KR102045406B1 - Method Of rare earth sintered magnet - Google Patents

Method Of rare earth sintered magnet Download PDF

Info

Publication number
KR102045406B1
KR102045406B1 KR1020190039473A KR20190039473A KR102045406B1 KR 102045406 B1 KR102045406 B1 KR 102045406B1 KR 1020190039473 A KR1020190039473 A KR 1020190039473A KR 20190039473 A KR20190039473 A KR 20190039473A KR 102045406 B1 KR102045406 B1 KR 102045406B1
Authority
KR
South Korea
Prior art keywords
rare earth
permanent magnet
earth permanent
earth metal
rare
Prior art date
Application number
KR1020190039473A
Other languages
Korean (ko)
Inventor
공군승
김상봉
장재영
공정희
이상협
Original Assignee
성림첨단산업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성림첨단산업(주) filed Critical 성림첨단산업(주)
Priority to KR1020190039473A priority Critical patent/KR102045406B1/en
Application granted granted Critical
Publication of KR102045406B1 publication Critical patent/KR102045406B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets

Abstract

The present invention relates to a method for manufacturing a rare-earth permanent magnet. According to the present invention, the method for manufacturing a rare-earth permanent magnet comprises: a step of manufacturing a rare-earth permanent magnet of composition of xwt%RE-ywt%B-zwt%TM-bal.wt%Fe (RE=rare-earth element, TM=3d transition element, x=28~35, y=0.5~1.5, z=0~15); a step of processing the rare-earth permanent magnet in a predetermined size; a step of washing the rare-earth permanent magnet sintered; a step of applying heavy rare-earth metal hydrogen compound onto the surface of the rare-earth permanent magnet washed; a step of laminating the rare-earth permanent magnet applied with the heavy rare-earth metal hydrogen compound in a lamination box by release agent powder at multiple layers; a step of inserting the lamination box in which the rare-earth permanent magnet applied with the heavy rare-earth metal hydrogen compound is laminated by the multiple layers into a heating furnace and diffusing the rare-earth element onto a crystal grain of the rare-earth permanent magnet at a vacuum atmosphere or an inert gas atmosphere; a stress removing heat treatment step of inserting the rare-earth permanent magnet in which the heavy rare-earth metal is diffused onto the crystal grain of the rare-earth permanent magnet into the heating furnace and removing the stress and performing heat treatment at the vacuum atmosphere or the inert gas atmosphere; and a final heat treatment step of performing heat treatment after the stress removing heat treatment step.

Description

희토류 영구자석의 제조방법{ Method Of rare earth sintered magnet }Method of manufacturing rare earth permanent magnets {Method Of rare earth sintered magnet}

본 발명은 희토류 영구자석의 경자기특성을 향상시키기 위해 중희토금속이 도포된 희토류 영구자석을 다단으로 적층시 희토류 영구자석 사이에 이형제를 위치시켜 상/하부에 위치한 희토류 영구자석이 융착되는 것을 방지하고, 희토류 영구자석에 도포된 중희토금속의 확산성이 균등화되도록 하는 희토류 영구자석의 제조방법에 관한 것이다.The present invention is to prevent the fusion of rare earth permanent magnets located in the upper and lower portions by placing a release agent between the rare earth permanent magnet when laminating the rare earth permanent magnet coated with heavy rare earth metal in multiple stages to improve the magnetic properties of the rare earth permanent magnet In addition, the present invention relates to a method for producing a rare earth permanent magnet, in which the diffusivity of the heavy rare earth metal applied to the rare earth permanent magnet is equalized.

최근 에너지 저감 및 환경친화형 녹색성장사업이 새로운 이슈로 급부상하면서 자동차산업에서는 화석원료를 사용하는 내연기관을 모터와 병행하여 사용하는 하이브리드차 혹은 환경친화형 에너지원인 수소 등을 대체에너지로 활용하여 전기를 발생시키고 모터를 구동하는 연료전지차에 대한 연구가 활발히 진행되고 있다.Recently, the energy reduction and environmentally friendly green growth projects have emerged as a new issue, and the automobile industry is using hybrid cars using internal combustion engines using fossil raw materials in combination with motors or hydrogen, an environmentally friendly energy source, as alternative energy. The research on the fuel cell vehicle which generates and drives the motor has been actively conducted.

이들 환경친화형 자동차들은 전기에너지를 이용하여 구동되기 때문에 영구자석형 모터 및 발전기가 필연적으로 채용되고 있고, 자성소재 측면에서는 에너지 효율을 더욱 향상시키기 위하여 보다 높은 잔류자속밀도 및 안정적인 보자력을 나타내는 희토류 영구자석에 대한 기술적 수요가 증가하는 추세이다.Since these environmentally friendly cars are driven by electric energy, permanent magnet motors and generators are inevitably employed. In terms of magnetic materials, rare earth permanent motors exhibiting higher residual flux density and stable coercive force to further improve energy efficiency. The technical demand for magnets is increasing.

또한, 자동차의 연비개선을 위한 다른 측면으로는 자동차 부품의 경량화 및 소형화를 실현하여야 하는데, 예를 들어 모터의 경우 경량화 및 소형화 실현을 위해서는 모터의 설계변경과 더불어 영구자석 소재는 기존에 사용되던 페라이트자석을 보다 우수한 자기적 성능을 나타내는 희토류 영구자석으로 대체하는 것이 필수적이다.In addition, other aspects for improving fuel efficiency of automobiles should be realized in light weight and miniaturization of automotive parts. For example, in the case of motors, in order to realize light weight and miniaturization, permanent magnet materials are used in addition to the design of the motor. It is essential to replace magnets with rare earth permanent magnets that exhibit better magnetic performance.

희토류 NdFeB 소결자석은, 하이브리드카(hybrid car) 등의 모터용으로서 점점 수요가 확대되고 있어, 그 보자력(Hcj)을 한층 더 크게 하는 것이 요구되고 있다. NdFeB 소결자석의 보자력(Hcj)을 증대시키기 위하여서는 Nd의 일부를 Dy이나 Tb으로 치환하는 방법이 알려져 있지만, Dy이나 Tb의 자원은 부족하고 또한 편재(偏在)하고 있으며, 또한 이들 원소의 치환에 의하여 NdFeB 소결자석의 잔류자속밀도(Br)나 최대 에너지 적(積)((BH)max)이 저하되는 것이 문제이다Rare earth NdFeB sintered magnets are increasingly being used for motors such as hybrid cars, and the coercive force Hcj is required to be further increased. In order to increase the coercive force (Hcj) of the NdFeB sintered magnet, a method of substituting a part of Nd with Dy or Tb is known, but the resources of Dy and Tb are insufficient and ubiquitous. The problem is that the residual magnetic flux density (Br) and the maximum energy product ((BH) max) of the NdFeB sintered magnet decrease.

최근, 스퍼터링(sputtering)에 의하여 NdFeB 소결자석의 표면에 Dy이나 Tb을 부착시켜, 700∼1000℃로 가열하면, 자석의 잔류자속밀도(Br)을 거의 저하시키지 않고 보자력(Hcj)을 크게 할 수 있는 것이 발견되었다.(비(非)특허문헌 1∼3)In recent years, Dy or Tb adheres to the surface of an NdFeB sintered magnet by sputtering, and when heated to 700 to 1000 ° C., the coercive force Hcj can be increased without substantially reducing the residual magnetic flux density (Br) of the magnet. It was found that there is. (Non-patent documents 1 to 3)

자석 표면에 부착시킨 Dy이나 Tb은, 소결체의 입계(粒界)를 통하여 소결체 내부로 보내져, 입계로부터 주상(主相, main phase) RE2Fe14B(RE은 희토류 원소)의 각 입자의 내부로 확산해 간다.(입계확산) 이때, 입계의 RE 리치상(相)은 가열에 의하여 액화되므로, 입계 속의 Dy이나 Tb의 확산속도는, 입계로부터 주상입자 내부로의 확산속도보다도 훨씬 빠르다.Dy and Tb adhering to the magnet surface are sent to the inside of the sintered body through the grain boundaries of the sintered body, and from each grain inside the particles of the main phase RE 2 Fe 14 B (RE is a rare earth element) from the grain boundaries. At this time, since the RE rich phase of the grain boundary is liquefied by heating, the diffusion rate of Dy and Tb in the grain boundary is much faster than the diffusion rate into the columnar particles from the grain boundary.

이 확산속도의 차를 이용하여, 열처리 온도와 시간을 조정함으로써, 소결체 전체에 걸쳐서, 소결체 속의 주상입자의 입계에 극히 가까운 영역(표면영역)에 있어서만 Dy이나 Tb의 농도가 높은 상태를 실현할 수 있다. NdFeB 소결자석의 보자력(Hcj)은 주상입자의 표면영역의 상태에 따라서 결정되므로, 표면영역의 Dy이나 Tb의 농도가 높은 결정립(結晶粒)을 가지는 NdFeB 소결자석은 고보자력을 가지게 된다. 또한 Dy이나 Tb의 농도가 높아지면 자석의 잔류자속밀도(Br)이 저하되지만, 그와 같은 영역은 각 주상입자의 표면영역만이기 때문에, 주상입자 전체로서는 잔류자속밀도(Br)는 거의 저하되지 않는다. 이와 같이 하여, 보자력(Hcj)이 크며, 잔류자속밀도(Br)는 Dy이나 Tb을 치환하지 않는 NdFeB 소결자석과 그다지 변화없는 고성능 자석을 제조할 수 있는데 이 방법은 입계확산법이라 한다.By adjusting the heat treatment temperature and time by using the difference in the diffusion rate, a high concentration of Dy or Tb can be realized only in a region (surface region) extremely close to the grain boundaries of the columnar particles in the sintered body throughout the sintered body. have. Since the coercive force (Hcj) of the NdFeB sintered magnet is determined according to the state of the surface region of the columnar particles, the NdFeB sintered magnet having a high grain Dy or Tb concentration has a high coercive force. When the concentration of Dy or Tb is increased, the residual magnetic flux density (Br) of the magnet decreases, but since such a region is only the surface area of each columnar particle, the residual magnetic flux density (Br) hardly decreases for the entire columnar particle. Do not. In this way, the coercive force (Hcj) is large, and the residual magnetic flux density (Br) can produce NdFeB sintered magnets, which do not substitute Dy or Tb, and high-performance magnets that do not change much. This method is called grain boundary diffusion method.

입계확산법에 의한 NdFeB 소결자석의 공업적 제조방법으로서, Dy이나 Tb의 플루오르화물(Fluor化物)이나 산화물 미분말층을 NdFeB 소결자석의 표면에 형성하여 가열하는 방법이나, Dy이나 Tb의 플루오르화물이나 산화물의 분말과 수소화 Ca의 분말의 혼합분말 속에 NdFeB 소결자석을 매립하여 가열하는 방법이 이미 발표되어 있다.(비특허문헌 4, 5)As an industrial production method of NdFeB sintered magnet by grain boundary diffusion method, Dy or Tb fluoride or oxide fine powder layer is formed on the surface of NdFeB sintered magnet and heated, or Dy or Tb fluoride or oxide powder A method of embedding and heating an NdFeB sintered magnet in a mixed powder of a powder of perhydrogenated Ca has already been published (Non-Patent Documents 4 and 5).

