JPH09270347A - Method of producing rare earth bond magnet - Google Patents

Method of producing rare earth bond magnet

Info

Publication number
JPH09270347A
JPH09270347A JP8077663A JP7766396A JPH09270347A JP H09270347 A JPH09270347 A JP H09270347A JP 8077663 A JP8077663 A JP 8077663A JP 7766396 A JP7766396 A JP 7766396A JP H09270347 A JPH09270347 A JP H09270347A
Authority
JP
Japan
Prior art keywords
rare earth
capsule
iron
atomic
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8077663A
Other languages
Japanese (ja)
Inventor
Fumio Takagi
富美男 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP8077663A priority Critical patent/JPH09270347A/en
Publication of JPH09270347A publication Critical patent/JPH09270347A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a rare earth bond magnet by sealing an alloy containing R, Fe, and B as fundamental components in a capsule and performing hot working, in which cracking occurring during cooling operation is prevented and the yield is improved. SOLUTION: An iron base metal in which no A3 transformation occurs is capsuled. Specifically, the iron base material is one of a metal material in which the carbon content is 0.12% by weight or less, 13 to 30 atomic % of Cr is included, and the balance is iron; a metal material in which the carbon content is 0.12% by weight or less, 0.2 to 3 atomic % of at least one kind of Al, Ti, V, Sn, W, and Mo is included, and the balance is iron; and a metal material in which the carbon content is 0.12% by weight or less, 2 to 5 atomic % of at least one kind of Si, Ge, and Ga is included, and the balance is iron.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、希土類元素、鉄及
びBを基本成分とする希土類合金または希土類合金粉末
をカプセルに入れて熱間加工する永久磁石の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a permanent magnet in which a rare earth alloy or a rare earth alloy powder containing a rare earth element, iron and B as basic components is encapsulated and hot worked.

【0002】[0002]

【従来の技術】永久磁石は、外部から電気的エネルギー
を供給しないで磁界を発生するための材料であり、高透
磁率材料とは逆に保磁力が大きく、また残留磁束密度も
高いものが適し、一般家庭の各種電気製品から大型コン
ピューターの周辺端末機器まで、幅広い分野で使用され
ている重要な電気・電子材料の1つである。
2. Description of the Related Art A permanent magnet is a material for generating a magnetic field without supplying electric energy from the outside, and it is suitable that it has a large coercive force and a high residual magnetic flux density, which is the opposite of a high magnetic permeability material. , It is one of the important electrical and electronic materials used in a wide range of fields from various household electric appliances to peripheral devices for large computers.

【0003】現在使用されている永久磁石のうち希土類
永久磁石は、極めて高い保磁力とエネルギー積を持つ永
久磁石として多くの研究開発がなされている。そしてこ
の希土類永久磁石の製造方法としては、特公昭61−3
4242号公報等にあるように焼結法によるものや、特
公平4−20975号公報等にあるように急冷薄片を樹
脂結合法で磁石にする方法、さらに、特公平4−202
42号公報等の2段階ホットプレス法と呼ばれる方法が
知られていた。
Among the permanent magnets currently in use, rare earth permanent magnets have been extensively researched and developed as permanent magnets having extremely high coercive force and energy product. And as a method for manufacturing this rare earth permanent magnet, Japanese Patent Publication No. 61-3
No. 4242, etc., a method using a sintering method, as in Japanese Patent Publication No. 4-20975, etc., a method in which a quenched thin piece is made into a magnet by a resin bonding method, and further, Japanese Patent Publication No. 4-202.
A method called a two-step hot pressing method such as Japanese Patent No. 42 has been known.

【0004】また、特開昭62−276803号公報等
の希土類と鉄とBを基本成分とする合金を熱間加工する
ことにより、結晶粒を微細化しまたその結晶軸を特定の
方向に配向せしめて、磁気特性と機械的強度に優れた希
土類−鉄系永久磁石を得る方法も知られていた。そして
この方法においては、特開平1−171204号公報に
あるように金属カプセルで合金を覆って熱間加工を行う
方法が、加熱中の雰囲気管理も不要であり量産に向く方
法として開示されている。
Further, by hot working an alloy containing a rare earth element, iron and B as the basic components as disclosed in JP-A-62-276803, the crystal grains are made finer and the crystal axes thereof are oriented in a specific direction. A method of obtaining a rare earth-iron-based permanent magnet excellent in magnetic properties and mechanical strength has also been known. In this method, as disclosed in Japanese Unexamined Patent Publication No. 1-171204, a method of covering the alloy with a metal capsule and performing hot working is disclosed as a method suitable for mass production without the need for atmosphere management during heating. .

【0005】この希土類合金をカプセルにいれて熱間加
工する希土類磁石の製造方法においてはさらに次のよう
な方法が知られていた。
The following method has been known as a method for producing a rare earth magnet in which this rare earth alloy is encapsulated and hot-worked.

【0006】(1)特開平2−3901号公報2頁右下
欄7〜16行には、希土類元素と鉄とボロンとを基本成
分とする合金の鋳塊を熱間加工する工程を含む希土類−
Fe−B系磁石の製造方法において、剥離剤(ガラス潤
滑剤、BN、アルミナ等)を介して金属カプセルに鋳塊
を封入した上で熱間加工を行うことにより磁石と金属カ
プセルの反応を防止でき、割れ発生の防止に効果がある
ことが開示されている。
(1) Japanese Unexamined Patent Publication (Kokai) No. 2-3901, page 2, lower right column, lines 7 to 16 shows a rare earth element including a step of hot working an ingot of an alloy containing a rare earth element, iron and boron as basic components. −
In the Fe-B magnet manufacturing method, the reaction between the magnet and the metal capsule is prevented by hot working after encapsulating the ingot in the metal capsule through a release agent (glass lubricant, BN, alumina, etc.). It is disclosed that it is possible to prevent the occurrence of cracks.

【0007】(2)特開平3−287723号公報2頁
左上欄20行〜左下欄4行には、希土類元素と鉄とボロ
ンとを基本成分とする合金の鋳塊を熱間加工する工程を
含む希土類−Fe−B系磁石の製造方法において、炭素
量が0.25重量%以下で融点が600℃以上の金属材
料で鋳塊を囲僥すると共に密封した上で熱間加工を行
い、加工後10℃/分未満の冷却速度で冷却することが
磁石の割れ発生の防止に効果があることが開示されてい
る。
(2) JP-A-3-287723, page 2, upper left column, line 20 to lower left column, line 4 describes a step of hot working an ingot of an alloy containing a rare earth element, iron and boron as basic components. In the method for producing a rare earth-Fe-B based magnet containing, the ingot is surrounded by a metal material having a carbon content of 0.25% by weight or less and a melting point of 600 ° C or more, and sealed, and then hot working is performed, It is disclosed that the subsequent cooling at a cooling rate of less than 10 ° C./minute is effective in preventing cracking of the magnet.

【0008】[0008]

【発明が解決しようとする課題】叙上の(1)〜(2)
の従来の希土類永久磁石の製造方法は、次の如き欠点を
有している。
[Problems to be Solved by the Invention] (1) to (2) above
The conventional method for manufacturing a rare earth permanent magnet described above has the following drawbacks.

【0009】(1)の永久磁石を製造方法は、磁石とカ
プセルの間の反応を剥離剤・潤滑剤で防ぐことにより両
者の融着・一体化を平均としては少なくすることができ
たが、潤滑剤保持材を用いた場合でも潤滑剤の加工に伴
う展延が均一でなく、どうしても一部では潤滑剤切れを
起こして融着が生じ磁石の割れが発生するといった欠点
がある。
In the method of manufacturing a permanent magnet of (1), the reaction between the magnet and the capsule was prevented by a release agent / lubricant, so that fusion and integration of the two could be reduced on average. Even when the lubricant holding material is used, there is a drawback that the spread due to the processing of the lubricant is not uniform, and in some cases, the lubricant is cut off and fusion occurs to cause cracking of the magnet.

【0010】(2)の永久磁石の製造方法は(1)の製
造方法の欠点を改良するものであり熱間加工後の冷却速
度を規定したものであるが、この場合でも磁石の割れの
発生は完全に防止されたわけではなく、磁石材が2分割
される様な大きな割れが1〜2割の頻度で発生し、また
磁石表面層には浅く小さな割れがまだ発生しその割れ部
除去のためにも歩留まりが低下する欠点がある。
The permanent magnet manufacturing method (2) improves the drawbacks of the manufacturing method (1) and defines the cooling rate after hot working. Even in this case, cracking of the magnet occurs. Is not completely prevented, and large cracks that divide the magnet material into two occur at a frequency of 10 to 20%, and shallow small cracks still occur on the magnet surface layer to remove the cracks. However, there is a drawback that the yield is reduced.

