(1) Japanese Unexamined Patent Publication (Kokai) No. 2-3901, page 2, lower right column, lines 7 to 16 shows a rare earth element including a step of hot working an ingot of an alloy containing a rare earth element, iron and boron as basic components. −
In the Fe-B magnet manufacturing method, the reaction between the magnet and the metal capsule is prevented by hot working after encapsulating the ingot in the metal capsule through a release agent (glass lubricant, BN, alumina, etc.). It is disclosed that it is possible to prevent the occurrence of cracks.

【0007】(2)特開平3−287723号公報2頁
左上欄20行〜左下欄4行には、希土類元素と鉄とボロ
ンとを基本成分とする合金の鋳塊を熱間加工する工程を
含む希土類−Fe−B系磁石の製造方法において、炭素
量が0.25wt%以下で融点が600℃以上の金属材
料で鋳塊を囲僥すると共に密封した上で熱間加工を行
い、加工後10℃/分未満の冷却速度で冷却することが
磁石の割れ発生の防止に効果があることが開示されてい
る。
(2) JP-A-3-287723, page 2, upper left column, line 20 to lower left column, line 4 describes a step of hot working an ingot of an alloy containing a rare earth element, iron and boron as basic components. In the method for producing a rare earth-Fe-B based magnet containing, the ingot is surrounded by a metal material having a carbon content of 0.25 wt% or less and a melting point of 600 ° C. or more, and the ingot is sealed and hot-worked. It is disclosed that cooling at a cooling rate of less than 10 ° C./minute is effective in preventing cracking of the magnet.

【0008】[0008]

【発明が解決しようとする課題】叙上の(1)〜(2)
の従来の希土類永久磁石の製造方法は、次の如き欠点を
有している。
[Problems to be Solved by the Invention] (1) to (2) above
The conventional method for manufacturing a rare earth permanent magnet described above has the following drawbacks.

【0009】(1)の永久磁石を製造方法は、磁石とカ
プセルの間の反応を剥離剤・潤滑剤で防ぐことにより両
者の融着・一体化を平均としては少なくすることができ
たが、潤滑剤保持材を用いた場合でも潤滑剤の加工に伴
う展延が均一でなく、どうしても一部では潤滑剤切れを
起こして融着が生じ磁石の割れが発生するといった欠点
がある。
In the method of manufacturing a permanent magnet of (1), the reaction between the magnet and the capsule was prevented by a release agent / lubricant, so that fusion and integration of the two could be reduced on average. Even when the lubricant holding material is used, there is a drawback that the spread due to the processing of the lubricant is not uniform, and in some cases, the lubricant is cut off and fusion occurs to cause cracking of the magnet.

【0010】(2)の永久磁石の製造方法は(1)の製
造方法の欠点を改良するものであり熱間加工後の冷却速
度を規定したものであるが、この場合でも磁石の割れの
発生は完全に防止されたわけではなく、磁石材が2分割
される様な大きな割れが1〜2割の頻度で発生し、また
磁石表面層には浅く小さな割れがまだ発生しその割れ部
除去のためにも歩留まりが低下する欠点がある。
The permanent magnet manufacturing method (2) improves the drawbacks of the manufacturing method (1) and defines the cooling rate after hot working. Even in this case, cracking of the magnet occurs. Is not completely prevented, and large cracks that divide the magnet material into two occur at a frequency of 10 to 20%, and shallow small cracks still occur on the magnet surface layer to remove the cracks. However, there is a drawback that the yield is reduced.

【0011】本発明は、以上の従来技術の欠点、(1)
〜(2)の永久磁石製造方法における割れによる歩留ま
りの低下の欠点を解決するものであり、その目的とする
ところは、機械的強度に優れ大型磁石の作製が可能な鋳
造・熱間加工法によるR−Fe−B系永久磁石において
割れによる歩留まり低下を防ぎ、高性能かつ低コストの
永久磁石の製造方法を提供することにある。
The present invention has the above-mentioned drawbacks of the prior art, (1)
The object of the present invention is to solve the disadvantage of yield loss due to cracking in the permanent magnet manufacturing method of (2), and the purpose thereof is to use a casting / hot working method that is excellent in mechanical strength and capable of producing a large magnet. An object of the present invention is to provide a high-performance and low-cost manufacturing method for a permanent magnet, which prevents yield reduction due to cracking in an R-Fe-B based permanent magnet.

【0012】[0012]

【課題を解決するための手段】請求項1記載の希土類永
久磁石の製造方法は、R(ただしRはYを含む希土類元
素のうち少なくとも1種以上)、Fe及びBを基本成分
とする希土類合金または希土類合金粉末をカプセルに入
れて熱間加工する永久磁石の製造方法において、熱間加
工後に合金とカプセルの熱膨張率の差による応力を緩和
する冷却工程をもつことを特徴とする。
A method for producing a rare earth permanent magnet according to claim 1, wherein a rare earth alloy containing R (where R is at least one of rare earth elements including Y), Fe and B as basic components. Alternatively, a method of manufacturing a permanent magnet in which a rare earth alloy powder is put into a capsule and hot-worked is characterized by having a cooling step for relaxing stress caused by a difference in thermal expansion coefficient between the alloy and the capsule after hot-working.

【0013】請求項2記載の希土類永久磁石の製造方法
は、前記合金とカプセルの熱膨張率の差による応力を緩
和する冷却工程が、0.01〜2℃/分の冷却速度によ
って徐冷する工程であることを特徴とする。
In the method for manufacturing a rare earth permanent magnet according to a second aspect, the cooling step for relaxing the stress due to the difference in the coefficient of thermal expansion between the alloy and the capsule is gradually cooled at a cooling rate of 0.01 to 2 ° C./min. It is characterized by being a process.

【0014】請求項3記載の希土類永久磁石の製造方法
は、前記合金とカプセルの熱膨張率の差による応力を緩
和する冷却工程が、加工材に圧縮応力を加えつつ冷却す
る工程であることを特徴とする。
In the method for manufacturing a rare earth permanent magnet according to a third aspect of the present invention, the cooling step of relaxing the stress due to the difference in the coefficient of thermal expansion between the alloy and the capsule is a step of cooling the processed material while applying compressive stress. Characterize.

【0015】請求項4記載の希土類永久磁石の製造方法
は、(a) R(ただしRはYを含む希土類元素のうち少
なくとも1種以上)、Fe及びBを基本成分とする合金
を溶解・鋳造する工程、(b) 前記鋳造合金をA3 変態
点を有する鉄基金属カプセル内に装入、密封する工程、
(c) 該カプセルを800〜1100℃のA3 変態点以
上の温度で熱間加工する工程、(d) 次いで熱間加工さ
れた圧延材(カプセル)を該鉄基金属カプセルのA3
態開始温度(T1)からA3 変態終了温度(T2)までを
0.05〜2℃/分の冷却速度で徐冷し、更に室温まで
冷却する工程。
In the method for producing a rare earth permanent magnet according to claim 4, (a) R (where R is at least one of rare earth elements including Y), an alloy containing Fe and B as basic components is melted and cast. And (b) charging and sealing the casting alloy in an iron-based metal capsule having an A 3 transformation point,
(c) a step of hot working the capsule at a temperature not lower than the A 3 transformation point of 800 to 1100 ° C., (d) then starting the hot working rolled material (capsule) to the A 3 transformation of the iron-based metal capsule A step of gradually cooling from the temperature (T 1 ) to the A 3 transformation end temperature (T 2 ) at a cooling rate of 0.05 to 2 ° C./minute, and further cooling to room temperature.

【0016】上記(a)〜(d)の工程からなり、該合金を
磁気的に異方性化することを特徴とする。
It is characterized by comprising the above steps (a) to (d) and magnetically anisotropy of the alloy.

【0017】請求項5記載の希土類永久磁石の製造方法
は、(a) R(ただしRはYを含む希土類元素のうち少
なくとも1種以上)、Fe及びBを基本成分とする合金
を溶解・鋳造する工程、(b) 前記鋳造合金をA3 変態
点を有する鉄基金属カプセル内に装入、密封する工程、
(c) 該カプセルを800〜1100℃のA3 変態点以
上の温度で熱間加工する工程、(d) 次いで熱間加工さ
れた圧延材(カプセル)を該鉄基金属カプセルのA3
態開始温度(T1)からA3 変態終了温度(T2)までを
0.05〜2℃/分の冷却速度で徐冷し、更に室温まで
冷却する工程、(e) 前記鋳造合金を金属カプセルより
取出し熱処理する工程。
According to a fifth aspect of the present invention, there is provided a method for producing a rare earth permanent magnet, which comprises: (a) R (wherein R is at least one of rare earth elements including Y), Fe and B are alloys, and alloys having basic components are melted and cast. And (b) charging and sealing the casting alloy in an iron-based metal capsule having an A 3 transformation point,
(c) a step of hot working the capsule at a temperature not lower than the A 3 transformation point of 800 to 1100 ° C., (d) then starting the hot working rolled material (capsule) to the A 3 transformation of the iron-based metal capsule A step of gradually cooling from a temperature (T 1 ) to an A 3 transformation end temperature (T 2 ) at a cooling rate of 0.05 to 2 ° C./minute, and further cooling to room temperature; Process of taking out heat treatment.

【0018】上記(a)〜(e)の工程からなり、該合金を
磁気的に異方性化することを特徴とする。
The method is characterized by comprising the steps (a) to (e) and magnetically anisotropy of the alloy.

【0019】請求項6記載の希土類永久磁石の製造方法
は、(a) R(ただしRはYを含む希土類元素のうち少
なくとも1種以上)、Fe及びBを基本成分とする合金
を溶解・鋳造する工程、(b) 前記鋳造合金をA3 変態
点を有する鉄基金属カプセル内に装入、密封する工程、
(c) 該カプセルを800〜1100℃のA3 変態点以
上の温度で熱間加工する工程、(d) 次いで熱間加工さ
れた圧延材(カプセル)を該鉄基金属カプセルのA3
態開始温度(T1)からA3 変態終了温度(T2)までを
0.05〜2℃/分の冷却速度で徐冷し、更に室温まで
冷却する工程、(e) 前記鋳造合金を金属カプセルより
取出し熱処理する工程、(f) 次いで所望の形状に切断
・研磨する工程。
The method for producing a rare earth permanent magnet according to claim 6 is: (a) R (where R is at least one or more of rare earth elements including Y), Fe and B are alloyed and cast as an alloy. And (b) charging and sealing the casting alloy in an iron-based metal capsule having an A 3 transformation point,
(c) a step of hot working the capsule at a temperature not lower than the A 3 transformation point of 800 to 1100 ° C., (d) then starting the hot working rolled material (capsule) to the A 3 transformation of the iron-based metal capsule A step of gradually cooling from a temperature (T 1 ) to an A 3 transformation end temperature (T 2 ) at a cooling rate of 0.05 to 2 ° C./minute, and further cooling to room temperature; Step of taking out heat treatment, (f) Step of cutting and polishing into a desired shape.