상기 중희토금속인 Dy이나 Tb 수소화합물 슬러리를 NdFeB 소결자석의 표면에 도포한 후 다층으로 적층한 후 확산로에 장입시켜 가열하면, 적층된 상하부 NdFeB 소결자석이 적층된 소결자석의 자중으로 서로 융착하고, 이때 도포된 중희토금속이 소결자석의 결정립계로 균일하게 확산되지 않는다. 또한 융착된 소결자석을 분리하여야 하는 번거로움이 발생한다.The heavy rare earth metal Dy or Tb hydrogen compound slurry is applied to the surface of the NdFeB sintered magnet, and then laminated in a multi-layer, charged in a diffusion furnace and heated, whereby the laminated upper and lower NdFeB sintered magnets are fused to each other by the weight of the sintered magnet stacked thereon. In this case, the applied heavy rare earth metal is not uniformly diffused to the grain boundaries of the sintered magnet. In addition, the inconvenience of having to separate the sintered magnet is generated.

종래에는 희토류 영구자석 소결체를 알루미나 플레이트에 올려 놓고 다시 알루미나 플레이트를 희토류 영구자석 소결체 위에 올려 놓는 방식으로 적층한 후 이를 확산로에 장입시켜 가열하였으나, 이와 같은 적층방식에 사용되는 알루미나 플레이트는 그 두께를 5㎜ 이하로 얇게 할 수 없어, 장입로에 한번 장입시 희토류 영구자석 소결체의 장입하는데 제한이 있는 단점이 있고, 알루미나 플레이트가 단열기능이 있어, 가열시 알루미나 플레이트에 접한 곳에서 확산온도로 가열되는데 표면보다는 늦게 가열되어 확산시 희토류 영구자석 소결체 표면에서의 확산속도에 차이가 발생되고, 희토류 영구자석 소결체 표면에서의 중희토금속 확산깊이에 차이가 발생되는 단점이 있었다.Conventionally, the rare earth permanent magnet sintered body is placed on an alumina plate, and the alumina plate is laminated on the rare earth permanent magnet sintered body, and then stacked in a diffusion furnace and heated, but the alumina plate used in such a lamination method has a thickness. It cannot be thinned below 5mm and has a disadvantage in that the rare earth permanent magnet sintered body is not charged when it is charged once in the charging path, and the alumina plate has a heat insulation function, and when heated, it is heated to the diffusion temperature in the contact with the alumina plate. There is a disadvantage that the difference in the diffusion rate on the surface of the rare earth permanent magnet sintered body, and the difference in the depth of heavy rare earth metal on the surface of the rare earth permanent magnet sintered body is generated when the diffusion is heated later than the surface.

특허문헌 1에는 희토류 금속분말 성형체를 소결시 성형체 사이에 금속입자를 분산시켜 소결하고, 이후 질산 수용액에 침지하여 소결체를 분리하는 기술이 개시되어 있다. 이는 질산 수용액에 침지하고, 이후 세정하여야 하는 불편함이 있다.Patent Literature 1 discloses a technique of dispersing a metal sintered rare earth metal powder between sintered compacts and sintering, and then immersing in a nitric acid aqueous solution to separate the sintered compacts. This is inconvenient to be immersed in an aqueous solution of nitric acid, and then washed.

특허문헌 2에는 희토류 금속분말 성형체를 소결시 성형체 사이에 산화물분말을 분산시켜 소결하는 기술이 개시되어 있다. 이때 성형온도에서 산화물이 환원되어 희토류 영구자석의 표면에 산소량이 증가하여 자기 특성이 열화하는 단점이 있다.Patent Literature 2 discloses a technique of dispersing a rare earth metal powder compact by sintering the oxide powder between the compacts during sintering. At this time, the oxide is reduced at the molding temperature, the amount of oxygen on the surface of the rare earth permanent magnet is increased, there is a disadvantage that the magnetic properties deteriorate.

일본공개특허공보 특개2006-097092호 (2006년 04월 13일 공개)Japanese Laid-Open Patent Publication No. 2006-097092 (published April 13, 2006) 일본공개특허공보 특개2001-335808호 (2001년 12월 04일 공개)Japanese Patent Laid-Open No. 2001-335808 (published 04 December 2001)

[비특허문헌 1] K T Park et al, "Effect of Metal-Coating and Consecutive [0009] Heat Treatment on Coercivity of Thin Nd-Fe-B Sintered Magnets", Proceedings of the Sixteenth International Workshop on Rare-Earth Magnets and their Applications (2000), pp257-264[Non-Patent Document 1] KT Park et al, "Effect of Metal-Coating and Consecutive Heat Treatment on Coercivity of Thin Nd-Fe-B Sintered Magnets", Proceedings of the Sixteenth International Workshop on Rare-Earth Magnets and their Applications (2000), pp 257-264 [비특허문헌 2] Naoyuki Ishigaki et al, "Surface Modification and Characteristics Improvement of Micro-sized Neodymium Sintered Magnet", NEOMAX Technical Report, published by Kabusiki Kaisha NEOMAX, vol 15(2005), pp15-19[Non-Patent Document 2] Naoyuki Ishigaki et al, "Surface Modification and Characteristics Improvement of Micro-sized Neodymium Sintered Magnet", NEOMAX Technical Report, published by Kabusiki Kaisha NEOMAX, vol 15 (2005), pp 15-19 [비특허문헌 3] Ken-ichi Machida et al, "Grain Boundary Modification and Magnetic Characteristics of Sintered NdFeB Magnet", Speech Summaries of 2004 Spring Meeting of Japan Society of Powder and Powder Metallurgy, published by the Japan Society of Powder and Powder Metallurgy, 1-47A[Non-Patent Document 3] Ken-ichi Machida et al, "Grain Boundary Modification and Magnetic Characteristics of Sintered NdFeB Magnet", Speech Summaries of 2004 Spring Meeting of Japan Society of Powder and Powder Metallurgy, published by the Japan Society of Powder and Powder Metallurgy, 1-47A [비특허문헌 4] Kouichi Hirota et al, "Increase in Coercivity of Sintered NdFeB Magnet by Grain Boundary Diffusion Method", Speech Summaries of 2005 Spring Meeting of Japan Society of Powder and Powder Metallurgy, published by the Japan Society of Powder and Powder Metallurgy, p143[Non-Patent Document 4] Kouichi Hirota et al, "Increase in Coercivity of Sintered NdFeB Magnet by Grain Boundary Diffusion Method", Speech Summaries of 2005 Spring Meeting of Japan Society of Powder and Powder Metallurgy, published by the Japan Society of Powder and Powder Metallurgy, p143 [비특허문헌 5] Ken-ichi Machida et al, "Magnetic Characteristics of Sintered NdFeB Magnet with Modified Grain Boundary", Speech Summaries of 2005 Spring Meeting of Japan Society of Powder and Powder Metallurgy, published by the Japan Society of Powder and Powder Metallurgy, p144[Non-Patent Document 5] Ken-ichi Machida et al, "Magnetic Characteristics of Sintered NdFeB Magnet with Modified Grain Boundary", Speech Summaries of 2005 Spring Meeting of Japan Society of Powder and Powder metallurgy, published by the Japan Society of Powder and Powder Metallurgy, p144

본 발명은 이와 같이 희토류 영구자석 소결체를 적층시 발생하는 문제점을 해결하기 위한 것으로, 구체적으로 중희토금속이 도포된 희토류 영구자석을 다단으로 적층시 희토류 영구자석 사이에 이형제를 위치시켜 희토류 영구자석이 서로 융착되는 것을 방지하고, 희토류 영구자석에 도포된 중희토금속의 확산성을 균등화시키는 희토류 영구자석의 제조방법을 제공하는 것이다.The present invention is to solve the problems occurring when the rare earth permanent magnet sintered body is laminated in this way, specifically, when the rare earth permanent magnet coated with heavy rare earth metal is laminated in multiple stages by placing a release agent between the rare earth permanent magnet rare earth permanent magnet It is to provide a method for producing a rare earth permanent magnet to prevent fusion to each other and to equalize the diffusibility of heavy rare earth metal applied to the rare earth permanent magnet.

본 발명의 또 다른 과제는 중희토금속의 결정립계 확산시 희토류 영구자석 표면에서의 확산속도에 차이가 없어 희토류 영구자석 표면에서의 중희토금속 확산깊이 차이를 감소시키는데 있다.Another object of the present invention is to reduce the difference in the depth of diffusion of heavy rare earth metal on the surface of the rare earth permanent magnet because there is no difference in the diffusion rate on the rare earth permanent magnet surface when the heavy rare earth metal grain boundary diffusion.

본 발명의 또 다른 과제는 확산온도에서 이형제가 환원되어 희토류 영구자석의 표면에 산소량이 증가함으로써 희토류 영구자석의 자기 특성이 열화하는 것을 방지하는데 있다.Another object of the present invention is to prevent the deterioration of magnetic properties of the rare earth permanent magnet by reducing the release agent at the diffusion temperature to increase the amount of oxygen on the surface of the rare earth permanent magnet.

본 발명의 또 다른 과제는 희토류 영구자석 사이에 위치되는 이형제의 두께가 얇아져 종전의 알루미나 플레이트에 비하여 1회의 희토류 영구자석의 가열로 장입량을 증가시키는데 있다.Another object of the present invention is to reduce the thickness of the release agent positioned between the rare earth permanent magnet to increase the amount of charge by heating the rare earth permanent magnet once compared to the conventional alumina plate.

