JP4124461B2 - Manufacturing method of rare earth sintered magnet - Google Patents

Manufacturing method of rare earth sintered magnet Download PDF

Info

Publication number
JP4124461B2
JP4124461B2 JP2003425139A JP2003425139A JP4124461B2 JP 4124461 B2 JP4124461 B2 JP 4124461B2 JP 2003425139 A JP2003425139 A JP 2003425139A JP 2003425139 A JP2003425139 A JP 2003425139A JP 4124461 B2 JP4124461 B2 JP 4124461B2
Authority
JP
Japan
Prior art keywords
rare earth
magnet
sintering
mesh
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003425139A
Other languages
Japanese (ja)
Other versions
JP2005183810A (en
Inventor
好春 河合
確 竹渕
元彰 宝迫
和人 山沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003425139A priority Critical patent/JP4124461B2/en
Publication of JP2005183810A publication Critical patent/JP2005183810A/en
Application granted granted Critical
Publication of JP4124461B2 publication Critical patent/JP4124461B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、希土類元素を含む希土類焼結磁石の製造方法に関し、特に、希土類焼結磁石の製造歩留まりを向上させるための技術に関する。   The present invention relates to a method for producing a rare earth sintered magnet containing a rare earth element, and more particularly to a technique for improving the production yield of a rare earth sintered magnet.

希土類焼結磁石、例えばNd−Fe−B系焼結磁石は、磁気特性に優れていること、主成分であるNdが資源的に豊富で比較的安価であること等の利点を有することから、近年、その需要は益々拡大する傾向にある。このような状況から、Nd−Fe−B系焼結磁石の磁気特性を向上するための研究開発や、品質の高い希土類焼結磁石を製造するための製造方法の改良等が各方面において進められている。   Rare earth sintered magnets, for example, Nd-Fe-B based sintered magnets have advantages such as excellent magnetic properties, Nd as a main component is abundant in resources, and is relatively inexpensive. In recent years, the demand has been increasing. Under these circumstances, research and development for improving the magnetic properties of Nd—Fe—B based sintered magnets and improvement of manufacturing methods for producing high quality rare earth sintered magnets are being promoted in various fields. ing.

希土類焼結磁石は、基本的には、原料合金を粉砕して得た合金粉末を磁場中でプレス成形して磁石成形体を形成し、この磁石成形体を焼結炉において焼結処理することにより製造されるが、磁石成形体を焼結炉に曝露した状態で焼結を行うと、焼結炉の内部に存在する酸素や水蒸気等の不純物ガスが磁石成形体に悪影響を及ぼすことがある。このため、焼結ケースと呼ばれる密閉型の構造体に磁石成形体を収容し、この状態にて磁石成形体は焼結を施される。   Basically, rare earth sintered magnets are obtained by press-molding an alloy powder obtained by pulverizing a raw material alloy in a magnetic field to form a magnet compact, and sintering the magnet compact in a sintering furnace. However, if sintering is performed with the magnet compact exposed to a sintering furnace, impurity gases such as oxygen and water vapor present inside the sintering furnace may adversely affect the magnet compact. . For this reason, the magnet compact is accommodated in a sealed structure called a sintered case, and the magnet compact is sintered in this state.

ところで、焼結工程の生産効率向上のために、焼結ケース内で磁石成形体を積層して焼結することも行われている。この場合、焼結時に高熱が加わることによる、上下方向の磁石成形体同士の熔着を防止することが重要であり、例えば特許文献1においては、磁石成形体を載せる焼結プレートを開口部から水平方向にスライド可能とし、焼結ケース内に焼結プレートを多段に設置する構成が提案されている。   By the way, in order to improve the production efficiency of the sintering process, a magnet molded body is laminated and sintered in a sintering case. In this case, it is important to prevent welding of the magnet molded bodies in the vertical direction due to high heat applied during sintering. For example, in Patent Document 1, a sintered plate on which a magnet molded body is placed is opened from the opening. A configuration has been proposed in which a slidable plate is horizontally slidable and a sintered plate is installed in multiple stages in a sintered case.

しかしながら、このような焼結ケースは、大型且つ複雑な構造であるため、非常に高価である。また、複雑な構造の焼結ケースは、磁石成形体の焼結処理の際に例えば1000℃を上回るような高温加熱処理を受けるため、熱変形しやすく、短寿命であり、交換費用も高額になるという不都合がある。   However, such a sintered case is very expensive because it has a large and complicated structure. In addition, since the sintered case with a complicated structure is subjected to a high-temperature heat treatment exceeding, for example, 1000 ° C. during the sintering process of the magnet compact, it is easily deformed by heat, has a short life, and is expensive to replace. There is an inconvenience of becoming.

このため、金属等からなる板の上に磁石成形体を載置したものを単純に複数枚積層し、これを箱状等の簡単な構造の焼結ケースに収容して、焼結することも考えられるが、焼結時には焼結用ケースは高温とされるため、磁石成形体と焼結用ケース又は金属からなる板とが接触した箇所で熔着するという問題がある。磁石成形体と焼結用ケース又は金属からなる板とが熔着すると、熔着した磁石成形体から焼結ケース等を剥がしとるのに多大な労力及び時間を要するばかりか、これら剥がしとる際に大きな力を加えるために磁石成形体にカケやワレ等の外観不良を引き起こすこと、均一な焼結ができないために変形や焼結不足による特性劣化を生じること等の問題がある。   For this reason, it is also possible to simply stack a plurality of magnets mounted on a plate made of metal or the like and place them in a sintering case having a simple structure such as a box shape and sinter them. Although it is conceivable, since the sintering case is heated at the time of sintering, there is a problem that the magnet molded body and the sintering case or a metal plate are welded at a contact point. When a magnet molded body and a sintering case or a metal plate are welded, it takes a lot of labor and time to peel off the sintered case etc. from the welded magnet molded body. There are problems such as causing an appearance defect such as chipping or cracking in the magnet molded body to apply a large force, and causing deterioration of characteristics due to deformation or insufficient sintering because uniform sintering is not possible.

そこで、焼結用ケース等に、磁石成形体が熔着し難い材料(Moやステンレス等)を採用することも行われているが(例えば特許文献1及び特許文献2参照)、単に焼結用ケースや焼結用治具にMoやステンレスを用いただけでは、磁石成形体と焼結用ケース又は焼結用治具との熔着を完全に防止することはできない。   In view of this, it has been practiced to employ a material (Mo, stainless steel, etc.) in which the magnet compact is difficult to weld to the sintering case (see, for example, Patent Document 1 and Patent Document 2). If only Mo or stainless steel is used for the case or the sintering jig, it is not possible to completely prevent the magnet molded body from being welded to the sintering case or the sintering jig.

また、磁石成形体と焼結用ケースや焼結用治具との熔着を防止するために、磁石成形体を並べる板上にアルミナ粉末等の磁石成形体との反応性の低い粉末を散布する手法もある(例えば特許文献2参照)が、この場合、(1)粉末をある程度均一にまぶす必要があるため作業に長時間を要すること、(2)焼結終了後に磁石成形体やケース底面に粉末が密着しているためこれらをきれいに剥がしとる工程の負荷が大きいこと、(3)特に焼結後の磁石成形体に付着した粉末を剥がしとる際に大きな力を加えるため、磁石成形体にカケやキズ等の外観不良をたびたび起こすこと等の欠点があり、この結果、歩留まりの低下を引き起こす。   In addition, in order to prevent welding between the magnet compact and the sintering case or sintering jig, a powder having low reactivity with the magnet compact, such as alumina powder, is spread on the plate on which the magnet compact is arranged. There are also techniques (see, for example, Patent Document 2). In this case, however, (1) it is necessary to coat the powder uniformly to some extent, so that it takes a long time to work, and (2) the magnet molded body and the bottom of the case after the sintering is finished. Because the powder is closely attached to the magnet, the load of the process of removing these cleanly is large. (3) In particular, a large force is applied when removing the powder adhering to the magnet compact after sintering. There are drawbacks such as frequent appearance defects such as cracks and scratches, resulting in a decrease in yield.

一方、焼結ケースと磁石成形体との熔着を防ぐための焼結用治具としては、Mo又はMo基合金網を用いることが提案されている(例えば、特許文献3参照)。このMo製金網を焼結ケース底面に敷いた敷板と磁石成形体との間に介在させることにより、焼結時に磁石成形体と敷板との付着を防ぐことができるとされている。
特開2000−315611号公報 特開2002−20803号公報 特開平6−7875号公報
On the other hand, using a Mo or Mo-based alloy net has been proposed as a sintering jig for preventing welding between the sintered case and the magnet compact (see, for example, Patent Document 3). By interposing this Mo metal mesh between the base plate laid on the bottom of the sintered case and the magnet molded body, it is said that adhesion between the magnet molded body and the base plate can be prevented during sintering.
JP 2000-315611 A Japanese Patent Laid-Open No. 2002-20803 JP-A-6-7875

しかしながら、特許文献3においては、成形体を並べるための敷板と成形体との間にMo又はMo基合金網を挟むことについては記載されているものの、磁石成形体を積層して焼結する場合については想定されていない。特許文献3記載のMo又はMo基合金網の表面は、圧延加工によって実質的に平坦とされているため、磁石成形体を積層すると磁石成形体に大きな負荷がかかり、網と磁石成形体とが熔着しやすくなるため、歩留まりの低下を引き起こすものと考えられる。   However, in Patent Document 3, although it is described that a Mo or Mo-based alloy net is sandwiched between a base plate for arranging the compacts and the compact, the magnet compacts are laminated and sintered. Is not assumed. Since the surface of the Mo or Mo-based alloy net described in Patent Document 3 is substantially flat by rolling, a large load is applied to the magnet compact when the magnet compact is laminated, and the net and the magnet compact are separated. Since it becomes easy to weld, it is thought that it causes the fall of a yield.