【0020】上記(a)〜(f)の工程からなり、該合金を
磁気的に異方性化することを特徴とする。
It is characterized by comprising the above steps (a) to (f) and magnetically anisotropy of the alloy.

【0021】請求項7記載の希土類永久磁石の製造方法
は、前記工程(d)の冷却工程において、(T1+5
0)℃から(T2−50)℃までの温度域を0.05〜
1℃/分の冷却速度で徐冷し、次いで (T2−50)℃
から250℃までの温度域を0.01〜2℃/分の冷却
速度で徐冷することを特徴とする。
In the method for producing a rare earth permanent magnet according to claim 7, in the cooling step of the step (d), (T 1 +5
The temperature range from 0) ℃ to (T 2 -50) ℃ is 0.05 ~
Gradually cool at a cooling rate of 1 ° C./min, then (T 2 −50) ° C.
To 250 ° C. is characterized by slow cooling at a cooling rate of 0.01 to 2 ° C./min.

【0022】請求項8記載の希土類永久磁石の製造方法
は、前記工程(a)の鋳造合金がR14〜19原子%、
B4〜6原子%、Cu0.1〜2原子%、残部鉄及び製
造上不可避な不純物からなり、さらに前記工程(b)の
鉄基金属カプセルが冷却時のA3 変態点を600〜90
0℃にもつ汎用鋼であることを特徴とする。
In the method for producing a rare earth permanent magnet according to claim 8, the casting alloy in the step (a) is R14 to 19 atom%,
B4 to 6 atomic%, Cu 0.1 to 2 atomic%, the balance iron and impurities inevitable in production, and the iron-based metal capsule of the step (b) has an A 3 transformation point of 600 to 90 during cooling.
It is characterized by being a general-purpose steel with a temperature of 0 ° C.

【0023】請求項9記載の希土類永久磁石の製造方法
は、前記工程(b)の鋳造合金を鉄基金属カプセル内に
装入する際、合金とカプセルの間に剥離剤を介在させる
ことを特徴とする。
The method for producing a rare earth permanent magnet according to claim 9 is characterized in that, when the casting alloy in the step (b) is charged into the iron-based metal capsule, a release agent is interposed between the alloy and the capsule. And

【0024】ここでA3 変態点とは、鉄及び鉄基合金の
α鉄(体心立方格子)⇔γ鉄(面心立方格子)の変態点
および変態温度域を指し、例えば高温からの冷却時の亜
共析鋼の様な場合にはγ鉄からα鉄への変態とγ鉄から
α鉄+セメンタイトへの変態の連続する変態温度域を指
す。
Here, the A 3 transformation point refers to the transformation point and transformation temperature range of iron and iron-based alloy α iron (body centered cubic lattice) ⇔ γ iron (face centered cubic lattice), for example, cooling from high temperature. In the case of hypoeutectoid steel, it refers to the continuous transformation temperature range of the transformation from γ iron to α iron and the transformation from γ iron to α iron + cementite.

【0025】[0025]

【発明の実施の形態】本発明における希土類永久合金ま
たは希土類合金粉末として好ましい組成について以下に
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The preferred composition of the rare earth permanent alloy or rare earth alloy powder according to the present invention will be described below.

【0026】希土類元素としてはY,La,Ce,P
r,Nd,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,Yb,Luが候補として挙げられ、これらの
うち1種あるいは2種以上を組み合わせて用いる。最も
高い磁気特性はPrで得られるので、実用的にはPr,
Pr−Nd,Ce−Pr−Nd合金等が用いられる。
As rare earth elements, Y, La, Ce, P
r, Nd, Sm, Eu, Gd, Tb, Dy, Ho, E
r, Tm, Yb, and Lu are listed as candidates, and of these, one kind or a combination of two or more kinds is used. Since the highest magnetic characteristics are obtained with Pr, practically, Pr,
Pr-Nd, Ce-Pr-Nd alloy or the like is used.

【0027】希土類元素の量は12〜25原子%が適当
で、12原子%未満だとR−リッチ相の量が少なく加工
中に割れ易くなり歩留まりが低下してしまう。また25
原子%を越えると非磁性相の量が多くなり磁気特性は著
しく低下する。そして、希土類磁石が高い磁気特性と優
れた機械的強度を得るためには、希土類元素の量は14
〜19原子%であることが望まれる。
The amount of the rare earth element is suitably 12 to 25 atomic%, and if it is less than 12 atomic%, the amount of the R-rich phase is small and cracking easily occurs during processing, and the yield decreases. Also 25
If it exceeds atomic%, the amount of non-magnetic phase increases and the magnetic properties are significantly deteriorated. In order for the rare earth magnet to have high magnetic properties and excellent mechanical strength, the amount of rare earth element should be 14
It is desired to be -19 atom%.

【0028】Feは65〜85原子%が適当であり、6
5原子%未満では非磁性相の量が増えすぎて性能が低下
する。一方85原子%を越えると希土類元素の量が減少
し、希土類元素の説明で述べたような問題が出て来る。
Fe is preferably 65 to 85 atomic%, and 6
If it is less than 5 atomic%, the amount of the non-magnetic phase increases too much and the performance deteriorates. On the other hand, when it exceeds 85 atomic%, the amount of the rare earth element decreases, and the problem described in the explanation of the rare earth element appears.

【0029】Bは2〜8原子%が適当であり、2原子%
未満では菱面体のR−Fe系になるために高保磁力は望
めない。また8原子%を越えると微細な R2Fe14B粒
を得ることが困難で熱間加工性が悪くなり高保磁力を得
ることも出来なくなる。そして、希土類磁石が高い磁気
特性と優れた機械的強度を得るためには、Bの量は4〜
6原子%であることが望まれる。
B is preferably 2 to 8 atomic%, and 2 atomic%
If it is less than the above, a high coercive force cannot be expected because it becomes a rhombohedral R-Fe system. On the other hand, if it exceeds 8 atom%, it is difficult to obtain fine R 2 Fe 14 B grains, and the hot workability is deteriorated, and it becomes impossible to obtain a high coercive force. In order for the rare earth magnet to have high magnetic properties and excellent mechanical strength, the amount of B should be 4 to
It is desired to be 6 atomic%.

【0030】またCoはキュリー温度を高めるのに有効
であり、Feに対して50%以内の置換であれば保磁力
を大きく損なうことが無く置換できる。
Further, Co is effective for raising the Curie temperature, and if it is replaced within 50% with respect to Fe, it can be replaced without significantly impairing the coercive force.

【0031】Cu,Ag,Au,Gaは熱間加工性を高
め、保磁力と角形性の向上効果を有するので添加するこ
とが有効だが非磁性相を形成するのでその添加量は6原
子%以下が好ましい。そして、このうちCuが最も高い
効果を持ち、希土類磁石が高い磁気特性と優れた機械的
強度を得るためには、Cuが0.1〜2原子%であるこ
とが望まれる。
Cu, Ag, Au, and Ga have the effects of improving hot workability and coercive force and squareness, so addition is effective, but a nonmagnetic phase is formed, so the addition amount is 6 atomic% or less. Is preferred. Of these, Cu has the highest effect, and in order for the rare earth magnet to obtain high magnetic characteristics and excellent mechanical strength, Cu is preferably 0.1 to 2 atomic%.

【0032】また、上記以外に更にAl,Si等を含む
こともでき、残留磁束密度を低下させない程度の少量添
加によって保磁力の向上を図ることも良い。
Further, in addition to the above, Al, Si and the like may be further contained, and the coercive force may be improved by adding a small amount so as not to reduce the residual magnetic flux density.

【0033】そして、以上説明してきた希土類元素と鉄
とBを基本成分とする合金は昇温時に次のような熱膨張
挙動を示す。まず主相が強磁性体であるこの合金は室温
から300℃前後のキュリー温度までは収縮し、キュリ
ー温度以上で膨張に転じる。そして、450℃〜700
℃の温度範囲のなかに一部の粒界相の融点が存在し、そ
の温度からは液相の出現により、より大きな膨張率へ変
化する。そして、この融点以上ではほとんど単調に膨張
する。
The above-described alloy containing the rare earth elements, iron and B as the basic components exhibits the following thermal expansion behavior when the temperature is raised. First, this alloy, whose main phase is a ferromagnetic material, contracts from room temperature to a Curie temperature of about 300 ° C., and expands at the Curie temperature or higher. And 450 ° C to 700
Some of the grain boundary phases have melting points within the temperature range of ℃, and from that temperature, the expansion rate changes due to the appearance of the liquid phase. And above this melting point, it almost monotonically expands.

【0034】上記の希土類合金または希土類合金粉末の
作成は、現在知られている製造法のどれをも採用でき、
例えば水冷銅ハース上でのアーク溶解による合金イン
ゴットの作成、高周波溶解後、鉄・銅等の金型への鋳
造による合金インゴットの作成、メルトスパン法によ
る急冷合金リボン・フレークの作成、希土類化合物か
らの還元・拡散法による合金粉末の作成、ボールミル
を用いたメカニカルアロイング法による合金粉末の作成
等の方法が採用できる。及びの合金インゴットを機
械的に粉砕して粉末にしても良いし、水素脆化を用いて
粉砕し粉末とすることも可能である。またこれらの希土
類合金および希土類合金粉末の作成は、合金の酸化を防
ぐためAr、窒素等の不活性雰囲気中で行われることが
望まれる。
For the preparation of the above rare earth alloy or rare earth alloy powder, any of the currently known manufacturing methods can be adopted,
For example, creating an alloy ingot by arc melting on a water-cooled copper hearth, making an alloy ingot by high-frequency melting and then casting in a mold of iron, copper, etc., making quenched alloy ribbons and flakes by the melt-span method, from rare earth compounds Methods such as alloy powder preparation by reduction / diffusion method and alloy powder preparation by mechanical alloying method using a ball mill can be adopted. The alloy ingots (1) and (2) may be mechanically pulverized into powder, or may be pulverized into powder by hydrogen embrittlement. Further, it is desired that the production of these rare earth alloys and rare earth alloy powders is carried out in an inert atmosphere of Ar, nitrogen or the like in order to prevent the alloy from being oxidized.