상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 희토류 영구자석의 제조방법은, xwt%RE-ywt%B-zwt%TM-bal.wt%Fe(RE=희토류원소, TM=3d 천이원소, x=28∼35, y=0.5∼1.5, z=0∼15)조성의 희토류 합금을 제조하는 단계; 상기 제조된 합금을 1.0 ~ 5.0㎛ 이하 크기로 분쇄하는 단계; 상기 분쇄된 합금을 자장배향 및 압축성형하여 자화시켜 희토류 영구자석을 제조하는 단계; 상기 자화된 희토류 영구자석을 소결하는 단계; 상기 소결된 희토류 영구자석을 소정규격으로 가공하는 단계; 상기 소결된 희토류 영구자석을 세정하는 단계; 중희토금속 수소화합물을 상기 세정된 희토류 영구자석의 표면에 도포하는 단계; 상기 희토류 수소화합물이 도포된 희토류 영구자석을 적층상자내에 이형제 분말, 중희토금속 수소화합물이 도포된 희토류 영구자석, 이형제분말, 중희토금속 수소화합물이 도포된 희토류 영구자석 순으로 중희토금속 수소화합물이 도포된 희토류 영구자석을 다단으로 적층하는 단계; 상기 중희토금속 수소화합물이 도포된 희토류 영구자석이 다단 적층된 적층상자를 가열로에 장입하고 진공 또는 불활성기체 분위기에서 희토류 영구자석의 결정립계상으로 희토류를 확산시키는 단계; 상기 희토류 영구자석의 결정립계상으로 희토류가 확산된 희토류 영구자석을 가열로에 장입하고 진공 또는 불활성기체 분위기에서 응력제거열처리하는 응력제거열처리단계; 상기 응력제거열처리단계이후 열처리를 하는 최종열처리단계;로 이루어진 것을 특징으로 한다.In order to achieve the object as described above, the method for producing a rare earth permanent magnet according to the present invention, xwt% RE-ywt% B-zwt% TM-bal.wt% Fe (RE = rare earth element, TM = 3d transition element preparing a rare earth alloy having a composition of x = 28 to 35, y = 0.5 to 1.5, and z = 0 to 15); Grinding the prepared alloy to a size of 1.0 to 5.0 μm or less; Magnetizing the ground alloy by magnetic field orientation and compression molding to produce a rare earth permanent magnet; Sintering the magnetized rare earth permanent magnet; Processing the sintered rare earth permanent magnet to a predetermined standard; Cleaning the sintered rare earth permanent magnet; Applying a heavy rare earth metal hydrogen compound to the surface of the washed rare earth permanent magnet; The rare earth permanent magnet to which the rare earth hydrogen compound is applied is placed in a stacking box, and the rare earth permanent magnet to which the releasing agent powder, the rare earth metal hydrogen compound is applied, the releasing agent powder, and the rare earth permanent magnet to which the heavy rare earth metal hydrogen compound is applied are in order. Stacking the coated rare earth permanent magnets in multiple stages; Charging a multi-layer laminated box in which the rare earth permanent magnets coated with the rare earth metal hydrogen compound are stacked in a heating furnace, and diffusing the rare earths in a crystalline phase of the rare earth permanent magnets in a vacuum or inert gas atmosphere; A stress removing heat treatment step of charging a rare earth permanent magnet having rare earth diffused therein into the grain boundary phase of the rare earth permanent magnet in a heating furnace and performing stress relief heat treatment in a vacuum or inert gas atmosphere; And a final heat treatment step of performing heat treatment after the stress relief heat treatment step.

본 발명에 따른 희토류 영구자석의 제조방법에서 중희토금속 수소화합물을 제조하는 방법은 알곤분위기에서 하나이상의 중희토금속을 유도가열방식에 의해 고온에서 용융시킨 후, 칠몰드케스팅 주조법에 의해 중희토금속 인곳트로 제조한다. 상기 제조된 중희토금속 인곳트를 수mm ~ 수cm크기로 조분쇄 한 후, 진공로에 장입하였고, 진공펌프를 이용하여 진공로 내부를 진공배기 한 후에, 다시 수소를 대기압상태로 채우고 상온에서 500℃ 범위로 가열하면서 중희토금속 수소화합물을 제작한다. 상기 중희토금속 수소화합물을 알콜용매에 혼련하여 습식분쇄방식으로 중희토금속 분말을 1 ~ 2㎛ 크기로 분쇄하면서 중희토금속 수소화합물 슬러리를 제조한다.In the method for preparing a rare earth permanent magnet according to the present invention, a method for producing a heavy rare earth metal hydrogen compound is obtained by melting one or more heavy rare earth metals in an argon atmosphere at a high temperature by induction heating, followed by heavy rare earth metals by chill molding casting. Prepare ingots. The heavy rare earth metal ingot prepared above was coarsely ground in a size of several mm to several cm, and then charged into a vacuum furnace. After evacuating the inside of the vacuum furnace using a vacuum pump, the hydrogen was again filled at atmospheric pressure and stored at room temperature. Heavy rare earth metal hydride is prepared while heating to 500 ℃ range. The heavy rare earth metal hydrogen compound is kneaded in an alcohol solvent to prepare a heavy rare earth metal hydrogen compound slurry by grinding the heavy rare earth metal powder into a size of 1 to 2 μm by a wet grinding method.

상기 중희토금속 수소화합물 도포단계에서 사용되는 중희토금속은 Nd, Pr, La, Ce, Ho, Dy, Tb 중 하나 이상의 중희토금속을 포함하는 중희토금속 수소화합물인 것으로 특징으로 것을 특징으로 한다. 상기 중희토금속은 Dy가 바람직하다.The heavy rare earth metal used in the heavy rare earth metal hydrogen compound application step is characterized in that the heavy rare earth metal hydrogen compound containing one or more heavy rare earth metals of Nd, Pr, La, Ce, Ho, Dy, Tb. . The heavy rare earth metal is preferably Dy.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 중희토금속 수소화합물이 도포된 희토류 영구자석을 적층하는 단계에서 사용하는 이형제 분말은 카본분말, 알루미나분말, BN분말, MoS2분말 중 하나 이상인 것을 특징으로 한다.In the method for producing a rare earth permanent magnet according to the present invention, the release agent powder used in the step of laminating the rare earth permanent magnet coated with the heavy rare earth metal hydrogen compound is characterized in that at least one of carbon powder, alumina powder, BN powder, and MoS2 powder. do.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 중희토금속 수소화합물이 도포된 희토류 영구자석을 적층하는 단계에서 사용하는 이형제 분말은 알콜 더 구체적으로는 에탄올인 유기용제와 혼련한 이형제분말 슬러리인 것을 특징으로 한다.In the method for preparing a rare earth permanent magnet according to the present invention, the release agent powder used in the step of laminating the rare earth permanent magnet coated with the heavy rare earth metal hydrogen compound is a release agent powder slurry kneaded with an organic solvent, which is alcohol, more specifically, ethanol. It features.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 중희토금속 수소화합물이 도포된 희토류 영구자석을 적층은 2 ~ 10층 연속적으로 적층하는 것을 특징으로 한다.In the method of manufacturing a rare earth permanent magnet according to the present invention, the rare earth permanent magnet coated with the heavy rare earth metal hydrogen compound is laminated in two to ten layers.

본 발명에 따른 희토류 영구자석의 제조방법에서 이형제분말 슬러리는 스프레이 도포 방식으로 일정두께로 도포한다. 이형제분말 슬러리 도포두께는 0.2㎜ ~ 2㎜ 범위로 도포하고, 바람직하게는 0.5㎜ ~ 1.5㎜ 범위로 도포하는 것을 특징으로 한다.In the method for producing a rare earth permanent magnet according to the present invention, the release agent powder slurry is applied to a predetermined thickness by spray coating. The release agent powder slurry coating thickness is applied in the range of 0.2 mm to 2 mm, and preferably in the range of 0.5 mm to 1.5 mm.

본 발명에 따른 희토류 영구자석의 제조방법에서 이형제분말은 중희토금속 수소화합물의 확산온도에서 희토류 영구자석, 중희토금속과 반응하지 않아, 중희토금속이 희토류 영구자석의 결정립계상으로 중희토금속이 확산되는데 방해되지 않는 물질인 것을 특징으로 한다.In the manufacturing method of the rare earth permanent magnet according to the present invention, the release agent powder does not react with the rare earth permanent magnet and the rare earth metal at the diffusion temperature of the heavy rare earth metal hydrogen compound, and the heavy rare earth metal is the rare earth metal as the grain boundary of the rare earth permanent magnet. Characterized in that the material does not interfere with the diffusion.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 중희토금속 수소화합물이 도포된 희토류 영구자석을 적층하는 단계에서 사용하는 이형제 분말의 크기는 10nm ~ 500㎛ 범위의 분말입도를 갖는 것으로 특징으로 한다. 바람직하게는 이형제 분말의 크기는 1 ~ 10㎛ 범위의 분말입도를 갖는 것을 특징으로 한다.In the method for preparing a rare earth permanent magnet according to the present invention, the size of the release agent powder used in the step of laminating the rare earth permanent magnet coated with the heavy rare earth metal hydrogen compound is characterized by having a powder particle size in the range of 10 nm to 500 μm. Preferably, the size of the release agent powder is characterized in that it has a powder particle size in the range of 1 ~ 10㎛.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 희토류 영구자석의 결정립계상으로 중희토금속을 확산시키는 단계에서 확산온도는 900℃ 온도에서 6시간 또는 800℃ 온도에서 10시간, 850℃ 온도에서 9시간 유지하는 것으로 특징으로 한다.In the method for producing a rare earth permanent magnet according to the present invention, the diffusion temperature in the step of diffusing the heavy rare earth metal into the grain boundary phase of the rare earth permanent magnet is 6 hours at 900 ℃ or 10 hours at 800 ℃ temperature, 9 hours at 850 ℃ temperature It is characterized by maintaining.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 희토류가 확산된 희토류 영구자석을 응력제거열처리시키는 단계에서 열처리온도는 400∼1000℃ 범위에서 2 ~ 15시간 응력제거열처리를 실시한다. 바람직하기로는 850 ~ 950℃ 온도에서 8 ~ 12시간 응력제거열처리를 실시하는 것을 특징으로 한다. In the method for producing a rare earth permanent magnet according to the present invention, the heat treatment temperature is performed for 2 to 15 hours under a stress removing heat treatment of the rare earth permanent magnet having the rare earth diffused therein in a 400 to 1000 ° C range. Preferably, the stress relief heat treatment is performed for 8 to 12 hours at a temperature of 850 to 950 ° C.

본 발명에 따른 희토류 영구자석의 제조방법에 의하면, 중희토금속이 도포된 희토류 영구자석을 다단으로 적층시 희토류 영구자석 사이에 이형제를 위치시켜 상하부에 위치한 희토류 영구자석이 서로 융착되는 것을 방지할 수 있다.According to the method of manufacturing a rare earth permanent magnet according to the present invention, when the rare earth permanent magnet coated with heavy rare earth metal is laminated in multiple stages, a release agent may be placed between the rare earth permanent magnets to prevent the rare earth permanent magnets from being fused to each other. have.

본 발명에 따른 희토류 영구자석의 제조방법에 의하면, 중희토금속이 도포된 희토류 영구자석을 다단으로 적층시 희토류 영구자석 사이에 위치한 이형제가 접한 면과 이형제와 접하지 않는 면에서의 가열온도간 차이가 낮아 희토류 영구자석 표면에 도포된 중희토금속의 확산이 균등해지는 효과가 있다.According to the method for producing a rare earth permanent magnet according to the present invention, when the rare earth permanent magnet coated with heavy rare earth metal is laminated in multiple stages, the difference between the heating temperature in the face of the release agent located between the rare earth permanent magnet and the surface not in contact with the release agent Low, there is an effect that the diffusion of heavy rare earth metal applied to the rare earth permanent magnet surface is even.

본 발명에 따른 희토류 영구자석의 제조방법에 의하면, 중희토금속의 결정립계 확산시 희토류 영구자석 표면에서의 확산속도에 차이가 없어 희토류 영구자석 표면에서의 중희토금속 확산깊이 차이를 감소시키는 효과가 있다.According to the method of manufacturing a rare earth permanent magnet according to the present invention, there is no difference in the diffusion rate on the surface of the rare earth permanent magnet during the grain boundary diffusion of the heavy rare earth metal, thereby reducing the difference in the depth of diffusion of the heavy rare earth metal on the surface of the rare earth permanent magnet. .

