JPH06302451A - Manufacture of rare-earth permanent magnet - Google Patents

Manufacture of rare-earth permanent magnet

Info

Publication number
JPH06302451A
JPH06302451A JP5088868A JP8886893A JPH06302451A JP H06302451 A JPH06302451 A JP H06302451A JP 5088868 A JP5088868 A JP 5088868A JP 8886893 A JP8886893 A JP 8886893A JP H06302451 A JPH06302451 A JP H06302451A
Authority
JP
Japan
Prior art keywords
magnet
ring
hot
alloy
cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5088868A
Other languages
Japanese (ja)
Inventor
Fumio Takagi
富美男 高城
Osamu Kobayashi
理 小林
Sei Arai
聖 新井
Koji Akioka
宏治 秋岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5088868A priority Critical patent/JPH06302451A/en
Publication of JPH06302451A publication Critical patent/JPH06302451A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To enhance the mechanical strength of a rare-earth permanent magnet which is manufactured by a forging and hot-working method and to enhance the bonding strength of the magnet to a yoke. CONSTITUTION:An alloy whose raw-material basic components are R (where R represents at least one kind out of rare-earth elements including Y), Fe and B is melted and cast. Then, a plurality of arc-shaped magnets 1 manufactured by a process in which a cast ingot is hot-worked so as to give anisotropy and hot-bent and worked are combined at the inside of a ring composed of a material whose coefficient of thermal expansion is lower than that of the material of the magnets, they are held at a temperature of 450 to 1100 deg.C in a nonoxidizing atmosphere and they are formed to be a ring shape. In addition, pure iron, low-carbon steel or an Invar alloy is used as the material of the ring. Thereby, it is possible to obtain a magnet whose mechanical strength and bonding strength are extremely high. In addition, a yoke-integrated magnet can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類永久磁石の製造
方法、特に鋳造合金を熱間で塑性加工を施して磁気的に
異方性化されたリング状R−Fe−B系希土類永久磁石
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare earth permanent magnet, and more particularly to a ring-shaped R-Fe-B rare earth permanent magnet magnetically anisotropy obtained by subjecting a casting alloy to hot plastic working. The present invention relates to a manufacturing method of.

【0002】[0002]

【従来の技術】永久磁石は、一般家庭の各種電気製品か
ら大型コンピューターの周辺端末機器まで、幅広い分野
で使用されている重要な電気・電子材料の一つであり、
最近の電気製品の小型化、高効率化の要求にともない、
永久磁石も益々高性能化が求められている。
2. Description of the Related Art Permanent magnets are one of the important electric and electronic materials used in a wide range of fields from various household electric appliances to peripheral terminals for large computers.
With the recent demand for miniaturization and high efficiency of electrical products,
Permanent magnets are also required to have higher performance.

【0003】現在使用されている永久磁石のうち代表的
なものはアルニコ系鋳造磁石、フェライト磁石及び希土
類−遷移金属系磁石である。特に、R−Fe−B系永久
磁石は、極めて高い保磁力とエネルギー積を持つ永久磁
石として、従来から多くの研究開発がなされている。
Typical permanent magnets currently in use are alnico type cast magnets, ferrite magnets and rare earth-transition metal type magnets. In particular, R-Fe-B system permanent magnets have been extensively researched and developed as permanent magnets having extremely high coercive force and energy product.

【0004】従来、これらR−FeーB系の高性能永久
磁石の製造方法には、次のようなものがある。
Conventionally, there are the following methods for manufacturing these R—Fe—B type high-performance permanent magnets.