【0035】またの溶解・鋳造により合金インゴット
を作成する場合には、そのインゴットのマクロ組織が柱
状晶でかつ主相の平均粒径が1〜50μmの微細な結晶
となるように鋳造することが好ましく、そのために金型
の冷却能を十分に大きくなるようにその体積を大きくし
たり水冷機構をつけた金型が用いられる。
When an alloy ingot is prepared by melting and casting, the alloy ingot may be cast so that the macrostructure of the ingot is columnar and the main phase has a mean grain size of 1 to 50 μm. Preferably, for that purpose, a mold having a large volume or a water cooling mechanism so that the cooling capacity of the mold is sufficiently large is used.

【0036】次に、本発明の製造方法では希土類合金イ
ンゴットまたは希土類合金粉末はカプセルに封入される
が、その熱間加工は合金中に液相を生成させ、いわゆる
半溶融状態となるほどの高温で行われることから、カプ
セルとしてはこの加工温度より十分に高融点の材料が使
用される。そして熱間加工において合金の変形に対応で
きる延性と強度が必要で、例えば鉄系合金、銅系合金、
ニッケル系合金などの金属カプセルが使用される。これ
らの金属カプセルの多くは室温以上の温度域では単調な
熱膨張を示す。
Next, in the production method of the present invention, the rare earth alloy ingot or the rare earth alloy powder is encapsulated, and the hot working thereof produces a liquid phase in the alloy at such a high temperature that it becomes a so-called semi-molten state. Since this is performed, a material having a melting point sufficiently higher than this processing temperature is used as the capsule. And the ductility and strength that can respond to the deformation of the alloy in hot working are required, such as iron-based alloys, copper-based alloys,
A metal capsule such as a nickel alloy is used. Many of these metal capsules exhibit monotonic thermal expansion in the temperature range above room temperature.

【0037】また、この高温に於ける液相は希土類に富
み反応性が高いので、この液相と比較的緩やかな反応を
起こして合金層または化合物層を生成する鉄基金属カプ
セルが望ましく、例えばJIS G 3101の一般構造用圧延鋼
材、JIS G 3131の熱間圧延軟鋼板及び鋼帯、JIS G 3141
の冷間圧延鋼板及び鋼帯、JIS G 4051の機械構造用炭素
鋼鋼材、JIS G 4304の熱間圧延ステンレス鋼板及び鋼
帯、JIS G 4305の冷間圧延ステンレス鋼板及び鋼帯等の
3 変態点を有する鉄基金属カプセルが使用できる。こ
れらの鉄基金属カプセルは600〜900℃に冷却時の
3 変態点を有しており、その昇温時の熱膨張に関して
はα鉄(体心立方格子)→γ鉄(面心立方格子)のA3
変態点において収縮を生じるが、そのほかの室温以上の
温度域では単調な膨張を示すものである。
Further, since the liquid phase at this high temperature is rich in rare earths and has high reactivity, an iron-based metal capsule which produces a relatively gentle reaction with the liquid phase to form an alloy layer or a compound layer is desirable. JIS G 3101 rolled steel for general structure, JIS G 3131 hot rolled mild steel plate and strip, JIS G 3141
Cold rolled steel sheet and strip, carbon steel for machine construction steel of JIS G 4051, hot rolled stainless steel sheet and strip of JIS G 4304, a cold JIS G 4305 rolled stainless steel plate and A 3 transformation of the steel strip or the like Iron-based metal capsules with dots can be used. These iron-based metal capsules have an A 3 transformation point at the time of cooling to 600 to 900 ° C., and regarding the thermal expansion at the time of temperature rise, α iron (body centered cubic lattice) → γ iron (face centered cubic lattice) ) A 3
Although it contracts at the transformation point, it exhibits monotonic expansion in other temperature regions above room temperature.

【0038】そして、この金属カプセルの厚みであるが
中に装入される合金のサイズに対して20%以上である
ことが望ましい。例えば外形が幅W1×長さL1×高さ
H1の直方体のカプセルに幅W2×長さL2×高さH2
の合金が装入されるとき、幅方向のカプセル厚みTw=
(W1−W2)/2が0.2×W2より大きくなるよう
にカプセル厚みは設定される。さらに、長さ方向のカプ
セル厚みTl=(L1−L2)/2,高さ方向のカプセ
ル厚みTh=(H1−H2)/2についてもそれぞれ
0.2×L2,0.2×H2より大きくなるように設定
される。複数の合金インゴットが装入されるときは、あ
る合金塊に対してその外側へ向かっての幅方向、長さ方
向、高さ方向のカプセル材の厚さの和が前述のカプセル
厚みの条件を満たしていれば良い。この厚みよりカプセ
ルが薄いと熱間加工中にカプセルが破断して大きな割れ
を引き起こすことがある。
The thickness of the metal capsule is preferably 20% or more with respect to the size of the alloy charged therein. For example, a rectangular parallelepiped capsule having an outer shape of width W1 × length L1 × height H1 has width W2 × length L2 × height H2.
When the alloy is charged, the capsule thickness in the width direction Tw =
The capsule thickness is set so that (W1−W2) / 2 is larger than 0.2 × W2. Further, the capsule thickness in the length direction Tl = (L1-L2) / 2 and the capsule thickness in the height direction Th = (H1-H2) / 2 are also larger than 0.2 × L2 and 0.2 × H2, respectively. Is set as follows. When multiple alloy ingots are charged, the sum of the thickness of the encapsulant in the width direction, the length direction, and the height direction toward the outside of a certain alloy ingot satisfies the above-mentioned capsule thickness condition. It only has to meet. If the capsule is thinner than this thickness, the capsule may be broken during hot working to cause a large crack.

【0039】これらのカプセルは前述の材料金属塊をく
り抜いて作るのが強度上好ましいが、板材を溶接によっ
てカプセル化したものも使用できる。また多重カプセル
によってカプセルを作成することも良い。
These capsules are preferably made by hollowing out the metal lumps of the above-mentioned material in terms of strength, but those obtained by encapsulating a plate material by welding can also be used. It is also possible to create capsules by multiple capsules.

【0040】そして、この液相と鉄基金属カプセルとの
過剰な反応を抑えるために合金/カプセル間に剥離材を
介在させることが有効で、剥離剤としてはBN、アルミ
ナ、シリカ等が使用できる。
In order to suppress the excessive reaction between the liquid phase and the iron-based metal capsule, it is effective to interpose a release material between the alloy and the capsule. As the release agent, BN, alumina, silica or the like can be used. .

【0041】また、熱間加工時に合金の酸化の原因とな
る酸素、水等をカプセル内に残留させることは好ましく
なく、特に複数枚の合金インゴットを熱間加工中に融着
させて一体の磁石としようとする場合及び合金粉末を熱
間加工する場合にはカプセル内を10-3torr程度の真空
に脱気して合金を封入することが望ましい。
Further, it is not preferable to leave oxygen, water, etc., which cause oxidation of the alloy during hot working, in the capsule, and in particular, a plurality of alloy ingots are fused during hot working to form an integral magnet. In such a case and when the alloy powder is hot-worked, it is desirable to degas the inside of the capsule to a vacuum of about 10 −3 torr to encapsulate the alloy.

【0042】熱間加工を実施する場合の温度は、その主
相粒の十分な配向を得るためと圧延時の大きな割れを防
止するためには800℃以上とすることが望ましい。ま
たその上限は、主相粒( R2Fe14B粒)の急激な粗大
化によるiHcの減少を避けるために1100℃以下と
することが望ましい。この加工温度は、先に説明した鉄
基金属カプセルにとっては、A3 変態途中であるより一
度A3 変態点以上の温度となってγ鉄相の状態で熱間加
工されることが望ましい。
The temperature at which hot working is carried out is preferably 800 ° C. or higher in order to obtain a sufficient orientation of the main phase grains and to prevent large cracks during rolling. Further, the upper limit is preferably set to 1100 ° C. or less in order to avoid a decrease in iHc due to abrupt coarsening of the main phase grains (R 2 Fe 14 B grains). The processing temperature for the iron-based metal capsules described above, A 3 being hot working is desirably in the form of a time A 3 becomes lower than the transformation point temperature γ iron phases than is the way transformation.

【0043】熱間加工法としては、圧延、プレス、鍛
造、押出などが採用でき、その加工条件としては、歪速
度が 10-4〜102/sであり、総加工度(板厚減少
率)が50%以上であることが結晶粒の配向すなわち残
留磁束密度の向上のために望ましい。
As the hot working method, rolling, pressing, forging, extrusion or the like can be adopted, and the working conditions are such that the strain rate is 10 −4 to 10 2 / s and the total working ratio (sheet thickness reduction rate). Is preferably 50% or more in order to improve the orientation of crystal grains, that is, the residual magnetic flux density.

【0044】加工法が熱間圧延である場合には、その圧
延を金属カプセルに対して幅方向からの拘束を加えつつ
行うのが、磁石の磁気特性向上と圧延時の磁石の割れ防
止にとって望ましい。この為には例えば溝付の雌雄ロー
ル、または孔型ロールを用いれば良いが、最も簡便には
圧延されるカプセルの圧延方向に対する幅Wと高さHの
比W/Hを1.0以上にしておけばカプセル内の合金は
カプセル外皮により幅方向両側から拘束を受けることに
なり、上記の特殊ロールを用いた場合と同様の効果が得
られるので、この方法が採用できる。
When the working method is hot rolling, it is desirable to carry out the rolling while restraining the metal capsule from the width direction in order to improve the magnetic properties of the magnet and prevent cracking of the magnet during rolling. . For this purpose, for example, grooved male and female rolls or hole type rolls may be used, but most simply, the ratio W / H of the width W and the height H to the rolling direction of the capsule to be rolled is set to 1.0 or more. If this is done, the alloy in the capsule will be constrained by the capsule skin from both sides in the width direction, and the same effect as when using the above special roll can be obtained, so this method can be adopted.

【0045】また、熱間圧延の場合1度加熱した後は多
段パスの間再加熱しない様な方式(1ヒート・多パス)
と多段パスの中間に再加熱して加工温度の定常化を図る
方式(多ヒート・多パス)のどちらでも良いが、被圧延
材が50kgを越えるような大型材の場合は、その大き
な熱容量のために加工中の温度低下による悪影響も小さ
くなり、1ヒート・多パス方式がその生産性の高さが活
かせるので望ましい。
In the case of hot rolling, after heating once, it is not reheated during multiple passes (one heat / multipass).
It may be either a method to reheat to the middle of the multi-pass and to stabilize the processing temperature (multi-heat / multi-pass), but in the case of a large material to be rolled that exceeds 50 kg, its large heat capacity Therefore, the adverse effect due to the temperature drop during processing is reduced, and the one-heat / multi-pass method is desirable because the high productivity can be utilized.