발명에 따른 희토류 영구자석의 제조방법에 의하면, 이형제는 확산온도에서 희토류 영구자석, 중희토금속과 반응하지 않아, 중희토금속이 희토류 영구자석의 결정립계상으로 중희토금속이 확산되는데 방해되지 않아 희토류 영구자석의 자기 특성이 열화되지 않는다. According to the method for preparing a rare earth permanent magnet according to the present invention, the release agent does not react with the rare earth permanent magnet and the heavy rare earth metal at the diffusion temperature, so the rare earth metal does not interfere with the diffusion of the heavy rare earth metal into the grain boundary phase of the rare earth permanent magnet. The magnetic properties of the permanent magnets do not deteriorate.

본 발명에 따른 희토류 영구자석의 제조방법에 의하면, 희토류 영구자석 사이에 위치되는 이형제의 두께가 얇아져 종전의 알루미나 플레이트에 비하여 1회의 희토류 영구자석의 가열로 장입량을 증가시키는 효과가 있다.According to the method of manufacturing a rare earth permanent magnet according to the present invention, the thickness of the release agent positioned between the rare earth permanent magnets becomes thin, and thus the charging amount of the rare earth permanent magnet is increased by one heating of the rare earth permanent magnet as compared with the conventional alumina plate.

도 1은 본 발명에 따른 희토류 영구자석의 제조방법 순서도이고,
도 2는 본 발명에 따른 중희토금속이 도포된 희토류 영구자석을 이형제 매개로 적층하는 순서도이다.
도 2은 종래기술의 중희토금속이 도포된 희토류 영구자석 적층구조의 예시도이고,
도 4는 본 발명에 의한 중희토금속이 도포된 희토류 영구자석 적층구조의 예시도이다.
1 is a flowchart illustrating a method of manufacturing a rare earth permanent magnet according to the present invention;
2 is a flow chart of laminating a rare earth permanent magnet coated with a rare earth metal according to the present invention via a release agent.
Figure 2 is an illustration of a rare earth permanent magnet laminated structure coated with a heavy rare earth metal of the prior art,
Figure 4 is an illustration of a rare earth permanent magnet laminated structure coated with a rare earth metal according to the present invention.

이하, 본 발명을 더욱 상세하게 설명한다. 이하에서, "상방", "하방", "전방" 및 "후방" 및 그 외 다른 방향성 용어들은 도면에 도시된 상태를 기준으로 정의한다.Hereinafter, the present invention will be described in more detail. Hereinafter, "upward", "downward", "forward" and "rear" and other directional terms are defined based on the states shown in the figures.

[제조방법][Manufacturing method]

[준비 공정][Preparation process]

원료 분말로서, 희토류 합금으로 이루어진 분말을 준비한다. 희토류 합금은, RE=Y, La, Ce, Pr, Nd, Dy, Tb 및 Sm에서 선택되는 적어도 1종 및 Fe, TM=3d 천이금속에서 선택되는 적어도 1종, B로 할 때, RE-Fe 합금, 또는 RE-Fe-TM 합금, RE-Fe-B 합금, RE-Fe-TM-B 합금을 들 수 있다. 보다 구체적으로는, Nd-Fe-B 합금, Nd-Fe-Co 합금, Nd-Fe-Co-B 합금 등을 들 수 있다. 희토류 소결 자석에 이용되고 있는 공지된 희토류 합금으로 이루어진 분말을 원료 분말에 이용할 수 있다.As a starting powder, a powder made of a rare earth alloy is prepared. The rare earth alloy is at least one selected from RE = Y, La, Ce, Pr, Nd, Dy, Tb, and Sm, and at least one selected from Fe, TM = 3d transition metal, B, and RE-Fe. Alloys, or RE-Fe-TM alloys, RE-Fe-B alloys, and RE-Fe-TM-B alloys. More specifically, Nd-Fe-B alloy, Nd-Fe-Co alloy, Nd-Fe-Co-B alloy, etc. are mentioned. A powder made of a known rare earth alloy used for the rare earth sintered magnet can be used for the raw material powder.

원료 분말은, 원하는 조성의 합금으로 이루어진 용해 주조 잉곳이나 급냉 응고법에 의해 얻어진 박상체(箔狀體;foil)를 젯밀, 아트리타밀, 볼밀, 진동밀 등의 분쇄 장치에 의해 분쇄하거나, 가스 아토마이즈법과 같은 아토마이즈법을 이용하여 제조할 수 있다. 공지된 분말의 제조방법에 의해 얻어진 분말이나 아토마이즈법에 의해 제조한 분말을 더 분쇄하여 이용하여도 좋다. 분쇄 조건이나 제조 조건을 적절하게 변경함으로써, 원료 분말의 입도 분포나 분말을 구성하는 각 입자의 형상을 조정할 수 있다. 입자의 형상은, 특별히 상관없지만, 진구(眞球)에 가까울수록 치밀화하기 쉬운 데다가, 자장의 인가에 의해 입자가 회전하기 쉽다. 아토마이즈법을 이용하면, 진구도가 높은 분말을 얻을 수 있다.The raw material powder is pulverized by a pulverizing apparatus such as a jet mill, an atrita mill, a ball mill, a vibration mill, or the like by melting a molten cast ingot made of an alloy of a desired composition or a thin body obtained by a quench solidification method. It can manufacture using the atomization method like the maize method. You may further grind | pulverize and use the powder obtained by the manufacturing method of a well-known powder, and the powder manufactured by the atomizing method. By changing grinding | pulverization conditions and manufacturing conditions suitably, the particle size distribution of a raw material powder and the shape of each particle which comprises a powder can be adjusted. Although the shape of particle | grains does not matter in particular, it is easy to densify as it becomes closer to a true spherical particle, and particle | grains tend to rotate by application of a magnetic field. By using the atomizing method, a powder having high sphericity can be obtained.

이때, 합금 인곳트로부터 원료 분말로 제조하는 공정은 산소가 오염되어 자기특성이 저하되는 것을 방지하기 위하여 질소 혹은 불활성가스 분위기에서 수행하는 것이 바람직하다.In this case, the process of preparing the raw material powder from the alloy ingot is preferably carried out in nitrogen or inert gas atmosphere in order to prevent the contamination of oxygen and deterioration of magnetic properties.

원료 분말은, 입경이 2 ~ 10㎛ 의 미세 입자를 함유하는 것을 특징의 하나로 한다. 원료 분말의 입도는, 레이저 회절식 입도 분포 장치에 의해 측정한 값으로 한다.A raw material powder is one of the characteristics characterized by containing the fine particle whose particle diameter is 2-10 micrometers. The particle size of the raw material powder is a value measured by a laser diffraction particle size distribution device.

원료 분말은, 미세할수록 충전 밀도를 높이기 쉽기 때문에, 최대 입경은 10 ㎛ 이하가 더욱 바람직하다.The finer the raw material powder is, the easier it is to increase the packing density. Therefore, the maximum particle size is more preferably 10 µm or less.

원료 분말에는, 윤활제를 첨가할 수 있다. 윤활제를 포함하는 혼합물로 하면, 자장의 인가시에 원료 분말을 구성하는 각 입자가 회전하기 쉬워져, 배향성을 높이기 쉽다. 윤활제는, 원료 분말과 실질적으로 반응하지 않는 여러 가지 재질, 형태(액상, 고체상)의 것을 이용할 수 있다. 예컨대, 액상 윤활제는, 에탄올, 기계유, 실리콘오일, 피마자유 등을 들 수 있고, 고체상 윤활제는, 스테아르산아연 등의 금속염, 육방정 질화붕소, 왁스 등을 들 수 있다. 윤활제의 첨가량은, 액상 윤활제에서는, 원료 분말 100 g에 대하여 0.01 질량% 이상 10 질량% 이하 정도, 고체상 윤활제에서는, 원료 분말의 질량에 대하여 0.01 질량% 이상 5 질량% 이하 정도를 들 수 있다.A lubricant may be added to the raw material powder. When a mixture containing a lubricant is used, each particle constituting the raw material powder is easily rotated when the magnetic field is applied, and the orientation is easily increased. As the lubricant, various materials and forms (liquid and solid) that do not substantially react with the raw material powder may be used. Examples of the liquid lubricant include ethanol, machine oil, silicone oil, castor oil, and the like, and solid lubricants include metal salts such as zinc stearate, hexagonal boron nitride, and wax. The addition amount of a lubricating agent is 0.01 mass% or more and about 10 mass% or less with respect to 100 g of raw material powder with a liquid lubricant, and 0.01 mass% or more and 5 mass% or less with respect to the mass of a raw material powder are mentioned with a solid lubrication agent.

[금형 충진공정][Mold Filling Process]

원하는 형상·크기의 압분 성형체를 얻을 수 있도록, 원하는 형상·크기의 성형용 금형을 준비한다. 성형용 금형은, 종래, 소결 자석의 소재에 이용되고 있는 압분 성형체의 제조에 이용되고 있는 것, 대표적으로는, 다이, 상하 펀치를 구비한 것을 이용할 수 있다. 기타, 정수압 가압(Cold Isostatic Press)을 이용할 수 있다.The molding die of a desired shape and size is prepared so as to obtain a press-molded article of a desired shape and size. The molding die can be used in the manufacture of a compacted compact, which is conventionally used for a raw material of a sintered magnet, and typically, one having a die and a vertical punch. In addition, hydrostatic press (Cold Isostatic Press) can be used.

[배향공정][Orientation process]

원료분말이 성형용 금형에 충진되면, 질소분위기에서 성형용 금형의 좌측과 우측에 위치하는 전자석에 펄스전류를 인가하여 고자장을 발생시킴으로서 분말을 완전히 배향시키고, 이어서 직류전류를 인가함으로서 발생되는 직류자장에 의해 이미 완전히 배향시킨 분말의 방향을 유지하면서 동시에 압축성형을 실시하여 희토류 영구자석을 제조한다.When the raw material powder is filled in the molding die, a direct current generated by applying a pulse current to the electromagnets located on the left and right sides of the molding die in a nitrogen atmosphere to generate a high magnetic field to completely orient the powder and then apply a direct current. A rare earth permanent magnet is produced by compression molding while maintaining the direction of the powder already fully oriented by the magnetic field.

[소결공정][Sintering process]

자장성형에 의해 얻어진 희토류 영구자석을 소결로에 장입하고 진공분위기 및 400℃ 이하에서 충분히 유지하여 잔존하는 불순 유기물을 완전히 제거한다.The rare earth permanent magnet obtained by the magnetic field molding is charged into a sintering furnace and sufficiently maintained in a vacuum atmosphere and at 400 ° C. or lower to completely remove residual impurities.

다시 소결 조건인 온도 900℃∼1200℃, 유지 시간: 0.5시간∼3시간, 분위기: 진공, 아르곤 등의 조건에서 소결한다. 바람직하기로는 1,000 ~ 1,100℃의 온도범위가 바람직하고, 유지시간은 1 ~2시간 30분이 바람직하다.It sinters again on conditions of 900 degreeC-1200 degreeC which are sintering conditions, holding time: 0.5 hour-3 hours, atmosphere: vacuum, argon. Preferably the temperature range of 1,000-1,100 degreeC is preferable, and the holding time of 1 to 2 hours and 30 minutes is preferable.

[소정크기 가공공정][Predetermined size machining process]

소결된 희토류 영구자석은 12.5*12.5*5mm 크기의 자석으로 가공한다.Sintered rare earth permanent magnets are processed into 12.5 * 12.5 * 5mm magnets.