また、上述のような焼結ケースは、密閉型とはいえ焼結炉内に存在する不純物ガスの焼結ケース内部への流入は避けられず、この結果、焼結ケースを用いない場合と同様に焼結炉内の不純物ガスが様々な悪影響を及ぼし、希土類焼結磁石の歩留まりを低下させるという問題がある。そこで本出願人は、希土類焼結磁石を製造する際に、磁石成形体を金属箔で包み込んだ状態で焼結する技術を考案した。この技術によれば、焼結炉内の不純物ガスを金属箔が吸収し、磁石成形体の汚染を防止できるとされる。しかしながら、この技術では、磁石成形体と金属箔とが接触した部分で熔着し、特性の劣化を招き、磁石成形体から金属箔を剥離する際に外観不良を引き起こす等、歩留まりが低下するおそれがある。   Moreover, although the above-mentioned sintering case is a closed type, inflow of impurity gas existing in the sintering furnace into the inside of the sintering case is unavoidable, and as a result, it is the same as the case where the sintering case is not used. In addition, the impurity gas in the sintering furnace has various adverse effects, and there is a problem that the yield of the rare earth sintered magnet is lowered. Therefore, the present applicant has devised a technique for sintering a magnet compact in a state of being wrapped with a metal foil when manufacturing a rare earth sintered magnet. According to this technique, the metal foil absorbs the impurity gas in the sintering furnace, and contamination of the magnet compact can be prevented. However, in this technique, the magnet molded body and the metal foil are welded at a contact portion, which causes deterioration of characteristics and may cause a poor appearance when the metal foil is peeled off from the magnet molded body. There is.

そこで本発明は、このような従来の実情に鑑みて提案されたものであり、焼結時に使用する部品の磁石成形体への熔着を抑制し、歩留まりの向上を図ることが可能な希土類焼結磁石の製造方法を提供することを目的とする。   Therefore, the present invention has been proposed in view of such a conventional situation, and it is possible to suppress the welding of the parts used during sintering to the magnet compact and to improve the yield. It aims at providing the manufacturing method of a magnet.

本発明者らは、上述の問題を解決するために検討を重ねた結果、磁石成形体同士の熔着や、磁石成形体と焼結時に使用する部品との熔着を回避する手段として、メッシュ状の板の使用が極めて有効であることを見出した。   As a result of repeated studies to solve the above-mentioned problems, the inventors of the present invention have adopted a mesh as a means for avoiding welding between magnet molded bodies and welding between a magnet molded body and parts used during sintering. We have found that the use of a plate-like plate is extremely effective.

本発明は、このような知見に基づいて完成されたものであり、希土類元素を含む磁石成形体を焼結する希土類焼結磁石の製造方法であって、前記磁石成形体をメッシュ状の板を介して積層し上下にメッシュ状の板を配して積層構造体とするとともに、当該積層構造体全体の周囲を金属箔で包み込み、さらに金属箔で包み込んだ積層構造体を容器内に収容して前記焼結を行うことを特徴とする。 The present invention has been completed on the basis of such knowledge, and is a method for producing a rare earth sintered magnet for sintering a magnet molded body containing a rare earth element. And a mesh structure is placed on the top and bottom to form a laminated structure, and the entire periphery of the laminated structure is wrapped with metal foil, and the laminated structure wrapped with metal foil is further contained in a container. The sintering is performed.

以上のような希土類焼結磁石の製造方法によれば、メッシュ状の板を介して積層した状態で希土類元素を含む磁石成形体を焼結することにより、上下間での磁石成形体の熔着を防止できる。また、メッシュ状の板は、磁石成形体との接触面積が少なく熔着し難いため、磁石成形体を積層して焼結する場合であっても、磁石成形体への熔着が抑制される。このため、熔着に起因する変形や焼結不足がなく、また、磁石成形体へ熔着した部品等を剥離する作業が不要となるので、外観不良の発生がなく、歩留まり向上が実現される。   According to the manufacturing method of the rare earth sintered magnet as described above, the magnet compact including the rare earth element is sintered in a state of being laminated through the mesh-like plate, thereby welding the magnet compact between the upper and lower sides. Can be prevented. Further, since the mesh-like plate has a small contact area with the magnet molded body and is difficult to weld, even when the magnet molded body is laminated and sintered, the welding to the magnet molded body is suppressed. . For this reason, there is no deformation or lack of sintering due to welding, and there is no need to peel off the parts welded to the magnet molded body, so there is no appearance defect and an improvement in yield is realized. .

さらに、磁石成形体を金属箔で包み込むことにより、例えば焼結炉内に存在する不純物ガスを金属箔が吸着するため、不純物ガスによる磁石成形体の汚染が抑制される。この結果、不純物ガスによる磁石成形体の変形や、特性の劣化等の不都合が抑制され、歩留まり向上が実現される。また、金属箔と磁石成形体との間にメッシュ状の板を介在させることにより、金属箔と磁石成形体との接触が点接触となり、接触面積が最小限に抑えられるので、これらが熔着することが防止される。このため、熔着に起因する変形や焼結不足がなく、また、磁石成形体へ熔着した部品等を剥離する作業が不要となるので、外観不良の発生や歩留まりの向上が実現される。 Furthermore, since the metal foil adsorbs the impurity gas present in the sintering furnace, for example, by wrapping the magnet molded body with the metal foil, the contamination of the magnet molded body with the impurity gas is suppressed. As a result, inconveniences such as deformation of the magnet molded body due to the impurity gas and deterioration of characteristics are suppressed, and the yield is improved. In addition, by interposing a mesh-like plate between the metal foil and the magnet molded body, the contact between the metal foil and the magnet molded body becomes point contact, and the contact area is minimized, so these are welded. Is prevented. For this reason, there is no deformation or lack of sintering due to welding, and an operation of peeling off the parts and the like welded to the magnet molded body is not required, so that the appearance defects are generated and the yield is improved.

なお、本願明細書においては、焼結処理前の焼結前磁石成形体、焼結処理中の焼結中磁石成形体、及び焼結処理終了後の焼結体をまとめて磁石成形体と呼ぶこととする。また、本願明細書における焼結とは、希土類焼結磁石を製造するために磁石成形体を加熱処理することであり、化学反応を伴う焼成も含む用語である。   In the present specification, the pre-sintered magnet molded body before the sintering process, the sintered magnet molded body during the sintering process, and the sintered body after the sintering process are collectively referred to as a magnet molded body. I will do it. Further, the term “sintering” in the specification of the present application refers to heat treatment of a magnet molded body in order to produce a rare earth sintered magnet, and is a term including firing accompanied by a chemical reaction.

本発明によれば、メッシュ状の板を介して磁石成形体を積層することにより、磁石成形体とメッシュ状の板との熔着及び磁石成形体同士の熔着の両方を防止でき、歩留まりの向上を図ることができる。また、磁石成形体を積層して焼結することにより、一度に多量の磁石成形体を焼結処理できるため、生産性の大幅な向上を図ることができる。   According to the present invention, by laminating the magnet molded body through the mesh-shaped plate, it is possible to prevent both the welding of the magnet molded body and the mesh-shaped plate and the welding of the magnet molded bodies, and the yield. Improvements can be made. Further, by laminating and sintering the magnet compacts, a large amount of magnet compacts can be sintered at a time, so that the productivity can be greatly improved.

また、本発明によれば、磁石成形体を包む金属箔が不純物ガスによる磁石成形体の汚染を抑制するとともに、磁石成形体と金属箔との間にメッシュ状の板を介在させることにより金属箔と磁石成形体との熔着が抑制されるため、歩留まりの向上を図ることができる。   Further, according to the present invention, the metal foil that wraps the magnet molded body suppresses contamination of the magnet molded body by the impurity gas, and the metal foil is provided by interposing a mesh plate between the magnet molded body and the metal foil. Therefore, the yield can be improved.

以下、本発明に係る希土類焼結磁石の製造方法について、図面を参照しながら説明する。
本発明の希土類焼結磁石の製造方法は、磁石成形体の焼結用ケース、焼結用平板、金属箔等の各種焼結用部品への熔着や、磁石成形体同士の熔着を防止するために、メッシュ状の板状の薄板を用いることに主な特徴がある。以下では、最初に本発明の希土類焼結磁石の製造方法により製造される希土類焼結磁石について説明し、次に、希土類焼結磁石の製造方法の概略について説明し、それから磁石成形体を積層して焼結する際に上下の磁石成形体間にメッシュ状の板を介在させる方法について説明し、次に、磁石成形体と磁石成形体の不純物ガスによる汚染を防止するための金属箔との間にメッシュ状の板を介在させる方法について説明することとする。
Hereinafter, a method for producing a rare earth sintered magnet according to the present invention will be described with reference to the drawings.
The method for producing a rare earth sintered magnet according to the present invention prevents welding of a magnet molded body to various sintering parts such as a sintering case, a flat plate for sintering, a metal foil, and welding between magnet molded bodies. Therefore, the main feature is to use a mesh-like plate-like thin plate. In the following, a rare earth sintered magnet manufactured by the method of manufacturing a rare earth sintered magnet according to the present invention will be described first, then an outline of the method of manufacturing the rare earth sintered magnet will be described, and then a magnet compact is laminated. Next, a method for interposing a mesh plate between upper and lower magnet compacts during sintering will be described, and then, between the magnet compact and the metal foil for preventing contamination of the magnet compact by impurity gas. A method of interposing a mesh-like plate in the case will be described.