【0005】(1)焼結法 (特開昭59−46008
号公報やM.Sagawa,S.Fujimura,
N.Togawa,H.Yamamoto and
Y.Matsuura;J.Appl,Phys,Vo
l,55(6)15March1984,p2083) (2)ダイアップセット (特開昭59−211549
号公報やR.W.Lee;Appl,Phys,Let
t.Vol,46(8),15 April1985,
p790、特開昭60−100402号公報) (3)鋳造・熱間加工法 (特開昭62−276803
号公報) これらのすべての製造方法は、リング状磁石の製造にも
応用することが可能である。
(1) Sintering method (JP-A-59-46008)
Publication and M.I. Sagawa, S .; Fujimura,
N. Togawa, H .; Yamamoto and
Y. Matsuura; J. Appl, Phys, Vo
1, 55 (6) 15 March 1984, p2083) (2) Die-up set (Japanese Patent Laid-Open No. 59-2111549)
Gazette and R. W. Lee; Appl, Phys, Let
t. Vol, 46 (8), 15 April 1985.
p790, JP-A-60-100402) (3) Casting / hot working method (JP-A-62-276803)
All of these production methods can be applied to the production of ring-shaped magnets.

【0006】焼結法では、ラジアル異方性を付与する場
合、磁場中で成形する際に成形体の径方向に放射状に磁
場を印加しながらプレス成形することによりラジアル異
方性を持った磁石を製造できることが特開昭60−15
3109号公報、特開昭62−117305号公報に開
示されている。
In the sintering method, when radial anisotropy is imparted, a magnet having radial anisotropy is obtained by press-molding while applying a magnetic field radially in the radial direction of the molded body when molding in a magnetic field. That it can be produced
3109 and Japanese Patent Laid-Open No. 62-117305.

【0007】ダイアップセット法に関連した方法では、
急冷薄帯にホットプレスを施して圧密化した材料に対
し、押し出し加工をする方法によりラジアル異方性を持
ったリング状の磁石を製造する方法が特開昭60−10
0402号公報、特開平1−248503号公報に開示
されている。
In the method related to the die upset method,
A method for producing a ring-shaped magnet having radial anisotropy by extruding a material obtained by subjecting a quenched ribbon to hot pressing to consolidate is disclosed in JP-A-60-10.
No. 0402 and Japanese Patent Application Laid-Open No. 1-248503.

【0008】鋳造・熱間加工方法では、圧延によって板
厚方向に異方性を有する板状磁石を熱間での曲げ加工を
行って円弧状に成形し、それを複数個接着することによ
ってリング状磁石を製造する方法が特願平2−3153
97号に示されている。
In the casting / hot working method, a plate magnet having anisotropy in the plate thickness direction is rolled by rolling to form an arc shape, and a plurality of the magnets are bonded to form a ring. Japanese Patent Application No. 2-3153
No. 97.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、叙上の
従来のR−Fe−B系リング状永久磁石の製造方法は、
次のごとき欠点を有している。
However, the above-mentioned conventional method for manufacturing an R-Fe-B system ring-shaped permanent magnet is as follows.
It has the following drawbacks.

【0010】焼結法による製造方法は、合金を粉末にす
ることを必須とするものであるが、その製法上、含有酸
素濃度や炭素濃度が高くなるのは避けられない。これは
磁石の耐食性や機械的強度を著しく低下させる。また、
焼結時の収縮により寸法精度が悪いであるとか、高さ/
直径の比が大きいものができないという形状制限があ
る。さらに、側面にクラックが発生しやすいため歩留ま
りが悪いという問題がある。一般的にR−Fe−B系の
焼結磁石の製造は工程が煩雑であり、高価な設備が必要
で生産効率が悪く、結局磁石の製造コストが高くなって
しまうという問題を有する。
In the manufacturing method by the sintering method, it is indispensable to make the alloy into a powder, but in the manufacturing method, it is unavoidable that the contained oxygen concentration and the carbon concentration become high. This significantly reduces the corrosion resistance and mechanical strength of the magnet. Also,
Dimensional accuracy is poor due to shrinkage during sintering, height /
There is a shape restriction that one with a large diameter ratio cannot be used. Further, there is a problem that yield is poor because cracks are likely to occur on the side surface. Generally, the manufacturing process of an R-Fe-B system sintered magnet has a problem that the manufacturing process is complicated, expensive equipment is required, the production efficiency is poor, and the manufacturing cost of the magnet is eventually increased.