【0046】さらに上記多パス圧延では、圧延装置に対
して被圧延材を常に一つの方向から導く一方向圧延方式
と、各パス毎に交互に往復させるいわゆるリバース圧延
方式の両方が考えられどちらも採用できるが、圧延磁石
の磁気特性の圧延長さ方向の均一性においてはリバース
圧延方式が優れている。また、多パスのパススケジュー
ル中に15%以上の大きな加工度のパスがあることが磁
気特性の向上に好ましい。
Further, in the above multi-pass rolling, both a one-way rolling system in which the material to be rolled is always guided from one direction to the rolling apparatus and a so-called reverse rolling system in which the rolling material is alternately reciprocated for each pass can be considered. Although it can be adopted, the reverse rolling method is superior in terms of the uniformity of the magnetic characteristics of the rolled magnet in the rolling length direction. Further, it is preferable for improving the magnetic properties that there is a pass with a large workability of 15% or more in the pass schedule of multiple passes.

【0047】次に希土類合金とカプセルの熱間加工終了
後の冷却時の挙動であるが、前述したように希土類合金
はその粒界相(液相)の凝固点まで一様に収縮し、そこ
でその収縮率を小さくする変化を示して、キュリー点よ
り下の温度では膨張に転ずる。この様子は例えば図1に
示されている。そしてカプセルであるが、銅合金等の一
般的金属カプセルであれば、希土類合金の粒界相の凝固
以前の収縮率とほぼ同様の収縮率で室温まで一様に収縮
する。このためこの様な金属カプセルと希土類合金の熱
膨張率の差による応力は、希土類合金の粒界相の凝固点
付近で発生する。
Next, regarding the behavior of the rare earth alloy and the capsule during the cooling after the hot working is finished, as described above, the rare earth alloy uniformly contracts to the solidification point of its grain boundary phase (liquid phase), and there, It shows a change that reduces the shrinkage rate and turns to expansion at temperatures below the Curie point. This state is shown in FIG. 1, for example. As for the capsule, a general metal capsule such as a copper alloy shrinks uniformly to room temperature at a shrinkage ratio substantially similar to that before solidification of the grain boundary phase of the rare earth alloy. Therefore, the stress due to the difference in the coefficient of thermal expansion between the metal capsule and the rare earth alloy is generated near the solidification point of the grain boundary phase of the rare earth alloy.

【0048】また、カプセルが900〜600℃の範囲
に冷却時のA3 変態点をもつ鉄基金属である場合は冷却
時A3 変態点において一度膨張し、その後一様に収縮す
る。これは、例えば図2に示されたような変化を示すも
のである。よって、この様なA3 変態点をもつ鉄基金属
カプセルと希土類合金の熱膨張の差による応力は、カプ
セルのA3 変態点付近において発生する。
When the capsule is an iron-based metal having an A 3 transformation point during cooling in the range of 900 to 600 ° C., it expands once at the A 3 transformation point during cooling and then contracts uniformly. This shows a change as shown in FIG. 2, for example. Therefore, the stress due to the difference in thermal expansion between the iron-based metal capsule having such an A 3 transformation point and the rare earth alloy is generated near the A 3 transformation point of the capsule.

【0049】上記銅合金等の一般的金属カプセルおよび
3 変態点をもつ鉄基金属カプセルいずれの場合も熱間
加工後に合金とカプセルの熱膨張率の差による応力を緩
和する冷却工程としては、0.01〜2℃/分の冷却速
度による徐冷工程、あるいは加工材に圧縮応力を加えつ
つ冷却する工程が採用できる。
In both the general metal capsules such as the copper alloy and the iron-based metal capsules having the A 3 transformation point, the cooling step for relaxing the stress due to the difference in the coefficient of thermal expansion between the alloy and the capsules after hot working is A slow cooling step at a cooling rate of 0.01 to 2 ° C./min, or a step of cooling the processed material while applying compressive stress can be employed.

【0050】後者の場合、例えば熱間鍛造終了後鍛造ダ
イをそのままの位置に保持して、圧縮状態のまま冷却す
ることにより上記の応力緩和が達成できる。
In the latter case, for example, the above stress relaxation can be achieved by holding the forging die at the same position after the hot forging is finished and cooling it in the compressed state.

【0051】また、前者の徐冷による場合の冷却条件で
あるが、10℃/分以上の冷却速度の様な急冷をすれば
磁石が2分されるような大きな割れが確実に発生し応力
緩和はなし得ない。また、5℃/分程度の冷却速度では
大きな割れはかなり防止できるが1〜2割の確率で発生
するので十分な応力緩和とは言えない。2℃/分以下の
冷却速度の時に応力緩和の効果を発揮して、磁石が2分
されるような大きな割れはほぼ100%防止できる。し
かし、その生産性の面から、あまりに遅い冷却は好まし
くなく0.01℃/分以上の冷却速度であることが望ま
れる。
Regarding the cooling conditions in the former case of slow cooling, if a rapid cooling such as a cooling rate of 10 ° C./min or more is performed, a large crack such that the magnet is divided into two is surely generated and stress relaxation. I can't do it. Further, at a cooling rate of about 5 ° C./min, large cracks can be considerably prevented, but since they occur with a probability of 10 to 20%, they cannot be said to be sufficient stress relaxation. At a cooling rate of 2 ° C./min or less, the stress relaxation effect is exerted, and a large crack such that the magnet is divided into two can be prevented by almost 100%. However, from the viewpoint of productivity, cooling that is too slow is not preferable, and a cooling rate of 0.01 ° C./min or more is desired.

【0052】特にA3 変態点をもつ鉄基金属カプセルを
用いた場合では、カプセルのA3 変態点付近の熱膨張の
差による応力を緩和するための冷却条件として、その応
力発生開始点であるA3 変態開始温度(T1)から応力
拡大領域の終点であるA3変態終了温度(T2) までを
0.05〜2℃/分の冷却速度で徐冷する事が好まし
い。ここで冷却速度の下限が0.05℃と高いのは、こ
れ以下の冷却速度ではカプセルと磁石合金の反応が進み
すぎて、その反応・融着による割れが発生しやすくなる
ためである。そしてより割れの発生確率を低減するため
には前述の徐冷領域を広げ、(T1+50)℃から(T2
−50)℃までの温度域を0.05〜1℃/分の冷却速
度で徐冷し、次いで (T2−50)℃から250℃まで
の温度域を0.01〜2℃/分の冷却速度で徐冷するこ
とが望ましい。ここで250℃以下においては、合金と
カプセルの熱膨張の差による新たな応力の増加は少な
く、合金の引っ張り強度も大きい温度域なので徐冷の必
要はなくなる。
[0052] Particularly in the case of using the iron-based metal capsule with A 3 transformation point, as cooling conditions for relieving the stress due to the difference in thermal expansion in the vicinity of A 3 transformation point of the capsule, it is the stress generation start point It is preferable to gradually cool from the A 3 transformation start temperature (T 1 ) to the A 3 transformation end temperature (T 2 ) which is the end point of the stress expansion region at a cooling rate of 0.05 to 2 ° C./min. Here, the lower limit of the cooling rate is as high as 0.05 ° C., because at a cooling rate lower than this, the reaction between the capsule and the magnet alloy proceeds too much, and cracking due to the reaction and fusion easily occurs. Then, in order to further reduce the probability of occurrence of cracks, the above-mentioned slow cooling region is expanded, and (T 1 +50) ° C. to (T 2
The temperature range up to −50) ° C. is gradually cooled at a cooling rate of 0.05 to 1 ° C./min, and then the temperature range from (T 2 −50) ° C. to 250 ° C. is 0.01 to 2 ° C./min. It is desirable to gradually cool at a cooling rate. Here, at 250 ° C. or lower, new stress does not increase due to the difference in thermal expansion between the alloy and the capsule, and the tensile strength of the alloy is large.

【0053】また、カプセルの一部が局所的に冷やされ
ることや熱間加工時に生じた温度むらなどによってカプ
セルの一部に応力集中が起こると割れにつながるので、
炉にいれたり熱浴となるような金属塊に接触させて、カ
プセルの温度均一度を高めた後または均一度を高めたま
まで徐冷することが良い。
Further, if stress is concentrated on a part of the capsule due to local cooling of the part of the capsule or temperature unevenness generated during hot working, cracking will occur.
It is preferable that the capsules are placed in a furnace or brought into contact with a metal mass that serves as a heat bath to increase the temperature uniformity of the capsules or to gradually cool the capsules while the uniformity is increased.

【0054】こうして、室温まで冷却された被加工材か
らガス溶断、鋸刃切断等の方法を用いてカプセルを外
し、磁石合金を取り出せば磁石として使用できる。しか
し、更に熱処理を施せばより大きな保磁力を得ることが
できるので、要求される保磁力に応じて不活性雰囲気中
で熱処理を施すことが望まれる。
In this way, if the capsule is removed from the material to be processed cooled to room temperature by a method such as gas fusing or saw blade cutting, and the magnet alloy is taken out, it can be used as a magnet. However, if a further heat treatment is performed, a larger coercive force can be obtained. Therefore, it is desirable to perform the heat treatment in an inert atmosphere according to the required coercive force.

【0055】ここで熱処理を実施する場合の温度は、そ
の保磁力増大効果を得るためには450℃以上が好まし
く、しかし1100℃以上では主相粒が急激に粗大化し
iHcの減少が起こるので避けるべきで、適正な熱処理
温度は450〜1100℃である。さらには、先に75
0〜1100℃の高温の熱処理を施し、次に450〜7
50℃の低温熱処理を施す2段熱処理、あるいはそれを
繰り返す多段熱処理が保磁力の向上と角型性の向上に効
果があるのでより好ましい。
The temperature at which the heat treatment is carried out is preferably 450 ° C. or higher in order to obtain the effect of increasing the coercive force. However, at 1100 ° C. or higher, the main phase grains are abruptly coarsened and iHc is reduced. The proper heat treatment temperature should be 450 to 1100 ° C. Furthermore, first 75
Heat treatment at a high temperature of 0 to 1100 ° C, and then 450 to 7
A two-step heat treatment in which a low-temperature heat treatment at 50 ° C. is performed, or a multi-step heat treatment in which it is repeated is more preferable because it is effective in improving coercive force and squareness.

【0056】そして、最後に所望の形状が小さい場合に
は、熱間加工された磁石合金よりダイヤモンドホイール
による切断、砥石によるに研削、ワイヤー放電加工によ
る切断等により多数の磁石を切り出すことができる。
Finally, when the desired shape is small, a large number of magnets can be cut out from the hot-worked magnet alloy by cutting with a diamond wheel, grinding with a grindstone, cutting by wire electric discharge machining, or the like.

【0057】以下本発明を実施例に基づいて説明する。The present invention will be described below based on examples.