本発明の希土類焼結磁石の製造方法の製造対象となる希土類焼結磁石は、希土類元素を主成分とするものである。磁石組成としては、例えば、R−T−B(Rは希土類元素の1種又は2種以上、但し希土類元素はYを含む概念である。TはFeまたはFe及びCoを必須とする遷移金属元素の1種または2種以上であり、Bはホウ素である。)系希土類焼結磁石とする場合、磁気特性に優れた希土類焼結磁石を得るためには、焼結後の磁石組成において、希土類元素Rが20〜40重量%、ホウ素Bが0.5〜4.5重量%、残部が遷移金属元素Tとなるような配合組成とすることが好ましい。ここで、Rは、希土類元素、すなわちY、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Yb及びLuから選ばれる1種、または2種以上である。中でも、Ndは、資源的に豊富で比較的安価であることから、主成分をNdとすることが好ましい。また、Dyの含有は異方性磁界を増加させるため、保磁力Hcjを向上させる上で有効である。   The rare earth sintered magnet to be manufactured by the method for manufacturing a rare earth sintered magnet of the present invention is mainly composed of a rare earth element. As the magnet composition, for example, R-T-B (R is one or more of rare earth elements, where the rare earth element is a concept including Y. T is a transition metal element in which Fe or Fe and Co are essential. In the case of using a rare earth sintered magnet having excellent magnetic properties, in the magnet composition after sintering, the rare earth It is preferable that the composition be such that the element R is 20 to 40% by weight, the boron B is 0.5 to 4.5% by weight, and the balance is the transition metal element T. Here, R is one or more selected from rare earth elements, that is, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, and Lu. Especially, since Nd is abundant in resources and relatively inexpensive, the main component is preferably Nd. Further, the inclusion of Dy is effective in improving the coercive force Hcj because it increases the anisotropic magnetic field.

あるいは、添加元素Mを加えて、R−T−B−M系希土類焼結磁石とすることも可能である。この場合、添加元素Mとしては、Al、Cr、Mn、Mg、Si、Cu、C、Nb、Sn、W、V、Zr、Ti、Mo、Bi、Ga等を挙げることができ、これらの1種または2種以上を選択して添加することができる。これら添加元素Mの添加量は、残留磁束密度等の磁気特性を考慮して、3重量%以下とすることが好ましい。添加元素Mの添加量が多すぎると、磁気特性が劣化するおそれがある。   Alternatively, the additive element M can be added to form an R-T-B-M rare earth sintered magnet. In this case, examples of the additive element M include Al, Cr, Mn, Mg, Si, Cu, C, Nb, Sn, W, V, Zr, Ti, Mo, Bi, and Ga. A seed | species or 2 or more types can be selected and added. The addition amount of these additional elements M is preferably 3% by weight or less in consideration of magnetic characteristics such as residual magnetic flux density. If the amount of additive element M added is too large, the magnetic properties may be deteriorated.

また、本発明の希土類焼結磁石の製造方法により、SmCo系希土類焼結磁石や、SmFeN系磁石粉末等を製造することもできる。勿論、これら組成に限らず、希土類焼結磁石として従来公知の組成全般に適用可能であることは言うまでもない。   In addition, SmCo-based rare earth sintered magnets, SmFeN-based magnet powders, and the like can be manufactured by the method for manufacturing a rare earth sintered magnet of the present invention. Of course, it is needless to say that the present invention is not limited to these compositions, and can be applied to all known compositions as rare earth sintered magnets.

次に、本発明の希土類焼結磁石の製造方法について説明する。希土類焼結磁石を製造するには、例えば粉末冶金法が採用される。以下、希土類焼結磁石の粉末冶金法による製造方法について説明する。   Next, the manufacturing method of the rare earth sintered magnet of this invention is demonstrated. For producing a rare earth sintered magnet, for example, a powder metallurgy method is employed. Hereinafter, a method for producing a rare earth sintered magnet by powder metallurgy will be described.

図1は、粉末冶金法による希土類焼結磁石の製造プロセスの一例を示すものである。この製造プロセスは、基本的には、合金化工程1、粗粉砕工程2、微粉砕工程3、磁場中成形工程4、焼結・時効工程5、加工工程6、及び表面処理工程7とにより構成される。なお、酸化防止のために、焼結後までの各工程は、ほとんどの工程を真空中、あるいは不活性ガス雰囲気中(窒素雰囲気中、Ar雰囲気中等)で行う。   FIG. 1 shows an example of a process for producing a rare earth sintered magnet by powder metallurgy. This manufacturing process basically includes an alloying step 1, a coarse pulverizing step 2, a fine pulverizing step 3, a magnetic field forming step 4, a sintering / aging step 5, a processing step 6, and a surface treatment step 7. Is done. In order to prevent oxidation, most of the steps after sintering are performed in a vacuum or in an inert gas atmosphere (in a nitrogen atmosphere, an Ar atmosphere, etc.).

合金化工程1では、原料となる金属、あるいは合金を磁石組成に応じて配合し、真空あるいは不活性ガス、例えばAr雰囲気中で溶解し、鋳造することにより合金化する。鋳造法としては、溶融した高温の液体金属を回転ロール上に供給し、合金薄板を連続的に鋳造するストリップキャスト法(連続鋳造法)が生産性等の観点から好適であるが、本発明はそれに限ったものではない。原料金属(合金)としては、純希土類元素、希土類合金、純鉄、フェロボロン、さらにはこれらの合金等を使用することができる。凝固偏析を解消すること等を目的に、必要に応じて溶体化処理を行ってもよい。溶体化処理の条件としては、例えば真空またはAr雰囲気下、700〜1500℃領域で1時間以上保持する。   In the alloying step 1, a metal or alloy as a raw material is blended according to the magnet composition, melted in a vacuum or an inert gas, for example, Ar atmosphere, and cast into an alloy. As a casting method, a strip casting method (continuous casting method) in which molten high-temperature liquid metal is supplied onto a rotating roll and an alloy thin plate is continuously cast is preferable from the viewpoint of productivity and the like. It is not limited to that. As the raw material metal (alloy), pure rare earth elements, rare earth alloys, pure iron, ferroboron, and alloys thereof can be used. A solution treatment may be performed as necessary for the purpose of eliminating solidification segregation. As a condition for the solution treatment, for example, it is held in a 700 to 1500 ° C. region for 1 hour or more under vacuum or Ar atmosphere.

合金はほぼ最終磁石組成である単一の合金を用いても、最終磁石組成になるように、組成の異なる複数種類の合金を混合しても良い。混合は合金・原料粗粉・原料微粉のどの工程でもよいが、混合性から合金での混合が望ましい。   As the alloy, a single alloy having a final magnet composition may be used, or a plurality of types of alloys having different compositions may be mixed so as to have a final magnet composition. Mixing may be performed in any process of alloy, raw material coarse powder, and raw material fine powder.

粗粉砕工程2では、先に鋳造した原料合金の薄板、あるいはインゴット等を、粒径数百μm程度になるまで粉砕する。粉砕手段としては、スタンプミル、ジョークラッシャー、ブラウンミル等を用いることができる。粗粉砕性を向上させるために、水素を吸蔵させた後、粗粉砕を行うことが効果的である。   In the coarse pulverization step 2, the previously cast raw alloy thin plate, ingot or the like is pulverized until the particle size is about several hundreds of micrometers. As the pulverizing means, a stamp mill, a jaw crusher, a brown mill, or the like can be used. In order to improve the coarse pulverization property, it is effective to perform coarse pulverization after occlusion of hydrogen.

前記粗粉砕工程2は、複数の粉砕手段を組み合わせた複数工程により構成することも可能である。例えば、粗粉砕工程2は、水素粉砕工程と、機械的粗粉砕工程の2工程とすることができる。水素粉砕工程は、鋳造した原料合金に水素を吸蔵させ、相によって水素吸蔵量が異なることを利用して、自己崩壊的に粉砕する工程である。これにより、粒径数mm程度の大きさに粉砕することができる。機械的粗粉砕工程は、先にも述べたようなブラウンミル等の機械的手法を利用して粉砕する工程であり、前記水素粉砕工程により数mm程度の大きさに粉砕された原料合金粉を、粒径数十μm程度になるまで粉砕する。水素粉砕工程を行う場合、機械的粗粉砕工程は省略することも可能である。   The coarse pulverization step 2 can be constituted by a plurality of steps in which a plurality of pulverization means are combined. For example, the coarse pulverization step 2 can be two steps of a hydrogen pulverization step and a mechanical coarse pulverization step. The hydrogen pulverization step is a step in which hydrogen is occluded in the cast raw material alloy and pulverized in a self-destructive manner utilizing the fact that the hydrogen occlusion amount varies depending on the phase. Thereby, it can grind | pulverize to the magnitude | size about particle size several mm. The mechanical coarse pulverization step is a step of pulverizing using a mechanical method such as a brown mill as described above. The raw alloy powder pulverized to a size of about several millimeters by the hydrogen pulverization step is used. Then, pulverize until the particle size is about several tens of μm. When performing the hydrogen pulverization step, the mechanical coarse pulverization step may be omitted.