【0011】本発明は、以上の従来技術の欠点、(1)
〜(2)の永久磁石製造方法における割れによる歩留ま
りの低下の欠点を解決するものであり、その目的とする
ところは、機械的強度に優れ大型磁石の作製が可能な鋳
造・熱間加工法によるR−Fe−B系永久磁石において
割れによる歩留まり低下を防ぎ、高性能かつ低コストの
永久磁石の製造方法を提供することにある。
The present invention has the above-mentioned drawbacks of the prior art, (1)
The object of the present invention is to solve the disadvantage of yield loss due to cracking in the permanent magnet manufacturing method of (2), and the purpose thereof is to use a casting / hot working method that is excellent in mechanical strength and capable of producing a large magnet. An object of the present invention is to provide a high-performance and low-cost manufacturing method for a permanent magnet, which prevents yield reduction due to cracking in an R-Fe-B based permanent magnet.

【0012】[0012]

【課題を解決するための手段】請求項1記載の希土類永
久磁石の製造方法は、R(ただしRはYを含む希土類元
素のうち少なくとも1種)、Fe及びBを基本成分とす
る希土類合金または希土類合金粉末をカプセルに入れて
熱間加工する永久磁石の製造方法において、熱膨張率が
合金のそれに近い材質によりカプセルを構成することを
特徴とする。
A method of manufacturing a rare earth permanent magnet according to claim 1 is a rare earth alloy containing R (where R is at least one of rare earth elements including Y), Fe and B as basic components, or In a method for producing a permanent magnet in which a rare earth alloy powder is put in a capsule and hot-worked, the capsule is made of a material having a coefficient of thermal expansion close to that of the alloy.

【0013】請求項2記載の希土類永久磁石の製造方法
は、前記カプセルが、熱間加工を行う温度において体心
立方構造をもつ鉄基金属で構成されていることを特徴と
する。
The method for manufacturing a rare earth permanent magnet according to a second aspect is characterized in that the capsule is made of an iron-based metal having a body-centered cubic structure at a temperature at which hot working is performed.

【0014】請求項3記載の希土類永久磁石の製造方法
は、前記カプセルが熱間加工後の冷却の過程においてA
3変態を起こさない鉄基金属で構成されていることを特
徴とする。
According to a third aspect of the present invention, in the method for producing a rare earth permanent magnet, the capsules are cooled by A after hot working.
3 Characterized by being composed of an iron-based metal that does not cause transformation.

【0015】請求項4記載の希土類永久磁石の製造方法
は、前期カプセルが、炭素含有量が0.12重量%以下
であって、Crを13〜30原子%含み、残部は鉄であ
る金属材料で構成されていることを特徴とする。
In the method for producing a rare earth permanent magnet according to claim 4, the metal material in which the capsule has a carbon content of 0.12% by weight or less, contains 13 to 30 atom% of Cr, and the balance is iron. It is characterized by being composed of.

【0016】請求項5記載の希土類永久磁石の製造方法
は、前期カプセルが、炭素含有量が0.12重量%以下
であって、P,Al,Ti,V,Sn,W,Moのうち
少なくとも1種を0.2〜3原子%含み、残部は鉄であ
る金属材料で構成されていることを特徴とする。
According to a fifth aspect of the present invention, in the method for producing a rare earth permanent magnet, the first-stage capsule has a carbon content of 0.12% by weight or less, and at least P, Al, Ti, V, Sn, W, Mo. It is characterized in that it contains 0.2 to 3 atomic% of one kind and the balance is made of a metal material which is iron.

【0017】請求項6記載の希土類永久磁石の製造方法
は、前期カプセルが、炭素含有量が0.12重量%以下
であって、Si,Ge,Gaのうち少なくとも1種を2
〜5原子%含み、残部は鉄である金属材料で構成されて
いることを特徴とする。
According to a sixth aspect of the present invention, in the method for producing a rare earth permanent magnet, the capsule has a carbon content of 0.12% by weight or less and contains at least one of Si, Ge, and Ga.
.About.5 atomic%, and the balance is composed of a metallic material which is iron.

【0018】請求項7記載の希土類永久磁石の製造方法
は、前期カプセルが多重構造からなり、そのうち少なく
とも1つのカプセルが、炭素含有量が0.12重量%以
下であって、Crを13〜30原子%、またはP,A
l,Ti,V,Sn,W,Moのうち少なくとも1種を
0.2〜3原子%、またはSi,Ge,Gaのうち少な
くとも1種を2〜5原子%含有し、残部は鉄である金属
材料で構成されていることを特徴とする。
According to a seventh aspect of the present invention, in the method for producing a rare earth permanent magnet, the first capsule has a multi-layered structure, and at least one of the capsules has a carbon content of 0.12% by weight or less and a Cr content of 13 to 30. Atomic% or P, A
At least one of l, Ti, V, Sn, W and Mo is contained in an amount of 0.2 to 3 atomic%, or at least one of Si, Ge and Ga is contained in an amount of 2 to 5 atomic%, and the balance is iron. It is characterized by being made of a metal material.

【0019】請求項8記載の希土類永久磁石の製造方法
は、前期カプセルが多重構造からなり、その最も内側の
合金に接するカプセルが、炭素含有量が0.12重量%
以下であって、Crを13〜30原子%、またはP,A
l,Ti,V,Sn,W,Moのうち少なくとも1種を
0.2〜3原子%、またはSi,Ge,Gaを2〜5原
子%含有し、残部は鉄である金属材料で構成されてい
て、その外側に耐熱性の剥離材の層を有することを特徴
とする。
In the method for producing a rare earth permanent magnet according to claim 8, the capsule in the first stage has a multiple structure, and the capsule in contact with the innermost alloy has a carbon content of 0.12% by weight.
It is the following and 13 to 30 atomic% of Cr, or P, A
It is composed of a metal material containing 0.2 to 3 atomic% of at least one of l, Ti, V, Sn, W and Mo, or 2 to 5 atomic% of Si, Ge and Ga, and the balance being iron. And has a layer of a heat resistant release material on the outer side thereof.

【0020】ここでA3 変態点とは、鉄及び鉄基合金の
α鉄(体心立方格子)⇔γ鉄(面心立方格子)の変態点
および変態温度域を指し、例えば亜共析鋼の様な場合に
は冷却時のγ鉄からα鉄への変態とγ鉄からα鉄+セメ
ンタイトへの変態の連続する変態温度域を指す。
Here, the A3 transformation point refers to the transformation point and transformation temperature range of iron and iron-based alloys α iron (body centered cubic lattice) ⇔ γ iron (face centered cubic lattice), for example, in hypoeutectoid steel. In such a case, it refers to a continuous transformation temperature range of the transformation from γ iron to α iron during cooling and the transformation from γ iron to α iron + cementite.

【0021】[0021]

【発明の実施の形態】本発明における希土類永久合金ま
たは希土類合金粉末として好ましい条件について以下に
説明する。
Preferred conditions for the rare earth permanent alloy or rare earth alloy powder according to the present invention will be described below.

【0022】希土類元素としてはY,La,Ce,P
r,Nd,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,Yb,Luが候補として挙げられ、これらの
うち1種あるいは2種以上を組み合わせて用いる。最も
高い磁気特性はPrで得られるので、実用的にはPr,
Pr−Nd,Ce−Pr−Nd合金等が用いられる。
As rare earth elements, Y, La, Ce, P
r, Nd, Sm, Eu, Gd, Tb, Dy, Ho, E
r, Tm, Yb, and Lu are listed as candidates, and of these, one kind or a combination of two or more kinds is used. Since the highest magnetic characteristics are obtained with Pr, practically, Pr,
Pr-Nd, Ce-Pr-Nd alloy or the like is used.

【0023】希土類元素の量は12〜25原子%が適当
で、12原子%未満だとR−リッチ相の量が少なく加工
中に割れ易くなり歩留まりが低下してしまう。また25
原子%を越えると非磁性相の量が多くなり磁気特性は著
しく低下する。そして、希土類磁石が高い磁気特性と優
れた機械的強度を得るためには、希土類元素の量は14
〜19原子%であることが望まれる。
The amount of the rare earth element is suitably 12 to 25 atomic%, and if it is less than 12 atomic%, the amount of the R-rich phase is small and it is easily cracked during processing and the yield is lowered. Also 25
If it exceeds atomic%, the amount of non-magnetic phase increases and the magnetic properties are significantly deteriorated. In order for the rare earth magnet to have high magnetic properties and excellent mechanical strength, the amount of rare earth element should be 14
It is desired to be -19 atom%.