【0011】次に、ダイアップセット法による製造方法
は、真空メルトスピニング装置を使用するが、この装置
は大変生産性が悪くしかも高価である。また、この方法
によってつくられた磁石は、磁気特性のばらつきが大き
く機械的強度が低いという問題がある。
Next, the manufacturing method by the die-upset method uses a vacuum melt spinning apparatus, but this apparatus has very poor productivity and is expensive. In addition, the magnet produced by this method has a problem that the magnetic characteristics vary widely and the mechanical strength is low.

【0012】鋳造・熱間加工法によりつくられた磁石
は、機械的強度、耐食性にすぐれ、上記の2つの方法で
は不可能な大型の磁石が製造可能であるが、リング状磁
石を一体で成形することは困難であるため、円弧状磁石
を接着によりリング状に成形しなければならないという
問題があった。
The magnet produced by the casting / hot working method has excellent mechanical strength and corrosion resistance, and it is possible to manufacture a large-sized magnet which is impossible by the above two methods, but a ring-shaped magnet is integrally formed. Since it is difficult to do so, there was a problem that the arc-shaped magnet had to be formed into a ring shape by adhesion.

【0013】本発明の目的は、この鋳造・熱間加工法に
よるリング状磁石に関する問題を解決するものであり、
その目的とするところは、高性能かつ低コストの希土類
永久磁石の製造方法を提供することにある。
An object of the present invention is to solve the problems associated with the ring-shaped magnet produced by this casting / hot working method.
It is an object of the invention to provide a method for producing a high-performance and low-cost rare earth permanent magnet.

【0014】[0014]

【課題を解決するための手段】本発明は、鋳造・熱間加
工による方法で製造された板状の永久磁石に対し熱間で
曲げ加工を行なうことによって成形された円弧状磁石を
用いて、リング形状磁石をつくる方法を提供するもので
ある。
The present invention uses an arc-shaped magnet formed by hot bending a plate-shaped permanent magnet manufactured by a method of casting and hot working, A method of making a ring-shaped magnet is provided.

【0015】具体的には、R(ただしRはYを含む希土
類元素のうち少なくとも1種),Fe,Bを原料基本成
分とし、該基本成分とする合金を溶解・鋳造し、次いで
鋳造インゴットを熱間加工し異方性を付与した後、熱間
で曲げ加工を行なう工程により製造した円弧状磁石を、
該磁石材料より熱膨張係数の低い材質よりなるリングの
内側に複数個組合せ、非酸化性雰囲気中で450〜11
00℃の温度に保持することにより、リング形状にする
ことを特徴とするもの、およびリングの材料として、純
鉄・低炭素鋼またはインバー合金を用いることを特徴と
するものである。
Specifically, R (provided that R is at least one of rare earth elements including Y), Fe, and B are the basic components of the raw materials, the alloy having the basic components is melted and cast, and then a cast ingot is formed. After the hot working to give anisotropy, the arc-shaped magnet manufactured by the step of hot bending,
A plurality of magnets are combined inside a ring made of a material having a thermal expansion coefficient lower than that of the magnet material, and 450 to 11 in a non-oxidizing atmosphere.
It is characterized in that it is made into a ring shape by holding it at a temperature of 00 ° C, and that pure iron / low carbon steel or Invar alloy is used as the material of the ring.

【0016】本発明の鋳造・熱間加工法によりつくられ
る磁石合金は、主相であるR2Fe1 4B金属間化合物の
他に低融点の粒界相をもち、粒界相が溶融している温度
に保持することにより磁石合金どうしを接着により一体
化する、あるいはリングをヨークとして用いることがで
きる場合、磁石とヨークとを接着により一体化すること
が可能である。
The magnet alloy produced by the casting / hot working method of the present invention has a low-melting grain boundary phase in addition to the main phase R 2 Fe 1 4 B intermetallic compound, and the grain boundary phase melts. When the temperature is maintained at a certain temperature, the magnet alloys can be integrated by adhesion, or when the ring can be used as a yoke, the magnet and the yoke can be integrated by adhesion.