【0058】〔実施例1〕アルゴン雰囲気中で誘導加熱
炉を用いて、 Pr17.2Fe77B5.2Cu0.6なる組成の合金をア
ルミナ坩堝中で溶解し、1550℃において水冷銅鋳型
に注湯し鋳造インゴットを得た。この時、希土類、鉄及
び銅の原料としては99.9%の純度のものを用い、ボロン
はフェロボロンを用いた。鋳造したインゴットのサイズ
は、厚み20mm×幅500mm×高さ240mmであ
り、厚み方向に柱状晶の発達したマクロ組織を持ってい
た。またこの柱状晶組織の平均粒径は15μmであっ
た。
Example 1 Using an induction heating furnace in an argon atmosphere, an alloy having a composition of Pr 17.2 Fe 77 B 5.2 Cu 0.6 was melted in an alumina crucible and poured into a water-cooled copper mold at 1550 ° C. for casting. I got an ingot. At this time, raw materials of rare earth, iron, and copper were used with a purity of 99.9%, and boron was ferroboron. The size of the cast ingot was 20 mm in thickness × 500 mm in width × 240 mm in height, and had a macrostructure in which columnar crystals were developed in the thickness direction. The average grain size of this columnar crystal structure was 15 μm.

【0059】このインゴットからφ10mm×20mm
の円柱サンプルを切り出し、1025℃×1hの熱処理
後、室温から1000℃までの昇温時(昇温速度1℃/
分)の熱膨張を測定した。この結果を図1に示す。
Φ10 mm × 20 mm from this ingot
After cutting out a cylindrical sample of 1025 ° C. × 1 h, after heating from room temperature to 1000 ° C. (heating rate 1 ° C. /
Min) was measured. The result is shown in FIG.

【0060】次ぎに、この鋳造インゴットからは幅(厚
み)17mm×長さ130mm×高さ60mmのサンプ
ルが切り出された。このサイズのサンプルインゴットを
幅方向に5枚並べて1ブロックにまとめ、厚み3mmの
SS400鋼材の溶接によって角パイプにした第一カプ
セルに挿入してインゴットの幅方向(側面)と高さ方向
(上下面)を覆った。長さ方向(前後)にも同厚みの同
板材を点溶接して第一カプセルを完成させた。そして外
形が幅130mm×長さ230mm×高さ120mmの
溶接によって作られたSS400鋼製(炭素量0.16
wt%、珪素0.20wt%、マンガン0.75wt
%)の第2カプセルに入れられた。この第二カプセルの
長さ方向の1面にはφ1.5mmの孔が有り、1.5×
10−4torrの真空チャンバー内で電子ビーム溶接
により封じることでカプセルは真空封入された。
Next, a sample having a width (thickness) of 17 mm, a length of 130 mm, and a height of 60 mm was cut out from this cast ingot. Five sample ingots of this size are arranged side by side in the width direction into one block, which is inserted into the first capsule formed into a square pipe by welding SS400 steel with a thickness of 3 mm to insert the width direction (side surface) and height direction (upper and lower surfaces) of the ingot. ). The same capsule material was also spot-welded in the length direction (front and back) to complete the first capsule. And the outer shape is made of SS400 steel (width of carbon: 0.16, width: 230 mm, length: 230 mm, height: 120 mm).
wt%, silicon 0.20 wt%, manganese 0.75 wt
%) In a second capsule. There is a hole with a diameter of 1.5 mm on one surface of the second capsule in the length direction.
The capsule was vacuum-sealed by sealing by electron beam welding in a vacuum chamber of 10 −4 torr.

【0061】また、この第2カプセルからもφ10mm
×20mmの円柱サンプルを切り出し、室温から100
0℃までの昇温時及び降温時(昇温及び降温速度1℃/
分)の熱膨張を測定した。この結果を図2に示す。この
図からカプセルの冷却時のA変態開始温度(T1)は
800℃でありA3変態終了温度(T2)は700℃であ
ることが解る。
Also, from this second capsule, φ10 mm
Cylinder sample of × 20mm is cut out and 100
During temperature increase and decrease to 0 ° C (temperature increase and decrease rate 1 ° C /
Min) was measured. The result is shown in FIG. From this figure, it is understood that the A 3 transformation start temperature (T 1 ) is 800 ° C. and the A 3 transformation end temperature (T 2 ) is 700 ° C. when the capsule is cooled.

【0062】熱間加工法としては圧延法を採用し、この
カプセルを1025℃で90分加熱し、φ450のロー
ルの圧延機を用いて、120→110→95→80→7
0→60mmのパススケジュールで圧延を5回施し、総
加工度を50%とした。この時圧延はいわゆるリバース
圧延で2回め、4回めの圧延の間には1025℃で15
分間の中間加熱を行った。
As a hot working method, a rolling method is adopted, the capsule is heated at 1025 ° C. for 90 minutes, and a rolling machine with a φ450 roll is used to make 120 → 110 → 95 → 80 → 7.
Rolling was performed 5 times with a pass schedule of 0 → 60 mm, and the total workability was set to 50%. At this time, the so-called reverse rolling is performed twice, and at 1025 ° C. for 15 times between the fourth and fourth rolling.
Intermediate heating for 1 minute was performed.

【0063】圧延終了後の圧延材は950〜980℃程
度に表面が冷えていたが、すぐに950℃の炉に入れら
れて950℃〜400℃の温度域を表1に示される種種
の冷却速度で冷却され、400℃から室温までを0.1
℃/分で冷却された。一部の圧延材は950℃の炉に入
れられることなくレンガ上で空冷された。この場合の冷
却速度は、950℃付近から600℃付近までは約20
℃/分、600℃付近から300℃付近までは約12℃
/分、そして300℃から100℃付近までは8℃/分
であった。
After the rolling, the surface of the rolled material was cooled to about 950 to 980 ° C., but it was immediately put into a furnace at 950 ° C., and the temperature range of 950 to 400 ° C. was cooled in various types shown in Table 1. Cooled at a rate of 0.1 to 400 ℃ to room temperature
Cooled at ° C / min. Some rolled material was air cooled on bricks without being placed in a 950 ° C furnace. The cooling rate in this case is about 20 from 950 ℃ to 600 ℃.
℃ / min, about 12 ℃ from 600 ℃ to 300 ℃
/ Min, and 8 ° C / min from 300 ° C to around 100 ° C.

【0064】室温まで冷却された圧延材から磁石を取り
出し割れ状況とその圧延面の表面粗さを測定した。この
時カプセルを切断すると磁石/カプセル間は既にほとん
ど分離していた。また10mm角のサンプルを切り出
し、熱処理なしで40kOeのパルス着磁後直流自記磁
束計(B−Hトレーサー)を用いて磁気特性を測定し
た。
The magnet was taken out from the rolled material cooled to room temperature, and the cracking condition and the surface roughness of the rolled surface were measured. At this time, when the capsule was cut, the magnet / capsule was already separated. Further, a 10 mm square sample was cut out, and the magnetic characteristics were measured using a DC self-recording magnetometer (BH tracer) after pulse magnetization of 40 kOe without heat treatment.

【0065】上記の圧延は、一つの冷却条件に対して5
本から10本の圧延がなされ、割れ指標としては取り出
された磁石の割れ発生率(割れ発生圧延材数/圧延総
数)と表面粗さRmax(基準長さ25mm,圧延材幅
方向中央の圧延材の長さ方向3カ所の平均)を評価し
た。その結果と磁気特性として最大エネルギー積(B
H)max (以下(BH)max と記す)を表1に示す。こ
こでの割れとは磁石を2分する大きな割れである。
The above-mentioned rolling is 5 times for one cooling condition.
From the number of 10 rolled, the crack occurrence rate of the magnet taken out as a crack index (number of cracked rolled material / total number of rolled) and surface roughness Rmax (reference length 25 mm, rolled material in the center of the rolled material width direction) The average of 3 points in the length direction) was evaluated. As a result, the maximum energy product (B
H) max (hereinafter referred to as (BH) max) is shown in Table 1. The crack here is a large crack that divides the magnet in two.

【0066】[0066]

【表1】 [Table 1]

【0067】これから950℃から400℃の温度域の
冷却速度を0.05〜2℃/分とすることにより割れの
発生を10%未満という低率にすることができ、歩留ま
りを向上できることがわかる。
From this, it can be seen that by setting the cooling rate in the temperature range of 950 ° C. to 400 ° C. to 0.05 to 2 ° C./min, the occurrence of cracks can be made as low as less than 10% and the yield can be improved. .

【0068】〔実施例2〕実施例1で用いたと同じカプ
セル(インゴット装入済み)に対して実施例1と同じ条
件で熱間圧延を施した。
Example 2 The same capsule (ingot-loaded) used in Example 1 was hot-rolled under the same conditions as in Example 1.

【0069】圧延終了後の圧延材は実施例1と同様95
0〜980℃程度に表面が冷えていたが、すぐに950
℃の炉に入れることなく表2に示される温度までレンガ
上で空冷された。次に950℃の炉に入れられて15分
保持された後、950℃〜400℃の温度域を0.3℃
/分の冷却速度で冷却され、400℃から室温までを
0.1℃/分で冷却された。
The rolled material after rolling is the same as in Example 1
The surface was cold at 0-980 ℃, but soon 950
It was air cooled on the bricks to the temperatures shown in Table 2 without being placed in a 0 ° C oven. Next, after being put in a furnace at 950 ° C. and held for 15 minutes, the temperature range of 950 ° C. to 400 ° C. is changed to 0.3 ° C.
The cooling rate was 400 rpm to room temperature at 0.1 ° C./min.

【0070】室温まで冷却された圧延材から磁石を取り
出し割れ状況とその圧延面の表面粗さを測定した。この
時カプセルを切断すると磁石/カプセル間は既にほとん
ど分離していた。
The magnet was taken out from the rolled material cooled to room temperature and the cracking condition and the surface roughness of the rolled surface were measured. At this time, when the capsule was cut, the magnet / capsule was already separated.

【0071】上記の圧延は、一つの空冷条件に対して5
本以上の圧延がなされ、割れ指標としては取り出された
磁石の割れ発生率(割れ発生圧延材数/圧延総数)と表
面粗さRmax(基準長さ25mm,圧延材幅方向中央
の圧延材の長さ方向3カ所の平均)を評価した。その結
果を表2に示す。ここでの割れとは磁石を2分する大き
な割れである。
The above rolling is carried out by 5 times for one air cooling condition.
The number of rollings equal to or more than the number of rollings and the cracking index of the taken out magnet (number of cracked rolled material / total number of rolled) and surface roughness Rmax (reference length 25 mm, length of rolled material in the center of width direction of rolled material) The average of 3 points in the vertical direction) was evaluated. Table 2 shows the results. The crack here is a large crack that divides the magnet in two.