前述の粗粉砕工程2が終了した後、通常、粗粉砕した原料合金粉に粉砕助剤を添加する。粉砕助剤としては、例えば脂肪酸系化合物等を使用することができるが、特に、脂肪酸アミドを粉砕助剤として用いることで、良好な磁気特性を有する希土類焼結磁石を得ることができる。粉砕助剤の添加量としては、0.03〜0.4重量%とすることが好ましい。この範囲内で粉砕助剤を添加した場合、焼結後の残留炭素の量を低減することができ、希土類焼結磁石の磁気特性を向上させる上で有効である。   After the coarse pulverization step 2 is completed, a pulverization aid is usually added to the coarsely pulverized raw material alloy powder. As the grinding aid, for example, a fatty acid compound or the like can be used. In particular, by using a fatty acid amide as the grinding aid, a rare earth sintered magnet having good magnetic properties can be obtained. The addition amount of the grinding aid is preferably 0.03 to 0.4% by weight. When the grinding aid is added within this range, the amount of residual carbon after sintering can be reduced, which is effective in improving the magnetic properties of the rare earth sintered magnet.

粗粉砕工程2の後、微粉砕工程3を行うが、この微粉砕工程3は、例えばジェットミルを使用して行われる。微粉砕の際の条件は、用いる気流式粉砕機に応じて適宜設定すればよく、原料合金粉を平均粒径が1〜10μm程度、例えば3〜6μmとなるまで微粉砕する。ジェットミルは、高圧の不活性ガス(例えば窒素ガス)を狭いノズルより開放して高速のガス流を発生させ、この高速のガス流により粉体の粒子を加速し、粉体の粒子同士の衝突や、ターゲットあるいは容器壁との衝突を発生させて粉砕する方法である。ジェットミルは、一般的に、流動層を利用するジェットミル、渦流を利用するジェットミル、衝突板を用いるジェットミル等に分類される。   After the coarse pulverization step 2, a fine pulverization step 3 is performed. The fine pulverization step 3 is performed using, for example, a jet mill. The conditions for fine pulverization may be appropriately set according to the airflow pulverizer to be used, and the raw material alloy powder is finely pulverized until the average particle size becomes about 1 to 10 μm, for example, 3 to 6 μm. A jet mill opens a high-pressure inert gas (for example, nitrogen gas) from a narrow nozzle to generate a high-speed gas flow, accelerates powder particles by this high-speed gas flow, and collides powder particles with each other. Or, it is a method of crushing by generating a collision with a target or a container wall. Jet mills are generally classified into jet mills that use fluidized beds, jet mills that use vortex flow, jet mills that use impingement plates, and the like.

微粉砕工程3の後、磁場中成形工程4において、原料合金微粉を磁場中にて成形する。具体的には、微粉砕工程3にて得られた原料合金微粉を電磁石を配置した金型内に充填し、磁場印加によって結晶軸を配向させた状態で磁場中成形する。磁場中成形は、縦磁場成形、横磁場成形のいずれであってもよい。この磁場中成形は、例えば800〜1500kA/mの磁場中で、130〜160MPa前後の圧力で行えばよい。   After the pulverizing step 3, in the forming step 4 in the magnetic field, the raw material alloy fine powder is formed in the magnetic field. Specifically, the raw material alloy fine powder obtained in the fine pulverization step 3 is filled in a mold in which an electromagnet is arranged, and is molded in a magnetic field with a crystal axis oriented by applying a magnetic field. Forming in the magnetic field may be either longitudinal magnetic field shaping or transverse magnetic field shaping. The forming in the magnetic field may be performed at a pressure of about 130 to 160 MPa in a magnetic field of 800 to 1500 kA / m, for example.

次に焼結・時効工程5において、焼結及び時効処理を実施する。すなわち、原料合金微粉を磁場中成形後、磁石成形体を真空または不活性ガス雰囲気中(窒素雰囲気中、Ar雰囲気中等)で焼結する。焼結温度は、組成、粉砕方法、粒度と粒度分布の違い等、諸条件により調整する必要があるが、例えば1000〜1150℃で5時間程度焼結すればよく、焼結後、急冷することが好ましい。焼結後、得られた焼結体に時効処理を施すことが好ましい。この時効処理は、得られる希土類焼結磁石の保磁力Hcjを制御する上で重要な工程であり、例えば不活性ガス雰囲気中あるいは真空中で時効処理を施す。時効処理としては、2段時効処理が好ましく、1段目の時効処理工程では、800℃前後の温度で1〜3時間保持する。次いで、室温〜200℃の範囲内にまで急冷する第1急冷工程を設ける。2段目の時効処理工程では、550℃前後の温度で1〜3時間保持する。次いで、室温まで急冷する第2急冷工程を設ける。600℃近傍の熱処理で保磁力Hcjが大きく増加するため、時効処理を一段で行う場合には、600℃近傍の時効処理を施すとよい。   Next, in the sintering / aging step 5, sintering and aging treatment are performed. That is, after forming the raw material alloy fine powder in a magnetic field, the magnet compact is sintered in a vacuum or in an inert gas atmosphere (in a nitrogen atmosphere, an Ar atmosphere, or the like). The sintering temperature needs to be adjusted according to various conditions such as composition, pulverization method, difference in particle size and particle size distribution, etc. For example, sintering may be performed at 1000 to 1150 ° C. for about 5 hours, and rapid cooling after sintering. Is preferred. After sintering, the obtained sintered body is preferably subjected to aging treatment. This aging treatment is an important step in controlling the coercive force Hcj of the obtained rare earth sintered magnet. For example, the aging treatment is performed in an inert gas atmosphere or in a vacuum. As the aging treatment, a two-stage aging treatment is preferable, and in the first aging treatment step, the temperature is maintained at a temperature of about 800 ° C. for 1 to 3 hours. Next, a first quenching step is provided for quenching to room temperature to 200 ° C. In the second stage aging treatment step, the temperature is maintained at about 550 ° C. for 1 to 3 hours. Next, a second quenching step for quenching to room temperature is provided. Since the coercive force Hcj is greatly increased by heat treatment at around 600 ° C., when aging treatment is performed in a single stage, it is advisable to perform aging treatment at around 600 ° C.

前記焼結・時効工程5の後、加工工程6及び表面処理工程7を行う。加工工程6は、所望の形状に機械的に成形する工程である。表面処理工程7は、得られた希土類焼結磁石の酸化を抑えるために行う工程であり、例えばメッキ被膜や樹脂被膜を希土類焼結磁石の表面に形成する。   After the sintering / aging step 5, a processing step 6 and a surface treatment step 7 are performed. The processing step 6 is a step of mechanically forming into a desired shape. The surface treatment process 7 is a process performed to suppress oxidation of the obtained rare earth sintered magnet. For example, a plating film or a resin film is formed on the surface of the rare earth sintered magnet.

本発明では、以上の製造プロセスの焼結・時効工程5において、磁石成形体の焼結用ケースや焼結用部品への熔着や、磁石成形体同士の熔着を防止するために、図2に示すようなメッシュ10を用いることに主な特徴がある。以下、メッシュ10を用いた焼結の一例について、図3を参照しながら詳細に説明する。   In the present invention, in the sintering and aging process 5 of the above manufacturing process, in order to prevent the magnet molded body from being welded to the sintering case or the sintered part, or between the magnet molded bodies, The main feature is in using the mesh 10 as shown in FIG. Hereinafter, an example of sintering using the mesh 10 will be described in detail with reference to FIG.

焼結・時効工程において、図3に示すように、磁石成形体11は、底面12及び側壁13を有し開口部を有する本体14と、開口部を閉塞する例えばMoからなる蓋体15とで囲まれる空間に収容される。本体の底面12にメッシュ10が敷かれ、このメッシュ10上に所定の間隔を有して複数の磁石成形体11が載置される。底面12にメッシュ10を配置することにより、1段目の磁石成形体11と本体底面12との接触を防ぎ熔着を防止することができる。これら1段目の磁石成形体11の上にメッシュ10が載せられ、当該メッシュ10上に所定の間隔を有してさらに複数の磁石成形体11が載置される。これを繰り返すことにより、メッシュ10を介して4段の磁石成形体11が積層される。   In the sintering and aging process, as shown in FIG. 3, the magnet molded body 11 includes a main body 14 having a bottom surface 12 and a side wall 13 and an opening, and a lid 15 made of, for example, Mo that closes the opening. Housed in the enclosed space. A mesh 10 is laid on the bottom surface 12 of the main body, and a plurality of magnet molded bodies 11 are placed on the mesh 10 with a predetermined interval. By disposing the mesh 10 on the bottom surface 12, it is possible to prevent contact between the first-stage magnet molded body 11 and the main body bottom surface 12 and to prevent welding. The mesh 10 is placed on the first-stage magnet molded body 11, and a plurality of magnet molded bodies 11 are further placed on the mesh 10 with a predetermined interval. By repeating this, the four-stage magnet molded body 11 is laminated via the mesh 10.

