JPH09237733A - Method for manufacturing rare-earth permanent magnet - Google Patents

Method for manufacturing rare-earth permanent magnet

Info

Publication number
JPH09237733A
JPH09237733A JP8043601A JP4360196A JPH09237733A JP H09237733 A JPH09237733 A JP H09237733A JP 8043601 A JP8043601 A JP 8043601A JP 4360196 A JP4360196 A JP 4360196A JP H09237733 A JPH09237733 A JP H09237733A
Authority
JP
Japan
Prior art keywords
capsule
rare earth
permanent magnet
rolling
earth permanent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8043601A
Other languages
Japanese (ja)
Inventor
Toshiaki Yamagami
利昭 山上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8043601A priority Critical patent/JPH09237733A/en
Publication of JPH09237733A publication Critical patent/JPH09237733A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Abstract

PROBLEM TO BE SOLVED: To prevent waving and fracture of a capsule during rolling and make stable production in a method for manufacturing a permanent magnet in which a R-Fe-B based alloy is sealed in the metal capsule to make hot working. SOLUTION: In this manufacturing method, an alloy in which R, Fe and B are material basical components is melted and cast, and the cast ingot is airtightly sealed in a metal capsule at a melting point of 1200 deg.C or more and made hot working at a temperature of 800 to 1100 deg.C. Thereafter, a magnet is fetched out and heated, and next cut and ground to be in a desired shape. In this embodiment, when a width of the cast ingot is a and vertical and lower plate thicknesses of the metal capsule are h, a h/a value is set to be 0.1 to 4. In the case of a multiple capsule, when a most inside capsule width is c, at least a capsule or more enter the above range in h/c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は熱間加工により磁気
異方性が付与される、R、Feを含む遷移金属、及びB
を原料基本成分とする希土類永久磁石の製造方法に関
し、特に合金鋳塊を金属カプセル内に封入して熱間圧延
を行うことにより、磁気特性と機械的強度に優れた希土
類永久磁石を製造する方法に関する。
TECHNICAL FIELD The present invention relates to a transition metal containing R, Fe, and B to which magnetic anisotropy is imparted by hot working.
A method for producing a rare earth permanent magnet excellent in magnetic properties and mechanical strength by encapsulating an alloy ingot in a metal capsule and performing hot rolling. Regarding

【0002】[0002]

【従来の技術】熱間加工により磁気異方性を付与する希
土類永久磁石の製造方法において、金属カプセル内に合
金を封入し加工を行う方法は、例えば、特開平1−17
1204号公報に開示されている。この方法では金属カ
プセルで合金鋳塊を覆うことで、大気中での加工が可
能になる(酸化の防止)。内部鋳塊が冷えにくい(保
温)。半溶融状態での加工でも液相の飛び出しを防
ぐ。拘束を加えることで速いひずみ速度の加工でも割
れずに加工ができ生産性が高い。等の効果をもつ。
2. Description of the Related Art In a method of manufacturing a rare earth permanent magnet that imparts magnetic anisotropy by hot working, a method of encapsulating an alloy in a metal capsule and working is disclosed in, for example, Japanese Patent Laid-Open No. 1-17.
It is disclosed in Japanese Patent Publication No. 1204. In this method, the alloy ingot is covered with a metal capsule to allow processing in the atmosphere (prevention of oxidation). The internal ingot is hard to cool (heat retention). Prevents the liquid phase from jumping out even when processing in a semi-molten state. By applying a constraint, high strain rate machining is possible without cracking and high productivity. And so on.

【0003】金属カプセルで合金鋳塊を覆い熱間加工を
行う場合、熱間加工方法、カプセル金属材質、カプセル
肉厚、すき間、カプセル化の方法等の組み合わせが不適
切だと、加工中にカプセルに波打ちが生じ十分な拘束力
が得られなく均一な変形ができず、期待される磁気性能
が得られなかったり、さらには、カプセルが破断し圧延
自体ができなくなったり、合金鋳塊がわれてしまう等の
問題がある。
When the alloy ingot is covered with a metal capsule for hot working, if the combination of the hot working method, the metal material of the capsule, the thickness of the capsule, the gap, the encapsulation method, etc. is inappropriate, the capsule is not processed during the working. Rippling occurs and sufficient restraining force cannot be obtained and uniform deformation cannot be obtained, the expected magnetic performance cannot be obtained, and further, the capsule breaks and the rolling itself cannot be performed, or the alloy ingot is broken. There are problems such as being lost.

【0004】しかし、前記公報にはカプセルの構造、お
よびカプセルサイズ、合金サイズの関係については、何
も記述がない。
However, the above publication does not describe anything about the structure of the capsule and the relationship between the capsule size and the alloy size.

【0005】また、熱間加工方法として、量産性に優れ
た熱間圧延方法を採用したものが特開平2−25091
8号公報に詳細が開示されている。この方法は、R−F
e−B系磁石の製造方法において、潤滑剤(ガラス潤滑
剤、BN、アルミナ等)を介して金属カプセルに封入し
た上で750〜1150℃でカプセルの幅方向に拘束を
加えつつ熱間圧延を行うこと、そのときの金属カプセル
の上下板厚を合金鋳塊板厚の20%以上にすること、ま
た金属カプセルの板幅/板厚比を1.5以上とすること
により磁石の割れの発生を防止できることが開示されて
いる。
As a hot working method, a hot rolling method which is excellent in mass productivity is adopted.
Details are disclosed in Japanese Patent Publication No. 8. This method is
In the method for manufacturing an e-B magnet, hot rolling is performed while enclosing a metal capsule through a lubricant (glass lubricant, BN, alumina, etc.) and then applying a constraint in the width direction of the capsule at 750 to 1150 ° C. Occurrence of cracks in the magnets by setting the upper and lower plate thicknesses of the metal capsules to be 20% or more of the alloy ingot plate thickness and setting the plate width / plate thickness ratio of the metal capsules to 1.5 or more. It is disclosed that the above can be prevented.

【0006】この方法における金属カプセルの板厚を合
金鋳塊板厚の20%以上にすることは、圧延後の合金の
冷却状況を改善し、急冷による熱衝撃で磁石のわれを防
ぐためのものであり、圧延中のカプセルの波打ちや破
断、またそれらに起因するわれ防止については、記述が
ない。
The plate thickness of the metal capsule in this method being 20% or more of the plate thickness of the alloy ingot improves the cooling condition of the alloy after rolling and prevents the magnet from breaking due to thermal shock due to rapid cooling. Therefore, there is no description about waviness and breakage of the capsule during rolling, and prevention of cracking caused by them.

【0007】また、金属カプセルの板幅/板厚比を1.
5以上とすることは、合金にかかる拘束力を強くするこ
とで、われを防ぐものである。しかし、カプセルそのも
の比を示すのみで、合金とカプセルサイズについては、
記述がない。
Further, the plate width / plate thickness ratio of the metal capsule is 1.
When it is 5 or more, the binding force applied to the alloy is strengthened to prevent cracking. However, only showing the ratio of the capsule itself, regarding the alloy and the capsule size,
There is no description.

【0008】[0008]

【発明が解決しようとする課題】上述の様に従来の鋳造
合金を金属カプセルに封入し、熱間圧延方法を施す希土
類磁石の製造方法においては、圧延中のカプセルの変形
について合金サイズとカプセルのサイズの組み合わせを
適切にする必要があるが、それについては明示がなく、
高い磁気性能と機械的強度をもつ大型の磁石を安定して
製造する方法を提供していない。
As described above, in the method for producing a rare earth magnet in which a conventional casting alloy is encapsulated in a metal capsule and subjected to a hot rolling method, deformation of the capsule during rolling is affected by alloy size and capsule size. It is necessary to make a proper combination of sizes, but there is no explicit description about it,
It does not provide a method for stably manufacturing a large-sized magnet having high magnetic performance and mechanical strength.