【0072】[0072]

【表2】 [Table 2]

【0073】これからA3変態開始温度(T1)より50
℃以上高い温度からの徐冷がより応力緩和の効果が高
く、割れの発生を防ぎ歩留まりを向上できることがわか
る。
From the A 3 transformation start temperature (T 1 )
It can be seen that the gradual cooling from a temperature higher than ℃ has a higher stress relaxation effect, prevents the occurrence of cracks, and improves the yield.

【0074】〔実施例3〕アルゴン雰囲気中で誘導加熱
炉を用いて、 Nd16Fe77.5B6Al0.5なる組成の合金をアル
ミナ坩堝中で溶解し、1600℃において鉄鋳型に注湯
し鋳造インゴットを得た。この時、希土類、鉄及びアル
ミニウムの原料としては99.9%の純度のものを用い、ボ
ロンはフェロボロンを用いた。鋳造したインゴットのサ
イズは、厚み10mm×幅50mm×高さ100mmで
あった。このインゴットを砕いて適当な大きさにして石
英管にいれ、アルゴン雰囲気中で高周波加熱により溶融
させると石英管の小さなノズルよりアルゴン圧40kP
aをもって噴出させ、このノズル直下の直径200mm
で3000rpmで高速回転している銅ホイール上にて
急速固化させて、急冷薄片を得た。この急冷薄片はX線
回折パターンに於て、結晶による回折ピークより、アモ
ルファス的なブロードな回折強度パターンを示した。
Example 3 Using an induction heating furnace in an argon atmosphere, an alloy having a composition of Nd 16 Fe 77.5 B 6 Al 0.5 was melted in an alumina crucible and poured into an iron mold at 1600 ° C. to cast an ingot. Got At this time, raw materials of rare earth, iron, and aluminum having a purity of 99.9% were used, and ferroboron was used as boron. The size of the cast ingot was 10 mm thick × 50 mm wide × 100 mm high. When this ingot is crushed into a suitable size and put in a quartz tube and melted by high frequency heating in an argon atmosphere, an argon pressure of 40 kP is applied from a small nozzle of the quartz tube.
a with a diameter of 200 mm directly below this nozzle
Then, it was rapidly solidified on a copper wheel rotating at a high speed of 3000 rpm to obtain a quenched thin piece. In this X-ray diffraction pattern, this quenched thin piece showed an amorphous broad diffraction intensity pattern from the diffraction peak due to the crystal.

【0075】次ぎに、この急冷薄片480gを外形が直
径75mm×高さ80mmで内容積が直径40mm×高
さ50mmの溶接によって作られたS10C鋼製のカプ
セルに入れた。このカプセルの高さ方向の1面にはφ
1.5mmの孔が有り、1.5×10-4torrの真空チャ
ンバー内で電子ビーム溶接により封じることでカプセル
は真空封入された。
Next, 480 g of this quenched thin piece was put into a capsule made of S10C steel having an outer diameter of 75 mm × height of 80 mm and an internal volume of 40 mm in diameter × 50 mm of height, which was made by welding. Φ on one surface in the height direction of this capsule
The capsule was vacuum-sealed by having a hole of 1.5 mm and sealing by electron beam welding in a vacuum chamber of 1.5 × 10 −4 torr.

【0076】熱間加工法としてはホットプレス法を採用
し、このカプセルを1000℃で70分加熱し、250
℃に加熱された上下パンチにより10mm/sのプレス
スピードで32mmの高さになるまでプレスされた。
As a hot working method, a hot pressing method is adopted, and this capsule is heated at 1000 ° C. for 70 minutes to obtain 250
The upper and lower punches heated to 0 ° C. were pressed at a pressing speed of 10 mm / s to a height of 32 mm.

【0077】プレス終了後の被加工材は940〜975
℃程度に表面が冷えていたが、加工後条件1ではプレス
ダイをはずさずにのせ続けて1mm/h程度の圧縮を続
けて、サンプル表面が150℃に冷えるまで圧縮状態を
保った。この条件1サンプルの冷却速度は950℃程度
から150℃まで平均20℃/分程度であった。また加
工後条件2のサンプルはすぐに950℃の炉に入れられ
て950℃〜600℃の温度域を0.5℃/分の冷却速
度で冷却され、600℃から室温までを0.3℃/分で
冷却された。そして加工後条件3のサンプルは950℃
の炉に入れられることなくレンガ上で空冷された。この
場合の冷却速度は、950℃付近から600℃付近まで
は約20℃/分、600℃付近から300℃付近までは
約16℃/分、そして300℃から100℃付近までは
10℃/分であった。
The material to be processed after pressing is 940 to 975.
Although the surface was cooled to about 0 ° C, under the condition 1 after processing, the press die was not removed and compression was continued at about 1 mm / h for about 1 mm / h until the sample surface was cooled to 150 ° C. The cooling rate of this condition 1 sample was about 20 ° C./min on average from about 950 ° C. to 150 ° C. After processing, the sample of Condition 2 was immediately put in a furnace at 950 ° C. and cooled in a temperature range of 950 ° C. to 600 ° C. at a cooling rate of 0.5 ° C./min. Cooled at / min. After processing, the sample under condition 3 is 950 ° C.
It was air cooled on bricks without being placed in the furnace. In this case, the cooling rate is about 20 ° C / min from 950 ° C to about 600 ° C, about 16 ° C / min from about 600 ° C to about 300 ° C, and 10 ° C / min from about 300 ° C to about 100 ° C. Met.

【0078】室温まで冷却されたカプセルからワイヤー
放電加工によって磁石を取り出し割れ状況を観察した。
この時カプセルを切断すると磁石/カプセル間は一部に
融着が見られたがほとんどは分離していた。また10m
m角のサンプルを切り出し、1000℃×5hと650
℃×2hの熱処理を施した後40kOeのパルス着磁を
行い、B−Hトレーサーを用いて磁気特性を測定した。
The magnet was taken out from the capsule cooled to room temperature by wire electric discharge machining and the cracking condition was observed.
At this time, when the capsule was cut, some fusion was observed between the magnet and the capsule, but most were separated. 10m again
Cut out an m-square sample, 1000 ° C x 5h and 650
After heat treatment at ℃ × 2h, pulse magnetization of 40kOe was performed, and the magnetic characteristics were measured using a BH tracer.

【0079】上記のホットプレスは、一つの条件に対し
て5本以上の加工がなされ、割れ指標としては取り出さ
れた磁石の割れ発生率(割れ発生圧延材数/圧延総数)
を評価した。その結果と磁気特性として(BH)max を
表3に示す。ここでの割れとは磁石を2分する大きな割
れである。
In the above hot press, five or more pieces were processed under one condition, and as a crack index, the crack occurrence rate of the magnet taken out (the number of cracked rolled materials / total rolled number).
Was evaluated. Table 3 shows the results and (BH) max as magnetic properties. The crack here is a large crack that divides the magnet in two.

【0080】[0080]

【表3】 [Table 3]

【0081】〔実施例4〕表4に示す組成の合金を実施
例1と同様の方法により溶解・鋳造して厚さ15mm×
幅100mm×高さ100mmの鋳造インゴットを得
た。このインゴットの組織はいずれも柱状晶で、平均粒
径は12〜20μmであった。
Example 4 An alloy having the composition shown in Table 4 was melted and cast in the same manner as in Example 1 to have a thickness of 15 mm ×
A cast ingot having a width of 100 mm and a height of 100 mm was obtained. The structure of this ingot was columnar crystals, and the average grain size was 12 to 20 μm.

【0082】これより幅(厚み)13mm×長さ60m
m×高38mmのインゴットサンプルを切り出し、その
表面に剥離材としてBNを塗布し、幅19mm×長さ6
8mm×高46mmのSPCC鋼製の溶接によって作ら
れたカプセルに入れ、実施例1と同様に1.5×10-4
torrの真空チャンバー内で電子ビーム溶接により蓋の一
つを封じることでカプセルは真空封入された。さらにこ
のカプセルを横に3列、前後に2列計6カプセル並べ、
幅98mm×長さ160mm×高78mmのS45C製
のカプセルに封入した。
From this, width (thickness) 13 mm × length 60 m
A m × 38 mm ingot sample was cut out, and BN was applied as a release material on the surface of the ingot sample, and the width was 19 mm and the length was 6 mm.
It was put in a capsule made of 8 mm × 46 mm high SPCC steel by welding, and 1.5 × 10 −4 as in Example 1.
The capsule was vacuum sealed by sealing one of the lids by electron beam welding in a torr vacuum chamber. Furthermore, this capsule is arranged in 3 rows horizontally, 2 rows in front and back, totaling 6 capsules,
It was enclosed in an S45C capsule having a width of 98 mm, a length of 160 mm, and a height of 78 mm.

【0083】次にこれらを1000℃において80分加
熱し、φ300のロールの圧延機を用いて高さを78→
67→56→46→36→27→19mmと減少させる
6パスのリバース圧延で総加工度を76%とした。この
時6回の圧延のうち2パス後、4パス後の2回、100
0℃で15分の中間加熱を行った。
Next, these are heated at 1000 ° C. for 80 minutes, and the height is increased to 78 →
The total workability was set to 76% by 6-pass reverse rolling for reducing 67 → 56 → 46 → 36 → 27 → 19 mm. At this time, 2 out of 6 rollings, 2 after 4 passes, 100
Intermediate heating was performed at 0 ° C for 15 minutes.

【0084】圧延終了後これらの圧延材はその表面が8
50℃以下に冷えることなく、950℃の炉に入れられ
た。そして20分加熱された後、圧延材は950℃から
600℃までを1℃/分、600℃から400℃までを
0.5℃/分で冷却され、400℃から室温までは0.
1℃/分で冷却された。
After the completion of rolling, the surface of these rolled materials was 8
It was placed in a furnace at 950 ° C without cooling to below 50 ° C. After being heated for 20 minutes, the rolled material is cooled from 950 ° C. to 600 ° C. at 1 ° C./min, from 600 ° C. to 400 ° C. at 0.5 ° C./min, and from 400 ° C. to room temperature at 0.
Cooled at 1 ° C / min.

【0085】室温まで冷却された圧延材から磁石を取り
出し割れ状況とその圧延面の表面粗さを測定した。この
時カプセルを切断すると磁石/カプセル間は既に分離し
ていた。
The magnet was taken out from the rolled material cooled to room temperature and the cracking condition and the surface roughness of the rolled surface were measured. At this time, when the capsule was cut, the magnet / capsule was already separated.