ここで用いるメッシュ10としては、特に限定されないが、金属からなる線材を編んで薄板状とされたもの等を用いることができる。一般に、金属製のメッシュ状の板としては、金属線材を編むことにより表面が略波状を呈するものと、金属線材を編んだ後に圧延加工等を施すことにより、表面が波状を呈することなく実質的に平坦とされたものとがあるが、本発明では、金属線材を編むことにより表面が略波状を呈するメッシュ状の板を用いることが好ましい。なぜなら、メッシュ10とメッシュ10の上下に配される磁石成形体11とが点接触するため、メッシュ10と磁石成形体11とが熔着し難く、たとえ熔着した場合にもこれらの剥離が容易であるからである。圧延加工等を施すことにより表面が実質的に平坦とされたメッシュ状の板は、磁石成形体11との接触面積が大きくなるため、メッシュ状の板と磁石成形体11との熔着を抑制する効果は小さく、特に磁石成形体11を積層して焼結する場合においては、磁石成形体11とメッシュ状の板との熔着が著しいという問題がある。   Although it does not specifically limit as the mesh 10 used here, The thing etc. which knit the wire which consists of metals and made it thin plate shape etc. can be used. Generally, as a metal mesh-like plate, the surface is substantially wavy by knitting a metal wire, and the surface is substantially wavy without rolling by applying a rolling process after knitting the metal wire. However, in the present invention, it is preferable to use a mesh-like plate having a substantially wavy surface by knitting a metal wire. Because the mesh 10 and the magnet molded body 11 disposed above and below the mesh 10 are in point contact, the mesh 10 and the magnet molded body 11 are difficult to weld, and even when they are welded, they can be easily peeled off. Because. The mesh plate whose surface is made substantially flat by rolling or the like has a large contact area with the magnet molded body 11, and therefore suppresses the welding between the mesh plate and the magnet molded body 11. In particular, when the magnet molded body 11 is laminated and sintered, there is a problem that the magnet molded body 11 and the mesh plate are significantly welded.

メッシュ10を構成する材料としては、特に限定されないが、例えばMoや、Moを含有する合金等を用いることができる。メッシュ10の線材の間隔(以下、単にメッシュ間隔という。)の適切値は、載置される磁石成形体11の形状や寸法によって異なるが、0.05mm以上とすることが好ましい。メッシュ間隔が0.05mmを下回ると、小さな磁石成形体11を載せた場合に安定性が確保されず、また、大きな磁石成形体11を載せた場合に線材と磁石成形体11との接触部分に荷重がかかり、変形や変色が発生することがある。ただし、メッシュ10と磁石成形体11との熔着を考慮すると、メッシュ間隔は、5mm以下であることが好ましい。また、メッシュ間隔は、0.5mm〜2.5mmがより好ましい。なお、ここでいうメッシュ間隔は、図4に示すように、ある一の線材10aの幅方向端部bから、当該線材10aを含んで隣り合う線材10cの線材10a側の端部dまでの距離を表す。   Although it does not specifically limit as a material which comprises the mesh 10, For example, Mo, the alloy containing Mo, etc. can be used. An appropriate value of the spacing between the wire rods of the mesh 10 (hereinafter simply referred to as mesh spacing) varies depending on the shape and size of the magnet molded body 11 to be placed, but is preferably 0.05 mm or more. When the mesh interval is less than 0.05 mm, stability is not secured when the small magnet molded body 11 is placed, and when the large magnet molded body 11 is placed, the contact portion between the wire rod and the magnet molded body 11 is not secured. A load is applied, and deformation or discoloration may occur. However, considering the welding between the mesh 10 and the magnet molded body 11, the mesh interval is preferably 5 mm or less. The mesh interval is more preferably 0.5 mm to 2.5 mm. In addition, the mesh space | interval here is the distance from the width direction edge part b of a certain one wire 10a to the edge part d by the side of the wire 10a of the adjacent wire 10c including the said wire 10a, as shown in FIG. Represents.

本体14は、磁石成形体11を載置可能であれば、箱状に限らず、いかなる形状であってもよい。本体14の材料としては、一般的な希土類焼結磁石の焼結用ケース等に用いられる材料をいずれも用いることができ、例えばMo、Ti、W、Ir等の高融点金属、アルミナ等のセラミック、カーボン等が挙げられる。磁石成形体11としては、円筒状、棒状等、いかなる形状でもよく、また、粉末状であってもよい。   The main body 14 is not limited to a box shape and may have any shape as long as the magnet molded body 11 can be placed thereon. As the material of the main body 14, any material used for a case for sintering a general rare earth sintered magnet can be used. For example, a high melting point metal such as Mo, Ti, W, Ir, or a ceramic such as alumina. And carbon. The magnet molded body 11 may have any shape such as a cylindrical shape or a rod shape, or may be a powder shape.

図3に示すように、焼結工程において、積層した磁石成形体11の間にメッシュ10を介在させることにより、磁石成形体11同士の熔着を防止することができる。また、従来は、積層した磁石成形体同士の熔着防止のため、磁石成形体の間にアルミナ粉末や鉄粉等を介在させていたため、これら粉末を均一に散布する作業や磁石成形体からこれら粉末を除去する作業が必要であったが、本発明では磁石成形体11の間にメッシュ10を配置するだけでよいので、作業時間の大幅な短縮を図ることができる。このように、メッシュ10を用いることにより、磁石成形体11同士の熔着を防止できるため、熔着した磁石成形体11を剥離する作業が不要となり、剥離作業に起因する磁石成形体11のカケ、ワレ等が発生しなくなり、歩留まり向上を実現することができる。また、作業時間も短縮できる。さらに、磁石成形体11を積層して焼結することにより、一度に多数の磁石成形体11を焼結でき、生産性向上にも貢献できる。   As shown in FIG. 3, in the sintering process, by interposing the mesh 10 between the laminated magnet molded bodies 11, welding of the magnet molded bodies 11 can be prevented. In addition, conventionally, alumina powder and iron powder have been interposed between magnet molded bodies in order to prevent adhesion between laminated magnet molded bodies. Although the operation | work which removes powder was required, since it is only necessary to arrange | position the mesh 10 between the magnet moldings 11 in this invention, the working time can be shortened significantly. As described above, since the mesh 10 can be used to prevent the magnet molded bodies 11 from being welded to each other, the work of peeling the welded magnet molded bodies 11 is not necessary, and the magnet molded body 11 caused by the peeling work is broken. As a result, cracks and the like are not generated, and the yield can be improved. In addition, the work time can be shortened. Furthermore, by laminating and sintering the magnet compacts 11, it is possible to sinter a large number of magnet compacts 11 at a time, contributing to productivity improvement.

なお、積層した磁石成形体11同士の熔着防止のため金属板を用いることも考えられるが、メッシュ10は金属板に比べて軽量であるため、荷重付加が小さくなるという利点もある。   Although it is conceivable to use a metal plate to prevent the laminated magnet molded bodies 11 from being welded to each other, the mesh 10 is lighter than the metal plate, and therefore has the advantage of less load application.

以上、本発明を適用した焼結工程の一例について説明したが、本発明においては、例えば図5に示すように、不純物ガスによる磁石成形体11の汚染防止を目的として金属箔16を用いるとともに、金属箔16と磁石成形体11との熔着防止を目的としてメッシュ10を用いる方法を採用することもできる。なお、図5の説明では、図3と同じ部材については同じ符号を付して、ここでは詳細な説明を省略する。   As described above, an example of the sintering process to which the present invention is applied has been described. In the present invention, for example, as shown in FIG. 5, the metal foil 16 is used for the purpose of preventing contamination of the magnet molded body 11 with impurity gas, A method using the mesh 10 may be employed for the purpose of preventing the metal foil 16 and the magnet molded body 11 from being welded. In the description of FIG. 5, the same members as those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof is omitted here.

図3に示すように、磁石成形体11は、金属箔16によって包まれるとともに、底面12及び側壁13を有し開口部を有する本体14と、開口部を閉塞する例えばMoからなる蓋体15とで囲まれる空間に収容される。すなわち、本体の底面12に金属箔16が敷かれ、この金属箔16上にメッシュ10が載せられ、このメッシュ10上に所定の間隔を有して複数の磁石成形体11が載置される。これら磁石成形体11の上に、磁石成形体11の下に配置されたメッシュ10と同じメッシュ10を載せ、これらを金属箔16で包み込む。   As shown in FIG. 3, the magnet molded body 11 is wrapped with a metal foil 16, and has a main body 14 having an opening and a bottom surface 12 and a side wall 13, and a lid 15 made of, for example, Mo that closes the opening. It is accommodated in the space surrounded by. That is, the metal foil 16 is laid on the bottom surface 12 of the main body, the mesh 10 is placed on the metal foil 16, and the plurality of magnet molded bodies 11 are placed on the mesh 10 with a predetermined interval. The same mesh 10 as the mesh 10 disposed under the magnet molded body 11 is placed on the magnet molded body 11, and these are wrapped with a metal foil 16.