【0017】接着の工程は、高温で粒界相が溶融するこ
とを利用して行なわれるため粒界相の融点以上の温度が
必要である。Cu,Ag,Au,Pd,Ga等を添加す
ることは、粒界相の融点を低下させる効果がある。Cu
を添加したPr−Fe−B系磁石の場合、粒界相融点は
約450℃である。したがって、接着温度としては45
0℃以上の温度が必要であり、また1100℃を超える
温度ではR2Fe14B相が急激に粒成長して保磁力を失
うので、450〜1100の温度が好ましい。
Since the bonding step is carried out by utilizing the melting of the grain boundary phase at a high temperature, a temperature higher than the melting point of the grain boundary phase is required. The addition of Cu, Ag, Au, Pd, Ga, etc. has the effect of lowering the melting point of the grain boundary phase. Cu
In the case of the Pr-Fe-B based magnet added with, the grain boundary phase melting point is about 450 ° C. Therefore, the adhesion temperature is 45
A temperature of 0 ° C. or higher is necessary, and at a temperature of higher than 1100 ° C., the R 2 Fe 14 B phase rapidly grows to lose coercive force, so a temperature of 450 to 1100 is preferable.

【0018】磁石の形状を保持するためのリングは温度
の上昇に伴い、熱膨張を起こす。R−Fe−B磁石合金
は強磁性体の特徴としてキュリー温度まで体積変化はほ
とんどないが、粒界相融点を越えると膨張係数は著しく
高くなる。形状保持のためのリングの熱膨張が磁石の熱
膨張よりも小さければ、磁石セグメントの接触界面に圧
力が発生し液相による接着が効果的に行われる。リング
材質としては熱膨張係数が小さいという点で、耐熱鋼、
Mo合金、W合金、セラミクス等が望ましい。リング材
質の熱膨張係数が低いほど、接触面に発生する力が大き
く圧接の効果が高い。しかし、このような材料は工業的
に高価であるという問題がある。
The ring for holding the shape of the magnet causes thermal expansion as the temperature rises. The R-Fe-B magnet alloy has almost no volume change up to the Curie temperature as a characteristic of a ferromagnetic material, but the expansion coefficient becomes remarkably high when the grain boundary phase melting point is exceeded. If the thermal expansion of the ring for maintaining the shape is smaller than the thermal expansion of the magnet, pressure is generated at the contact interface of the magnet segments, and the liquid phase adhesion is effectively performed. As a ring material, heat-resistant steel,
Mo alloy, W alloy, ceramics, etc. are preferable. The lower the coefficient of thermal expansion of the ring material, the greater the force generated on the contact surface and the greater the effect of pressure welding. However, there is a problem that such a material is industrially expensive.

【0019】安価な材料としては、低炭素鋼が効果的で
ある。鉄は910℃でα−γ変態を起こし、熱膨張係数
が910℃以上で急激に小さくなることが知られてい
る。これを利用すれば、磁石の接触面に大きな圧力を発
生させることが可能である。
Low carbon steel is effective as an inexpensive material. It is known that iron undergoes α-γ transformation at 910 ° C, and the coefficient of thermal expansion sharply decreases at 910 ° C or higher. By utilizing this, it is possible to generate a large pressure on the contact surface of the magnet.

【0020】また、インバー合金のリングを用いること
により寸法精度が高くなるという効果が得られる。すな
わち、Nd(Pr)2Fe14Bのキュリー点は約300
℃、粒界相の融点はCuを添加した場合450〜550
℃であるので、この磁石の熱膨張係数は粒界相融点以下
の温度において非常に小さいという特徴がある。インバ
ー合金は400℃以下の熱膨張が非常に小さいため、磁
石の寸法精度が向上しリングと磁石の取り外しが容易に
なる。さらに、冷却時に発生する割れがなくなり歩留ま
りが向上する。
Further, the use of the Invar alloy ring has the effect of increasing the dimensional accuracy. That is, the Curie point of Nd (Pr) 2 Fe 14 B is about 300.
C, melting point of grain boundary phase is 450 to 550 when Cu is added
Since it is ℃, the coefficient of thermal expansion of this magnet is very small at a temperature below the grain boundary phase melting point. Since the Invar alloy has a very small thermal expansion at 400 ° C. or less, the dimensional accuracy of the magnet is improved and the ring and the magnet can be easily removed. Further, the cracks generated during cooling are eliminated and the yield is improved.

【0021】次に本発明の実施例について述べる。Next, examples of the present invention will be described.

【0022】[0022]

【実施例】【Example】

(実施例1)アルゴン雰囲気中で誘導加熱炉を用いて、
Pr16Fe77.45.1Cu1.5なる組成の合金を溶解し、
鋳造した。この鋳造インゴットを低炭素鋼のカプセルに
入れ、脱気し、密封して、加工温度950℃で熱間圧延
を施した。この時、一回の圧延での高さの減少量が30
%の圧延を4パス行い、総加工量が76%になるように
した。
(Example 1) Using an induction heating furnace in an argon atmosphere,
Melting an alloy of composition Pr 16 Fe 77.4 B 5.1 Cu 1.5 ,
Cast. This cast ingot was placed in a low carbon steel capsule, degassed, sealed, and hot rolled at a processing temperature of 950 ° C. At this time, the reduction amount of height in one rolling is 30
% Rolling was performed for 4 passes so that the total processing amount became 76%.

【0023】こうして得られた圧延磁石から幅10mm
×長さ25mm×厚さ2mmのサンプルを切り出し、不
活性ガス中で1000℃に加熱した後、外径24mm、
内径20mmの円弧状磁石に成形し、冷却後中心角が1
20°となるように端面を成形した。さらに図1に示す
ように該円弧状磁石1を外径32mm×内径24mm×
高さ10mmの各種接着用リング(ヨーク)2の内側に
3個組み合わせてリング状にし、アルゴンガス中100
0℃で30分保持した。その結果、接着が行われラジア
ル異方性を有するリング状磁石3ができた。その結果を
以下に示す。
Width 10 mm from the rolled magnet thus obtained
A sample having a length of 25 mm and a thickness of 2 mm was cut out and heated to 1000 ° C. in an inert gas, and then an outer diameter of 24 mm,
Molded into an arc-shaped magnet with an inner diameter of 20 mm, the center angle after cooling is 1
The end face was molded so as to form an angle of 20 °. Further, as shown in FIG. 1, the arc-shaped magnet 1 is provided with an outer diameter of 32 mm × an inner diameter of 24 mm ×
Inside of various bonding rings (yoke) 2 having a height of 10 mm, three pieces are combined to form a ring, and 100 rings in argon gas are used.
Hold at 0 ° C for 30 minutes. As a result, the ring-shaped magnet 3 was adhered and had radial anisotropy. The results are shown below.

【0024】[0024]

【表1】 [Table 1]

【0025】(実施例2)アルゴン雰囲気中で誘導加熱
炉を用いて、Pr16Fe77.45.1Cu1.5なる組成の合
金を溶解し、鋳造した。この鋳造インゴットを低炭素鋼
のカプセルに入れ、脱気し、密封して、加工温度950
℃で熱間圧延を施した。この時、一回の圧延での高さの
減少量が30%の圧延を4パス行い、総加工量が76%
になるようにした。
Example 2 An alloy having a composition of Pr 16 Fe 77.4 B 5.1 Cu 1.5 was melted and cast in an argon atmosphere using an induction heating furnace. This cast ingot was placed in a low carbon steel capsule, degassed, sealed and processed at a processing temperature of 950.
Hot rolling was performed at ℃. At this time, rolling with a height reduction amount of 30% in one rolling is performed for 4 passes, and the total processing amount is 76%.
I tried to become.

【0026】こうして得られた圧延磁石から幅10mm
×長さ25mm×厚さ2mmのサンプルを切り出し、不
活性ガス中で1000℃に加熱した後、外径24mm、
内径20mmの円弧状磁石に成形し、冷却後中心角が1
20°となるように端面を成形した。さらに図1に示す
ように該円弧状磁石1を外径28mm×内径24mm×
高さ10mmの純鉄製のヨーク2の内側に3個組み合わ
せてリング状にし、アルゴンガス中500〜1000℃
で30分保持した。こうしてヨーク一体のラジアル異方
性を有するリング状磁石3が得られた。その結果、以下
に示すように1000℃で最も接着状態の良好なサンプ
ルが得られた。これは、鉄の910℃におけるα→γ変
態により鉄が収縮し、磁石とヨーク間で圧接が行なわれ
たことを示している。
Width 10 mm from the rolled magnet thus obtained
A sample having a length of 25 mm and a thickness of 2 mm was cut out and heated to 1000 ° C. in an inert gas, and then an outer diameter of 24 mm,
Molded into an arc-shaped magnet with an inner diameter of 20 mm, the center angle after cooling is 1
The end face was molded so as to form an angle of 20 °. Further, as shown in FIG. 1, the arc-shaped magnet 1 is provided with an outer diameter of 28 mm × an inner diameter of 24 mm ×
Three pieces are combined inside the pure iron yoke 2 with a height of 10 mm to form a ring, and the temperature is 500 to 1000 ° C. in argon gas.
Hold for 30 minutes. Thus, the ring-shaped magnet 3 having the radial anisotropy of the yoke was obtained. As a result, as shown below, a sample with the best adhesion state was obtained at 1000 ° C. This indicates that the iron contracted due to the α → γ transformation of iron at 910 ° C., and pressure welding was performed between the magnet and the yoke.

【0027】[0027]

【表2】 [Table 2]

【0028】(実施例3)アルゴン雰囲気中で誘導加熱
炉を用いて、Pr16Fe77.45.1Cu1.5なる組成の合
金を溶解し、鋳造した。この鋳造インゴットを低炭素鋼
のカプセルに入れ、脱気し、密封して、加工温度950
℃で熱間圧延を施した。この時、一回の圧延での高さの
減少量が30%の圧延を4パス行い、総加工量が76%
になるようにした。
Example 3 An alloy having a composition of Pr 16 Fe 77.4 B 5.1 Cu 1.5 was melted and cast in an argon atmosphere using an induction heating furnace. This cast ingot was placed in a low carbon steel capsule, degassed, sealed and processed at a processing temperature of 950.
Hot rolling was performed at ℃. At this time, rolling with a height reduction amount of 30% in one rolling is performed for 4 passes, and the total processing amount is 76%.
I tried to become.

【0029】こうして得られた圧延磁石から幅10mm
×長さ25mm×厚さ2mmのサンプルを切り出し、不
活性ガス中で1000℃に加熱した後、外径24mm、
内径20mmの円弧状磁石に成形し、冷却後中心角が1
20°となるように端面を成形した。さらに図1に示す
ように該円弧状磁石1を外径32mm×内径24mm×
高さ10mmの各種接着用リング(ヨーク)2の内側に
3個組み合わせてリング状にし、アルゴンガス中100
0℃で30分保持した。冷却後リングをとりはずした。
こうして得られたラジアル異方性を有するリング状磁石
3に対し、外観検査及び工具顕微鏡にて外径の寸法精度
を測定した。その結果を以下に示す。
Width 10 mm from the rolled magnet thus obtained
A sample having a length of 25 mm and a thickness of 2 mm was cut out and heated to 1000 ° C. in an inert gas, and then an outer diameter of 24 mm,
Molded into an arc-shaped magnet with an inner diameter of 20 mm, the center angle after cooling is 1
The end face was molded so as to form an angle of 20 °. Further, as shown in FIG. 1, the arc-shaped magnet 1 is provided with an outer diameter of 32 mm × an inner diameter of 24 mm ×
Inside of various bonding rings (yoke) 2 having a height of 10 mm, three pieces are combined to form a ring, and 100 rings in argon gas are used.
Hold at 0 ° C for 30 minutes. After cooling, the ring was removed.
For the ring-shaped magnet 3 having radial anisotropy thus obtained, the dimensional accuracy of the outer diameter was measured by an appearance inspection and a tool microscope. The results are shown below.