【0086】この時の割れ指標として取り出された磁石
の割れ数(磁石を2分する大きな割れ)を表4に示す。
表面粗さRmax(基準長さ25mm,圧延材幅方向中
央の圧延材の長さ方向3カ所の平均)はこの6種類の圧
延材において、500〜600μmの間であった。
Table 4 shows the number of cracks in the magnet taken out (a large crack dividing the magnet in two) as a crack index at this time.
The surface roughness Rmax (reference length: 25 mm, average of three points in the lengthwise direction of the rolled material at the center in the widthwise direction of the rolled material) was between 500 and 600 μm for these six types of rolled material.

【0087】また、割れ無く取り出された圧延磁石から
圧延方向に長い6×6×40mmのサンプルがダイヤモ
ンドホイールによる切断と砥石研削により作成され、3
点曲げによる抗折力が評価された。この結果も表4にあ
わせて示す。3点曲げ条件はスパン30mm,荷重点R
=2mm,クロスヘッドスピード=1mm/分である。
Further, a sample of 6 × 6 × 40 mm long in the rolling direction was prepared from the rolled magnet taken out without cracks by cutting with a diamond wheel and grinding with a grindstone.
The bending strength by point bending was evaluated. The results are also shown in Table 4. 3-point bending condition is span 30mm, load point R
= 2 mm, crosshead speed = 1 mm / min.

【0088】比較として合金組成Nd14Fe79B7より焼結法
により作成した磁石から同型状のサンプルを切り出し、
同じ3点曲げによる抗折力を評価したところ24.6k
gf/mm2であった。
For comparison, a sample of the same shape was cut out from a magnet prepared by a sintering method from the alloy composition Nd 14 Fe 79 B 7 .
When the bending strength by the same 3-point bending was evaluated, it was 24.6k.
gf / mm 2 .

【0089】[0089]

【表4】 [Table 4]

【0090】〔実施例5〕実施例1と同様の方法で、同
組成・同サイズのインゴットを得た。次ぎに、この鋳造
インゴットから幅(厚み)17.5mm×長さ250m
m×高225mmのインゴットサンプルを切り出しビレ
ットとした。このビレットを6枚厚み方向に並べ、SS
400製鋼板(炭素量0.06wt%、珪素0.01w
t%、マンガン0.24wt%)の6枚で覆いカプセル
を形成した。このカプセル形成は、鋼板の各稜を溶接す
ることでなされ、溶接のチェックは、ヘリウムリークデ
ィテクタにより、カプセルの漏れ値を測定し、1×10
-8torr・l/s以下であることを確認した。カプセ
ルには真空引き用の穴をもうけ、真空チャンバーの中
で、2×10-4torr以下に1時間保持した後、電子
ビームで穴を封じて真空封入した。そのカプセルの外側
をさらに図3に示すようにSS400鋼製(炭素量0.
15wt%、珪素0.27wt%、マンガン1.55w
t%)のカプセルに入れ、各稜を溶接し、3重のカプセ
ルを作成した。最外形は1000mm×400mm×1
700mmとした。カプセルの寸法は、a=105m
m, h1=3.2mm, c1=111.4mm, h2=
28.0mm, c2=812.4mm, h3=56.3
mmであった。圧延は、1000℃均熱にて8時間加熱
し、400→345→290→235→185→145
→120→100mmのパススケジュールにて行った
(加工度75%)。圧延ロール径はφ1200mmであ
る。周速度は45m/分である。各パス間での途中再加
熱は行わなかった。圧延終了後圧延材の表面は840℃
まで冷えていたが、1100℃に加熱された幅1200
mm×長さ6500mm×厚さ240mmのSS400
鋼板4枚を用いて、上下2枚ずつで圧延材を挟み、直ち
に徐冷ボックス(鉄の箱の内側に耐火煉瓦を貼ったも
の)に入れ、200℃まで徐冷を行った。この時、圧延
材とSS400鋼板の間に熱電対を挟み、圧延材表面の
徐冷時の温度変化を測定した。その徐冷曲線を図4に示
す。これから、圧延材は910℃に再加熱された後、8
00℃付近まではおよそ0.5℃/分の冷却速度で、8
00〜600℃の範囲ではおよそ0.2℃/分の冷却速
度で、600〜400℃の範囲は0.1〜0.2℃/分
の冷却速度で、400℃〜200℃の温度範囲では0.
03〜0.1℃/分の冷却速度で徐冷されたことがわか
る。200℃〜室温ではおよそ0.05℃/分で冷却さ
れた。
Example 5 By the same method as in Example 1, an ingot of the same composition and the same size was obtained. Next, from this cast ingot, width (thickness) 17.5 mm x length 250 m
An ingot sample of m × high 225 mm was cut out and used as a billet. 6 billets are arranged in the thickness direction, and SS
400 steel sheet (carbon content 0.06wt%, silicon 0.01w)
t%, manganese 0.24 wt%) to cover six capsules. This capsule formation is performed by welding each edge of the steel plate, and the welding check is performed by measuring the leakage value of the capsule with a helium leak detector and measuring 1 × 10 5.
It was confirmed to be -8 torr / l / s or less. The capsule was provided with a hole for evacuation, kept at 2 × 10 −4 torr or less for 1 hour in a vacuum chamber, and then sealed with an electron beam for vacuum sealing. The outside of the capsule is further made of SS400 steel (carbon content of 0.
15wt%, silicon 0.27wt%, manganese 1.55w
(t%) capsules, each edge was welded, and triple capsules were prepared. The outermost shape is 1000 mm x 400 mm x 1
It was 700 mm. The size of the capsule is a = 105m
m, h1 = 3.2 mm, c1 = 111.4 mm, h2 =
28.0 mm, c2 = 812.4 mm, h3 = 56.3
mm. Rolling is performed by heating at 1000 ° C. for 8 hours, 400 → 345 → 290 → 235 → 185 → 145.
The pass schedule was 120 → 100 mm (working rate: 75%). The diameter of the rolling roll is φ1200 mm. The peripheral speed is 45 m / min. Reheating on the way between each pass was not performed. After rolling, the surface of the rolled material is 840 ℃
It was cold to 1,200 ℃, heated to 1100 ℃
mm x length 6500 mm x thickness 240 mm SS400
Using four steel sheets, two rolled sheets were sandwiched between the upper and lower sheets, and immediately placed in a slow cooling box (an iron box with fire bricks stuck inside) to gradually cool to 200 ° C. At this time, a thermocouple was sandwiched between the rolled material and the SS400 steel plate, and the temperature change of the surface of the rolled material during slow cooling was measured. The annealing curve is shown in FIG. After this, the rolled material was reheated to 910 ° C and then
A cooling rate of approximately 0.5 ° C / min up to around 00 ° C
In the range of 00 to 600 ° C, the cooling rate is approximately 0.2 ° C / min, in the range of 600 to 400 ° C, the cooling rate is 0.1 to 0.2 ° C / min, and in the temperature range of 400 ° C to 200 ° C. 0.
It can be seen that the film was gradually cooled at a cooling rate of 03 to 0.1 ° C./min. It was cooled at about 0.05 ° C / min from 200 ° C to room temperature.

【0091】室温に冷却された圧延材は、ガス溶断と鋸
刃切断によってカプセルを除去して、磁石が取り出され
た。この切断時のカプセル切断面の観察の結果、第1カ
プセルの上下板は薄く判別がつかず、一部第2と第3カ
プセルの分離が観察されたが、空げき、破断はなかっ
た。磁石とカプセル間の融着により磁石の取り出しが困
難になっている箇所もなく、磁石は健全に取り出せた。
In the rolled material cooled to room temperature, the capsule was removed by gas fusing and saw blade cutting, and the magnet was taken out. As a result of observing the cut surface of the capsule at the time of cutting, the upper and lower plates of the first capsule were not easily discerned, and separation of the second and third capsules was partially observed, but there was no vacancy and no breakage. There was no place where it was difficult to take out the magnet due to fusion between the magnet and the capsule, and the magnet could be taken out soundly.

【0092】[0092]

【発明の効果】本発明のような製造方法をとることで、
以下のような効果が得られる。
By adopting the manufacturing method of the present invention,
The following effects can be obtained.

【0093】(1)焼結法では得られない、高い機械的
強度をもつ大型磁石を安定して生産することができる。
(1) Large magnets having high mechanical strength, which cannot be obtained by the sintering method, can be stably produced.

【0094】(2)従来の熱間加工法による場合より、
磁石の割れをほとんど防止でき、さらに磁石表面の凸凹
が防止でき、それにより歩留まりを著しく向上でき、コ
ストが低減できる。
(2) Compared with the case of the conventional hot working method,
Most of the magnets can be prevented from cracking, and the magnet surface can be prevented from being uneven, which can significantly improve the yield and reduce the cost.

【0095】(3)又、カプセルに詰められて、大気中
で加工できるので生産効率が高く、コストが低減でき
る。
(3) Further, since it is packed in a capsule and can be processed in the atmosphere, the production efficiency is high and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1に用いた合金インゴットの熱
膨張曲線。
FIG. 1 is a thermal expansion curve of an alloy ingot used in Example 1 of the present invention.

【図2】本発明の実施例1に用いたカプセル材(SS4
00鋼)の熱膨張曲線。
FIG. 2 is an encapsulant used in Example 1 of the present invention (SS4
(00 steel) thermal expansion curve.

【図3】本発明の実施例5の多重カプセル断面模式図。FIG. 3 is a schematic cross-sectional view of multiple capsules according to a fifth embodiment of the present invention.

【図4】本発明の実施例5の圧延材表面の冷却曲線。FIG. 4 is a cooling curve on the surface of a rolled material according to Example 5 of the present invention.