金属箔16としては、焼結時の最高焼結温度よりも高い融点を持つ金属であれば特に制限なく使用でき、例えばNb箔、Ti箔、白金箔、ステンレス箔等が挙げられる。金属箔16の種類は目的に応じて適宜選択すればよく、価格や入手容易性を勘案するとステンレス箔を用いることが好ましく、また、焼結時には酸素等が放出されることにより、本体の内壁や他の磁石成形体11を汚染するおそれがあるため、酸素吸着性を勘案するとNb箔を用いることが好ましい。   As the metal foil 16, any metal having a melting point higher than the maximum sintering temperature at the time of sintering can be used without particular limitation, and examples thereof include Nb foil, Ti foil, platinum foil, and stainless steel foil. The type of the metal foil 16 may be appropriately selected according to the purpose, and it is preferable to use a stainless steel foil in consideration of the price and availability. Also, when oxygen and the like are released during sintering, Since there exists a possibility of contaminating the other magnet molded object 11, it is preferable to use Nb foil when oxygen adsorption property is considered.

金属箔16の厚みとしては特に制限はないが、0.001mm〜0.2mmの範囲内とすることが好ましく、この範囲とすることにより、優れた耐破損性及び充分な不純物ガスの吸着能の実現と、優れたフレキシブル性、ハンドリング性の確保及び価格抑制を両立することができる。また、金属箔16のより好ましい範囲は0.003mm〜0.1mmであり、さらに好ましい範囲は0.005mm〜0.05mmである。   Although there is no restriction | limiting in particular as thickness of the metal foil 16, It is preferable to set it as the range of 0.001 mm-0.2 mm, and by setting it as this range, it was excellent in breakage resistance and sufficient adsorption capacity of impurity gas. It is possible to achieve both realization and excellent flexibility and handling, and price control. Moreover, the more preferable range of the metal foil 16 is 0.003 mm to 0.1 mm, and the more preferable range is 0.005 mm to 0.05 mm.

金属箔16は、1枚の金属箔でもよいが、気密性の向上や使用中の破損の危険性を低減する目的で、金属箔を2重、3重、又はそれ以上重ねて用いてもよい。重ねる金属は、異種でも同種でも構わない。例えば、金属箔16を、酸素吸着性に優れるNb箔を内側に、耐破損性に優れるステンレス箔を外側に配した2重構造とすることにより、焼結時の磁石成形体11の酸化防止と、焼結用構造物の気密性の維持とを両立することができる。   The metal foil 16 may be a single metal foil, but the metal foil may be used in a double, triple, or more layer for the purpose of improving hermeticity and reducing the risk of breakage during use. . The metals to be stacked may be different or the same. For example, by forming the metal foil 16 into a double structure in which an Nb foil having excellent oxygen adsorptivity is arranged on the inside and a stainless steel foil having excellent damage resistance is arranged on the outside, the oxidation of the magnet compact 11 during sintering can be prevented. It is possible to achieve both the maintenance of the airtightness of the structure for sintering.

焼結時に焼結用構造物1が収容される焼結炉には酸素や水蒸気等の不純物ガスが存在するが、図5に示すように、磁石成形体11を金属箔16で包み込んで内部に密閉することにより、金属箔16が不純物ガスを吸着し、金属箔16内部に収容した磁石成形体11の汚染を抑制する。このため、不純物ガスによる磁石成形体11の変形や、特性の劣化等の不都合を抑制し、歩留まり向上を図ることができる。また、金属箔16は簡単に交換できるので、新品と交換することにより、磁石成形体11の汚染をよりいっそう抑制し、さらに歩留まりを高めることができる。   Impurity gases such as oxygen and water vapor are present in the sintering furnace in which the sintering structure 1 is accommodated during the sintering, but as shown in FIG. By sealing, the metal foil 16 adsorbs the impurity gas and suppresses contamination of the magnet molded body 11 accommodated in the metal foil 16. For this reason, it is possible to suppress inconveniences such as deformation of the magnet molded body 11 due to the impurity gas and deterioration of characteristics, and to improve the yield. In addition, since the metal foil 16 can be easily replaced, the replacement of the metal foil 16 with a new one can further suppress contamination of the magnet molded body 11 and further increase the yield.

また、汚染や破損の度合いに応じて金属箔16を新しいものと交換する必要があるものの、金属箔16は従来の剛性のある焼結ケースに比べて格段に安価であるため、金属箔16が破損しやすく交換頻度が高いことを考慮しても製造コストを低減することができる。さらに、金属箔16が破損したり汚染された場合には、新品の金属箔16と容易に交換することができ、交換にかかるコストもわずかで済む。   Further, although it is necessary to replace the metal foil 16 with a new one according to the degree of contamination or breakage, the metal foil 16 is much cheaper than the conventional rigid sintered case. The manufacturing cost can be reduced even in consideration of easy breakage and high replacement frequency. Further, when the metal foil 16 is damaged or contaminated, it can be easily replaced with a new metal foil 16, and the cost for the replacement is small.

さらにまた、焼結工程において、金属箔16と磁石成形体11との間にメッシュ10を介在させることにより、磁石成形体11と金属箔16との接触を防止し、これらが熔着することを防止することができる。このため、磁石成形体11に熔着した金属箔16を剥離する作業が不要であり、作業時間を短縮できるのと同時に、剥離作業に起因する磁石成形体11のカケ、ワレ等が発生しなくなり、歩留まり向上を実現することができる。   Furthermore, in the sintering process, the mesh 10 is interposed between the metal foil 16 and the magnet molded body 11, thereby preventing the magnet molded body 11 and the metal foil 16 from contacting each other and welding them. Can be prevented. For this reason, the operation | work which peels off the metal foil 16 welded to the magnet molded object 11 is unnecessary, and while work time can be shortened, the crack of the magnet molded object 11 resulting from a peeling operation, a crack, etc. do not generate | occur | produce. Yield improvement can be realized.

以下、本発明を適用した具体的な実施例について、実験結果に基づいて説明する。なお、本発明が以下の実施例の記載に限定されるものでないことは言うまでもない。   Hereinafter, specific examples to which the present invention is applied will be described based on experimental results. In addition, it cannot be overemphasized that this invention is not limited to description of a following example.

<実施例1>
実施例1では、円筒状のNdFeB磁石を製造した。先ず、粉末冶金法により、Nd30重量%、Dy3重量%、Fe65重量%、B1重量%、Co1重量%からなる組成を持つ、直径10mm、厚さ10mmのNdFeB系円筒状磁石成形体を成形した。
<Example 1>
In Example 1, a cylindrical NdFeB magnet was manufactured. First, an NdFeB-based cylindrical magnet compact having a diameter of 10 mm and a thickness of 10 mm having a composition of Nd 30 wt%, Dy 3 wt%, Fe 65 wt%, B 1 wt%, and Co 1 wt% was formed by powder metallurgy.

焼結・時効工程では、図6に示す構造の焼結用構造物を用いた。図6の焼結用構造物は、底面12及び側壁13を有する本体14の内壁が金属箔16で覆われるとともに、本体14の開口部が例えばMoからなる蓋体15によって閉塞されている。図6においては、メッシュ10の上に複数の磁石成形体11を並べたものを4段積層し、さらにメッシュ10を重ねたものを、金属箔16が包み込んでいる。   In the sintering / aging process, a structure for sintering having the structure shown in FIG. 6 was used. 6, the inner wall of the main body 14 having the bottom surface 12 and the side wall 13 is covered with a metal foil 16, and the opening of the main body 14 is closed with a lid 15 made of, for example, Mo. In FIG. 6, a metal foil 16 wraps four layers of a plurality of magnet molded bodies 11 arranged on the mesh 10 and further overlaps the mesh 10.

この焼結用構造物の本体は肉厚2.0mmのMo製である。また、金属箔は、厚さ0.01mmのステンレス箔を用い、本体内側の底面及び側面を覆った。   The main body of the structure for sintering is made of Mo having a thickness of 2.0 mm. Moreover, the metal foil used the stainless steel foil of thickness 0.01mm, and covered the bottom face and side surface inside a main body.

次に、焼結用構造物の底面金属箔の上に、Mo製の#24(メッシュ間隔1mm)、線径0.35mmのメッシュを載せ、メッシュの上に磁石成形体を重なり合わないように並べて配置した。配置された磁石成形体の上に、底面に敷いたものと同様のメッシュを載せ、さらにこの上に磁石成形体を並べて配置した。同様にして、メッシュ上に載せられた磁石成形体を4段設置し、最上段の磁石成形体上にメッシュを載せた。次に、最上部のメッシュ上にステンレス箔を被せ、磁石成形体及びメッシュ全体をステンレス箔で覆い、余った端部をメッシュ上部に折り込むことにより、磁石成形体及びメッシュを包み込んだ。   Next, a # 24 mesh made of Mo (mesh spacing 1 mm) and a wire diameter of 0.35 mm is placed on the bottom metal foil of the sintering structure so that the magnet compact is not overlapped on the mesh. Arranged side by side. The same mesh as that laid on the bottom surface was placed on the placed magnet molded body, and the magnet molded bodies were further arranged side by side. Similarly, four stages of magnet moldings placed on the mesh were installed, and the mesh was placed on the uppermost magnet molding. Next, the uppermost mesh was covered with a stainless steel foil, the magnet molded body and the entire mesh were covered with the stainless steel foil, and the remaining end was folded into the upper part of the mesh, thereby enclosing the magnet molded body and the mesh.