[가공체 세척공정][Cleaning Process]

소정크기로 분할된 희토류 영구자석을 알칼리탈지제 용액에 담근 후, 파이 2~10mm 크기의 세라믹볼과 함께 문질러줌으로써 자석 표면에 묻어있는 기름성분을 제거하였고, 다시 자석을 증류수로 수차례 깨끗이 세정함으로써 잔존하는 탈지제를 완전히 제거하였다. After dipping the rare earth permanent magnet into the alkaline degreasing agent solution, rubbing it with a ceramic ball of 2 ~ 10mm in size and removing the oil component on the magnet surface, the remaining magnet was cleaned by distilled water several times. Degreaser was completely removed.

[세정된 희토류 영구자석에 중희토금속 수소화합물 도포공정][Application process of heavy rare earth metal hydrogen compound on the washed rare earth permanent magnet]

본 발명에 따른 희토류 영구자석의 제조방법에서 중희토금속 수소화합물을 제조하는 방법은 알곤분위기에서 하나 이상의 중희토금속을 유도가열방식에 의해 고온에서 용융시킨 후, 칠몰드케스팅 주조법에 의해 중희토금속 인곳트로 제조한다. 상기 제조된 중희토금속 인곳트를 수mm ~ 수cm크기로 조분쇄한 후, 진공로에 장입하였고, 진공펌프를 이용하여 진공로 내부를 진공배기 한 후에, 다시 수소를 대기압상태로 채우고 상온에서 500℃ 범위로 가열하면서 중희토금속 수소화합물을 제작한다. 상기 중희토금속 수소화합물을 알콜용매에 혼련하여 습식분쇄방식으로 중희토금속 분말을 1 ~ 2㎛ 크기로 분쇄하면서 중희토금속 수소화합물 슬러리를 제조한다.In the method for preparing a rare earth permanent magnet according to the present invention, a method for producing a heavy rare earth metal hydrogen compound is obtained by melting one or more heavy rare earth metals at high temperature by induction heating in an argon atmosphere, followed by heavy rare earth metals by chill molding casting. Prepare ingots. The heavy rare earth metal ingot prepared above was coarsely ground in size of several mm to several cm, and then charged into a vacuum furnace. After evacuating the inside of the vacuum furnace using a vacuum pump, the hydrogen was again filled at atmospheric pressure and stored at room temperature. Heavy rare earth metal hydride is prepared while heating to 500 ℃ range. The heavy rare earth metal hydrogen compound is kneaded in an alcohol solvent to prepare a heavy rare earth metal hydrogen compound slurry by grinding the heavy rare earth metal powder into a size of 1 to 2 μm by a wet grinding method.

상기 중희토금속 수소화합물 도포단계에서 사용되는 중희토금속은 Nd, Pr, La, Ce, Ho, Dy, Tb 중 하나 이상의 중희토금속을 포함하는 중희토금속 수소화합물인 것으로 특징으로 것을 특징으로 한다. 상기 중희토금속은 Dy가 바람직하다.The heavy rare earth metal used in the heavy rare earth metal hydrogen compound application step is characterized in that the heavy rare earth metal hydrogen compound containing one or more heavy rare earth metals of Nd, Pr, La, Ce, Ho, Dy, Tb. . The heavy rare earth metal is preferably Dy.

상기 중희토금속 수소화합물 슬러리를 세정된 가공체의 표면은 중희토금속 수소화합물로 균일하게 도포하기 위해 제조된 슬러리를 비이커에 담아 초음파세정기를 이용하여 균일하게 분산시키면서 가공체를 침적한 후 1~2분 유지하면서 중희토금속 수소화합물이 희토류 영구자석 표면에 균일하게 도포시킨다.The surface of the workpiece washed with the heavy rare earth metal hydride slurry is deposited in a beaker with the slurry prepared for uniform application of the heavy rare earth metal hydride compound, and then uniformly dispersed using an ultrasonic cleaner to deposit the workpiece. While maintaining for 2 minutes, the heavy rare earth metal hydride is uniformly applied to the rare earth permanent magnet surface.

[중희토금속 수소화합물 도포된 영구자석의 이형제 매개 적층공정][Method Lamination Process of Release Agent for Permanent Magnets Coated with Heavy Rare Earth Metal Hydrogen Compounds]

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 중희토금속 수소화합물이 도포된 희토류 영구자석(30)을 적층상자(10)내에 이형제 분말, 중희토금속 수소화합물이 도포된 희토류 영구자석, 이형제분말(50), 중희토금속 수소화합물이 도포된 희토류 영구자석(30) 순으로 중희토금속 수소화합물이 도포된 희토류 영구자석(30)을 도 4와 같이 다단으로 적층한다. In the method for producing a rare earth permanent magnet according to the present invention, the rare earth permanent magnet 30 coated with the heavy rare earth metal hydrogen compound in the laminated box 10, a release agent powder, a rare earth permanent magnet coated with a heavy rare earth metal hydrogen compound, and a mold release powder (50), the rare earth permanent magnet (30) coated with the rare earth metal hydrogen compound is laminated in multiple stages as shown in FIG.

상기 중희토금속 수소화합물이 도포된 희토류 영구자석을 적층하는 단계에서 사용하는 이형제 분말은 카본분말, 알루미나분말, BN분말, MoS2분말 중 하나 이상을 사용한다.The release agent powder used in the step of laminating the rare earth permanent magnet coated with the heavy rare earth metal hydrogen compound may use at least one of carbon powder, alumina powder, BN powder, and MoS 2 powder.

추가적으로 이형제분말(50)은 알콜인 유기용제와 혼련한 이형제분말(50) 슬러리화하는 것이 바람직하다.In addition, the release agent powder 50 is preferably slurryed release agent powder 50 kneaded with an organic solvent which is an alcohol.

상기 슬러리 형태의 이형제 분말과 유기용제를 적층상자(10)의 하측에 스프레이 분사하고, 이형제 분말 위에 상기 중희토금속 수소화합물이 도포된 희토류 영구자석을 올려놓고, 다시 슬러리 형태의 이형제 분말과 유기용제를 스프레이 분사, 중희토금속 수소화합물이 도포된 희토류 영구자석 순으로 중희토금속 수소화합물이 도포된 희토류 영구자석을 적층하되, 적층은 2 ~ 10층 연속적으로 적층한다.Spraying the slurry release agent powder and the organic solvent in the bottom of the laminated box 10, the rare earth permanent magnet coated with the heavy rare earth metal hydrogen compound on the release agent powder, and the slurry release agent powder and the organic solvent in the slurry form The spraying and the rare earth permanent magnets coated with the rare earth metal hydrogen compound are laminated in this order, and the rare earth permanent magnets coated with the heavy rare earth metal hydrogen compound are laminated, and the lamination is successively stacked in two to ten layers.

상기 적층되는 이형제분말(50) 슬러리 도포 두께는 0.2㎜ ~ 2㎜ 범위로 도포하고, 바람직하게는 0.5㎜ ~ 1.5㎜ 범위로 도포하는 것을 특징으로 한다.The laminated release agent powder (50) slurry coating thickness is applied in the range of 0.2mm ~ 2mm, preferably in the range of 0.5mm ~ 1.5mm.

상기 이형제분말(50)은 중희토금속 수소화합물의 확산온도에서 희토류 영구자석, 중희토금속과 반응하지 않아, 중희토금속이 희토류 영구자석의 결정립계상으로 희토류를 확산되는데 방해되지 않는 물질을 사용한다.The release agent powder 50 does not react with the rare earth permanent magnet or the heavy rare earth metal at the diffusion temperature of the heavy rare earth metal hydrogen compound, and the rare earth metal uses a material that does not prevent the rare earth from diffusing the rare earth onto the grain boundary of the permanent earth magnet. .

상기 이형제분말(50)의 크기는 10nm ~ 500㎛ 범위의 분말입도를 갖는 것으로 특징으로 한다. 바람직하게는 이형제 분말의 크기는 1 ~ 10㎛ 범위의 분말입도를 갖는다.The size of the release agent powder 50 is characterized in that it has a powder particle size in the range of 10nm ~ 500㎛. Preferably the release agent powder has a particle size in the range of 1-10 μm.

이와 같은 이형제분말(50) 입도와 이형제분말(50) 도포 두께는 확산로에서 가열시 중희토금속 수소화합물이 도포된 희토류 영구자석 표면(30)에서 균등한 온도로 가열되어 확산속도와 확산깊이를 일정하게 유지하는 기능을 갖는 효과가 있다.The particle size of the release agent powder 50 and the coating thickness of the release agent powder 50 are heated at an equal temperature on the rare earth permanent magnet surface 30 to which the heavy rare earth metal hydrogen compound is applied during heating in the diffusion furnace, thereby increasing the diffusion speed and the depth of diffusion. It has the effect of keeping the function constant.

또한 중희토금속 수소화합물이 도포된 희토류 영구자석(30)의 적층시 얇은 두께의 이형제분말(50) 슬러리를 분사함으로 인해 많은 갯수의 영구자석을 적층할 수 있는 효과가 있다.In addition, when the rare earth permanent magnet 30 coated with a rare earth metal hydrogen compound is laminated, a thinner release agent powder 50 may be sprayed to deposit a large number of permanent magnets.

이는 종래의 알루미나 플레이트(40)를 사용하는 적층방식에 비하여 10 ~15% 적층갯수를 높일 수 있어, 생산성이 향상된다.This can increase the number of lamination 10 to 15% compared to the lamination method using the conventional alumina plate 40, the productivity is improved.

도 3 및 도 4에서 미설명부호 10은 적층상자 커버이다.In FIG. 3 and FIG. 4, reference numeral 10 denotes a laminated box cover.

[입계확산공정][Global diffusion process]

상기 중희토금속 수소화합물이 도포된 희토류 영구자석이 적층된 적층상자(10)를 확산로에 장입하고 알곤 분위기에서 승온속도=1℃/min.으로 가열하여 확산온도를 유지하면서 중희토금속 수소화합물이 중희토금속으로 분해되어 희토류 영구자석 내부로 확산되어 침투반응이 진행시킨다.Charge the rare earth metal hydrogen compound coated rare earth permanent magnet laminated box 10 into a diffusion furnace and heat the heating rate at a heating rate of 1 ℃ / min. In an argon atmosphere while maintaining the diffusion temperature It is decomposed into heavy rare earth metals and diffused into the rare earth permanent magnets, so that the penetration reaction proceeds.

바람직하기는 900℃ 온도에서 6시간 또는 800℃ 온도에서 10시간, 850℃ 온도에서 9시간 유지한다.Preferably it is maintained for 6 hours at 900 ° C temperature or 10 hours at 800 ° C temperature, 9 hours at 850 ° C temperature.