【0030】インバー合金(36Ni−Fe)を用いた
場合、寸法精度が高く外観も良好な磁石が得られてい
る。
When the Invar alloy (36Ni-Fe) is used, a magnet having a high dimensional accuracy and a good appearance is obtained.

【0031】[0031]

【表3】 [Table 3]

【0032】[0032]

【発明の効果】叙上のごとく本発明の希土類永久磁石の
製造方法により、機械的強度にすぐれ、寸法精度が高い
ラジアル異方性リング状磁石が低コストで製造可能とな
る。また、磁石とヨークとの一体成形を容易に行うと同
時に、その接着強度が大きいため高速回転を必要とする
大型モータ等の信頼性が向上する。
As described above, according to the method for producing a rare earth permanent magnet of the present invention, a radial anisotropic ring magnet having excellent mechanical strength and high dimensional accuracy can be produced at low cost. In addition, the magnet and the yoke can be easily integrally molded, and at the same time, the reliability of a large motor or the like requiring high-speed rotation is improved due to the large adhesive strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の実施例1及び2において、複
数の円弧状磁石およびヨークを一体化させるため組み合
わせた状態を示す概略図。(b)は、本発明によって得
られたリング状磁石の外観図。
FIG. 1A is a schematic view showing a state in which a plurality of arc-shaped magnets and a yoke are combined to be integrated in Embodiments 1 and 2 of the present invention. (B) is an external view of the ring-shaped magnet obtained by the present invention.

【符号の説明】[Explanation of symbols]

1 円弧状磁石 2 接着用リングまたはヨーク 3 リング状磁石 1 arc-shaped magnet 2 adhesive ring or yoke 3 ring-shaped magnet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 秋岡 宏治 長野県諏訪市大和3丁目3番5号セイコー エプソン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Akioka 3-3-5 Yamato, Suwa, Nagano Seiko Epson Corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 R(ただしRはYを含む希土類元素のう
ち少なくとも1種),Fe,Bを原料基本成分とし、該
基本成分とする合金を溶解・鋳造し、次いで鋳造インゴ
ットを熱間加工し異方性を付与した後、熱間で曲げ加工
を行なう工程により製造した円弧状磁石を、該磁石材料
よりも熱膨張係数の小さい材質からなるリングの内側に
複数個組合せ、非酸化性雰囲気中で450〜1100℃
の温度に保持することにより、リング状磁石とすること
を特徴とする希土類永久磁石の製造方法。
1. R (where R is at least one of rare earth elements including Y), Fe and B as raw material basic components, an alloy having the basic components is melted and cast, and then the cast ingot is hot worked. A plurality of arc-shaped magnets produced by the process of hot bending after applying anisotropy to the inside of a ring made of a material having a smaller coefficient of thermal expansion than the magnet material, and a non-oxidizing atmosphere In 450-1100 ℃
A method for producing a rare earth permanent magnet, which is characterized by forming a ring-shaped magnet by maintaining the temperature at.
【請求項2】 R(ただしRはYを含む希土類元素のう
ち少なくとも1種),Fe,Bを原料基本成分とし、該
基本成分とする合金を溶解・鋳造し、次いで鋳造インゴ
ットを熱間加工し異方性を付与した後、熱間で曲げ加工
を行なう工程により製造した円弧状磁石を、純鉄または
低炭素鋼より成るリングの内側に複数個組合せ、非酸化
性雰囲気中で910〜1100℃の温度に保持すること
により、リング状磁石とすることを特徴とする希土類永
久磁石の製造方法。
2. R (where R is at least one of rare earth elements including Y), Fe and B as raw material basic components, an alloy having the basic components is melted and cast, and then the cast ingot is hot worked. Then, a plurality of arc-shaped magnets produced by a process of performing hot bending after imparting anisotropy are combined inside a ring made of pure iron or low carbon steel, and heated in a non-oxidizing atmosphere at 910 to 1100. A method for producing a rare earth permanent magnet, which comprises forming a ring-shaped magnet by maintaining the temperature at ℃.
【請求項3】 R(ただしRはYを含む希土類元素のう
ち少なくとも1種),Fe,Bを原料基本成分とし、該
基本成分とする合金を溶解・鋳造し、次いで鋳造インゴ
ットを熱間加工し異方性を付与した後、熱間で曲げ加工
を行なう工程により製造した円弧状磁石を、インバー合
金より成るリングの内側に複数個組合せ、非酸化性雰囲
気中で450〜1100℃の温度に保持することによ
り、リング状磁石とすることを特徴とする希土類永久磁
石の製造方法。
3. R (where R is at least one of rare earth elements including Y), Fe and B as raw material basic components, an alloy having the basic components is melted and cast, and then the cast ingot is hot worked. After applying the anisotropy, a plurality of arc-shaped magnets manufactured by the process of hot bending is combined inside the ring made of Invar alloy and heated to a temperature of 450 to 1100 ° C in a non-oxidizing atmosphere. A method for producing a rare earth permanent magnet, characterized by forming a ring-shaped magnet by holding it.
JP5088868A 1993-04-15 1993-04-15 Manufacture of rare-earth permanent magnet Pending JPH06302451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5088868A JPH06302451A (en) 1993-04-15 1993-04-15 Manufacture of rare-earth permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5088868A JPH06302451A (en) 1993-04-15 1993-04-15 Manufacture of rare-earth permanent magnet