【符号の説明】[Explanation of symbols]

2:合金 31:第1カプセル上下板 32:第2カプセル上下板 33:第3カプセル上下板 4:圧延方向を示す矢印 5:圧下方向を示す矢印 2: Alloy 31: First capsule upper and lower plates 32: Second capsule upper and lower plates 33: Third capsule upper and lower plates 4: Arrow showing rolling direction 5: Arrow showing rolling direction

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 R(ただしRはYを含む希土類元素のう
ち少なくとも1種以上)、Fe及びBを基本成分とする
希土類合金または希土類合金粉末をカプセルに入れて熱
間加工する永久磁石の製造方法において、熱間加工後に
合金とカプセルの熱膨張率の差による応力を緩和する冷
却工程をもつことを特徴とする希土類永久磁石の製造方
法。
1. A method for producing a permanent magnet, wherein R (where R is at least one of rare earth elements including Y), Fe and B as a basic component, or a rare earth alloy powder or a rare earth alloy powder is encapsulated and hot worked. A method for producing a rare earth permanent magnet, which comprises a cooling step for relaxing stress caused by a difference in thermal expansion coefficient between an alloy and a capsule after hot working.
【請求項2】 前記合金とカプセルの熱膨張率の差によ
る応力を緩和する冷却工程が、0.01〜2℃/分の冷
却速度によって徐冷する工程であることを特徴とする請
求項1記載の希土類永久磁石の製造方法。
2. The cooling step for relaxing the stress due to the difference in coefficient of thermal expansion between the alloy and the capsule is a step of gradually cooling at a cooling rate of 0.01 to 2 ° C./min. A method for producing the described rare earth permanent magnet.
【請求項3】 前記合金とカプセルの熱膨張率の差によ
る応力を緩和する冷却工程が、加工材に圧縮応力を加え
つつ冷却する工程であることを特徴とする請求項1記載
の希土類永久磁石の製造方法。
3. The rare earth permanent magnet according to claim 1, wherein the cooling step for relaxing the stress due to the difference in thermal expansion coefficient between the alloy and the capsule is a step for cooling the processed material while applying compressive stress. Manufacturing method.
【請求項4】 (a) R(ただしRはYを含む希土類元
素のうち少なくとも1種以上)、Fe及びBを基本成分
とする合金を溶解・鋳造する工程、 (b) 前記鋳造合金をA3 変態点を有する鉄基金属カプ
セル内に装入、密封する工程、 (c) 該カプセルを800〜1100℃のA3 変態点以
上の温度で熱間加工する工程、 (d) 次いで熱間加工された圧延材(カプセル)を該鉄
基金属カプセルのA3変態開始温度(T1)からA3 変態
終了温度(T2)までを0.05〜2℃/分の冷却速度
で徐冷し、更に室温まで冷却する工程。上記(a)〜(d)
の工程からなり、該合金を磁気的に異方性化することを
特徴とする請求項2記載の希土類永久磁石の製造方法。
4. (a) a step of melting and casting R (where R is at least one of rare earth elements including Y), Fe and B as a basic component, and (b) casting the cast alloy with A A step of charging and sealing in an iron-based metal capsule having 3 transformation points, (c) a step of hot working the capsule at a temperature of A 3 transformation point of 800 to 1100 ° C. or higher, (d) a hot working step The rolled material (capsule) is gradually cooled from the A 3 transformation start temperature (T 1 ) to the A 3 transformation end temperature (T 2 ) of the iron-based metal capsule at a cooling rate of 0.05 to 2 ° C./min. And a step of further cooling to room temperature. Above (a)-(d)
3. The method for producing a rare earth permanent magnet according to claim 2, wherein the alloy is magnetically anisotropicized.
【請求項5】 (a) R(ただしRはYを含む希土類元
素のうち少なくとも1種以上)、Fe及びBを基本成分
とする合金を溶解・鋳造する工程、 (b) 前記鋳造合金をA3 変態点を有する鉄基金属カプ
セル内に装入、密封する工程、 (c) 該カプセルを800〜1100℃のA3 変態点以
上の温度で熱間加工する工程、 (d) 次いで熱間加工された圧延材(カプセル)を該鉄
基金属カプセルのA3変態開始温度(T1)からA3 変態
終了温度(T2)までを0.05〜2℃/分の冷却速度
で徐冷し、更に室温まで冷却する工程、 (e) 前記鋳造合金を金属カプセルより取出し熱処理す
る工程。上記(a)〜(e)の工程からなり、該合金を磁気
的に異方性化することを特徴とする請求項2記載の希土
類永久磁石の製造方法。
5. (a) a step of melting and casting R (where R is at least one of rare earth elements including Y), Fe and B as basic components, and (b) casting the cast alloy with A A step of charging and sealing in an iron-based metal capsule having 3 transformation points, (c) a step of hot working the capsule at a temperature of A 3 transformation point of 800 to 1100 ° C. or higher, (d) a hot working step The rolled material (capsule) is gradually cooled from the A 3 transformation start temperature (T 1 ) to the A 3 transformation end temperature (T 2 ) of the iron-based metal capsule at a cooling rate of 0.05 to 2 ° C./min. A step of further cooling to room temperature, and (e) a step of removing the cast alloy from the metal capsule and subjecting it to heat treatment. The method for producing a rare earth permanent magnet according to claim 2, comprising the steps (a) to (e) and magnetically anisotropy of the alloy.
【請求項6】 (a) R(ただしRはYを含む希土類元
素のうち少なくとも1種以上)、Fe及びBを基本成分
とする合金を溶解・鋳造する工程、 (b) 前記鋳造合金をA3 変態点を有する鉄基金属カプ
セル内に装入、密封する工程、 (c) 該カプセルを800〜1100℃のA3 変態点以
上の温度で熱間加工する工程、 (d) 次いで熱間加工された圧延材(カプセル)を該鉄
基金属カプセルのA3変態開始温度(T1)からA3 変態
終了温度(T2)までを0.05〜2℃/分の冷却速度
で徐冷し、更に室温まで冷却する工程、 (e) 前記鋳造合金を金属カプセルより取出し熱処理す
る工程、 (f) 次いで所望の形状に切断・研磨する工程。上記
(a)〜(f)の工程からなり、該合金を磁気的に異方性化
することを特徴とする請求項2記載の希土類永久磁石の
製造方法。
6. (a) a step of melting and casting R (where R is at least one or more of rare earth elements including Y), Fe and B as basic components, and (b) the cast alloy is A A step of charging and sealing in an iron-based metal capsule having 3 transformation points, (c) a step of hot working the capsule at a temperature of A 3 transformation point of 800 to 1100 ° C. or higher, (d) a hot working step The rolled material (capsule) is gradually cooled from the A 3 transformation start temperature (T 1 ) to the A 3 transformation end temperature (T 2 ) of the iron-based metal capsule at a cooling rate of 0.05 to 2 ° C./min. A step of further cooling to room temperature, (e) a step of taking out the cast alloy from the metal capsule and subjecting it to heat treatment, and (f) a step of cutting and polishing into a desired shape. the above
3. The method for producing a rare earth permanent magnet according to claim 2, which comprises steps (a) to (f) and magnetically anisotropies the alloy.
【請求項7】 前記工程(d)の冷却工程において、
(T1+50)℃から(T2−50)℃までの温度域を
0.05〜1℃/分の冷却速度で徐冷し、次いで(T2
−50)℃から250℃までの温度域を0.01〜2℃
/分の冷却速度で徐冷することを特徴とする請求項4〜
6のいずれかに記載の希土類永久磁石の製造方法。
7. In the cooling step of the step (d),
The temperature range from (T 1 +50) ° C. to (T 2 −50) ° C. is gradually cooled at a cooling rate of 0.05 to 1 ° C./min, and then (T 2
Temperature range from -50) ℃ to 250 ℃ is 0.01-2 ℃
5. Slow cooling at a cooling rate of 1 / min.
7. The method for producing a rare earth permanent magnet according to any one of 6 above.
【請求項8】 前記工程(a)の鋳造合金がR14〜1
9原子%、B4〜6原子%、Cu0.1〜2原子%、残
部鉄及び製造上不可避な不純物からなり、さらに前記工
程(b)の鉄基金属カプセルが冷却時のA3 変態点を6
00〜900℃にもつ汎用鋼であることを特徴とする請
求項4〜7のいずれかに記載の希土類永久磁石の製造方
法。
8. The casting alloy of the step (a) is R14 to 1
9 atom%, B4 to 6 atom%, Cu 0.1 to 2 atom%, balance iron and impurities unavoidable in production. Further, the iron-based metal capsule of the step (b) has an A 3 transformation point of 6 when cooled.
It is general-purpose steel having a temperature of 00 to 900 ° C, and the method for manufacturing a rare earth permanent magnet according to any one of claims 4 to 7.
【請求項9】 前記工程(b)の鋳造合金を鉄基金属カ
プセル内に装入する際、合金とカプセルの間に剥離剤を
介在させることを特徴とする請求項4〜8のいずれかに
記載の希土類永久磁石の製造方法。
9. A release agent is interposed between the alloy and the capsule when the cast alloy in the step (b) is charged into the iron-based metal capsule. A method for producing the described rare earth permanent magnet.
JP8066009A 1996-03-22 1996-03-22 Manufacture of rare earth permanent magnet Pending JPH09260171A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8066009A JPH09260171A (en) 1996-03-22 1996-03-22 Manufacture of rare earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8066009A JPH09260171A (en) 1996-03-22 1996-03-22 Manufacture of rare earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH09260171A true JPH09260171A (en) 1997-10-03

Family

ID=13303529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8066009A Pending JPH09260171A (en) 1996-03-22 1996-03-22 Manufacture of rare earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH09260171A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107328A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Manufacturing method of rare-earth magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107328A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Manufacturing method of rare-earth magnet

Similar Documents

Publication Publication Date Title
JP4998096B2 (en) Method for producing R-Fe-B permanent magnet
US5352302A (en) Method of producing a rare-earth permanent magnet
JP7167665B2 (en) Rare earth magnet and manufacturing method thereof
KR101813427B1 (en) Method of manufacturing rare earth magnet
CN107464684B (en) Method for treating sintered magnet
EP3625807B1 (en) Hot deformed magnet, and a method for preparing said hot deformed magnet
JPH06302417A (en) Permanent magnet and its manufacture
JP2794755B2 (en) Manufacturing method of rare earth element-transition element-B magnet
JPH09260171A (en) Manufacture of rare earth permanent magnet
US20190311851A1 (en) Method of producing nd-fe-b magnet
JPH04134804A (en) Manufacture of rare earth permanent magnet
JPH09270347A (en) Method of producing rare earth bond magnet
JP2007254813A (en) Method for producing rare earth sintered magnet and die for molding used therefor
JPH02250920A (en) Production of rare earth element-transition element -b magnet by forging
JPH01261803A (en) Manufacture of rare-earth permanent magnet
JPH05182851A (en) Manufacture of rare earth elements-fe-b magnet
JPH0294603A (en) Rolled anisotropic rare earth magnet and manufacture thereof
JP2794754B2 (en) Manufacturing method of rare earth element-transition element-B magnet
EP4177911A1 (en) Anisotropic rare earth sintered magnet and method for producing the same
JPH02250921A (en) Production of rare earth element-transition element -b magnet by forging
JPH08273961A (en) Method for manufacturing rare earth permanent magnet
JPH04321206A (en) Manufacture of rare earth element-fe-b-based magnet
JPH09237733A (en) Method for manufacturing rare-earth permanent magnet
WO2004013873A1 (en) Process for producing rare earth-iron-boron magnet
JPH03287723A (en) Production of rare earth element-iron-boron magnet