【0009】圧延中にカプセルが破断すると、最悪圧延
自体が不可能になることも予想され、たとえ圧延ができ
たとしても合金は均一な変形はできず、磁気性能が不均
一になるとともに、破断部に半溶融状態の該合金が侵入
し、さらには、その部分が冷却中にわれの起点になり、
カプセルとの熱収縮差によりわれにつながり歩留まり低
下を起こす。
If the capsule breaks during rolling, it is expected that the worst rolling itself will be impossible. Even if rolling is possible, the alloy cannot be uniformly deformed, resulting in non-uniform magnetic performance and fracture. The alloy in a semi-molten state penetrates into the part, and further, that part becomes the starting point of the crack during cooling,
The difference in heat shrinkage with the capsule leads to cracking and yield loss.

【0010】本発明は、以上の従来技術の欠点、永久磁
石製造方法における割れによる歩留まりの低下を解決す
るものであり、その目的とするところは、機械的強度に
すぐれ、大型磁石の作製が可能な鋳造・熱間圧延法によ
るR−Fe−B系永久磁石において、合金サイズとカプ
セルサイズの関係を明らかにし、そのサイズを適正範囲
に保つことで、熱間圧延時のカプセルの波打ちや破断を
防ぎ、割れや表面の凸凹による歩留まり低下を防ぐこと
である。結果として高性能かつ高強度で低コストの永久
磁石の安定した製造方法を提供することにある。
The present invention solves the above-mentioned drawbacks of the prior art and the reduction in yield due to cracking in the permanent magnet manufacturing method. The object of the present invention is to provide a large magnet having excellent mechanical strength. In R-Fe-B permanent magnets produced by various casting and hot rolling methods, the relationship between alloy size and capsule size is clarified, and by keeping the size within an appropriate range, waviness and breakage of capsules during hot rolling can be prevented. It is to prevent yield loss due to cracking and surface irregularities. As a result, it is to provide a stable manufacturing method of a high-performance, high-strength, low-cost permanent magnet.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は
R、Fe及びBを原料基本成分とする合金を溶解・鋳造
し、融点が1200℃以上の金属カプセル内に装入、密
封し、該カプセルごと800〜1100℃の温度に加熱
し、該合金鋳塊を液相/固相体積率が5%〜40%の半
溶融状態でカプセルごと熱間圧延し、該合金を磁気的に
異方性化せしめる希土類永久磁石の製造方法において、
該金属カプセルのサイズを、該合金鋳塊の幅をa、金属
カプセルの圧下方向の上下板厚みをhとしたとき、これ
らの比h/aが0.1〜4であることを特徴とする希土
類永久磁石の製造方法である。
According to a first aspect of the present invention, an alloy containing R, Fe and B as a raw material basic component is melted and cast into a metal capsule having a melting point of 1200 ° C. or higher, which is then sealed. The entire capsule is heated to a temperature of 800 to 1100 ° C., the alloy ingot is hot-rolled together with the capsule in a semi-molten state with a liquid phase / solid phase volume ratio of 5% to 40%, and the alloy is magnetically different. In the method for producing a rare earth permanent magnet that is made to be anisotropic,
The ratio h / a of these metal capsules is 0.1 to 4, where a is the width of the alloy ingot and h is the thickness of the metal capsule in the pressing direction. It is a method of manufacturing a rare earth permanent magnet.

【0012】請求項2記載の発明は上記の合金鋳塊が複
数の鋳塊で構成されていることを特徴とする請求項1記
載の希土類永久磁石の製造方法である。
The invention according to claim 2 is the method for producing a rare earth permanent magnet according to claim 1, characterized in that the alloy ingot is composed of a plurality of ingots.

【0013】請求項3記載の発明は上記金属カプセルの
幅をW、高さをHとしたとき、この比W/Hが1.5以
上であり、かつ上記h/aが0.1〜4であることを特
徴とする希土類永久磁石の製造方法である。
According to the third aspect of the present invention, when the width of the metal capsule is W and the height is H, the ratio W / H is 1.5 or more, and the h / a is 0.1 to 4. And a method for producing a rare earth permanent magnet.

【0014】請求項4記載の発明は上記合金鋳塊の高さ
をbとしたとき、カプセル上下板厚との比h/bが0.
2以上であり、かつ上記h/aが0.1〜4であること
を特徴とする希土類永久磁石の製造方法である。
According to a fourth aspect of the present invention, when the height of the alloy ingot is b, the ratio h / b of the upper and lower plate thickness of the capsule is 0.
It is 2 or more and said h / a is 0.1-4, It is a manufacturing method of the rare earth permanent magnet characterized by the above-mentioned.

【0015】請求項5記載の発明は上記金属カプセルを
多重化カプセル(n重化 n>2の自然数)で構成する
場合、内側から数えてi番目のカプセルの上下板厚みを
h、(i−1)番目のカプセルの幅をcとしたとき(i
はn≧i>1である自然数)、h/cの比が0.1〜4
であるカプセルが少なくとも1つ以上あることを特徴と
する希土類永久磁石の製造方法である。
According to the fifth aspect of the present invention, when the metal capsule is composed of multiplex capsules (n-fold n is a natural number of n> 2), the upper and lower plate thickness of the i-th capsule counted from the inside is h, (i- 1) When the width of the 1st capsule is c, (i
Is a natural number such that n ≧ i> 1, and the ratio of h / c is 0.1 to 4
The method for producing a rare earth permanent magnet is characterized in that there is at least one or more capsules.

【0016】請求項6記載の発明は上記カプセルの材質
が炭素量1wt%以下である炭素鋼であることを特徴と
する請求項1または請求項5記載の希土類永久磁石の製
造方法である。
The invention according to claim 6 is the method for producing a rare earth permanent magnet according to claim 1 or 5, characterized in that the material of the capsule is carbon steel having a carbon content of 1 wt% or less.

【0017】請求項7記載の発明は圧延の加工度が70
%〜80%であることを特徴とする、請求項1または請
求項6記載の希土類永久磁石の製造方法である。
According to a seventh aspect of the invention, the workability of rolling is 70.
% -80%, It is a manufacturing method of the rare earth permanent magnet of Claim 1 or Claim 6 characterized by the above-mentioned.

【0018】請求項8記載の発明は熱間圧延時の平均ロ
ール周速度が1〜500m/分であることを特徴とする
請求項1または請求項6記載の希土類永久磁石の製造方
法である。
The invention according to claim 8 is the method for producing a rare earth permanent magnet according to claim 1 or 6, characterized in that the average roll peripheral speed during hot rolling is 1 to 500 m / min.

【0019】[0019]

【発明の実施の形態】以下本発明の範囲について説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The scope of the present invention will be described below.

【0020】本発明の製造方法による磁気的に異方性が
付与されるメカニズムは以下のように考えられている。
カプセルごと合金を600℃以上の温度に加熱する事に
より、まず、当該金属は粒界相が溶融し液相となる。こ
のとき、主相(R2Fe14B粒)は固相のままなので、
固液が混在する半溶融状態になる。カプセルおよび合金
はその状態で圧延され、液相の流動とカプセル形状が変
形することで、主相で磁気的に一軸異方性をもつ固相が
回転し、一定の方向にそろう。そのまま固化すると磁気
的に異方性化し、高い磁気性能が実現される。すなわ
ち、高性能の磁石を得るためには、半溶融状態での加工
が不可欠となる。
The mechanism by which magnetic anisotropy is imparted by the manufacturing method of the present invention is considered as follows.
By heating the alloy together with the capsules to a temperature of 600 ° C. or higher, first, the grain boundary phase of the metal melts and becomes a liquid phase. At this time, since the main phase (R 2 Fe 14 B grains) remains a solid phase,
It becomes a semi-molten state in which solid and liquid are mixed. The capsules and alloys are rolled in that state, the flow of the liquid phase and the deformation of the capsule shape cause the solid phase having magnetic uniaxial anisotropy to rotate in the main phase and align in a certain direction. If it is solidified as it is, it becomes magnetically anisotropic and high magnetic performance is realized. That is, processing in a semi-molten state is essential to obtain a high-performance magnet.