この状態で、焼結炉内で焼結し、時効処理を行って実施例1の希土類磁石を得た。焼結は、焼結温度1100℃とし、真空中において2時間焼結し、その後焼結温度800℃で1時間焼結した。その後、550℃、2.5時間、時効処理を行った。   In this state, sintering was performed in a sintering furnace, and an aging treatment was performed to obtain the rare earth magnet of Example 1. Sintering was performed at a sintering temperature of 1100 ° C., sintering in vacuum for 2 hours, and then sintering at a sintering temperature of 800 ° C. for 1 hour. Thereafter, an aging treatment was performed at 550 ° C. for 2.5 hours.

<比較例1>
メッシュの代わりに、焼結用構造物の底面金属箔の上に鉄粉を均一に散布したこと、及び磁石成形体上に鉄粉を均一に散布したこと以外は、実施例1と同様にして比較例1の希土類焼結磁石を作製した。
<Comparative Example 1>
Instead of the mesh, the same procedure as in Example 1 was performed except that the iron powder was uniformly dispersed on the bottom metal foil of the structure for sintering and the iron powder was uniformly dispersed on the magnet molded body. A rare earth sintered magnet of Comparative Example 1 was produced.

以上の実施例1と比較例1とを比較すると、焼結・時効処理終了後の比較例1においては、磁石成形体と鉄粉とが熔着しており、磁石成形体から鉄粉を剥離する作業が必要であったのに対して、実施例1においては、磁石成形体と焼結治具であるメッシュとの熔着が全く認められなかった。また、磁石成形体同士の熔着も認められなかった。その結果、磁石成形体からメッシュ等の焼結用治具を剥離するという作業が不要となった。   Comparing Example 1 and Comparative Example 1 above, in Comparative Example 1 after completion of the sintering / aging treatment, the magnet compact and the iron powder are welded, and the iron powder is peeled off from the magnet compact. On the other hand, in Example 1, no fusion between the magnet compact and the mesh as the sintering jig was observed. Further, no welding between the magnet compacts was observed. As a result, an operation of peeling a sintering jig such as a mesh from the magnet compact becomes unnecessary.

以上の実施例1及び比較例1の希土類焼結磁石について、カケ又はワレが認められなかったものを良品、カケ又はワレが生じたものを不良品として評価した。その結果、比較例1の不良率が7%であったのに対し、実施例1の不良率は2%であり、大幅に改善されていることがわかった。   Regarding the rare earth sintered magnets of Example 1 and Comparative Example 1 described above, those in which no chipping or cracking was observed were evaluated as non-defective products, and those in which chipping or cracking occurred were evaluated as defective products. As a result, the defective rate of Comparative Example 1 was 7%, whereas the defective rate of Example 1 was 2%, which was found to be greatly improved.

また、実施例1及び比較例1の製品歩留まりについても評価した。その結果、製品歩留まりに関しては、比較例1では93%であったのに対して、実施例1では98%に向上した。さらに、実施例1では、磁石成形体へ金属箔が付着することを完全に防止できた。メッシュへの金属箔の付着は多少みられたが、メッシュに付着した金属箔は容易に剥離することができ、比較例1に比べて作業効率が向上した。   Moreover, the product yield of Example 1 and Comparative Example 1 was also evaluated. As a result, the product yield increased to 93% in Example 1 compared to 93% in Comparative Example 1. Furthermore, in Example 1, it was possible to completely prevent the metal foil from adhering to the magnet molded body. Although the metal foil attached to the mesh was somewhat observed, the metal foil attached to the mesh could be easily peeled off, and the working efficiency was improved as compared with Comparative Example 1.

<実施例2>
本実施例では、以下のようにして棒状のSmCo磁石を製造した。
先ず、粉末冶金法により、Sm25重量%、Fe15重量%、Cu5重量%、Zr2重量%、残部Coからなる組成を持つ、縦40mm、横15mm、高さ20mmのSmCo系棒状磁石成形体11を成形した。
<Example 2>
In this example, a rod-shaped SmCo magnet was manufactured as follows.
First, by a powder metallurgy method, a SmCo-based bar magnet compact 11 having a composition of Sm 25% by weight, Fe 15% by weight, Cu 5% by weight, Zr 2% by weight and the balance Co and having a length of 40 mm, a width of 15 mm, and a height of 20 mm is formed. did.

焼結・時効工程では、図5に示す構造の焼結用構造物を用いた。この焼結用構造物の本体としては、肉厚2.0mmのMo製ケースを用いた。また、金属箔としては、厚さ0.01mmのステンレス箔及びNb箔を、Nb箔を内側に、ステンレス箔を外側に配して重ね合わせたものを用いた。   In the sintering / aging process, a structure for sintering having the structure shown in FIG. 5 was used. As the main body of the structure for sintering, a Mo case having a thickness of 2.0 mm was used. Further, as the metal foil, a stainless steel foil and a Nb foil having a thickness of 0.01 mm were superposed with the Nb foil on the inside and the stainless steel foil on the outside.

この金属箔で、Mo製ケースの底面及び内側側面を覆った。次に、焼結用構造物の底面金属箔の上に、Mo製の#24(メッシュ間隔1mm)、線径0.35mmのメッシュを載せ、メッシュの上に磁石成形体を重なり合わないように並べて配置した。配置された磁石成形体の上に、底面に敷いたものと同様のメッシュを載せ、2重とされた金属箔(ステンレス箔及びNb箔)を上側メッシュの上に折り込んだ。さらに、別の2重とされた金属箔をかぶせ、完全に磁石成形体及びメッシュを包み込んだ。これら磁石成形体及びメッシュを包み込んだ金属箔上に、Mo板を載せた。   With this metal foil, the bottom surface and the inner side surface of the Mo case were covered. Next, a # 24 mesh made of Mo (mesh spacing 1 mm) and a wire diameter of 0.35 mm is placed on the bottom metal foil of the sintering structure so that the magnet compact is not overlapped on the mesh. Arranged side by side. A mesh similar to that laid on the bottom surface was placed on the placed magnet molded body, and a double metal foil (stainless steel foil and Nb foil) was folded on the upper mesh. Further, another double metal foil was covered to completely enclose the magnet molded body and the mesh. An Mo plate was placed on the metal foil enclosing the magnet compact and the mesh.

この状態で、焼結炉内で焼結し、時効処理を行って実施例2の希土類磁石を得た。焼結は、焼結温度1200℃とし、真空中において2時間焼結し、その後焼結温度1150℃で1時間焼結した。その後、時効処理を行い、実施例2の希土類焼結磁石を得た。   In this state, sintering was performed in a sintering furnace, and an aging treatment was performed to obtain a rare earth magnet of Example 2. Sintering was performed at a sintering temperature of 1200 ° C., sintering in vacuum for 2 hours, and then sintering at a sintering temperature of 1150 ° C. for 1 hour. Thereafter, an aging treatment was performed to obtain a rare earth sintered magnet of Example 2.

<比較例2>
メッシュの代わりに、焼結用構造物の底面金属箔の上に鉄粉を均一に散布したこと、及び磁石成形体上に鉄粉を均一に散布したこと以外は、実施例2と同様にして比較例2の希土類焼結磁石を作製した。
<Comparative example 2>
Instead of the mesh, the same procedure as in Example 2 was performed except that the iron powder was uniformly dispersed on the bottom metal foil of the structure for sintering and the iron powder was uniformly dispersed on the magnet molded body. A rare earth sintered magnet of Comparative Example 2 was produced.

以上の実施例2と比較例2とを比較すると、焼結・時効処理終了後の比較例2においては、磁石成形体と鉄粉とが熔着しており、磁石成形体から鉄粉を剥離する作業が必要であったのに対して、実施例2においては、磁石成形体と焼結治具であるメッシュとの熔着が全く認められず、その結果、磁石成形体からメッシュ等の焼結用治具を剥離するという作業が不要となった。   Comparing Example 2 and Comparative Example 2 above, in Comparative Example 2 after completion of the sintering and aging treatment, the magnet compact and the iron powder are welded, and the iron powder is peeled off from the magnet compact. However, in Example 2, welding between the magnet compact and the mesh as the sintering jig was not recognized at all, and as a result, the magnet compact was sintered from the mesh. The work of peeling the linking jig is no longer necessary.

また、実施例2及び比較例2の希土類焼結磁石について、カケ又はワレが認められなかったものを良品、カケ又はワレが生じたものを不良品として評価した。その結果、比較例2の不良率が7%であったのに対し、実施例2の不良率は2%であり、大幅に改善されていることがわかった。   Moreover, about the rare earth sintered magnets of Example 2 and Comparative Example 2, those in which no chipping or cracking was observed were evaluated as good, and those in which chipping or cracking occurred were evaluated as defective. As a result, the defective rate of Comparative Example 2 was 7%, whereas the defective rate of Example 2 was 2%, which was found to be greatly improved.