이와 같이 가열하면 입계확산을 용이하게 실시할 수 있어, 희토류 영구자석의 고특성화, 즉, 잔류자속밀도(Br)나 최대 에너지 적(積)((BH)max)을 입계확산 처리 전보다 높은 상태로 유지할 수 있고, 고보자력(Hcj)화할 수 있다. 입계확산법이 두께가 얇은 자석에 대하여 효과가 큰 것도 지금까지의 보고와 같다. 5㎜ 이하의 두께에 대하여 특히 유효하다.By heating in this way, grain boundary diffusion can be easily carried out, so that the high characteristics of the rare earth permanent magnets, that is, the residual magnetic flux density (Br) or the maximum energy product ((BH) max) are higher than before the grain boundary diffusion treatment. It can hold | maintain and can make high coercive force (Hcj). The grain boundary diffusion method is also effective for thin-walled magnets. It is especially effective for the thickness of 5 mm or less.

[응력제거열처리 및 최종열처리][Stress Removal Heat Treatment and Final Heat Treatment]

상기 입계확산처리 후 표면에 잔존하는 중희토금속 수소화합물 슬러리 도포층을 제거한 후 400 ~ 1,000℃ 온도에서 2 ~ 15시간 응력제거열처리를 실시한다. 바람직하기로는 850 ~ 950℃ 온도에서 8 ~ 12시간 응력제거열처리를 실시한다.After removing the heavy rare earth metal hydride slurry coating layer remaining on the surface after the grain boundary diffusion treatment, the stress relief heat treatment is performed at 400 ~ 1,000 ℃ temperature for 2 to 15 hours. Preferably, the stress relief heat treatment is performed for 8 to 12 hours at a temperature of 850 to 950 ° C.

상기 응력제거열처리이후, 400 ~ 600℃ 온도에서 0.5 ~ 3시간 최종열처리를 실시한다. 바람직하기로는 450 ~ 550℃ 온도에서 1.5 ~ 2.5시간 최종열처리를 실시한다.After the stress relief heat treatment, the final heat treatment is performed at 400 ~ 600 ℃ temperature for 0.5 to 3 hours. Preferably, the final heat treatment is performed at 450 to 550 ° C. for 1.5 to 2.5 hours.

이하, 비교예와 실시예를 들어, 본 발명의 보다 구체적인 실시형태를 설명한다.Hereinafter, more specific embodiment of this invention is described using a comparative example and an Example.

표 1은 확산로 장입 희토류 영구자석의 적층에 따른 자기특성변화, 융착성 비교한 것이고, 31wt%Nd-1wt%B-2wt%TM-Bal.Bal.wt%Fe(TM=Cu, Al, Nb, Co) 조성의 희토류 영구자석를 제조한 후, 희토류 영구자석을 12.5*12.5*5mm 크기의 자석으로 분할가공하였다.Table 1 shows a comparison of magnetic properties and fusion between stacking of rare earth permanent magnets in diffusion furnaces and 31wt% Nd-1wt% B-2wt% TM-Bal.Bal.wt% Fe (TM = Cu, Al, Nb , Co) After preparing a rare earth permanent magnet, the rare earth permanent magnet was divided into a 12.5 * 12.5 * 5mm size magnet.

샘플
제조
조건
Sample
Produce
Condition
공정조건Process conditions 자기특성Magnetic properties 융착성Adhesion
이형제물질Release Agent 중희토금속 수소화합물 도포량Heavy Rare Earth Hydrogen Compound Coating Amount 희토류 영구자석
적층갯수
Rare earth permanent magnets
Stacking number
잔류자속
밀도,Br(kG)
Residual flux
Density, Br (kG)
보자력,Hcj
(kOe)
Coercivity, Hcj
(kOe)
비교예1Comparative Example 1 알루미나판Alumina plate 1.0%1.0% 5층5th floor 14.014.0 17.817.8 양호Good 실시예1Example 1 카본분말Carbon powder 1.0%1.0% 5층5th floor 13.913.9 19.519.5 양호Good 실시예2Example 2 알루마나분말Alumana Powder 1.0%1.0% 5층5th floor 13.813.8 20.120.1 양호Good 실시예3Example 3 MoS2분말MoS2 Powder 1.0%1.0% 5층5th floor 13.713.7 20.320.3 양호Good 실시예4Example 4 카본분말Carbon powder 1.0%1.0% 10층10th floor 13.913.9 19.519.5 양호Good 실시예5Example 5 알루마나분말Alumana Powder 1.0%1.0% 10층10th floor 13.813.8 20.120.1 양호Good 실시예6Example 6 MoS2분말MoS2 Powder 1.0%1.0% 10층10th floor 13.713.7 20.320.3 양호Good

분할가공된 희토류 영구자석을 알칼리탈지제 용액에 담근 후, 파이 2~10mm 크기의 세라믹볼과 함께 문질러줌으로써 희토류 영구자석 표면에 묻어있는 기름성분을 제거하였고, 다시 희토류 영구자석을 증류수로 수차례 깨끗이 세정함으로써 잔존하는 탈지제를 완전히 제거하였다. After dividing the rare earth permanent magnet into alkaline degreasing agent solution, rubbing it with a 2-10 mm ceramic ball to remove oil from the surface of the rare earth permanent magnet, and the rare earth permanent magnet was washed several times with distilled water. The remaining degreasing agent was thereby completely removed.

희토류 영구자석의 표면에 희토류 확산물질 도포하기 위한 도포물질을 제조하는 방법으로서 알곤분위기에서 Dy금속을 유도가열방식에 의해 고온에서 용융시킨 후 칠몰드케스팅 주조법에 의해 금속인곳트로 제조하였다. 제조된 금속인곳트를 수mm ~ 수cm크기로 조분쇄 한 후, 진공로에 장입하였고, 진공펌프를 이용하여 진공로 내부를 진공배기 한 후, 다시 수소를 대기압상태로 채우고 상온 ~ 500℃ 범위로 가열하면서 Dy 수소화합물을 제작하였다. 제작된 Dy 수소화합물을 알콜용매에 혼련하여 습식분쇄방식으로 희토합금 분말을 1.5㎛ 크기로 분쇄하면서 Dy 수소화합물 슬러리를 제조하였다.As a method of preparing a coating material for applying a rare earth diffusion material on the surface of the rare earth permanent magnet, Dy metal was melted at high temperature by an induction heating method in an argon atmosphere, and then prepared as a metal ingot by a chill molding casting method. After the manufactured metal ingots were coarsely crushed into a few mm to several cm in size, they were charged into a vacuum furnace, and after vacuuming the inside of the vacuum furnace using a vacuum pump, the hydrogen was again filled at atmospheric pressure and normal temperature to 500 ° C. The Dy hydrogen compound was produced while heating. The prepared Dy hydrogen compound was kneaded in an alcohol solvent to prepare a slurry of Dy hydrogen compound while grinding the rare earth alloy powder to a size of 1.5 μm by wet grinding.

세정된 희토류 영구자석 표면은 Dy 수소화합물 슬러리용액 담아 초음파세정기를 이용하여 균일하게 분산시키면서 희토류 영구자석을 침적한 후 1~2분 유지하면서 Dy 수소화합물이 희토류 영구자석 표면에 균일하게 도포되도록 하였다.The washed rare earth permanent magnet surface was uniformly dispersed using an ultrasonic cleaner containing Dy hydrogen compound slurry solution, and the Dy hydrogen compound was uniformly applied on the rare earth permanent magnet surface while maintaining the rare earth permanent magnet for 1 to 2 minutes after deposition.

상기 과정까지는 비교예와 실시예 1 내지 6 모두 동일하다.Up to the above process, both Comparative Examples and Examples 1 to 6 are the same.

[비교예][Comparative Example]

상기 Dy 수소화합물이 도포된 희토류 영구자석을 적층상자에 적재하는 방법으로서 기존의 알루미나 플레이트 10㎜ 두께를 사용하여 5층으로 적층하여 확산로에 장입하였다.As a method of loading the rare earth permanent magnets coated with the Dy hydrogen compound in a lamination box, the alumina plate was stacked in five layers using a 10 mm thickness of the existing alumina plate and loaded into a diffusion furnace.

상기 확산로를 알곤 분위기에서 승온속도=1℃/min.으로 가열하여 900℃ 온도에서 6시간 유지하면서 Dy 수소화합물이 Dy로 분해되어 자석 내부로 확산되어 침투반응이 진행되도록 하였다. 확산처리 후 표면에 확산층을 제거한 후 900℃ 온도에서 10시간 응력제거열처리를 실시하고, 이어서 500℃ 온도에서 2시간 최종열처리를 실시하였다.The diffusion furnace was heated in an argon atmosphere at a heating rate of 1 ° C./min. And maintained at 900 ° C. for 6 hours to decompose Dy hydrogen compounds into Dy and diffuse into the magnet to allow penetration to proceed. After the diffusion treatment, the diffusion layer was removed from the surface, and then a stress relief heat treatment was performed at 900 ° C. for 10 hours, followed by a final heat treatment at 500 ° C. for 2 hours.

비교예인 기존의 알루미나 플레이트사용시 잔류자속밀도 14.0 Br(kG)와 보자력 17.8 Hcj(kOe), 융착은 없었다.There was no fusion of residual magnetic flux density of 14.0 Br (kG) and coercive force of 17.8 Hcj (kOe) when using the conventional alumina plate as a comparative example.

[실시예1]Example 1

상기 Dy 수소화합물이 도포된 희토류 영구자석을 적층상자에 적재하는 방법으로서 카본분말의 이형제를 사용하였다. 사용된 카본분말의 평균입도는 5.0㎛이고, 이형제 슬러리를 1㎜ 두께로 균일하게 스프레이분사하였다. 희토류 영구자석은 5층으로 적층하여 확산로에 장입하였다.A mold release agent of carbon powder was used as a method of loading the rare earth permanent magnet coated with the Dy hydrogen compound into a lamination box. The average particle size of the carbon powder used was 5.0 µm, and the mold release slurry was uniformly sprayed to a thickness of 1 mm. Rare earth permanent magnets were stacked in five layers and loaded into the diffusion furnace.

상기 확산로를 알곤 분위기에서 승온속도=1℃/min.으로 가열하여 900℃ 온도에서 6시간 유지하면서 Dy 수소화합물이 Dy로 분해되어 자석 내부로 확산되어 침투반응이 진행되도록 하였다. 확산처리 후 표면에 확산층을 제거한 후 900℃ 온도에서 10시간 응력제거열처리를 실시하고, 이어서 500℃ 온도에서 2시간 최종열처리를 실시하였다.The diffusion furnace was heated in an argon atmosphere at a heating rate of 1 ° C./min. And maintained at 900 ° C. for 6 hours to decompose Dy hydrogen compounds into Dy and diffuse into the magnet to allow penetration to proceed. After the diffusion treatment, the diffusion layer was removed from the surface, and then a stress relief heat treatment was performed at 900 ° C. for 10 hours, followed by a final heat treatment at 500 ° C. for 2 hours.

[실시예2]Example 2

상기 Dy 수소화합물이 도포된 희토류 영구자석을 적층상자에 적재하는 방법으로서 알루미나분말의 이형제를 사용하였다. 사용된 알루미나분말의 평균입도는 5.1㎛이고, 이형제 슬러리를 1㎜ 두께로 균일하게 스프레이분사하였다. 희토류 영구자석은 5층으로 적층하여 확산로에 장입하였다.A release agent of an alumina powder was used as a method of loading the rare earth permanent magnet coated with the Dy hydrogen compound into a lamination box. The average particle size of the alumina powder used was 5.1 µm, and the mold release slurry was uniformly sprayed to a thickness of 1 mm. Rare earth permanent magnets were stacked in five layers and loaded into the diffusion furnace.