【0021】この圧延温度は、十分な液相の流動を得る
ために、少なくとも800℃以上とすることが望まし
く、その上限は、主相粒の急激な粗大化によるiHcの
減少を避けるために1100℃とすることが望ましい。
The rolling temperature is preferably at least 800 ° C. or more in order to obtain a sufficient liquid phase flow, and its upper limit is 1100 in order to avoid a decrease in iHc due to a sudden coarsening of the main phase grains. It is desirable to set the temperature to ° C.

【0022】圧延中の液相量は、合金の組成と加工温度
で決まり、低B、高Rほど、また、温度が高いほど多く
なる。この液相量は全体の体積の5%より少なくては、
十分全体に行き渡らずに、主相同士が接触し、加工中に
主相が破壊する部分が出る等、均一な変形はできずに、
十分な異方性を付与する事が困難となる。また加工中の
ひずみを十分緩和することができず、加工中のひずみが
われとして残り歩留まりを低下させる。反対に40%よ
り多ければ、相対的に磁性を担う主相が少なくなり、高
い磁気性能が望めない。
The amount of liquid phase during rolling is determined by the composition of the alloy and the working temperature, and becomes larger as the B and R become lower and the temperature becomes higher. If this liquid phase amount is less than 5% of the total volume,
The main phases contact each other without reaching the entire area, and there is a part where the main phase breaks during processing.
It becomes difficult to give sufficient anisotropy. In addition, the strain during processing cannot be sufficiently relaxed, and the strain during processing remains as a crack and reduces the yield. On the other hand, if it is more than 40%, the main phase responsible for magnetism relatively decreases, and high magnetic performance cannot be expected.

【0023】本発明における永久磁石の好ましい組成に
ついて以下説明する。
The preferred composition of the permanent magnet in the present invention will be described below.

【0024】希土類元素としてはY、La、Ce、P
r、Nd、Sm、Eu、Gd、Tb、Dy、Ho、E
r、Tm、Yb、Luが候補として挙げられ、これらの
うち1種あるいは2種以上を組み合わせて用いる。最も
高い特性はPrで得られるので、実用的にはPr、Pr
−Nd、Ce−Pr−Nd合金等が用いられる。
As rare earth elements, Y, La, Ce, P
r, Nd, Sm, Eu, Gd, Tb, Dy, Ho, E
r, Tm, Yb, and Lu are listed as candidates, and among these, one kind or a combination of two or more kinds is used. The highest characteristic is obtained with Pr, so Pr and Pr are practically used.
-Nd, Ce-Pr-Nd alloy or the like is used.

【0025】希土類元素は12〜25原子%が適当で、
12原子%未満だと十分な液相が形成されず、加工中に
割れやすくなり歩留まりが低下してしまう。また25原
子%を越えると非磁性相の量が多くなり磁気特性は著し
く低下する。
12-25 atomic% is suitable for the rare earth element,
If it is less than 12 atomic%, a sufficient liquid phase will not be formed, and it will be easily cracked during processing and the yield will be reduced. On the other hand, if it exceeds 25 atom%, the amount of the non-magnetic phase increases and the magnetic properties remarkably deteriorate.

【0026】Feは65〜85原子%が適当であり、6
5原子%未満では非磁性相の量が増えすぎて性能が低下
する。一方85原子%を越えると希土類元素の量が減少
し、希土類元素の説明で述べたような問題が出て来る。
Fe is preferably 65 to 85 atomic%, and 6
If it is less than 5 atomic%, the amount of the non-magnetic phase increases too much and the performance deteriorates. On the other hand, when it exceeds 85 atomic%, the amount of the rare earth element decreases, and the problem described in the explanation of the rare earth element appears.

【0027】Bは2〜8原子%が適当であり、2原子%
未満では菱面体のR−Fe系になるために高保磁力は望
めない。また8原子%を越えると微細なR2Fe14B粒
を得ることが困難で熱間加工性が悪くなり高保磁力を得
ることもできなくなる。
B is preferably 2 to 8 atomic%, and 2 atomic%
If it is less than the above, a high coercive force cannot be expected because it becomes a rhombohedral R-Fe system. On the other hand, if it exceeds 8 atomic%, it is difficult to obtain fine R 2 Fe 14 B grains and the hot workability is deteriorated, and it becomes impossible to obtain a high coercive force.

【0028】またCoはキュリー温度を高めるのに有効
であり、Feに対して50%以内の置換であれば保磁力
を大きく損なうことが無い。
Further, Co is effective for raising the Curie temperature, and the coercive force is not significantly impaired if the Fe content is replaced within 50%.

【0029】Cu、Ag、Auは熱間加工性を高め、保
磁力と角形性の向上効果を有するが非磁性相を形成する
のでその添加量は6原子%以下が好ましい。
Cu, Ag, and Au have the effects of enhancing hot workability and improving coercive force and squareness, but form a nonmagnetic phase, so the addition amount is preferably 6 atomic% or less.

【0030】以上の様な合金を金属カプセルに封入し半
溶融状態で圧延を施すとき、圧延中に圧延ロールの前後
に膨れが発生する。この熱間圧延中の圧延ロール付近の
断面概念図を図1示す。これは、当該金属が半溶融状態
のため、圧延ロールの圧力が液相を媒体として圧延ロー
ル下以外に伝達されるためである。
When the above alloy is encapsulated in a metal capsule and rolled in a semi-molten state, swelling occurs before and after a rolling roll during rolling. FIG. 1 shows a conceptual sectional view of the vicinity of a rolling roll during this hot rolling. This is because the metal is in a semi-molten state, so that the pressure of the rolling roll is transmitted to other than under the rolling roll by using the liquid phase as a medium.

【0031】この膨れる圧力Pは等方的に働くが、圧延
方向(長手方向)は、全体に延びる方向なので問題な
く、また、幅方向も幅広がりの方向になり、複数の合金
を並べて置いた場合、接着する力となるので大きな問題
とははならない。残る圧下方向(板厚方向)だが、この
方向は圧延の上下板を押し上げる力として働く。上下板
は圧延することで薄くなっていくので、上下板厚の強度
が不足していると次の様な欠陥が発生する。
This swelling pressure P acts isotropically, but there is no problem because the rolling direction (longitudinal direction) is a direction that extends in the entire direction, and the width direction also becomes a width widening direction, and a plurality of alloys are placed side by side. In that case, it does not cause a big problem because it becomes an adhesive force. The remaining rolling direction (thickness direction) works as a force that pushes the upper and lower plates of the rolling. Since the upper and lower plates become thinner by rolling, if the strength of the upper and lower plates is insufficient, the following defects will occur.

【0032】上下板が膨れる力で塑性変形し、合金と
カプセルの間に空間ができる。空間ができると液相が流
入し、液層の不均一さが発生する。従って空間の発生状
況も均一なものではなくなり、いわゆる波打ちが発生す
る。この波打ちが発生すると、カプセルと金属の反応も
不均一になり、われにつながる。
The swelling force of the upper and lower plates plastically deforms them to form a space between the alloy and the capsule. When a space is created, the liquid phase flows in, causing nonuniformity of the liquid layer. Therefore, the generation condition of the space is not uniform and so-called waviness occurs. When this waviness occurs, the reaction between the capsule and the metal becomes non-uniform, leading to cracking.

【0033】角の部分に応力集中が発生しカプセルが
破断する。1重カプセルの場合は、圧延不能になり、多
重カプセルの場合は、圧延は続けられるが、1重目と2
重目の間に半溶融金属が入り込み、徐冷中のわれの起点
となる。
Stress concentration occurs at the corners and the capsule breaks. In the case of a single capsule, rolling is impossible, and in the case of a multiple capsule, rolling continues, but the first and second
Semi-molten metal enters between the weights and becomes the starting point of the crack during slow cooling.