さらに、実施例2及び比較例2の製品歩留まりについても評価した。その結果、製品歩留まりに関しては、比較例2では93%であったのに対して、実施例2では98%に向上した。さらにまた、実施例2では、磁石成形体へ金属箔が付着することを完全に防止できた。メッシュへの金属箔の付着は多少みられたが、メッシュに付着した金属箔は容易に剥離することができ、比較例2に比べて作業効率が向上した。   Furthermore, the product yield of Example 2 and Comparative Example 2 was also evaluated. As a result, the product yield was 93% in Comparative Example 2, but increased to 98% in Example 2. Furthermore, in Example 2, it was possible to completely prevent the metal foil from adhering to the magnet molded body. Although some metal foil was attached to the mesh, the metal foil attached to the mesh could be easily peeled off, and the working efficiency was improved as compared with Comparative Example 2.

希土類焼結磁石の製造プロセスの一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of a rare earth sintered magnet. 本発明の希土類焼結磁石の製造方法に用いられるメッシュの平面図である。It is a top view of the mesh used for the manufacturing method of the rare earth sintered magnet of this invention. 焼結・時効工程の一例を説明する断面図である。It is sectional drawing explaining an example of a sintering and an aging process. メッシュの線材の間隔を説明するための平面図である。It is a top view for demonstrating the space | interval of the wire rod of a mesh. 焼結・時効工程の他の例を説明する断面図である。It is sectional drawing explaining the other example of a sintering and an aging process. 実施例1の焼結・時効工程を説明するための断面図であるIt is sectional drawing for demonstrating the sintering and aging process of Example 1.

符号の説明Explanation of symbols

10 メッシュ、11 磁石成形体、12 底面、13 側壁、14 本体、15 蓋体、16 金属箔 10 mesh, 11 magnet molded body, 12 bottom surface, 13 side wall, 14 body, 15 lid, 16 metal foil

Claims (13)

希土類元素を含む磁石成形体を焼結する希土類焼結磁石の製造方法であって、前記磁石成形体をメッシュ状の板を介して積層し上下にメッシュ状の板を配して積層構造体とするとともに、当該積層構造体全体の周囲を金属箔で包み込み、さらに金属箔で包み込んだ積層構造体を容器内に収容して前記焼結を行うことを特徴とする希土類焼結磁石の製造方法。 A method for producing a rare earth sintered magnet for sintering a magnet molded body containing a rare earth element, wherein the magnet molded body is laminated via a mesh plate, and a mesh structure plate is arranged above and below the laminated structure. In addition, a method for producing a rare earth sintered magnet, comprising: surrounding the entire laminated structure with a metal foil, further housing the laminated structure wrapped with the metal foil in a container, and performing the sintering. 前記磁石成形体をメッシュ状の板を介して多段に積層し上下にメッシュ状の板を配して積層構造体とし、当該積層体全体の周囲を金属箔で包み込み、さらに金属箔で包み込んだ積層構造体を密閉容器内に収容して前記焼結を行うことを特徴とする請求項1記載の希土類焼結磁石の製造方法。 The magnet molded body is laminated in multiple stages via a mesh-like plate and a mesh-like plate is arranged on the upper and lower sides to form a laminated structure, and the periphery of the entire laminate is wrapped with metal foil, and further laminated with metal foil The method for producing a rare earth sintered magnet according to claim 1, wherein the structure is contained in a sealed container and the sintering is performed. 前記メッシュ状の板は、線材が網状に織られたものであり、表面が略波状を呈していることを特徴とする請求項1記載の希土類焼結磁石の製造方法。   2. The method for producing a rare earth sintered magnet according to claim 1, wherein the mesh-shaped plate is made of a wire woven in a net-like shape, and has a substantially wavy surface. 前記メッシュ状の板は、Mo又はMoを含む合金からなることを特徴とする請求項1記載の希土類焼結磁石の製造方法。   The method of manufacturing a rare earth sintered magnet according to claim 1, wherein the mesh plate is made of Mo or an alloy containing Mo. 前記メッシュ状の板の線材の間隔が0.05mm〜5mmであることを特徴とする請求項1記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 1, wherein an interval between the wires of the mesh-shaped plate is 0.05 mm to 5 mm. 前記メッシュ状の板の線材の間隔が0.5mm〜2.5mmであることを特徴とする請求項5記載の希土類焼結磁石の製造方法。   6. The method for producing a rare earth sintered magnet according to claim 5, wherein an interval between the wires of the mesh plate is 0.5 mm to 2.5 mm. 前記金属箔の厚みが0.001mm〜0.2mmであることを特徴とする請求項1記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 1, wherein the metal foil has a thickness of 0.001 mm to 0.2 mm. 前記金属箔の厚みが0.003mm〜0.1mmであることを特徴とする請求項7記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 7, wherein the metal foil has a thickness of 0.003 mm to 0.1 mm. 前記金属箔の厚みが0.005mm〜0.05mmであることを特徴とする請求項8記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 8, wherein the metal foil has a thickness of 0.005 mm to 0.05 mm. 前記金属箔の融点が最高焼結温度よりも高いことを特徴とする請求項1記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 1, wherein the melting point of the metal foil is higher than a maximum sintering temperature. 前記金属箔が、Nb箔、Ti箔、白金箔、ステンレス箔から選ばれる1種又は2種以上であることを特徴とする請求項1記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 1, wherein the metal foil is one or more selected from Nb foil, Ti foil, platinum foil, and stainless steel foil. 前記金属箔が、Nb箔及び/又はステンレス箔であることを特徴とする請求項11記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 11, wherein the metal foil is an Nb foil and / or a stainless steel foil. 前記金属箔が、内側からNb箔、ステンレス箔の順に重ねられた2重構造を有することを特徴とする請求項12記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 12, wherein the metal foil has a double structure in which an Nb foil and a stainless steel foil are laminated in this order from the inside.
JP2003425139A 2003-12-22 2003-12-22 Manufacturing method of rare earth sintered magnet Expired - Lifetime JP4124461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003425139A JP4124461B2 (en) 2003-12-22 2003-12-22 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003425139A JP4124461B2 (en) 2003-12-22 2003-12-22 Manufacturing method of rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2005183810A JP2005183810A (en) 2005-07-07
JP4124461B2 true JP4124461B2 (en) 2008-07-23

Family

ID=34785119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003425139A Expired - Lifetime JP4124461B2 (en) 2003-12-22 2003-12-22 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP4124461B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5317489B2 (en) * 2008-02-04 2013-10-16 三菱電機株式会社 Method for manufacturing rotor of permanent magnet type rotating electric machine
JP5871172B2 (en) * 2011-04-28 2016-03-01 日立金属株式会社 Method for producing RTB-based sintered magnet
JP5888503B2 (en) * 2012-03-16 2016-03-22 Tdk株式会社 Manufacturing method of rare earth sintered magnet
JP5965189B2 (en) * 2012-04-03 2016-08-03 住友電気工業株式会社 Heat treatment method for dust cores
KR102045406B1 (en) * 2019-04-04 2019-11-15 성림첨단산업(주) Method Of rare earth sintered magnet
KR102159079B1 (en) * 2019-09-30 2020-09-23 성림첨단산업(주) Method Of rare earth sintered magnet

Also Published As

Publication number Publication date
JP2005183810A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
CN1969347B (en) Production method for magnetic-anisotropy rare-earth sintered magnet and production device therefor
US8361242B2 (en) Powders for rare earth magnets, rare earth magnets and methods for manufacturing the same
JP5401328B2 (en) Recycling method of scrap magnet
US8317937B2 (en) Alloy for sintered R-T-B-M magnet and method for producing same
JP2013225533A (en) Method of manufacturing r-t-b-based sintered magnet
CN105448444B (en) A kind of method and rare earth permanent-magnetic material of the rare earth permanent-magnetic material that processability improves
JP2006265601A (en) Vessel for sintering rare earth magnet and method for producing rare earth magnet using the same
JP2013207134A (en) Bulk rh diffusion source
JP2006228937A (en) Manufacturing method of rare earth sintered magnet and device for molding in magnetic field
JP4433282B2 (en) Rare earth magnet manufacturing method and manufacturing apparatus
JP4124461B2 (en) Manufacturing method of rare earth sintered magnet
KR20140090164A (en) Rare earth permanent magnet and method for producing rare earth permanent magnet
JP2007258377A (en) Method of manufacturing rare earth sintered magnet
JP4556236B2 (en) Rare plate for sintering rare earth magnet and method for producing rare earth magnet using the same
JP6691666B2 (en) Method for manufacturing RTB magnet
US7018485B2 (en) Apparatus for subjecting rare earth alloy to hydrogenation process and method for producing rare earth sintered magnet using the apparatus
JP2005285859A (en) Rare-earth magnet and its manufacturing method
JP6691667B2 (en) Method for manufacturing RTB magnet
JP2005285861A (en) Method of manufacturing rare-earth magnet
JP2006156425A (en) Method of manufacturing rare earth sintered magnet, intra-magnetic field molding apparatus, and metal die
JP4600690B2 (en) Manufacturing method of rare earth sintered magnet
JP4605436B2 (en) Sintered magnet sintering jig and method of manufacturing sintered magnet
JP4208073B2 (en) Housing structure for sintering and method for producing rare earth sintered magnet
JP4305927B2 (en) Lubricant removal method
JP2007239032A (en) Sintering vessel and method for producing rare earth magnet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080501

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4124461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

EXPY Cancellation because of completion of term