Publications (1)

Publication Number Publication Date
JPH06302451A true JPH06302451A (en) 1994-10-28

Family

ID=13954994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5088868A Pending JPH06302451A (en) 1993-04-15 1993-04-15 Manufacture of rare-earth permanent magnet

Country Status (1)

Country Link
JP (1) JPH06302451A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458599A1 (en) * 2010-11-24 2012-05-30 General Electric Company Magnetic shield for current transformer in electronic watt-hour meter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2458599A1 (en) * 2010-11-24 2012-05-30 General Electric Company Magnetic shield for current transformer in electronic watt-hour meter
US8664935B2 (en) 2010-11-24 2014-03-04 General Electric Company Magnetic shield for current transformer in electronic watt-hour meter

Similar Documents

Publication Publication Date Title
CN110660553A (en) Isotropic hot-pressed neodymium iron boron quick-quenched magnetic powder and preparation method thereof
JPH06302417A (en) Permanent magnet and its manufacture
JPH06302451A (en) Manufacture of rare-earth permanent magnet
JPH04134804A (en) Manufacture of rare earth permanent magnet
JP2579787B2 (en) Manufacturing method of permanent magnet
JP2893705B2 (en) Manufacturing method of permanent magnet
JP2725004B2 (en) Manufacturing method of permanent magnet
JPH06302450A (en) Manufacture of rare-earth permanent magnet
JPH05135976A (en) Manufacture of permanent magnet
JPH06244046A (en) Manufacture of permanent magnet
JPH05135924A (en) Manufacture of rare earth permanent magnet
JPH06260359A (en) Production of rare-earth element permanent magnet
JPH05315170A (en) Manufacture of permanent magnet
JP2631513B2 (en) Manufacturing method of magnetic alloy
JPH06244012A (en) Manufacture of permanent magnet
JPH06151219A (en) Manufacture of permanent magnet
JPH05315118A (en) Permanent magnet and its manufacture
JPH06302449A (en) Manufacture of permanent magnet
JPH0418704A (en) Manufacture of permanent magnet
JPH02252211A (en) Anisotropic permanent magnet and manufacture thereof
JPH03247703A (en) Manufacture of permanent magnet
JPH02252219A (en) Manufacture of rare earth element magnet
JPH05135921A (en) Rare earth permanent magnet and its manufacture
JPH05315113A (en) Manufacture of permanent magnet
JPH09270347A (en) Method of producing rare earth bond magnet