【0034】カプセルの内側に未溶接部分があると、
そのすき間が広がり半溶融金属がそのすき間に入り込
み、われの起点になる。このことが各パスで繰り返され
ると、溶接部の破断につながる。さらには前述のと同
様のことになる。
If there is an unwelded part inside the capsule,
The gap expands and the semi-molten metal enters the gap and becomes the starting point of the crack. If this is repeated in each pass, the weld will break. Furthermore, it becomes the same as the above.

【0035】ここで、液相が媒体となること、圧延ロー
ルは被加工物より幅が広いのが一般的なことから、膨れ
る圧力Pは、圧延材幅方向にはほぼ均等に発生すると予
想される。また、圧力Pの大きさは、圧延ロール下でカ
プセル自体が変形しなければならないので、圧延ロール
直下はそのときのカプセルの降伏応力Yと同程度の圧力
が生じる。この圧力が液相により伝達されることにな
る。
Here, since the liquid phase serves as a medium and the rolling roll is generally wider than the work piece, the bulging pressure P is expected to be generated substantially evenly in the width direction of the rolled material. It In addition, since the capsule itself has to be deformed under the rolling roll, the pressure P has a pressure similar to the yield stress Y of the capsule at that time just below the rolling roll. This pressure will be transmitted by the liquid phase.

【0036】合金は粒径数十μmと微細な固相との半溶
融状態であるため、圧延ロールから離れるに従って圧力
Pは少なくなる。その伝達する距離は、液相率できま
り、液相が少なければ圧延ロールの極近傍しか伝わらな
いが、液相が多くなると次第に遠くまで伝達することに
なる。この場合圧延ロールに近い方が圧力が高く、図1
の様な状態になる。すなわち、膨れる圧力Pは最大でも
カプセルの降伏応力Y程度である。
Since the alloy is in a semi-molten state with a grain size of several tens of μm and a fine solid phase, the pressure P decreases as the distance from the rolling roll increases. The transmission distance depends on the liquid phase ratio. If the liquid phase is small, the distance is transmitted only in the very vicinity of the rolling roll, but if the liquid phase is increased, the distance is gradually increased. In this case, the pressure nearer to the rolling roll is higher, and
It becomes a state like. That is, the swelling pressure P is at most about the yield stress Y of the capsule.

【0037】以上のことから、圧延ロール近傍の上下板
の状態は両持ち梁に均等に力がかかる状態に近似するこ
とができる。この時の梁にかけることのできる限界圧力
Peは、板厚hと幅aで決まり、次式で与えられること
が知られている。(参照:基礎工学全書3塑性学 工藤
英明著 森北出版 P20) Pe=4h2/3a2Y (ここでYは梁材料の降伏応
力) 梁にPe以上の圧力がかかると、この梁は降伏し塑性変
形を起こすことになる。膨れる圧力Pがこの限界圧力P
e以下であれば、材料は弾性変形のみで、塑性変形は起
きず、カプセルの波打ちや破断は基本的には起きない。
この限界圧力は降伏応力以下であることは自明であり、
h/aが0.866以上では、Peが計算上降伏応力を
こえるので、膨れ圧力に対してはこれ以上hを厚くして
も効果がない。すなわち、初期の上下板の厚みhは、加
工度をr(r=最終厚み/初期厚み)としたとき、0.
866/r以上にしても効果がないことになる。
From the above, the state of the upper and lower plates in the vicinity of the rolling roll can be approximated to the state in which a force is evenly applied to the doubly supported beams. It is known that the limit pressure Pe that can be applied to the beam at this time is determined by the plate thickness h and the width a and is given by the following equation. (Reference: Basic Engineering Complete Book 3 Plasticity, Hideaki Kudo, Morikita Publishing P20) Pe = 4h 2 / 3a 2 Y (where Y is the yield stress of the beam material) When a pressure of Pe or more is applied to the beam, this beam yields. It will cause plastic deformation. The swelling pressure P is this limit pressure P
If it is e or less, the material is only elastically deformed, plastic deformation does not occur, and waviness and breakage of the capsule basically do not occur.
It is obvious that this limit pressure is below the yield stress,
When h / a is 0.866 or more, Pe exceeds the calculated yield stress. Therefore, even if h is further increased, there is no effect on the bulging pressure. That is, the initial thickness h of the upper and lower plates is 0 .. when the working ratio is r (r = final thickness / initial thickness).
Even if it is 866 / r or more, there is no effect.

【0038】すなわち、これ以上hを厚くすることは、
圧延材のサイズを大きくするのみで、コストアップにな
る。
That is, if h is made thicker than this,
The cost increases only by increasing the size of the rolled material.

【0039】圧延材の加工度は磁気性能から30%以
上、好ましくは70〜80%が必要とされる。80%以
上の加工では、せっかく揃った粒子の配向が反対に乱れ
はじめ、磁気性能が落ちる。
From the magnetic performance, the workability of the rolled material is required to be 30% or more, preferably 70 to 80%. At 80% or more of processing, the orientation of particles that have been aligned evenly begins to be disturbed, and the magnetic performance deteriorates.

【0040】以上の事から初期のカプセル厚みhはh/
aで4あれば十分である、それ以上厚くしても膨れ圧力
に対抗する効果は大きくならず、コストアップにつなが
るだけである。
From the above, the initial capsule thickness h is h /
It is sufficient for a to be 4, and even if the thickness is made thicker, the effect against the swelling pressure does not become large, and only the cost increases.

【0041】以上のことは圧延ができればカプセル材質
にはあまり依存しない。例えば、膨れに備え、カプセル
の材料強度を2倍に上げても、ロール直下の変形抵抗も
2倍になるので発生する膨れの圧力も2倍になる。結局
降伏応力と膨れる圧力Pの比は同じとなり、h/aには
関係がなくなるからである。
The above does not depend much on the material of the capsule if it can be rolled. For example, even if the material strength of the capsule is doubled in preparation for swelling, the deformation resistance immediately below the roll is also doubled, so that the swelling pressure generated is also doubled. This is because the ratio of the yield stress and the swelling pressure P is the same, and h / a is irrelevant.

【0042】カプセルは1100℃での圧延を行う事を
考えると、それ以上の融点のカプセルにする必要があ
る。好ましくは1200℃以上の融点であることが望ま
しい。さらに、カプセルは圧延が比較的容易に出来るこ
とが必要である。降伏応力が必要以上に高い金属を使う
と、圧延荷重が上がり圧延機の負荷になるばかりか、1
パスあたりの圧下量がとれず、十分な配向が得られな
い。反対に必要以上に降伏応力の低い金属では、カプセ
ルだけが変形してしまい、磁石の配向に必要な変形量が
得られない。また、磁石の形状もだれてしまう。そこ
で、カプセルには、適度な降伏応力をもつ炭素量が1w
t%以下の低合金鋼が望ましい。好ましくは、0.3w
t%以下の低炭素鋼が望ましい。
Considering that the capsules are rolled at 1100 ° C., it is necessary to make the capsules having a melting point higher than that. It is preferable that the melting point is 1200 ° C. or higher. Furthermore, the capsules should be able to be rolled relatively easily. If a metal with a yield stress higher than necessary is used, not only will the rolling load increase, but also the load on the rolling mill will increase.
The amount of reduction per pass cannot be taken and sufficient orientation cannot be obtained. On the other hand, if the yield stress is lower than necessary, only the capsule will be deformed, and the amount of deformation necessary for the orientation of the magnet cannot be obtained. In addition, the shape of the magnet is also dulled. Therefore, the capsule contains 1w of carbon with an appropriate yield stress.
A low alloy steel of t% or less is desirable. Preferably 0.3w
Low carbon steel of t% or less is desirable.