상기 확산로를 알곤 분위기에서 승온속도=1℃/min.으로 가열하여 900℃ 온도에서 6시간 유지하면서 Dy 수소화합물이 Dy로 분해되어 자석 내부로 확산되어 침투반응이 진행되도록 하였다. 확산처리 후 표면에 확산층을 제거한 후 900℃ 온도에서 10시간 응력제거열처리를 실시하고, 이어서 500℃ 온도에서 2시간 최종열처리를 실시하였다.The diffusion furnace was heated in an argon atmosphere at a heating rate of 1 ° C./min. And maintained at 900 ° C. for 6 hours to decompose Dy hydrogen compounds into Dy and diffuse into the magnet to allow penetration to proceed. After the diffusion treatment, the diffusion layer was removed from the surface, and then a stress relief heat treatment was performed at 900 ° C. for 10 hours, followed by a final heat treatment at 500 ° C. for 2 hours.

[실시예3]Example 3

상기 Dy 수소화합물이 도포된 희토류 영구자석을 적층상자에 적재하는 방법으로서 MoS2분말의 이형제를 사용하였다. 사용된 MoS2분말의 평균입도는 5.1㎛이고, 이형제 슬러리를 1㎜ 두께로 균일하게 스프레이분사하였다. 희토류 영구자석은 5층으로 적층하여 확산로에 장입하였다.A release agent of MoS 2 powder was used as a method of loading the rare earth permanent magnet coated with the Dy hydrogen compound into a lamination box. The average particle size of the MoS 2 powder used was 5.1 µm, and the mold release slurry was uniformly sprayed to a thickness of 1 mm. Rare earth permanent magnets were stacked in five layers and loaded into the diffusion furnace.

상기 확산로를 알곤 분위기에서 승온속도=1℃/min.으로 가열하여 900℃ 온도에서 6시간 유지하면서 Dy 수소화합물이 Dy로 분해되어 자석 내부로 확산되어 침투반응이 진행되도록 하였다. 확산처리 후 표면에 확산층을 제거한 후 900℃ 온도에서 10시간 응력제거열처리를 실시하고, 이어서 500℃ 온도에서 2시간 최종열처리를 실시하였다.The diffusion furnace was heated in an argon atmosphere at a heating rate of 1 ° C./min. And maintained at 900 ° C. for 6 hours to decompose Dy hydrogen compounds into Dy and diffuse into the magnet to allow penetration to proceed. After the diffusion treatment, the diffusion layer was removed from the surface, and then a stress relief heat treatment was performed at 900 ° C. for 10 hours, followed by a final heat treatment at 500 ° C. for 2 hours.

실시예 1 내지 3의 이형제를 사용한 경우 잔류자속밀도는 13.7 ~ 13.9 Br(kG)로 비교예의 14.0 Br(kG)와 큰 차이를 보이지 않았고, 실시예 1 내지 3의 보자력은 19.5 ~ 20.3 Hcj(kOe)으로 비교예의 보자력 17.8 Hcj(kOe)보다 향상된 결과를 얻었다. 이를 얇은 두께의 이형제로 인하여 희토류 영구자석의 표면 전체적으로 가열온도가 균등해서 중희토금속 확산속도와 확산깊이가 균등해 졌기 때문이라고 판단된다. 또한 실시예 1 내지 3 모두 융착은 없었다.When the release agents of Examples 1 to 3 were used, the residual magnetic flux density was 13.7 to 13.9 Br (kG), which was not significantly different from that of 14.0 Br (kG) of the comparative example, and the coercive force of Examples 1 to 3 was 19.5 to 20.3 Hcj (kOe). ), The coercive force of the comparative example was 17.8 Hcj (kOe) improved results. This may be due to the fact that the heating temperature is uniform across the surface of the rare earth permanent magnet due to the thin release agent, so that the diffusion rate and the depth of the heavy rare earth metal are equalized. In addition, in Examples 1-3, there was no fusion.

[실시예4]Example 4

상기 Dy 수소화합물이 도포된 희토류 영구자석을 적층상자에 적재하는 방법으로서 카본분말의 이형제를 사용하였다. 사용된 카본분말의 평균입도는 5.0㎛이고, 이형제 슬러리를 1㎜ 두께로 균일하게 스프레이분사하였다. 희토류 영구자석은 10층으로 적층하여 확산로에 장입하였다.A mold release agent of carbon powder was used as a method of loading the rare earth permanent magnet coated with the Dy hydrogen compound into a lamination box. The average particle size of the carbon powder used was 5.0 µm, and the mold release slurry was uniformly sprayed to a thickness of 1 mm. Rare earth permanent magnets were stacked in 10 layers and charged into the diffusion furnace.

상기 확산로를 알곤 분위기에서 승온속도=1℃/min.으로 가열하여 900℃ 온도에서 6시간 유지하면서 Dy 수소화합물이 Dy로 분해되어 자석 내부로 확산되어 침투반응이 진행되도록 하였다. 확산처리 후 표면에 확산층을 제거한 후 900℃ 온도에서 10시간 응력제거열처리를 실시하고, 이어서 500℃ 온도에서 2시간 최종열처리를 실시하였다.The diffusion furnace was heated in an argon atmosphere at a heating rate of 1 ° C./min. And maintained at 900 ° C. for 6 hours to decompose Dy hydrogen compounds into Dy and diffuse into the magnet to allow penetration to proceed. After the diffusion treatment, the diffusion layer was removed from the surface, and then a stress relief heat treatment was performed at 900 ° C. for 10 hours, followed by a final heat treatment at 500 ° C. for 2 hours.

[실시예5]Example 5

상기 Dy 수소화합물이 도포된 희토류 영구자석을 적층상자에 적재하는 방법으로서 알루미나분말의 이형제를 사용하였다. 사용된 알루미나분말의 평균입도는 5.1㎛이고, 이형제 슬러리를 1㎜ 두께로 균일하게 스프레이분사하였다. 희토류 영구자석은 10층으로 적층하여 확산로에 장입하였다.A release agent of an alumina powder was used as a method of loading the rare earth permanent magnet coated with the Dy hydrogen compound into a lamination box. The average particle size of the alumina powder used was 5.1 µm, and the mold release slurry was uniformly sprayed to a thickness of 1 mm. Rare earth permanent magnets were stacked in 10 layers and charged into the diffusion furnace.

상기 확산로를 알곤 분위기에서 승온속도=1℃/min.으로 가열하여 900℃ 온도에서 6시간 유지하면서 Dy 수소화합물이 Dy로 분해되어 자석 내부로 확산되어 침투반응이 진행되도록 하였다. 확산처리 후 표면에 확산층을 제거한 후 900℃ 온도에서 10시간 응력제거열처리를 실시하고, 이어서 500℃ 온도에서 2시간 최종열처리를 실시하였다.The diffusion furnace was heated in an argon atmosphere at a heating rate of 1 ° C./min. And maintained at 900 ° C. for 6 hours to decompose Dy hydrogen compounds into Dy and diffuse into the magnet to allow penetration to proceed. After the diffusion treatment, the diffusion layer was removed from the surface, and then a stress relief heat treatment was performed at 900 ° C. for 10 hours, followed by a final heat treatment at 500 ° C. for 2 hours.

[실시예6]Example 6

상기 Dy 수소화합물이 도포된 희토류 영구자석을 적층상자에 적재하는 방법으로서 MoS2분말의 이형제를 사용하였다. 사용된 MoS2분말의 평균입도는 5.1㎛이고, 이형제 슬러리를 1㎜ 두께로 균일하게 스프레이분사하였다. 희토류 영구자석은 10층으로 적층하여 확산로에 장입하였다.A release agent of MoS 2 powder was used as a method of loading the rare earth permanent magnet coated with the Dy hydrogen compound into a lamination box. The average particle size of the MoS 2 powder used was 5.1 µm, and the mold release slurry was uniformly sprayed to a thickness of 1 mm. Rare earth permanent magnets were stacked in 10 layers and charged into the diffusion furnace.

상기 확산로를 알곤 분위기에서 승온속도=1℃/min.으로 가열하여 900℃ 온도에서 6시간 유지하면서 Dy 수소화합물이 Dy로 분해되어 자석 내부로 확산되어 침투반응이 진행되도록 하였다. 확산처리 후 표면에 확산층을 제거한 후 900℃ 온도에서 10시간 응력제거열처리를 실시하고, 이어서 500℃ 온도에서 2시간 최종열처리를 실시하였다.The diffusion furnace was heated in an argon atmosphere at a heating rate of 1 ° C./min. And maintained at 900 ° C. for 6 hours to decompose Dy hydrogen compounds into Dy and diffuse into the magnet to allow penetration to proceed. After the diffusion treatment, the diffusion layer was removed from the surface, and then a stress relief heat treatment was performed at 900 ° C. for 10 hours, followed by a final heat treatment at 500 ° C. for 2 hours.

실시예 4 내지 6의 이형제를 사용한 경우 잔류자속밀도는 13.7 ~ 13.9 Br(kG)로 비교예의 14.0 Br(kG)와 큰 차이를 보이지 않았고, 실시예 4 내지 6의 보자력은 19.5 ~ 20.3 Hcj(kOe)으로 비교예의 보자력 17.8 Hcj(kOe)보다 향상된 결과를 얻었다. 이를 얇은 두께의 이형제로 인하여 희토류 영구자석의 표면 전체적으로 가열온도가 균등해서 중희토금속 확산속도와 확산깊이가 균등해 졌기 때문이라고 판단된다. 또한 실시예 4 내지 6 모두 융착은 없었다.When the release agents of Examples 4 to 6 were used, the residual magnetic flux density was 13.7 to 13.9 Br (kG), which did not show a significant difference from the 14.0 Br (kG) of the comparative example, and the coercive force of Examples 4 to 6 was 19.5 to 20.3 Hcj (kOe). ), The coercive force of the comparative example was 17.8 Hcj (kOe) improved results. This may be due to the fact that the heating temperature is uniform across the surface of the rare earth permanent magnet due to the thin release agent, so that the diffusion rate and the depth of the heavy rare earth metal are equalized. In addition, in Examples 4-6, there was no fusion.

또한, 본 발명은, 전술한 실시형태의 형태에 한정되지 않고, 본 발명의 요지를 벗어나지 않게 적절하게 변경하는 것이 가능하다. 예컨대, 원료 분말의 조성, 성형체의 형상·크기, 자장인가 속도, 소결 조건 등을 적절하게 변경할 수 있다.In addition, this invention is not limited to the aspect of embodiment mentioned above, It is possible to change suitably, without deviating from the summary of this invention. For example, the composition of the raw material powder, the shape and size of the molded body, the magnetic field application rate, the sintering conditions, and the like can be appropriately changed.