【0024】Feは65〜85原子%が適当であり、6
5原子%未満では非磁性相の量が増えすぎて性能が低下
する。一方85原子%を越えると希土類元素の量が減少
し、希土類元素の説明で述べたような問題が出て来る。
Fe is preferably 65 to 85 atom%, and 6
If it is less than 5 atomic%, the amount of the non-magnetic phase increases too much and the performance deteriorates. On the other hand, when it exceeds 85 atomic%, the amount of the rare earth element decreases, and the problem described in the explanation of the rare earth element appears.

【0025】Bは2〜8原子%が適当であり、2原子%
未満では菱面体のR−Fe系になるために高保磁力は望
めない。また8原子%を越えると微細な R2Fe14B粒
を得ることが困難で熱間加工性が悪くなり高保磁力を得
ることも出来なくなる。そして、希土類磁石が高い磁気
特性と優れた機械的強度を得るためには、Bの量は4〜
6原子%であることが望まれる。
B is preferably 2 to 8 atomic%, and 2 atomic%
If it is less than the above, a high coercive force cannot be expected because it becomes a rhombohedral R-Fe system. On the other hand, if it exceeds 8 atom%, it is difficult to obtain fine R 2 Fe 14 B grains, and the hot workability is deteriorated, and it becomes impossible to obtain a high coercive force. In order for the rare earth magnet to have high magnetic properties and excellent mechanical strength, the amount of B should be 4 to
It is desired to be 6 atomic%.

【0026】またCoはキュリー温度を高めるのに有効
であり、Feに対して50%以内の置換であれば保磁力
を大きく損なうことが無く置換できる。
Further, Co is effective for raising the Curie temperature, and if it is replaced within 50% with respect to Fe, it can be replaced without significantly impairing the coercive force.

【0027】Cu,Ag,Au,Gaを添加すること
は、熱間加工性を高め保磁力と角形性の向上に有効だ
が、非磁性相を形成するのでその添加量は6原子%以下
が好ましい。そして、このうちCuが最も高い効果を持
ち、希土類磁石が高い磁気特性と優れた機械的強度を得
るためには、Cuが0.1〜2原子%であることが望ま
れる。
Addition of Cu, Ag, Au, and Ga is effective in enhancing hot workability and improving coercive force and squareness, but since the nonmagnetic phase is formed, its addition amount is preferably 6 atomic% or less. . Of these, Cu has the highest effect, and in order for the rare earth magnet to obtain high magnetic characteristics and excellent mechanical strength, Cu is preferably 0.1 to 2 atomic%.

【0028】また、上記以外に更にAl,Si等を含む
こともでき、残留磁束密度を低下させない程度の少量添
加によって保磁力の向上を図ることも良い。
Further, in addition to the above, Al, Si, etc. may be further contained, and the coercive force may be improved by adding a small amount such that the residual magnetic flux density is not lowered.

【0029】そして、以上説明してきた希土類元素と鉄
とBを基本成分とする合金は昇温時に次のような熱膨張
挙動を示す。まず主相が強磁性体であるこの合金は室温
から300℃前後のキュリー温度までは収縮し、キュリ
ー温度以上で膨張に転じる。そして、450℃〜700
℃の温度範囲のなかに一部の粒界相の融点が存在し、そ
の温度からは液相の出現により、より大きな膨張率へ変
化する。そして、この融点以上ではほとんど単調に膨張
する。
The above-described alloy containing the rare earth elements, iron and B as its basic components exhibits the following thermal expansion behavior when the temperature is raised. First, this alloy, whose main phase is a ferromagnetic material, contracts from room temperature to a Curie temperature of about 300 ° C., and expands at the Curie temperature or higher. And 450 ° C to 700
Some of the grain boundary phases have melting points within the temperature range of ℃, and from that temperature, the expansion rate changes due to the appearance of the liquid phase. And above this melting point, it almost monotonically expands.

【0030】上記の希土類合金または希土類合金粉末の
作成は、現在知られている製造法のどれをも採用でき、
例えば水冷銅ハース上でのアーク溶解による合金イン
ゴットの作成、高周波溶解後、鉄・銅等の金型への鋳
造による合金インゴットの作成、メルトスパン法によ
る急冷合金リボン・フレークの作成、希土類化合物か
らの還元・拡散法による合金粉末の作成、ボールミル
を用いたメカニカルアロイング法による合金粉末の作成
等の方法が採用できる。及びの合金インゴットを機
械的に粉砕して粉末にしても良いし、水素脆化を用いて
粉砕し粉末とすることも可能である。またこれらの希土
類合金および希土類合金粉末の作成は、合金の酸化を防
ぐためAr、窒素等の不活性雰囲気中で行われることが
望まれる。
For the preparation of the above rare earth alloy or rare earth alloy powder, any of the currently known manufacturing methods can be adopted,
For example, creating an alloy ingot by arc melting on a water-cooled copper hearth, making an alloy ingot by high-frequency melting and then casting in a mold of iron, copper, etc., making quenched alloy ribbons and flakes by the melt-span method, from rare earth compounds Methods such as alloy powder preparation by reduction / diffusion method and alloy powder preparation by mechanical alloying method using a ball mill can be adopted. The alloy ingots (1) and (2) may be mechanically pulverized into powder, or may be pulverized into powder by hydrogen embrittlement. Further, it is desired that the production of these rare earth alloys and rare earth alloy powders is carried out in an inert atmosphere of Ar, nitrogen or the like in order to prevent the alloy from being oxidized.

【0031】またの溶解・鋳造により合金インゴット
を作成する場合には、そのインゴットのマクロ組織が柱
状晶でかつ主相の平均粒径が1〜50μmの微細な結晶
となるように鋳造することが好ましく、そのために金型
の冷却能を十分に大きくなるようにその体積を大きくし
たり水冷機構をつけた金型が用いられる。
When an alloy ingot is prepared by melting / casting, the ingot may be cast so that the macrostructure of the ingot is columnar and the main phase has an average grain size of 1 to 50 μm. Preferably, for that purpose, a mold having a large volume or a water cooling mechanism so that the cooling capacity of the mold is sufficiently large is used.

【0032】次に、本発明の製造方法では希土類合金イ
ンゴットまたは希土類合金粉末はカプセルに封入される
が、その熱間加工は合金中に液相を生成させ、いわゆる
半溶融状態となるほどの高温で行われることから、カプ
セルとしてはこの加工温度より十分に高融点の材料が使
用される。液相は希土類に富み反応性が高いので、この
液相と比較的緩やかな反応を起こして合金層または化合
物層を生成する鉄基金属カプセルが望ましい。
Next, in the production method of the present invention, the rare earth alloy ingot or the rare earth alloy powder is encapsulated, and the hot working thereof produces a liquid phase in the alloy at a high temperature such that it becomes a so-called semi-molten state. Since this is performed, a material having a melting point sufficiently higher than this processing temperature is used as the capsule. Since the liquid phase is rich in rare earths and highly reactive, an iron-based metal capsule that produces a relatively slow reaction with the liquid phase to form an alloy layer or a compound layer is desirable.

【0033】鉄基金属は、一般に700〜950℃にA
3 変態点を有しその昇温時の熱膨張に関しては、そのα
鉄(体心立方格子)→γ鉄(面心立方格子)のA3 変態
点において収縮を生じる。したがって、冷却時にA3 変
態点において一度膨張し、その後一様に収縮するため、
鉄基金属カプセルと希土類合金の熱膨張の差によって生
じた応力が割れ発生の原因となる。
Iron-based metals are generally A at 700 to 950 ° C.
3 has a transformation point and
Iron (body centered cubic lattice) → γ iron (face centered cubic lattice) contracts at the A3 transformation point. Therefore, during cooling, it expands once at the A3 transformation point and then contracts uniformly,
The stress caused by the difference in thermal expansion between the iron-based metal capsule and the rare earth alloy causes cracking.

【0034】このような割れ発生を防止するために、熱
膨張率が希土類合金のそれに近いものであって、冷却時
にA3 変態が起らない金属カプセルを用いるとよい。特
に、高合金鋼を除く鉄および一般の構造用鋼は低温で体
心立方構造が安定であるから、圧延温度においてカプセ
ルが体心立方構造を有するものであれば冷却時に相変態
が起こらないため、金属カプセルの材質として望まし
い。
In order to prevent the occurrence of such cracks, it is advisable to use a metal capsule having a coefficient of thermal expansion close to that of a rare earth alloy and not undergoing A3 transformation during cooling. In particular, iron except high alloy steel and general structural steel have a stable body-centered cubic structure at low temperatures, so if the capsule has a body-centered cubic structure at the rolling temperature, phase transformation does not occur during cooling. , Desirable as a material for metal capsules.

【0035】Crを13〜30原子%含む鉄基合金は、
一般にフェライト系ステンレスと呼ばれ、全温度領域に
わたって体心立方構造をもつ。したがってA3 変態が起
らないためカプセル材料としてすぐれている。炭素はA
3 変態温度を下げるため、0.12重量%以下にする必
要がある。
The iron-based alloy containing 13 to 30 atomic% of Cr is
It is generally called ferritic stainless steel and has a body-centered cubic structure over the entire temperature range. Therefore, it is excellent as a capsule material because A3 transformation does not occur. Carbon is A
3 In order to lower the transformation temperature, it must be 0.12% by weight or less.

【0036】P,Al,Ti,V,Sn,W,Moはい
わゆるα相安定化元素であってA3変態温度を高温にシ
フトさせるはたらきがある。最適な添加量は圧延温度に
よって異なるが、圧延温度が高いほど添加量を多くする
必要がある。例えば、上記元素を0.2原子%程度添加
することによりA3 変態温度は910℃以上となるた
め、圧延温度が900℃の場合は冷却中にA3 変態が起
らない。また、圧延温度が1100℃程度の高温の場合
には、上記元素を1.5〜2原子%添加することによっ
て融点までα相が安定になるため、冷却中にA3 変態が
起らない。3原子%を越える量を添加してもその効果は
変わらない。
P, Al, Ti, V, Sn, W and Mo are so-called α phase stabilizing elements and have a function of shifting the A3 transformation temperature to a high temperature. The optimum addition amount depends on the rolling temperature, but it is necessary to increase the addition amount as the rolling temperature increases. For example, the addition of about 0.2 atomic% of the above elements raises the A3 transformation temperature to 910 ° C. or higher. Therefore, when the rolling temperature is 900 ° C., A3 transformation does not occur during cooling. Further, when the rolling temperature is as high as about 1100 ° C., the addition of 1.5 to 2 atomic% of the above elements stabilizes the α phase up to the melting point, so that the A3 transformation does not occur during cooling. The effect does not change even if the amount added exceeds 3 atomic%.

【0037】Si,Ge,Gaもα安定化元素であり、
A3 変態温度を高温にシフトさせるはたらきがある。こ
の場合も最適な添加量は圧延温度によって異なるが、圧
延温度が高いほど添加量を多くする必要がある。添加量
は2原子%以上が有効であり、5原子%以上添加しても
その効果は変わらない上に、加工性が低下することがあ
る。
Si, Ge and Ga are also α-stabilizing elements,
It has the function of shifting the A3 transformation temperature to a high temperature. Also in this case, the optimum addition amount depends on the rolling temperature, but it is necessary to increase the addition amount as the rolling temperature increases. The addition amount of 2 atomic% or more is effective, and even if the addition amount is 5 atomic% or more, the effect is not changed and the workability may be deteriorated.

【0038】図1はPr17Fe775Cu1合金、低炭素
鋼SS41とフェライト系ステンレスSUS430の熱
膨張を比較したものである。SS41の冷却時のA3変
態開始温度(T1)は約800℃でありA3変態終了温度
(T2)は約700℃である。SUS430はA3変態が
起こらないために、熱膨張に急激な変化がない。また、
図2(a)には鉄にP,Al,Ti,V,Sn,W,M
oを1原子%添加したもの、図2(b)にはSi,G
e,Gaを2原子%添加したものの熱膨張を示す。添加
元素によってA3 変態温度が高温にシフトしている。
FIG. 1 compares the thermal expansion of Pr 17 Fe 77 B 5 Cu 1 alloy, low carbon steel SS41 and ferritic stainless steel SUS430. When SS41 is cooled, the A3 transformation start temperature (T1) is about 800 ° C and the A3 transformation end temperature (T2) is about 700 ° C. Since SUS430 does not undergo A3 transformation, there is no rapid change in thermal expansion. Also,
2 (a), iron, P, Al, Ti, V, Sn, W, M
In which 1 atomic% of o is added, Si and G are shown in FIG.
2 shows the thermal expansion of the one containing 2 atomic% of e and Ga. The A3 transformation temperature is shifted to a high temperature due to the added elements.

【0039】カプセルを多重構造とすることは、強度の
確保、真空封入の都合上好ましいが、そのうち少なくと
も1つのカプセルが上記のような材質で構成することに
より、A3変態の影響をおさえる効果がある。多重カプ
セルのすべてが上記のような材質であってもよい。図3
に3重構造からなる圧延用カプセルの横断面(圧延材長
さ方向に垂直な面)の模式図を示す。ここでは内側から
第1カプセル、第2カプセル、第3カプセルと呼ぶ。
It is preferable that the capsule has a multi-layered structure for the purpose of ensuring strength and vacuum sealing, but at least one of the capsules is made of the above-mentioned material, which has an effect of suppressing the influence of A3 transformation. . All of the multiple capsules may be made of the above materials. FIG.
Fig. 3 shows a schematic view of a cross section (a plane perpendicular to the length direction of the rolled material) of a rolling capsule having a triple structure. Here, they are called the first capsule, the second capsule, and the third capsule from the inside.

【0040】カプセル界面に設けた剥離層で歪みを緩和
し割れの発生を抑える場合は、少なくとも希土類合金に
接する最も内側のカプセルが上記にような冷却中にA3
変態が起らない材質で構成されている必要がある。カプ
セルを取り除く時、外カプセルは剥離層で分離し容易に
分離できるが内カプセルは希土類合金に接合してしま
う。これを取り除きやすくするためにその厚さが2mm
以下であることが望ましい。剥離層を形成する材料とし
ては、1000℃以上の高温で安定なAl23、MgO、S
i02、BNなどのセラミクス粉を含有するものがよ
い。剥離材の付け方はいろいろあるが、最も簡単な方法
としてセラミクス微粉末を溶媒にといてスプレーか刷毛
によってカプセル表面に塗布する方法がある。
In the case where the peeling layer provided at the capsule interface relaxes the strain and suppresses the occurrence of cracks, at least the innermost capsule in contact with the rare earth alloy is A3 during cooling as described above.
It must be made of a material that does not undergo transformation. When the capsule is removed, the outer capsule is separated by the release layer and can be easily separated, but the inner capsule is bonded to the rare earth alloy. The thickness is 2mm to make it easier to remove
It is desirable that: As a material for forming the release layer, Al 2 O 3 , MgO, S, which is stable at a high temperature of 1000 ° C. or higher,
Those containing ceramic powder such as i0 2 and BN are preferable. There are various methods for applying the release material, but the simplest method is to apply the ceramic fine powder to a solvent and apply it to the capsule surface by spraying or brushing.

【0041】そして、この金属カプセルの厚み(多重カ
プセルの場合は各カプセル厚の総和)であるが中に装入
される希土類合金のサイズに対して20%以上であるこ
とが望ましい。例えば外形が幅W1×長さL1×高さH
1の直方体のカプセルに幅W2×長さL2×高さH2の
希土類合金が装入されるとき、幅方向のカプセル厚みT
w=(W1−W2)/2が0.2×W2より大きくなる
ようにカプセル厚みは設定される。さらに、長さ方向の
カプセル厚みTl=(L1−L2)/2,高さ方向のカ
プセル厚みTh=(H1−H2)/2についてもそれぞ
れ0.2×L2,0.2×H2より大きくなるように設
定される。複数の希土類合金インゴットが装入されると
きは、ある希土類合金塊に対してその外側へ向かっての
幅方向、長さ方向、高さ方向のカプセル材の厚さの和が
前述のカプセル厚みの条件を満たしていれば良い。この
厚みよりカプセルが薄いと熱間加工中にカプセルが破断
して大きな割れを引き起こすことがある。
The thickness of the metal capsule (total thickness of each capsule in the case of multiple capsules) is preferably 20% or more with respect to the size of the rare earth alloy charged therein. For example, the outer shape is width W1 x length L1 x height H
When a rare earth alloy having a width W2, a length L2, and a height H2 is charged into the rectangular parallelepiped capsule of No. 1, the capsule thickness T in the width direction is T.
The capsule thickness is set so that w = (W1−W2) / 2 is larger than 0.2 × W2. Further, the capsule thickness in the length direction Tl = (L1-L2) / 2 and the capsule thickness in the height direction Th = (H1-H2) / 2 are also larger than 0.2 × L2 and 0.2 × H2, respectively. Is set as follows. When a plurality of rare earth alloy ingots are charged, the sum of the thicknesses of the encapsulant in the width direction, the length direction, and the height direction toward the outside with respect to a certain rare earth alloy ingot is the capsule thickness described above. It only has to meet the conditions. If the capsule is thinner than this thickness, the capsule may be broken during hot working to cause a large crack.

【0042】これらのカプセルは前述の材料金属塊をく
り抜いて作るのが強度上好ましいが、板材を溶接によっ
てカプセル化したものも使用できる。また多重カプセル
によってカプセルを作成することも良い。
It is preferable that these capsules are made by hollowing out the metal lumps of the above-mentioned material in terms of strength, but it is also possible to use those obtained by encapsulating plate materials by welding. It is also possible to create capsules by multiple capsules.

【0043】また、熱間加工時に希土類合金の酸化の原
因となる酸素、水等をカプセル内に残留させることは好
ましくなく、特に複数枚の希土類合金インゴットを熱間
加工中に融着させて一体の磁石としようとする場合及び
希土類合金粉末を熱間加工する場合にはカプセル内を1
-3torr程度の真空に脱気して希土類合金を封入するこ
とが望ましい。
Further, it is not preferable to leave oxygen, water, etc. which cause the oxidation of the rare earth alloy during the hot working in the capsule, and in particular, a plurality of rare earth alloy ingots are fused and integrated during the hot working. If you want to make a magnet, or if you heat work rare earth alloy powder,
It is desirable to evacuate to a vacuum of about 0 -3 torr and encapsulate the rare earth alloy.

【0044】熱間加工を実施する場合の温度は、その主
相粒の十分な配向を得るためと圧延時の大きな割れを防
止するためには800℃以上とすることが望ましい。ま
たその上限は、主相粒( R2Fe14B粒)の急激な粗大
化によるiHcの減少を避けるために1100℃とする
ことが望ましい。
The temperature for carrying out hot working is preferably 800 ° C. or higher in order to obtain a sufficient orientation of the main phase grains and to prevent large cracks during rolling. The upper limit is preferably 1100 ° C. in order to avoid a decrease in iHc due to abrupt coarsening of the main phase grains (R 2 Fe 14 B grains).

【0045】熱間加工法としては、圧延、プレス、鍛
造、押出などが採用でき、その加工条件としては、歪速
度が 10-4〜102/sであり、総加工度(板厚減少
率)が50%以上であることが結晶粒の配向すなわち残
留磁束密度の向上のために望ましい。
As the hot working method, rolling, pressing, forging, extrusion or the like can be adopted, and the working conditions are such that the strain rate is 10 −4 to 10 2 / s, and the total working ratio (sheet thickness reduction rate). Is preferably 50% or more in order to improve the orientation of crystal grains, that is, the residual magnetic flux density.

【0046】加工法が熱間圧延である場合には、その圧
延を金属カプセルに対して幅方向からの拘束を加えつつ
行うのが、磁石の磁気特性向上と圧延時の磁石の割れ防
止にとって望ましい。この為には例えば溝付の雌雄ロー
ル、または孔型ロールを用いれば良いが、最も簡便には
圧延されるカプセルの圧延方向に対する幅Wと高さHの
比W/Hを1.0以上にしておけばカプセル内の希土類
合金はカプセル外皮により幅方向両側から拘束を受ける
ことになり、上記の特殊ロールを用いた場合と同様の効
果が得られるので、この方法が採用できる。
When the working method is hot rolling, it is desirable to perform the rolling while restraining the metal capsule from the width direction in order to improve the magnetic properties of the magnet and prevent cracking of the magnet during rolling. . For this purpose, for example, grooved male and female rolls or hole type rolls may be used, but most simply, the ratio W / H of the width W and the height H to the rolling direction of the capsule to be rolled is set to 1.0 or more. If this is done, the rare earth alloy in the capsule will be constrained by the capsule skin from both sides in the width direction, and the same effect as when using the special roll described above can be obtained, so this method can be adopted.

【0047】また、熱間圧延の場合1度加熱した後は多
段パスの間再加熱しない様な方式(1ヒート・多パス)
と多段パスの中間に再加熱して加工温度の定常化を図る
方式(多ヒート・多パス)のどちらでも良いが、被圧延
材が50kgを越えるような大型材の場合は、その大き
な熱容量のために加工中の温度低下による悪影響も小さ
くなり、1ヒート・多パス方式がその生産性の高さが活
かせるので望ましい。
In the case of hot rolling, after heating once, it is not reheated during multiple passes (one heat / multipass).
It may be either a method to reheat to the middle of the multi-pass and to stabilize the processing temperature (multi-heat / multi-pass), but in the case of a large material to be rolled that exceeds 50 kg, its large heat capacity Therefore, the adverse effect due to the temperature drop during processing is reduced, and the one-heat / multi-pass method is desirable because the high productivity can be utilized.

【0048】さらに上記多パス圧延では、圧延装置に対
して被圧延材を常に一つの方向から導く一方向圧延方式
と、各パス毎に交互に往復させるいわゆるリバース圧延
方式の両方が考えられどちらも採用できるが、圧延磁石
の磁気特性の圧延長さ方向の均一性においてはリバース
圧延方式が優れている。また、多パスのパススケジュー
ル中に15%以上の大きな加工度のパスがあることが磁
気特性の向上に好ましい。
Further, in the above multi-pass rolling, both a unidirectional rolling system in which the material to be rolled is always guided from one direction to the rolling apparatus and a so-called reverse rolling system in which the rolling material is alternately reciprocated for each pass can be considered. Although it can be adopted, the reverse rolling method is superior in terms of the uniformity of the magnetic characteristics of the rolled magnet in the rolling length direction. Further, it is preferable for improving the magnetic properties that there is a pass with a large workability of 15% or more in the pass schedule of multiple passes.

【0049】また、熱間加工後に冷却する時には、カプ
セルの一部が局所的に冷やされることや熱間加工時に生
じた温度むら、A3変態による熱応力などにより割れが
発生しやすいため、炉にいれたり熱浴となるような金属
塊に接触させて、カプセルの温度均一度を高めた後また
は均一度を高めたままで徐冷することが望ましい。本発
明では、カプセル材質を変えることによってA3変態の
影響がなくなるため必ずしも徐冷する必要はないが、割
れ防止のためには徐冷することがより望ましい。
Further, when cooling after hot working, a part of the capsule is locally cooled, temperature irregularities generated during hot working, and cracks easily occur due to thermal stress due to A3 transformation, so that the furnace is cracked. It is desirable that the capsules are gradually cooled after the temperature uniformity of the capsules is increased or after the capsules are heated or brought into contact with a metal mass that becomes a hot bath. In the present invention, since the influence of the A3 transformation is eliminated by changing the material of the capsule, slow cooling is not always necessary, but slow cooling is more preferable to prevent cracking.

【0050】こうして、室温まで冷却された被加工材か
らガス溶断、鋸刃切断等の方法を用いてカプセルを外
し、希土類合金を取り出せば磁石として使用できる。し
かし、更に熱処理を施せばより大きな保磁力を得ること
ができるので、要求される保磁力に応じて不活性雰囲気
中で熱処理を施すことが望まれる。
In this way, the material can be used as a magnet by removing the capsule from the material cooled to room temperature by a method such as gas fusing or saw blade cutting and taking out the rare earth alloy. However, if a further heat treatment is performed, a larger coercive force can be obtained. Therefore, it is desirable to perform the heat treatment in an inert atmosphere according to the required coercive force.

【0051】ここで熱処理を実施する場合の温度は、そ
の保磁力増大効果を得るためには450℃以上が好まし
く、しかし1100℃以上では主相粒が急激に粗大化し
iHcの減少が起こるので避けるべきで、適正な熱処理
温度は450〜1100℃である。さらには、先に75
0〜1100℃の高温の熱処理を施し、次に450〜7
50℃の低温熱処理を施す2段熱処理、あるいはそれを
繰り返す多段熱処理が保磁力の向上と角型性の向上に効
果があるのでより好ましい。
The temperature at which the heat treatment is carried out is preferably 450 ° C. or higher in order to obtain the effect of increasing the coercive force. However, at 1100 ° C. or higher, the main phase grains are abruptly coarsened and iHc is reduced, so avoiding this The proper heat treatment temperature should be 450 to 1100 ° C. Furthermore, first 75
Heat treatment at a high temperature of 0 to 1100 ° C, and then 450 to 7
A two-step heat treatment in which a low-temperature heat treatment at 50 ° C. is performed, or a multi-step heat treatment in which it is repeated is more preferable because it is effective in improving coercive force and squareness.

【0052】そして、最後に所望の形状が小さい場合に
は、熱間加工された希土類合金よりダイヤモンドホイー
ルによる切断、砥石によるに研削、ワイヤー放電加工に
よる切断等により多数の磁石を切り出すことができる。
Finally, if the desired shape is small, a large number of magnets can be cut out from the hot-worked rare earth alloy by cutting with a diamond wheel, grinding with a grindstone, cutting by wire electric discharge machining, or the like.

【0053】〔実施例1〕アルゴン雰囲気中で誘導加熱
炉を用いて、 Pr17.2Fe77B5.2Cu0.6なる組成の希土類合
金を溶解し、銅鋳型に鋳造してインゴットを得た。この
時、希土類、鉄及び銅の原料としては99.9%の純度のも
のを用い、ボロンはフェロボロンを用いた。鋳造したイ
ンゴットのサイズは、厚み20mm×幅250mm×高
さ250mmであり、厚み方向に柱状晶の発達したマク
ロ組織を持っていた。またこの柱状晶組織の平均粒径は
15μmであった。インゴットを幅18mm×長さ20
0mm×高さ40mmに切断、研磨して圧延ビレットを
作製した。これを3本ならべて幅54mmとし、幅80
mm×長さ250mm×高さ80mmのカプセルに封入
した。カプセルは表1に示すようないくつかの材質を用
いた。
Example 1 Using an induction heating furnace in an argon atmosphere, a rare earth alloy having a composition of Pr 17.2 Fe 77 B 5.2 Cu 0.6 was melted and cast in a copper mold to obtain an ingot. At this time, raw materials of rare earth, iron, and copper were used with a purity of 99.9%, and boron was ferroboron. The size of the cast ingot was 20 mm in thickness × 250 mm in width × 250 mm in height, and had a macrostructure in which columnar crystals developed in the thickness direction. The average grain size of this columnar crystal structure was 15 μm. 18 mm wide x 20 mm ingot
A rolled billet was produced by cutting into 0 mm × height 40 mm and polishing. If this is put in three, the width is 54 mm and the width is 80
It was enclosed in a capsule of mm × length 250 mm × height 80 mm. As the capsule, several materials as shown in Table 1 were used.

【0054】このカプセルを1025℃で90分予熱
し、φ300のロールの圧延機を用いて、80→65→
50→40→30→20mmのパススケジュールで圧延
を5回施し、総加工度を75%とした。この時圧延はい
わゆるリバース圧延で2回めと4回めの圧延の後に10
25℃で15分間の中間加熱を行った。
This capsule was preheated at 1025 ° C. for 90 minutes, and was rolled using a rolling mill with a diameter of 300 mm to obtain 80 → 65 →
Rolling was performed 5 times with a pass schedule of 50 → 40 → 30 → 20 mm, and the total workability was set to 75%. At this time, the rolling is so-called reverse rolling, and after the second and fourth rolling, 10
Intermediate heating was performed at 25 ° C for 15 minutes.

【0055】圧延材はレンガ上で空冷され、その冷却速
度は、950℃付近から600℃付近までは約20℃/
分、600℃付近から300℃付近までは約12℃/
分、そして300℃から100℃付近までは8℃/分で
あった。室温まで冷却された圧延材から磁石を取り出し
割れ状況を測定した。1種類のカプセル材質について5
本から10本の圧延がなされ、取り出された磁石の割れ
発生率(割れ発生圧延材数/圧延総数)とを評価した。
その結果を表1に示す。ここでの割れとは磁石が完全に
分離した大きな割れである。
The rolled material is air-cooled on bricks, and the cooling rate is about 20 ° C / about from 950 ° C to 600 ° C.
Min, about 12 ℃ / from 600 ℃ to 300 ℃
Min, and 8 ° C / min from 300 ° C to around 100 ° C. The magnet was taken out from the rolled material cooled to room temperature and the cracking condition was measured. About one type of capsule material 5
Tens of rollings were performed from the book, and the crack occurrence rate (number of cracked rolled materials / total number of rollings) of the taken out magnet was evaluated.
Table 1 shows the results. The crack here is a large crack in which the magnet is completely separated.

【0056】[0056]

【表1】 [Table 1]

【0057】表1から上記の元素を鉄に添加したカプセ
ルを用いることにより、割れが減少し歩留まりが向上す
ることがわかる。
It can be seen from Table 1 that the use of capsules containing the above elements added to iron reduces cracking and improves yield.

【0058】さらにこの磁石合金を1025℃で20時
間、ひき続いて500℃で6時間の熱処理を行った後に
磁気特性および機械強度を測定した。その結果(BH)
maxは25〜28MGOe、曲げ強度は32〜35kg
/mm2であった。
Further, this magnetic alloy was heat-treated at 1025 ° C. for 20 hours and subsequently at 500 ° C. for 6 hours, and then the magnetic characteristics and mechanical strength were measured. The result (BH)
25-28 MGOe max, bending strength 32-35 kg
/ Mm 2 .

【0059】〔実施例2〕実施例1と同じように、イン
ゴットをCr、Ti、Siを添加した鉄のカプセルに封
入し、熱間圧延を施した。カプセル形状、圧延条件は実
施例1と同じように設定したが、Cr、Ti、Siの添
加量は表2のように変えて磁石の割れについて比較し
た。その結果を表2に示す。ここでの割れとは磁石を分
離する大きな割れである。
[Example 2] As in Example 1, the ingot was encapsulated in an iron capsule containing Cr, Ti, and Si and hot-rolled. The capsule shape and rolling conditions were set in the same manner as in Example 1, but the amounts of Cr, Ti, and Si added were changed as shown in Table 2 to compare the cracks of the magnets. Table 2 shows the results. The crack here is a large crack that separates the magnet.

【0060】[0060]

【表2】 [Table 2]

【0061】これからCrは13%以上、Tiは0.2
%以上、Siは2%以上添加することにより割れ防止の
効果があることがわかる。
From this, Cr is 13% or more and Ti is 0.2
%, And Si is added at 2% or more, it can be seen that there is an effect of preventing cracking.

【0062】〔実施例3〕アルゴン雰囲気中で誘導加熱
炉を用いて、 Nd17Fe77.2B5.2Cu0.6なる組成の希土類合
金を溶解し、銅鋳型に鋳造してインゴットを得た。この
時、希土類、鉄及び銅の原料としては99.9%の純度のも
のを用い、ボロンはフェロボロンを用いた。鋳造したイ
ンゴットのサイズは、厚み20mm×幅250mm×高
さ250mmであり、厚み方向に柱状晶の発達したマク
ロ組織を持っていた。またこの柱状晶組織の平均粒径は
15μmであった。インゴットを幅18mm×長さ20
0mm×高さ40mmに切断、研磨して圧延ビレットを
作製した。これを3本ならべて幅54mmとし、厚さ2
mmの第1カプセルに封入し、これを幅80mm×長さ
250mm×高さ80mmの第2カプセルに封入した。
第1カプセルおよび第2カプセルは表1に示すようない
くつかの材質を用いた。
Example 3 Using an induction heating furnace in an argon atmosphere, a rare earth alloy having a composition of Nd 17 Fe 77.2 B 5.2 Cu 0.6 was melted and cast in a copper mold to obtain an ingot. At this time, raw materials of rare earth, iron, and copper were used with a purity of 99.9%, and boron was ferroboron. The size of the cast ingot was 20 mm in thickness × 250 mm in width × 250 mm in height, and had a macrostructure in which columnar crystals developed in the thickness direction. The average grain size of this columnar crystal structure was 15 μm. 18 mm wide x 20 mm ingot
A rolled billet was produced by cutting into 0 mm × height 40 mm and polishing. If this is put in three, the width is 54 mm and the thickness is 2
It was enclosed in a first capsule having a size of 80 mm, which was then enclosed in a second capsule having a width of 80 mm, a length of 250 mm, and a height of 80 mm.
For the first capsule and the second capsule, several materials as shown in Table 1 were used.

【0063】このカプセルを1025℃で90分予熱
し、φ300のロールの圧延機を用いて、80→70→
60→50→40→30→20mmのパススケジュール
で圧延を6回施し、総加工度を75%とした。この時圧
延はいわゆるリバース圧延で3回め、5回めの圧延の前
には1025℃で15分間の中間加熱を行った。
This capsule was preheated at 1025 ° C. for 90 minutes, and was rolled 80 → 70 → by using a rolling mill of φ300.
Rolling was performed 6 times with a pass schedule of 60 → 50 → 40 → 30 → 20 mm, and the total workability was set to 75%. At this time, rolling was so-called reverse rolling three times, and intermediate heating was performed at 1025 ° C. for 15 minutes before the fifth rolling.

【0064】圧延材はレンガ上で空冷され、その冷却速
度は、950℃付近から600℃付近までは約20℃/
分、600℃付近から300℃付近までは約12℃/
分、そして300℃から100℃付近までは8℃/分で
あった。室温まで冷却された圧延材から磁石を取り出し
割れ状況を測定した。1種類のカプセルについて5本か
ら10本の圧延がなされ、取り出された磁石の割れ発生
率(割れ発生圧延材数/圧延総数)とを評価した。その
結果を表1に示す。ここでの割れとは磁石が完全に分離
した大きな割れである。
The rolled material is air-cooled on the brick, and the cooling rate is about 20 ° C./about from 950 ° C. to 600 ° C.
Min, about 12 ℃ / from 600 ℃ to 300 ℃
Min, and 8 ° C / min from 300 ° C to around 100 ° C. The magnet was taken out from the rolled material cooled to room temperature and the cracking condition was measured. Five to ten pieces of one type of capsule were rolled, and the crack occurrence rate (number of cracked rolled materials / total number of rolled pieces) of the taken-out magnet was evaluated. Table 1 shows the results. The crack here is a large crack in which the magnet is completely separated.

【0065】[0065]

【表3】 [Table 3]

【0066】多重カプセルの場合、そのうちの少なくと
も1つを本発明の材質で構成することにより、割れ発生
を抑える効果がある。
In the case of multiple capsules, at least one of them is made of the material of the present invention, which has the effect of suppressing the occurrence of cracks.

【0067】〔実施例4〕実施例3と同じ厚み20mm
×幅250mm×高さ250mmのインゴットを幅18
×長さ200×高さ200mmに切断、研磨して圧延ビ
レットを作製した。これを3本ならべて幅54mmと
し、厚さ2mmの第1カプセルに封入し、これを幅80
mm×長さ250mm×高さ250mmの第2カプセル
に入れて密封した。これを幅方向に3個、長さ方向に2
個、合計6個を並べて幅240×長さ500×高さ25
0mmとし、幅400×長さ600×高さ350mmの
第3カプセルに入れて溶接により密封した。第1カプセ
ル、第2カプセル、第3カプセルの材質としては表4に
示すようなものを用いた。
[Embodiment 4] Same thickness as in Embodiment 3 20 mm
× width 250 mm × height 250 mm ingot width 18
A length of 200 mm and a height of 200 mm were cut and polished to prepare a rolled billet. Put the 3 pieces together to make a width of 54 mm, and then enclose it in a first capsule with a thickness of 2 mm.
It was placed in a second capsule of mm × length 250 mm × height 250 mm and sealed. 3 in the width direction and 2 in the length direction
6 pieces in total, width 240 x length 500 x height 25
It was set to 0 mm, and it was placed in a third capsule having a width of 400 mm, a length of 600 mm, and a height of 350 mm, and sealed by welding. As the materials of the first capsule, the second capsule, and the third capsule, those shown in Table 4 were used.

【0068】このカプセルを1025℃で3時間予熱
し、ロール径φ900の圧延機を用いて、10回の圧延
で高さ90mmとした。総加工度は75%である。この
時中間加熱は行わなかった。圧延材は空冷され、約95
0℃から100℃付近まで冷却するのに5時間程度かか
った。冷却された圧延材から磁石を取り出し割れ状況
(割れ発生圧延材数/圧延総数)を測定した。ここでの
割れとは磁石が完全に分離した大きな割れである。その
結果を表4に示す。
This capsule was preheated at 1025 ° C. for 3 hours, and was rolled 10 times using a rolling machine with a roll diameter of φ900 to a height of 90 mm. The total workability is 75%. At this time, intermediate heating was not performed. Rolled material is air-cooled, approximately 95
It took about 5 hours to cool from 0 ° C to around 100 ° C. The magnet was taken out from the cooled rolled material, and the cracking condition (number of cracked rolled materials / total number of rolling) was measured. The crack here is a large crack in which the magnet is completely separated. The results are shown in Table 4.

【0069】[0069]

【表4】 [Table 4]

【0070】本発明のA3 変態を起こさないカプセル材
質が、カプセル全体に体積にしめる割合が大きくなるほ
ど割れが少なくなることがわかる。
It can be seen that the capsule material of the present invention which does not undergo the A3 transformation has less cracks as the volume of the entire capsule is increased.

【0071】〔実施例5〕実施例3と同じ厚み20mm
×幅250mm×高さ250mmのインゴットを幅18
×長さ200×高さ200mmに切断、研磨して圧延ビ
レットを作製した。これを3本ならべて幅54mmと
し、厚さ2mmで外表面に剥離材としてセラミクス粉を
塗布した第1カプセルに装入し、これを幅80mm×長
さ250mm×高さ250mmの第2カプセルに入れて
密封した。これを幅方向に3個、長さ方向に2個、合計
6個を並べて幅240×長さ500×高さ250mmと
し、幅400×長さ600×高さ350mmの第3カプ
セルに入れて溶接により密封した。第1カプセル、第2
カプセル、第3カプセルの材質およびセラミクスとして
は表5に示すようなものを用いた。
[Embodiment 5] Same thickness as in Embodiment 3 20 mm
× width 250 mm × height 250 mm ingot width 18
A length of 200 mm and a height of 200 mm were cut and polished to prepare a rolled billet. Put these into a first capsule with a width of 54 mm, a thickness of 2 mm, and a ceramic powder applied as a release material on the outer surface, and put this into a second capsule of width 80 mm × length 250 mm × height 250 mm. It was put and sealed. 6 pieces in total, 3 pieces in the width direction and 2 pieces in the length direction, are arranged to make a width 240 x length 500 x height 250 mm, and put in a third capsule of width 400 x length 600 x height 350 mm and welded. Sealed by. 1st capsule, 2nd
As the materials and ceramics of the capsules and the third capsule, those shown in Table 5 were used.

【0072】このカプセルを1025℃で3時間予熱
し、ロール径φ900の圧延機を用いて、10回の圧延
で高さ90mmとした。総加工度は75%である。この
時中間加熱は行わなかった。圧延材は空冷され、約95
0℃から100℃付近まで冷却するのに5時間程度かか
った。第2カプセルと第3カプセルは一体化している
が、第1カプセルとの間はセラミクスの層で剥離してい
たため容易に除去できた。第1カプセルは希土類合金に
接合していたが、圧延によって厚さが0.5〜2mm程
度に薄くなっており、希土類合金表面から容易に引きは
がすことができた。こうしてカプセルを取り除き、割れ
状況(割れ発生圧延材数/圧延総数)を評価した。ここ
での割れとは磁石が完全に分離した大きな割れである。
その結果を表5に示す。
This capsule was preheated at 1025 ° C. for 3 hours, and was rolled 10 times to obtain a height of 90 mm by using a rolling machine having a roll diameter of φ900. The total workability is 75%. At this time, intermediate heating was not performed. Rolled material is air-cooled, approximately 95
It took about 5 hours to cool from 0 ° C to around 100 ° C. Although the second capsule and the third capsule were integrated, they were easily removed because they were separated from the first capsule by a ceramic layer. Although the first capsule was bonded to the rare earth alloy, it was thinned to about 0.5 to 2 mm by rolling and could be easily peeled from the surface of the rare earth alloy. In this way, the capsules were removed, and the cracking condition (number of rolled materials with cracking / total number of rolling) was evaluated. The crack here is a large crack in which the magnet is completely separated.
The results are shown in Table 5.

【0073】[0073]

【表5】 [Table 5]

【0074】少なくとも第1カプセルがA3 変態を起こ
さない材質で構成され、その外表面に剥離材を塗布する
ことにより、割れ発生率は非常に低くなることがわか
る。
It can be seen that at least the first capsule is made of a material that does not undergo A3 transformation, and by applying a release material to the outer surface of the first capsule, the cracking occurrence rate becomes extremely low.

【0075】[0075]

【発明の効果】叙上のごとく本発明は、希土類合金をカ
プセルに封入し熱間加工を行う製造する希土類永久磁石
の製造方法において、冷却中の割れの原因である熱膨張
率の差が小さくなる、あるいは熱膨張の差によって発生
する応力が緩和されて、割れの発生を抑え歩留まりが向
上するという効果がある。また、磁石内部の微細なクラ
ックや残留応力をなくし、本来もっている機械強度が高
いという性質をさらに向上させ、信頼性を向上させると
いう効果がある。
As described above, according to the present invention, in the method of manufacturing a rare earth permanent magnet in which a rare earth alloy is encapsulated and hot worked, the difference in the coefficient of thermal expansion that causes cracking during cooling is small. Or, the stress generated by the difference in thermal expansion is relaxed, and there is an effect that the generation of cracks is suppressed and the yield is improved. Further, there is an effect that fine cracks and residual stress inside the magnet are eliminated, the property that the original mechanical strength is high is further improved, and the reliability is improved.

【0076】[0076]

【図面の簡単な説明】[Brief description of drawings]

【図1】希土類合金とカプセル用鉄基金属の熱膨張率を
示すグラフ。
FIG. 1 is a graph showing the coefficient of thermal expansion of a rare earth alloy and an iron-based metal for capsules.

【図2】(a)P,Al,Ti,V,Sn,W,Moを
添加した鉄の熱膨張率を示すグラフ。 (b)Si,Ge,Gaを添加した鉄の熱膨張率を示す
グラフ。
FIG. 2 (a) is a graph showing the coefficient of thermal expansion of iron added with P, Al, Ti, V, Sn, W, and Mo. (B) A graph showing the coefficient of thermal expansion of iron added with Si, Ge, and Ga.

【図3】本発明の実施の形態を説明するための多重カプ
セルの断面の模式図。
FIG. 3 is a schematic cross-sectional view of a multiple capsule for explaining the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1.希土類合金 2.第1カプセル 3.第2カプセル 4.第3カプセル 1. Rare earth alloy 2. First capsule 3. Second capsule 4. 3rd capsule

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 R(ただしRはYを含む希土類元素のう
ち少なくとも1種)、Fe及びBを基本成分とする希土
類合金または希土類合金粉末をカプセルに入れて熱間加
工する永久磁石の製造方法において、熱膨張率が合金の
それに近い材質によりカプセルを構成することを特徴と
する希土類永久磁石の製造方法。
1. A method for producing a permanent magnet, wherein R (where R is at least one of rare earth elements including Y), Fe and B as a basic component, a rare earth alloy or a rare earth alloy powder is encapsulated and hot worked. 2. A method for manufacturing a rare earth permanent magnet, characterized in that the capsule is made of a material having a coefficient of thermal expansion close to that of an alloy.
【請求項2】 前記カプセルが、熱間加工を行う温度に
おいて体心立方構造をもつ鉄基金属で構成されているこ
とを特徴とする請求項1記載の希土類永久磁石の製造方
法。
2. The method for producing a rare earth permanent magnet according to claim 1, wherein the capsule is made of an iron-based metal having a body-centered cubic structure at a temperature at which hot working is performed.
【請求項3】 前記カプセルが、熱間加工後の冷却の過
程においてA3変態を起こさない鉄基金属で構成されて
いることを特徴とする請求項1記載の希土類永久磁石の
製造方法。
3. The method for producing a rare earth permanent magnet according to claim 1, wherein the capsule is made of an iron-based metal that does not undergo A3 transformation in the cooling process after hot working.
【請求項4】 前期カプセルが、炭素含有量が0.12
重量%以下であって、Crを13〜30原子%含み、残
部は鉄である金属材料で構成されていることを特徴とす
る請求項1記載の希土類永久磁石の製造方法。
4. The first-stage capsule has a carbon content of 0.12.
2. The method for producing a rare earth permanent magnet according to claim 1, wherein the content is 13 wt% or less by weight, 13 to 30 at% Cr, and the balance is iron.
【請求項5】 前期カプセルが、炭素含有量が0.12
重量%以下であって、P,Al,Ti,V,Sn,W,
Moのうち少なくとも1種を0.2〜3原子%含み、残
部は鉄である金属材料で構成されていることを特徴とす
る請求項1記載の希土類永久磁石の製造方法。
5. The previous capsule has a carbon content of 0.12.
If it is less than wt%, P, Al, Ti, V, Sn, W,
The method for producing a rare earth permanent magnet according to claim 1, wherein at least one of Mo is contained in an amount of 0.2 to 3 atomic%, and the balance is made of a metal material which is iron.
【請求項6】 前期カプセルが、炭素含有量が0.12
重量%以下であって、Si,Ge,Gaのうち少なくと
も1種を2〜5原子%含み、残部は鉄である金属材料で
構成されていることを特徴とする請求項1記載の希土類
永久磁石の製造方法。
6. The first-stage capsule has a carbon content of 0.12.
2. The rare earth permanent magnet according to claim 1, wherein the rare earth permanent magnet is at most 1 wt% and contains 2 to 5 atom% of at least one of Si, Ge and Ga, and the balance is iron. Manufacturing method.
【請求項7】 前期カプセルが多重構造からなり、その
うち少なくとも1つのカプセルが、炭素含有量が0.1
2重量%以下であって、Crを13〜30原子%、また
はP,Al,Ti,V,Sn,W,Moのうち少なくと
も1種を0.2〜3原子%、またはSi,Ge,Gaの
うち少なくとも1種を2〜5原子%含有し、残部は鉄で
ある金属材料で構成されていることを特徴とする請求項
1記載の希土類永久磁石の製造方法。
7. The pre-capsule has a multi-layered structure, at least one of which has a carbon content of 0.1.
2 wt% or less, 13 to 30 atomic% of Cr, or 0.2 to 3 atomic% of at least one of P, Al, Ti, V, Sn, W and Mo, or Si, Ge, Ga 2. The method for producing a rare earth permanent magnet according to claim 1, wherein at least one of them is contained in an amount of 2 to 5 atom%, and the balance is made of a metal material which is iron.
【請求項8】 前期カプセルが多重構造からなり、その
最も内側の合金に接するカプセルが、炭素含有量が0.
12重量%以下であって、Crを13〜30原子%、ま
たはP,Al,Ti,V,Sn,W,Moのうち少なく
とも1種を0.2〜3原子%、またはSi,Ge,Ga
のうち少なくとも1種を2〜5原子%含有し、残部は鉄
である金属材料で構成されていて、その外側に耐熱性の
剥離材の層を有することを特徴とする請求項1記載の希
土類永久磁石の製造方法。
8. The former capsule has a multi-layered structure, and the capsule in contact with the innermost alloy has a carbon content of 0.
12 wt% or less, 13 to 30 atomic% of Cr, or 0.2 to 3 atomic% of at least one of P, Al, Ti, V, Sn, W and Mo, or Si, Ge, Ga.
2. The rare earth according to claim 1, characterized in that at least one of them is contained in an amount of 2 to 5 atomic%, and the balance is made of a metal material which is iron, and a heat-resistant release material layer is provided on the outside thereof. Manufacturing method of permanent magnet.
JP8077663A 1996-03-29 1996-03-29 Method of producing rare earth bond magnet Pending JPH09270347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8077663A JPH09270347A (en) 1996-03-29 1996-03-29 Method of producing rare earth bond magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8077663A JPH09270347A (en) 1996-03-29 1996-03-29 Method of producing rare earth bond magnet

Publications (1)

Publication Number Publication Date
JPH09270347A true JPH09270347A (en) 1997-10-14

Family

ID=13640124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8077663A Pending JPH09270347A (en) 1996-03-29 1996-03-29 Method of producing rare earth bond magnet

Country Status (1)

Country Link
JP (1) JPH09270347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074919A (en) * 2018-03-07 2020-12-11 达姆施塔特工业大学 Method for producing permanent magnets or hard magnetic materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112074919A (en) * 2018-03-07 2020-12-11 达姆施塔特工业大学 Method for producing permanent magnets or hard magnetic materials
JP2021515992A (en) * 2018-03-07 2021-06-24 テクニシエ ユニベルシテイト ダルムシュタット How to make permanent magnets or hard magnetic materials

Similar Documents

Publication Publication Date Title
JP2007266199A (en) Manufacturing method of rare earth sintered magnet
KR101813427B1 (en) Method of manufacturing rare earth magnet
WO1992020081A1 (en) Method of producing a rare earth permanent magnet
JPH06302417A (en) Permanent magnet and its manufacture
KR101633611B1 (en) High silicon electrical steel sheet with superior magnetic properties, and method for fabricating the high silicon electrical steel
JPH09270347A (en) Method of producing rare earth bond magnet
JP2794755B2 (en) Manufacturing method of rare earth element-transition element-B magnet
JPH09260171A (en) Manufacture of rare earth permanent magnet
JPH04134804A (en) Manufacture of rare earth permanent magnet
JP2579787B2 (en) Manufacturing method of permanent magnet
JP2007254813A (en) Method for producing rare earth sintered magnet and die for molding used therefor
JPH05182851A (en) Manufacture of rare earth elements-fe-b magnet
JPH0645168A (en) Manufacture of r-fe-b magnet
JP2019145674A (en) Rare earth magnet processing method
JPH02250920A (en) Production of rare earth element-transition element -b magnet by forging
JPH04321206A (en) Manufacture of rare earth element-fe-b-based magnet
JPH08273961A (en) Method for manufacturing rare earth permanent magnet
JPH05135976A (en) Manufacture of permanent magnet
JPH02250921A (en) Production of rare earth element-transition element -b magnet by forging
JPH03287723A (en) Production of rare earth element-iron-boron magnet
JPH06302451A (en) Manufacture of rare-earth permanent magnet
WO2004013873A1 (en) Process for producing rare earth-iron-boron magnet
JPH06244046A (en) Manufacture of permanent magnet
JP2561705B2 (en) Method for manufacturing rare earth-Fe-B magnet
JP2021515992A (en) How to make permanent magnets or hard magnetic materials