【0043】圧延速度は生産性を考えると早い方が望ま
しい。ロール周速度が1m/分未満では、ロールにより
圧延材自体が冷えてしまい、液相が固化し、実質的な液
層が少なくなり配向が十分出来ず希望の磁気性能が得ら
れない。さらには、われにつながるおそれがある。
It is desirable that the rolling speed is higher in consideration of productivity. If the roll peripheral speed is less than 1 m / min, the rolled material is cooled by the roll, the liquid phase is solidified, the substantial liquid layer is reduced, the orientation cannot be sufficiently performed, and the desired magnetic performance cannot be obtained. Furthermore, there is a risk that it may lead to illness.

【0044】圧延は液相の流動からリバース圧延を行う
方が均一な磁石になる。ロール周速度が500m/分以
上でリバース圧延を行う事は圧延機に負担がかかり、得
策ではない。また、これ以上周速度を上げるよりは、そ
の分1パスあたりの圧下量を上げることを考えた方が好
ましい。
In the rolling, a more uniform magnet is obtained by performing the reverse rolling from the flow of the liquid phase. Performing reverse rolling at a roll peripheral speed of 500 m / min or more puts a burden on the rolling mill and is not a good idea. Further, it is preferable to consider increasing the amount of reduction per pass rather than increasing the peripheral speed any more.

【0045】以上のような条件を考慮し、加工前のh/
aを種々設定して、膨れの圧力Pに耐えられるh/aを
調査した。各温度で圧延を施し、圧延後の磁石断面のわ
れの有無、上下板の膨れを観察した。その結果図2の様
な結果が得られた。図中われなし、膨れなしが○印、わ
れはないが膨れがあるもの△印、われ有りもしくは圧延
中破断が×印で表してある。また、圧延材断面の形状を
模式的に図3に示す。
Considering the above conditions, h /
Various values of a were set, and h / a which can withstand the bulging pressure P was investigated. Rolling was performed at each temperature, and the presence or absence of cracks in the cross section of the magnet after rolling and swelling of the upper and lower plates were observed. As a result, the result as shown in FIG. 2 was obtained. In the figure, no cracks and no blisters are indicated by a circle, no cracks were observed but a blister is indicated by a triangle, and cracks or breaks during rolling are indicated by a cross. Further, the shape of the cross section of the rolled material is schematically shown in FIG.

【0046】h/aの値を0.25以上にすれば圧延後
の上下板は、平たんであり、磁石も平たんに割れなくで
きる。また、同0.1では、若干の膨れが圧延後残り、
上下板が塑性変形したことを示しているが、磁石はわれ
ずにできる。同0.1未満ではわれが入るか、もしく
は、上下板が圧延途中で破断した。この傾向は温度液相
が多い高温ほど顕著になった。以上のことより、h/a
の値は、0.1以上必要で、好ましくは0.25以上に
する必要があることがわかる。
When the value of h / a is 0.25 or more, the upper and lower plates after rolling are flat, and the magnet can be flat and crack-free. In addition, with the same 0.1, some swelling remains after rolling,
It shows that the upper and lower plates have been plastically deformed, but it can be done without breaking the magnet. If the ratio is less than 0.1, cracks may occur or the upper and lower plates may be broken during rolling. This tendency became more remarkable as the temperature was higher and the temperature was higher. From the above, h / a
It is understood that the value of is required to be 0.1 or more, preferably 0.25 or more.

【0047】材料コスト、溶接コスト、1圧延での磁石
の収量を考えると、h/aはできるだけ小さい方がよい
ことは明らかである。
Considering the material cost, the welding cost and the yield of the magnet in one rolling, it is obvious that h / a should be as small as possible.

【0048】以下本発明の詳細を実施例を一例に説明す
る。
The details of the present invention will be described below with reference to examples.

【0049】〔実施例1〕アルゴン雰囲気中で誘導加熱
炉を用いて、Pr17Fe775.2Cu0.8なる組成の合金
を溶解し、次いで銅鋳型に鋳造した。この時、希土類、
鉄及び銅の原料としては99.9%の純度のものを用
い、ボロンはフェロボロンを用いた。これにより、柱状
晶の平均粒径15μmの組織で厚み20mm×幅500
mm×高250mmの鋳造インゴットを得た。
Example 1 Using an induction heating furnace in an argon atmosphere, an alloy having a composition of Pr 17 Fe 77 B 5.2 Cu 0.8 was melted and then cast in a copper mold. At this time, rare earth,
Iron and copper raw materials having a purity of 99.9% were used, and ferroboron was used as boron. As a result, a columnar crystal structure having an average grain size of 15 μm has a thickness of 20 mm and a width of 500.
A cast ingot having a size of mm × height 250 mm was obtained.

【0050】次ぎに、この鋳造インゴットから幅(厚
み)16mm×長さ80mm×高38mmのインゴット
サンプルを切り出しビレットとした。このビレットを表
1に示す様なSS400鋼製(炭素量0.17wt%、
珪素0.3wt%、マンガン1.56wt%)のカプセ
ルに入れ、真空に引き密封した。記号は図4に示す。
Next, an ingot sample having a width (thickness) of 16 mm, a length of 80 mm and a height of 38 mm was cut out from this cast ingot to prepare a billet. This billet is made of SS400 steel as shown in Table 1 (0.17 wt% carbon content,
It was placed in a capsule of 0.3 wt% of silicon and 1.56 wt% of manganese, and was evacuated and sealed. The symbols are shown in FIG.

【0051】[0051]

【表1】 [Table 1]

【0052】カプセルは各鋼板の各稜を溶接し作成し
た。溶接のチェックは、ヘリウムリークディテクタによ
り、カプセルの漏れ値を測定し、1×10-8torr・
l/s以下であることを確認した。カプセルには真空引
き用の穴をもうけ、真空チャンバーの中で、2×10-4
torr以下に1時間保持した後、電子ビームで穴を封
じて、カプセル内を真空にした。電子ビーム溶接部はカ
ラーチェックで、欠陥の無いことを確認した。このカプ
セルを各4個用意して、800、900、1000、1
100℃の各温度で圧延を行った。加熱は大気中電気炉
で1時間加熱し、圧延パスごとに再加熱15分行った。
圧延ロールはφ300mm。パススケジュールは加工度
30%の圧延を4回リバースで施し、総加工度を76%
とした。平均ロール周速度は25m/分である。
The capsule was made by welding each edge of each steel plate. Welding is checked by measuring the leak value of the capsule with a helium leak detector, and measuring 1 × 10 −8 torr ·
It was confirmed that it was 1 / s or less. Make a hole for evacuation in the capsule, and in the vacuum chamber, 2 × 10 -4
After keeping the pressure below torr for 1 hour, the hole was sealed with an electron beam and the inside of the capsule was evacuated. The electron beam welds were color checked and confirmed to be free of defects. Prepare 4 capsules each, 800, 900, 1000, 1
Rolling was performed at each temperature of 100 ° C. The heating was performed in an electric furnace in the air for 1 hour, and reheating was performed for 15 minutes for each rolling pass.
The rolling roll has a diameter of 300 mm. In the pass schedule, rolling with a workability of 30% is performed four times in reverse, and the total workability is 76%.
And The average roll peripheral speed is 25 m / min.

【0053】圧延後は各温度の炉に戻し、圧延材が各加
熱温度に達したのち、炉冷とした。200℃まで50時
間かけた。
After rolling, it was returned to the furnace at each temperature, and after the rolled material reached each heating temperature, it was cooled in the furnace. It took 50 hours to reach 200 ° C.

【0054】結果を図2に示す。多ビレットのものの接
着具合は、どれも良好であり、カプセルのサイズによる
影響は見られなかった。図中割れなし、膨れ、波打ちな
しが○印、膨れ、波打ちあり、割れなしが△印、われ有
りもしくは圧延中破断が×印で表してある。点線はわ
れ、膨れの有無の境界を示す。また、圧延材断面の形状
を模式的に図3に示す。(a)は健全な形でとれたも
の、(b)は膨れ、われが発生したもの、(c)はカプ
セル破断が起きたものの模式図である。
The results are shown in FIG. The adhesiveness of the multi-billet ones was good, and the effect of the capsule size was not observed. In the figure, no cracks, no swelling, no waviness are indicated by a circle, blisters, no waviness, no cracks are indicated by a triangle, and cracks or breaks during rolling are indicated by an x mark. The dotted line is broken to indicate the boundary with or without swelling. Further, the shape of the cross section of the rolled material is schematically shown in FIG. FIG. 4A is a schematic view of what is taken in a healthy shape, FIG. 4B is what is swollen and cracked, and FIG.

【0055】h/aの値を0.25以上のものは、各温
度で圧延後の上下板は図3(a)で示したように平たん
であり、磁石も平たんに割れなくできた。また、同0.
1では、若干の膨れが圧延後残り、上下板が塑性変形し
たことを示した。しかし、磁石はわれずにできた。同
0.1未満では、図3(b)(c)で示したように、わ
れが入るか、もしくは、上下板が圧延途中で破断した。
この傾向は液相が多い高温ほど顕著になった。
When the value of h / a was 0.25 or more, the upper and lower plates after rolling at each temperature were flat as shown in FIG. 3 (a), and the magnets could be flat and crack-free. . In addition, 0.
In No. 1, it was shown that some blisters remained after rolling and the upper and lower plates were plastically deformed. However, the magnet was made without being revealed. If the ratio is less than 0.1, as shown in FIGS. 3 (b) and 3 (c), cracks are formed or the upper and lower plates are broken during rolling.
This tendency became more remarkable as the liquid temperature increased and the temperature increased.

【0056】以上のことより、h/aの値は、0.1以
上必要で、好ましくは0.25以上にする必要があるこ
とがわかる。
From the above, it is understood that the value of h / a needs to be 0.1 or more, preferably 0.25 or more.

【0057】上述のような構成にすれば、歩留まりよく
大型磁石を割れなく作成する事ができる。
With the above-mentioned structure, a large-sized magnet can be produced with good yield without cracking.

【0058】〔実施例2〕実施例1と同様の方法で、同
組成・同サイズのインゴットを得た。これより幅(厚
み)16mm×長さ80mmのインゴットサンプルを切
り出しビレットとし、高さを調節し、1枚ないし3枚の
ビレットを組み合わせ、表2に示すような寸法で、長さ
160mmのカプセルに入れた。カプセルの材質はSS
400(炭素量0.18wt%、珪素0.21wt%、
マンガン0.95wt%)である。実施例1と同様に溶
接の確認と真空引きを行い、圧延を行った。表中の記号
は図4に示した。
Example 2 An ingot of the same composition and the same size was obtained by the same method as in Example 1. From this, an ingot sample with a width (thickness) of 16 mm and a length of 80 mm is cut out to form a billet, the height is adjusted, and one to three billets are combined to form a capsule having a length of 160 mm with the dimensions shown in Table 2. I put it in. The material of the capsule is SS
400 (0.18 wt% carbon, 0.21 wt% silicon,
Manganese 0.95 wt%). In the same manner as in Example 1, the confirmation of welding, the evacuation, and the rolling were performed. The symbols in the table are shown in FIG.

【0059】[0059]

【表2】 [Table 2]

【0060】圧延温度は1000℃、その他の条件は実
施例1に準じた。
The rolling temperature was 1000 ° C., and other conditions were the same as in Example 1.

【0061】圧延後切断面の観察および、BHトレーサ
による磁気測定を行った。
After the rolling, the cut surface was observed and the magnetism was measured by a BH tracer.

【0062】結果を表3に示す。表中磁石高さ比は、圧
延後長さ方向ほぼ中央部を、長さ方向15mmの帯で幅
全部を取ったとき、全面黒皮を取った時の高さ/投入高
さの比である。
The results are shown in Table 3. In the table, the magnet height ratio is the ratio of height / charging height when the entire black scale is taken when the entire width is taken in the lengthwise 15 mm band in the central portion in the length direction after rolling. .

【0063】[0063]

【表3】 [Table 3]

【0064】表3中、加工度が76%であるので、磁石
高さ比は0.24が理論値であり、0.24からの差は
研磨量の差とみてよい。
In Table 3, since the workability is 76%, the magnet height ratio is a theoretical value of 0.24, and the difference from 0.24 can be regarded as the difference in the polishing amount.

【0065】表3より2番のようにW/Hが1.5以上
でも、h/aが0.1では、性能は出ても、割れにつな
がる恐れのある膨れや、波打ちが発生し、製品の歩留ま
りを落とすことがわかる。さらには、4番のようにh/
aが0.1未満かつW/Hが1未満では、われが発生し
性能も出ない。
From Table 3, as shown in Table 2, even if W / H is 1.5 or more, and h / a is 0.1, swelling or waviness that may lead to cracking occurs even if the performance appears. It can be seen that the yield of products is reduced. Furthermore, h /
When a is less than 0.1 and W / H is less than 1, cracking occurs and performance is not obtained.

【0066】以上結果からh/aを0.25以上でかつ
W/Hを1.5以上とすることで、われや、カプセルの
膨れ・波打ちがなくなり、高い歩留まりで高性能の大型
の磁石が得られることがわかる。
From the above results, by setting h / a to 0.25 or more and W / H to 1.5 or more, cracks and swelling and waviness of the capsule are eliminated, and a high-performance large magnet with high yield is obtained. You can see that you can get it.

【0067】〔実施例3〕実施例1と同様の方法で、同
組成・同サイズのインゴットを得た。これより幅(厚
み)16mm×長さ80mmのインゴットサンプルを切
り出し、高さを調節し、2枚ないし3枚のビレットを組
み合わせ、h/aを0.05〜1、h/bを0.15〜
3.5の範囲でそれぞれ変化させて、実施例1と同様な
カプセルを作成し圧延を行った。圧延温度は1000℃
とした。その他の条件は実施例1と同様である。
Example 3 By the same method as in Example 1, an ingot of the same composition and the same size was obtained. From this, an ingot sample having a width (thickness) of 16 mm and a length of 80 mm is cut out, the height is adjusted, two or three billets are combined, and h / a is 0.05 to 1 and h / b is 0.15. ~
Capsules similar to those in Example 1 were prepared and rolled by changing each within the range of 3.5. Rolling temperature is 1000 ℃
And Other conditions are the same as in the first embodiment.

【0068】圧延後炉にもどし、1000℃に圧延材が
なったことを確認し、炉内で制御徐冷した。 5℃/m
inの等徐冷速度で200℃まで冷却した。その後空冷
し、室温になったところで、磁石を取り出した。磁石の
外観および切断面の観察を行った。
After rolling, it was returned to the furnace, and after it was confirmed that the rolled material had become 1000 ° C., it was controlled and gradually cooled in the furnace. 5 ° C / m
It was cooled to 200 ° C. at an in-steady slow cooling rate. After cooling with air, when the temperature reached room temperature, the magnet was taken out. The appearance and cut surface of the magnet were observed.

【0069】結果を図5に示す。○、△、×の記号、点
線は実施例1と同様の意味合いである。この図から、従
来技術の通り、カプセルのh/bが0.2以下では徐冷
の時に発生したと思われるわれが発生しているが、h/
bを0.2以上としても、h/aが0.1以下ではわれ
が発生している。
The results are shown in FIG. The symbols o, Δ, and x and the dotted line have the same meanings as in Example 1. From this figure, as in the prior art, when h / b of the capsule is 0.2 or less, cracking that seems to have occurred during slow cooling occurred.
Even if b is 0.2 or more, cracking occurs when h / a is 0.1 or less.

【0070】以上の結果からh/aを0.25以上でか
つh/bを0.2以上とすることで、圧延中のわれや、
カプセルの膨れ・波打ちがなくなり、さらに徐冷中のわ
れも防ぐことができ、高い歩留まりで大型の磁石が得ら
れることがわかる。
From the above results, by setting h / a to 0.25 or more and h / b to 0.2 or more, cracks during rolling can be reduced,
It can be seen that the swelling and waviness of the capsule are eliminated, and cracks during slow cooling can be prevented, and a large magnet can be obtained with a high yield.

【0071】〔実施例4〕実施例1と同様の方法で、同
組成・同サイズのインゴットを得た。次ぎに、この鋳造
インゴットから幅(厚み)17.5mm×長さ250m
m×高225mmのインゴットサンプルを切り出しビレ
ットとした。このビレットを6枚厚み方向に並べ、SS
400製鋼板(炭素量0.05wt%、珪素0.01w
t%、マンガン0.23wt%)の6枚で覆いカプセル
を形成した。鋼板の各稜を溶接し、実施例1と同様にリ
ークチェックし、真空封入した。そのカプセルの外側を
さらに図6に示すようにSS400製(炭素量0.16
wt%、珪素0.29wt%、マンガン1.52wt
%)のカプセルに入れ、各稜を溶接し、3重のカプセル
を作成した。最外形は1000mm×400mm×17
00mmとした。カプセルの寸法を表4に示した2種類
作成し、熱間圧延後、切断面の観察を行った。圧延は、
1000℃均熱にて8時間加熱し、345→290→2
35→185→145→120→100のパススケジュ
ールにて行った(加工度75%)。圧延ロール径はφ1
200mmである。周速度は45m/分である。各パス
間での途中再加熱は行わなかった。圧延終了後直ちに徐
冷ボックスに入れ、200℃まで120時間の冷を行っ
た。
Example 4 By the same method as in Example 1, an ingot of the same composition and the same size was obtained. Next, from this cast ingot, width (thickness) 17.5 mm x length 250 m
An ingot sample of m × high 225 mm was cut out and used as a billet. 6 billets are arranged in the thickness direction, and SS
400 steel plate (carbon content 0.05 wt%, silicon 0.01 w
t%, manganese 0.23 wt%) to cover six capsules. Each edge of the steel sheet was welded, leak-checked and vacuum-sealed in the same manner as in Example 1. As shown in FIG. 6, the outside of the capsule is made of SS400 (with a carbon content of 0.16).
wt%, silicon 0.29 wt%, manganese 1.52 wt
%) And each edge was welded to form a triple capsule. The outermost shape is 1000 mm x 400 mm x 17
00 mm. Two types of capsule size were prepared as shown in Table 4, and after hot rolling, the cut surface was observed. Rolling
Heated at 1000 ℃ soaking for 8 hours, 345 → 290 → 2
The pass schedule was 35 → 185 → 145 → 120 → 100 (working rate 75%). Rolling roll diameter is φ1
200 mm. The peripheral speed is 45 m / min. Reheating on the way between each pass was not performed. Immediately after completion of rolling, the product was placed in a slow cooling box and cooled to 200 ° C. for 120 hours.

【0072】[0072]

【表4】 [Table 4]

【0073】カプセルを内側より第1、第2、第3カプ
セルと呼ぶものとする。切断面の観察の結果、実施例、
比較例共に、第1カプセルの上下板は薄く判別がつかな
かった。しかし、比較例では第2カプセルの上下板に膨
れと一部破断が、第3カプセルの上下板の膨れ、第2と
第3カプセルの分離と空げきが観察された。そのため
か、内部の磁石にわれと表面の大きな凸凹が観察され
た。
The capsules are called the first, second and third capsules from the inside. As a result of observation of the cut surface, Example,
In both Comparative Examples, the upper and lower plates of the first capsule were thin and indistinguishable. However, in the comparative example, swelling and partial breakage were observed on the upper and lower plates of the second capsule, and swelling of the upper and lower plates of the third capsule, separation and emptying of the second and third capsules were observed. Perhaps because of this, large irregularities on the surface of the inner magnet were observed.

【0074】本実施例の圧延材には、一部、第2と第3
カプセルの分離が観察されたが、比較例ほどの空げきは
なかった。磁石も健全に取り出せた。
The rolled material of this example is partially composed of the second and third parts.
Although the separation of the capsules was observed, it was not as empty as the comparative example. The magnet was taken out soundly.

【0075】比較例のh/aおよびh/cはいずれも
0.1未満であり、第1、第2、及び第3の各カプセル
とも塑性変形を起こし、それが原因で磁石もわれ、大き
な凸凹が発生し、磁石の歩留まりが悪くなった。それに
対し、本実施例では、第2カプセルのh2/c1 を0.
25以上とることで、第2カプセルの上下板の膨れを抑
制する事ができ、結果として、h3/c2 が0.1未満
にもかかわらず第3カプセルの膨らみも抑制でき、健全
に均一な圧延が行われたことがわかる。
In the comparative example, h / a and h / c are both less than 0.1, and plastic deformation occurs in each of the first, second, and third capsules, which causes the magnet to be broken, resulting in a large amount. Roughness was generated and the yield of magnets deteriorated. On the other hand, in the present embodiment, the h 2 / c 1 of the second capsule is set to 0.
When it is 25 or more, the swelling of the upper and lower plates of the second capsule can be suppressed, and as a result, the swelling of the third capsule can be suppressed even when h 3 / c 2 is less than 0.1, and the soundness is uniform. It can be seen that various rolling was performed.

【0076】以上の結果から、多重カプセルにおいても
少なくとも1カプセルは、h/cを0.1以上、好まし
くは0.25以上とする事で、われや、カプセルの膨れ
・波打ちがなくなり、歩留まりよく大型の磁石が得られ
ることがわかる。
From the above results, even in the case of multiple capsules, at least one capsule has an h / c of 0.1 or more, preferably 0.25 or more, so that cracks and swelling and waviness of the capsules are eliminated and the yield is improved. It can be seen that a large magnet can be obtained.

【0077】[0077]

【発明の効果】本発明のような構成をとることで、以下
のような効果が得られる。
The following effects can be obtained by adopting the structure of the present invention.

【0078】(1)焼結法では得られない、高い機械的
強度をもつ大型磁石が安定して、生産することができ
る。
(1) Large magnets having high mechanical strength, which cannot be obtained by the sintering method, can be stably produced.

【0079】(2)従来の熱間加工法による場合より、
われ、磁石表面の凸凹が防止でき、それにより歩留まり
を著しく向上でき、コストが低減できる。
(2) From the case of the conventional hot working method,
As a result, it is possible to prevent the magnet surface from becoming uneven, thereby significantly improving the yield and reducing the cost.

【0080】(3)カプセルの破断が起きるおそれがな
いので、安全に大気中で加工できるので生産効率が高
く、コストが低減できる。
(3) Since there is no risk of capsule breakage, it can be processed safely in the atmosphere, resulting in high production efficiency and cost reduction.

【0081】(4)われや、磁石表面の凸凹がないの
で、不要な黒皮をとる作業が最小限ですみ、二次加工の
工数低減がはかれ、コストが低減できる。
(4) Since there is no unevenness on the surface of the magnet, the work of removing unnecessary black skin is minimized, the number of man-hours for secondary processing can be reduced, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を説明する圧延ロール付近の断面概念
図。
FIG. 1 is a conceptual cross-sectional view near a rolling roll for explaining the present invention.

【図2】本発明の実施例の温度とh/aとわれを示すグ
ラフ。
FIG. 2 is a graph showing temperature and h / a in the example of the present invention.

【図3】本発明の実施例を説明するためのわれの模式
図。 (a)健全な状態の圧延材断面。 (b)膨れ、われが発生した圧延材断面。 (c)カプセル破断した圧延材断面。
FIG. 3 is a schematic view of a slit for explaining an embodiment of the present invention. (A) Rolled material cross section in a sound state. (B) Rolled material cross section with swelling and cracking. (C) Cross-section of rolled material with capsule fracture.

【図4】本発明の説明をする合金とカプセルの組立断面
図。
FIG. 4 is an assembled sectional view of an alloy and a capsule for explaining the present invention.

【図5】本発明の実施例のh/bとh/aとわれを示す
グラフ。
FIG. 5 is a graph showing h / b and h / a in the example of the present invention.

【図6】本発明の実施例の多重カプセル断面模式図。FIG. 6 is a schematic cross-sectional view of multiple capsules according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1:圧延ロール 2:合金 3:カプセル上下板 31:第1カプセル上下板 32:第2カプセル上下板 33:第3カプセル上下板 4:圧延方向を示す矢印 5:圧下方向を示す矢印 6:カプセル横板 7:膨れ 8:われ 9:カプセル破断部 10:溶接用開先 1: Rolling roll 2: Alloy 3: Capsule top and bottom plate 31: First capsule top and bottom plate 32: Second capsule top and bottom plate 33: Third capsule top and bottom plate 4: Arrow indicating rolling direction 5: Arrow indicating rolling direction 6: Capsule Horizontal plate 7: Bulging 8: Weak 9: Capsule rupture portion 10: Weld groove

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 R(ただしRはYを含む希土類元素のう
ち少なくとも1種)、Fe及びBを原料基本成分とする
合金を溶解・鋳造し、融点が1200℃以上の金属カプ
セル内に装入、密封し、該カプセルごと800〜110
0℃の温度に加熱し、該合金鋳塊を液相/固相体積率が
5%〜40%の半溶融状態でカプセルごと熱間圧延し、
該合金を磁気的に異方性化せしめる希土類永久磁石の製
造方法において、該金属カプセルのサイズを、該合金鋳
塊の幅をa、金属カプセルの圧下方向の上下板厚みをh
としたとき、これらの比h/aが0.1〜4であること
を特徴とする希土類永久磁石の製造方法。
1. An alloy containing R (where R is at least one of rare earth elements including Y), Fe and B as a basic component of a raw material is melted and cast into a metal capsule having a melting point of 1200 ° C. or higher. , Sealed, 800-110 per capsule
The alloy ingot is heated to a temperature of 0 ° C., and the alloy ingot is hot-rolled together with the capsule in a semi-molten state having a liquid phase / solid phase volume ratio of 5% to 40%,
In the method for producing a rare earth permanent magnet for magnetically anisotroping the alloy, the size of the metal capsule is a, the width of the alloy ingot is a, and the thickness of the metal capsule in the pressing direction is h and h.
And the ratio h / a of these is 0.1 to 4, a method for producing a rare earth permanent magnet.
【請求項2】 上記の合金鋳塊が複数の鋳塊で構成され
ていることを特徴とする請求項1記載の希土類永久磁石
の製造方法。
2. The method for producing a rare earth permanent magnet according to claim 1, wherein the alloy ingot is composed of a plurality of ingots.
【請求項3】 上記金属カプセルの幅をW、高さをHと
したとき、この比W/Hが1.5以上であり、かつ上記
h/aが0.1〜4であることを特徴とする希土類永久
磁石の製造方法。
3. When the width of the metal capsule is W and the height is H, the ratio W / H is 1.5 or more, and the h / a is 0.1 to 4. And a method of manufacturing a rare earth permanent magnet.
【請求項4】 上記合金鋳塊の高さをbとしたとき、カ
プセル上下板厚との比h/bが0.2以上であり、かつ
上記h/aが0.1〜4であることを特徴とする希土類
永久磁石の製造方法。
4. The ratio h / b to the upper and lower plate thickness of the capsule is 0.2 or more, and h / a is 0.1 to 4, where b is the height of the alloy ingot. A method for producing a rare earth permanent magnet, characterized by:
【請求項5】 上記金属カプセルを多重化カプセル(n
重化 nはn>2の自然数)で構成する場合、内側から
数えてi番目のカプセルの上下板厚みをh、(i−1)
番目のカプセルの幅をcとしたとき(iはn≧i>1で
ある自然数)、h/cの比が0.1〜4であるカプセル
が少なくとも1つ以上あることを特徴とする希土類永久
磁石の製造方法。
5. The multiple capsules (n
In the case where the stacking n is a natural number of n> 2), the upper and lower plate thickness of the i-th capsule counted from the inside is h, (i-1)
When the width of the th capsule is c (i is a natural number with n ≧ i> 1), there is at least one capsule having a h / c ratio of 0.1 to 4 and a rare earth permanent. Magnet manufacturing method.
【請求項6】 上記カプセルの材質が炭素量1wt%以
下の炭素鋼であることを特徴とする請求項1〜請求項5
記載の希土類永久磁石の製造方法。
6. The material of the capsule is carbon steel having a carbon content of 1 wt% or less.
A method for producing the described rare earth permanent magnet.
【請求項7】 圧延の加工度が70%〜80%であるこ
とを特徴とする、請求項1〜請求項6記載の希土類永久
磁石の製造方法。
7. The method for producing a rare earth permanent magnet according to claim 1, wherein the workability of rolling is 70% to 80%.
【請求項8】 熱間圧延時の平均ロール周速度が1〜5
00m/分であることを特徴とする請求項1〜請求項7
記載の希土類永久磁石の製造方法。
8. The average roll peripheral speed during hot rolling is 1 to 5
It is 00 m / min, Claim 1- Claim 7 characterized by the above-mentioned.
A method for producing the described rare earth permanent magnet.
JP8043601A 1996-02-29 1996-02-29 Method for manufacturing rare-earth permanent magnet Pending JPH09237733A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8043601A JPH09237733A (en) 1996-02-29 1996-02-29 Method for manufacturing rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8043601A JPH09237733A (en) 1996-02-29 1996-02-29 Method for manufacturing rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH09237733A true JPH09237733A (en) 1997-09-09

Family

ID=12668344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8043601A Pending JPH09237733A (en) 1996-02-29 1996-02-29 Method for manufacturing rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH09237733A (en)

Similar Documents

Publication Publication Date Title
US9607742B2 (en) R-T-B based alloy strip, and R-T-B based sintered magnet and method for producing same
KR20190080748A (en) Rare earth magnet and production method thereof
EP0509628B1 (en) Magnetostrictive alloys and method of manufacturing thereof
EP0536421B1 (en) Method of producing a rare earth permanent magnet
JP2013207134A (en) Bulk rh diffusion source
KR101813427B1 (en) Method of manufacturing rare earth magnet
CN107464684B (en) Method for treating sintered magnet
EP3625807B1 (en) Hot deformed magnet, and a method for preparing said hot deformed magnet
JP2007258377A (en) Method of manufacturing rare earth sintered magnet
JPH09237733A (en) Method for manufacturing rare-earth permanent magnet
JPH06302417A (en) Permanent magnet and its manufacture
JP2018113333A (en) Method for manufacturing rare earth magnet
JP4124461B2 (en) Manufacturing method of rare earth sintered magnet
JPH09260171A (en) Manufacture of rare earth permanent magnet
JPH01171215A (en) Manufacture of rare earth-fe-b magnet lamination member
JPH02250922A (en) Production of rare earth element-transition element -b magnet
JPH09246026A (en) Permanent magnet and its manufacture
JP4600041B2 (en) Cooling device, strip casting device, and cooling method of alloy cast flake for neodymium sintered magnet
JPH02250920A (en) Production of rare earth element-transition element -b magnet by forging
JP3373950B2 (en) Heat bonding method of two kinds of members having different thermal expansion coefficients
JPH0294603A (en) Rolled anisotropic rare earth magnet and manufacture thereof
JPH09270347A (en) Method of producing rare earth bond magnet
JPH02102504A (en) Manufacture of rare earth-iron-boron anisotropic magnet powder
JPH0617104A (en) Production of permanent magnet
JPH08273961A (en) Method for manufacturing rare earth permanent magnet