Claims (5)

xwt%RE-ywt%B-zwt%TM-bal.wt%Fe(RE=희토류원소, TM=3d 천이원소, x=28∼35, y=0.5∼1.5, z=0∼15)조성의 희토류 합금을 제조하는 단계;
상기 제조된 합금을 1.0 ~ 5.0㎛ 이하 크기로 분쇄하는 단계;
상기 분쇄된 합금을 자장배향 및 압축성형하여 자화시켜 희토류 영구자석을 제조하는 단계;
상기 자화된 희토류 영구자석을 소결하는 단계;
상기 희토류 영구자석을 소정규격으로 가공하는 단계;
상기 가공된 희토류 영구자석을 세정하는 단계;
중희토금속 수소화합물을 상기 세정된 희토류 영구자석의 표면에 도포하는 단계;
상기 중희토금속 수소화합물이 도포된 희토류 영구자석을 적층상자내에 이형제 분말을 매개로 적층시켜 다단으로 적층하는 단계;
상기 중희토금속 수소화합물이 도포된 희토류 영구자석이 다단 적층된 적층상자를 가열로에 장입하고 진공 또는 불활성기체 분위기에서 희토류 영구자석의 결정립계상으로 희토류를 확산시키는 단계;
상기 희토류 영구자석의 결정립계상으로 중희토금속이 확산된 희토류 영구자석을 가열로에 장입하고 진공 또는 불활성기체 분위기에서 응력제거열처리하는 응력제거열처리단계;
상기 응력제거열처리단계이후 열처리를 하는 최종열처리단계;로 이루어지되,
상기 이형제 분말을 매개로 하는 적층단계에서 매개체는,
이형제 분말과 유기용제를 혼련한 이형제 분말 슬러리이고,
이형제분말은 중희토금속 수소화합물의 확산온도에서 희토류 영구자석, 중희토금속과 반응하지 않아, 중희토금속이 희토류 영구자석의 결정립계상으로 희토류를 확산되는데 방해되지 않는 물질이고,
상기 이형제 분말의 크기는 1 ~ 10㎛ 범위의 분말입도이고,
상기 이형제 분말 슬러리를 스프레이 분사방식으로 분사시켜 도포하되,
이형제 분말 슬러리의 도포 두께는 0.2 ~ 2㎜ 범위로 도포하는 것을 특징으로 하는 희토류 영구자석의 제조방법.
xwt% RE-ywt% B-zwt% TM-bal.wt% Fe (RE = rare earth element, TM = 3d transition element, x = 28-35, y = 0.5-1.5, z = 0-15) Preparing an alloy;
Grinding the prepared alloy to a size of 1.0 to 5.0 μm or less;
Magnetizing the ground alloy by magnetic field orientation and compression molding to produce a rare earth permanent magnet;
Sintering the magnetized rare earth permanent magnet;
Processing the rare earth permanent magnet to a predetermined standard;
Cleaning the processed rare earth permanent magnet;
Applying a heavy rare earth metal hydrogen compound to the surface of the washed rare earth permanent magnet;
Stacking the rare earth permanent magnets to which the heavy rare earth metal hydrogen compound is applied in a multi-layer by laminating a release agent powder in a lamination box;
Charging a multi-layer stack box in which the rare earth permanent magnets coated with the rare earth metal hydrogen compound are stacked in a heating furnace, and diffusing the rare earths in the vacuum or inert gas atmosphere onto the grain boundaries of the rare earth permanent magnets;
A stress removing heat treatment step of charging a rare earth permanent magnet in which heavy rare earth metal is diffused into the grain boundary of the rare earth permanent magnet in a heating furnace, and performing stress relief heat treatment in a vacuum or inert gas atmosphere;
After the stress relief heat treatment step after the final heat treatment step; consisting of,
The mediator in the lamination step via the release agent powder,
It is a release agent powder slurry which knead the release agent powder and the organic solvent,
The release agent powder does not react with the rare earth permanent magnet or the heavy rare earth metal at the diffusion temperature of the heavy rare earth metal hydrogen compound, so that the rare earth metal does not interfere with the diffusion of the rare earth into the grain boundary of the rare earth permanent magnet.
The size of the release agent powder is a powder particle size in the range of 1 ~ 10㎛,
The release agent powder slurry is applied by spraying the spray method,
Method for producing a rare earth permanent magnet, characterized in that the coating thickness of the release agent powder slurry is applied in the range of 0.2 ~ 2mm.
제1항에 있어서,
상기 중희토금속 수소화합물의 도포단계에서 사용되는 중희토금속은 Nd, Pr, La, Ce, Ho, Dy, Tb 중 하나 이상의 중희토금속을 포함하는 중희토금속 수소화합물인 것으로 특징으로 하는 희토류 영구자석의 제조방법.
The method of claim 1,
Heavy rare earth metal used in the application step of the heavy rare earth metal hydrogen compound is a rare earth permanent metal, characterized in that the heavy rare earth metal hydrogen compound containing one or more heavy rare earth metals of Nd, Pr, La, Ce, Ho, Dy, Tb Method of manufacturing a magnet.
삭제delete 삭제delete 삭제delete
KR1020190039473A 2019-04-04 2019-04-04 Method Of rare earth sintered magnet KR102045406B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190039473A KR102045406B1 (en) 2019-04-04 2019-04-04 Method Of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190039473A KR102045406B1 (en) 2019-04-04 2019-04-04 Method Of rare earth sintered magnet

Publications (1)

Publication Number Publication Date
KR102045406B1 true KR102045406B1 (en) 2019-11-15

Family

ID=68578624

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190039473A KR102045406B1 (en) 2019-04-04 2019-04-04 Method Of rare earth sintered magnet

Country Status (1)

Country Link
KR (1) KR102045406B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804107A (en) * 2022-05-27 2022-07-29 无锡迈新纳米科技有限公司 Nitrogen-boron co-doped two-dimensional transition metal carbide material

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335808A (en) 2000-05-24 2001-12-04 Tdk Corp Method of manufacturing sintered permanent magnet
JP2005183810A (en) * 2003-12-22 2005-07-07 Tdk Corp Method for manufacturing rare earth sintered magnet
JP2006097092A (en) 2004-09-29 2006-04-13 Tdk Corp Method for sintering rare-earth magnet
KR20140084275A (en) * 2011-10-27 2014-07-04 인터메탈릭스 가부시키가이샤 METHOD FOR PRODUCING NdFeB SINTERED MAGNET
KR20180067760A (en) * 2016-12-12 2018-06-21 현대자동차주식회사 Method for producing rare earth permanent magnet
KR101932551B1 (en) * 2018-06-15 2018-12-27 성림첨단산업(주) RE-Fe-B BASED RARE EARTH MAGNET BY GRAIN BOUNDARY DIFFUSION OF HAEVY RARE EARTH AND MANUFACTURING METHODS THEREOF

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335808A (en) 2000-05-24 2001-12-04 Tdk Corp Method of manufacturing sintered permanent magnet
JP2005183810A (en) * 2003-12-22 2005-07-07 Tdk Corp Method for manufacturing rare earth sintered magnet
JP2006097092A (en) 2004-09-29 2006-04-13 Tdk Corp Method for sintering rare-earth magnet
KR20140084275A (en) * 2011-10-27 2014-07-04 인터메탈릭스 가부시키가이샤 METHOD FOR PRODUCING NdFeB SINTERED MAGNET
KR20180067760A (en) * 2016-12-12 2018-06-21 현대자동차주식회사 Method for producing rare earth permanent magnet
KR101932551B1 (en) * 2018-06-15 2018-12-27 성림첨단산업(주) RE-Fe-B BASED RARE EARTH MAGNET BY GRAIN BOUNDARY DIFFUSION OF HAEVY RARE EARTH AND MANUFACTURING METHODS THEREOF

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
[비특허문헌 1] K T Park et al, "Effect of Metal-Coating and Consecutive [0009] Heat Treatment on Coercivity of Thin Nd-Fe-B Sintered Magnets", Proceedings of the Sixteenth International Workshop on Rare-Earth Magnets and their Applications (2000), pp257-264
[비특허문헌 2] Naoyuki Ishigaki et al, "Surface Modification and Characteristics Improvement of Micro-sized Neodymium Sintered Magnet", NEOMAX Technical Report, published by Kabusiki Kaisha NEOMAX, vol 15(2005), pp15-19
[비특허문헌 3] Ken-ichi Machida et al, "Grain Boundary Modification and Magnetic Characteristics of Sintered NdFeB Magnet", Speech Summaries of 2004 Spring Meeting of Japan Society of Powder and Powder Metallurgy, published by the Japan Society of Powder and Powder Metallurgy, 1-47A
[비특허문헌 4] Kouichi Hirota et al, "Increase in Coercivity of Sintered NdFeB Magnet by Grain Boundary Diffusion Method", Speech Summaries of 2005 Spring Meeting of Japan Society of Powder and Powder Metallurgy, published by the Japan Society of Powder and Powder Metallurgy, p143
[비특허문헌 5] Ken-ichi Machida et al, "Magnetic Characteristics of Sintered NdFeB Magnet with Modified Grain Boundary", Speech Summaries of 2005 Spring Meeting of Japan Society of Powder and Powder Metallurgy, published by the Japan Society of Powder and Powder Metallurgy, p144

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804107A (en) * 2022-05-27 2022-07-29 无锡迈新纳米科技有限公司 Nitrogen-boron co-doped two-dimensional transition metal carbide material
CN114804107B (en) * 2022-05-27 2023-10-03 无锡迈新纳米科技有限公司 Nitrogen-boron co-doped two-dimensional transition metal carbide material

Similar Documents

Publication Publication Date Title
KR102045399B1 (en) Manufacturing method of rare earth sintered magnet
US8128758B2 (en) R-Fe-B microcrystalline high-density magnet and process for production thereof
US9418786B2 (en) R—Fe—B porous magnet and method for producing the same
JP5328161B2 (en) Manufacturing method of NdFeB sintered magnet and NdFeB sintered magnet
US9468972B2 (en) Method of making Nd—Fe—B sintered magnets with reduced dysprosium or terbium
JP2006303197A (en) Method for manufacturing r-t-b system sintered magnet
JP5209349B2 (en) Manufacturing method of NdFeB sintered magnet
JP2012212808A (en) Manufacturing method of rear earth sintered magnet
JP5643355B2 (en) Manufacturing method of NdFeB sintered magnet
KR102045400B1 (en) Manufacturing method of rare earth sintered magnet
KR102045406B1 (en) Method Of rare earth sintered magnet
CN109585152B (en) Method for producing R-T-B sintered magnet and diffusion source
JP2021150547A (en) Method for manufacturing r-t-b based sintered magnet
KR102159079B1 (en) Method Of rare earth sintered magnet
KR102057870B1 (en) Method Of rare earth sintered magnet
KR102261143B1 (en) Manufacturing method of rare earth sintered magnet
KR102589870B1 (en) Manufacturing method of rare earth sintered magnet
JP7248016B2 (en) Method for producing RTB based sintered magnet
KR20190125772A (en) Manufacturing method of rare earth sintered magnet
JPH07201545A (en) Sintered magnet and its manufacture thereof
JPH07201623A (en) Sintered magnet and its production
JP2022174820A (en) Rare earth sintered magnet and method for producing rare earth sintered magnet
KR20190125771A (en) Manufacturing method of rare earth sintered magnet

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant