KR20240088038A - Manufacturing method of rare earth sintered magnet - Google Patents

Manufacturing method of rare earth sintered magnet Download PDF

Info

Publication number
KR20240088038A
KR20240088038A KR1020220173373A KR20220173373A KR20240088038A KR 20240088038 A KR20240088038 A KR 20240088038A KR 1020220173373 A KR1020220173373 A KR 1020220173373A KR 20220173373 A KR20220173373 A KR 20220173373A KR 20240088038 A KR20240088038 A KR 20240088038A
Authority
KR
South Korea
Prior art keywords
rare earth
sintered body
manufacturing
melting point
magnet
Prior art date
Application number
KR1020220173373A
Other languages
Korean (ko)
Inventor
김진모
이상협
김동환
공군승
Original Assignee
성림첨단산업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성림첨단산업(주) filed Critical 성림첨단산업(주)
Priority to KR1020220173373A priority Critical patent/KR20240088038A/en
Publication of KR20240088038A publication Critical patent/KR20240088038A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

본 발명에서는 희토류 합금으로 이루어진 소결체의 표면에 저융점금속 시트 접착, 중희토금속 화합물 슬러리 순으로 도포 후, 입계확산시켜 온도에 따른 자기특성인 잔류자속밀도의 온도계수와 보자력을 향상시킨 희토류 영구자석의 제공한다.In the present invention, a low-melting point metal sheet is adhered to the surface of a sintered body made of a rare earth alloy, a heavy rare earth metal compound slurry is applied in that order, and then grain boundary diffusion is performed to improve the temperature coefficient of residual magnetic flux density and coercive force, which are magnetic properties depending on temperature. provides.

Description

희토류 영구자석의 제조방법 {Manufacturing method of rare earth sintered magnet}Manufacturing method of rare earth permanent magnet {Manufacturing method of rare earth sintered magnet}

본 발명은 희토류 영구자석의 제조방법에 관한 것으로, 특히, 희토류 합금으로 이루어진 소결체의 표면에 저융점금속시트 접착, 중희토금속 화합물 슬러리 도포 후, 입계확산시켜 온도에 따른 자기특성인 잔류자속밀도의 온도계수와 보자력을 향상시킨 희토류 영구자석의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a rare earth permanent magnet, and in particular, to the surface of a sintered body made of a rare earth alloy, by adhering a low-melting point metal sheet to the surface, applying a heavy rare earth metal compound slurry, and then grain boundary diffusion to determine the residual magnetic flux density, which is a magnetic characteristic depending on temperature. This relates to a method of manufacturing rare earth permanent magnets with improved temperature coefficient and coercive force.

NdFeB 소결자석은, 하이브리드카(hybrid car) 등의 모터용으로서 점점 수요가 확대되고 있어, 그 보자력(Hcj)을 한층 더 크게 하는 것이 요구되고 있다. NdFeB 소결자석의 보자력(Hcj)을 증대시키기 위하여서는 Nd의 일부를 Dy이나 Tb로 치환하는 방법이 알려져 있지만, Dy이나 Tb의 자원은 부족하고 또한 편재(偏在)하고 있으며, 또한 이들 원소의 치환에 의하여 NdFeB 소결자석의 잔류자속밀도(Br)나 최대 에너지 적(積)((BH)max)이 저하되는 것이 문제이다Demand for NdFeB sintered magnets is gradually increasing for use in motors such as hybrid cars, and it is required to further increase its coercive force (Hcj). In order to increase the coercive force (Hcj) of the NdFeB sintered magnet, a method of substituting part of Nd with Dy or Tb is known, but the resources of Dy and Tb are scarce and ubiquitous, and replacement of these elements is necessary. The problem is that the residual magnetic flux density (Br) or maximum energy product ((BH)max) of the NdFeB sintered magnet decreases due to this.

자석 표면에 접착시킨 Dy이나 Tb은, 소결체의 입계(粒界)를 통하여 소결체 내부로 보내져, 입계로부터 주상(主相, main phase) Re2Fe14B(Re은 희토류 원소)의 각 입자의 내부로 확산해 간다. 이를 입계확산이라 한다. 입계확산 시 입계의 Re 리치상(相)은 가열에 의하여 액화되므로, 입계 속의 Dy이나 Tb의 확산속도는, 입계로부터 주상입자 내부로의 확산속도보다도 훨씬 빠르다.Dy or Tb bonded to the surface of the magnet is sent into the sintered body through the grain boundaries of the sintered body, and diffuses from the grain boundaries into each particle of the main phase Re2Fe14B (Re is a rare earth element). . This is called grain boundary diffusion. During grain boundary diffusion, the Re-rich phase at the grain boundary is liquefied by heating, so the diffusion speed of Dy or Tb in the grain boundary is much faster than the diffusion speed from the grain boundary into the interior of the columnar particle.

이 확산속도의 차를 이용하여, 열처리 온도와 시간을 조정함으로써, 소결체 전체에 걸쳐서, 소결체 속의 주상입자의 입계에 극히 가까운 영역(표면영역)에 있어서만 Dy이나 Tb의 농도가 높은 상태를 실현할 수 있다. By using this difference in diffusion rate to adjust the heat treatment temperature and time, it is possible to achieve a state in which the concentration of Dy or Tb is high only in the area (surface area) extremely close to the grain boundaries of the columnar particles in the sintered body throughout the entire sintered body. there is.

NdFeB 소결자석의 보자력(Hcj)은 주상입자의 표면영역의 상태에 따라서 결정되므로, 표면영역의 Dy이나 Tb의 농도가 높은 결정립(結晶粒)을 가지는 NdFeB 소결자석은 고보자력을 가지게 된다. Since the coercive force (Hcj) of the NdFeB sintered magnet is determined depending on the state of the surface area of the columnar particles, the NdFeB sintered magnet with crystal grains with a high concentration of Dy or Tb in the surface area has a high coercive force.

또한 Dy이나 Tb의 농도가 높아지면 자석의 잔류자속밀도(Br)이 저하되지만, 그와 같은 영역은 각 주상입자의 표면영역만이기 때문에, 주상입자 전체로서는 잔류자속밀도(Br)는 거의 저하되지 않는다. 이와 같이 하여, 보자력(Hcj)이 크며, 잔류자속밀도(Br)는 Dy이나 Tb을 치환하지 않는 NdFeB 소결자석과 그다지 변화없는 고성능 자석을 제조할 수 있는데 이 방법은 입계확산법이라 한다.In addition, when the concentration of Dy or Tb increases, the residual magnetic flux density (Br) of the magnet decreases, but since such area is only the surface area of each columnar particle, the residual magnetic flux density (Br) of the columnar particles as a whole hardly decreases. No. In this way, NdFeB sintered magnets with high coercive force (Hcj) and residual magnetic flux density (Br) that do not substitute Dy or Tb, and high-performance magnets with little change can be manufactured. This method is called the grain boundary diffusion method.

입계확산법에 의한 NdFeB 소결자석의 공업적 제조방법으로서, Dy이나 Tb의 플루오르화물(Fluor化物)이나 산화물 미분말층을 NdFeB 소결자석의 표면에 형성하여 가열하는 방법이나, Dy이나 Tb의 플루오르화물이나 산화물의 분말과 수소화 Ca의 분말의 혼합분말 속에 NdFeB 소결자석을 매립하여 가열하는 방법이 있다.An industrial manufacturing method of NdFeB sintered magnets by the grain boundary diffusion method, in which a fine powder layer of Dy or Tb fluoride or oxide is formed on the surface of the NdFeB sintered magnet and heated, or a powder of Dy or Tb fluoride or oxide is formed on the surface of the NdFeB sintered magnet. There is a method of embedding a NdFeB sintered magnet in a mixed powder of perhydrogenated Ca powder and heating it.

상술한 입계확산법이 공지(公知)가 되기 전부터, NdFeB계 소결자석의 표면 부근에 Tb, Dy, Al, Ga 중 적어도 1종류를 확산시킴으로써 고온감자(高溫減磁)를 작게 하는 것(특허문헌 1)이나, NdFeB 소결자석의 표면에 Nd, Pr, Dy, Ho, Tb 중 적어도 1종을 피착(被着)함으로써 가공 열화(劣化)에 의한 자기 특성의 열화를 방지하는 것(특허문헌 2)이 제안되어 있다.Even before the grain boundary diffusion method described above became known, high-temperature demagnetization was reduced by diffusing at least one type of Tb, Dy, Al, or Ga near the surface of the NdFeB-based sintered magnet (Patent Document 1). ), or by depositing at least one of Nd, Pr, Dy, Ho, and Tb on the surface of the NdFeB sintered magnet to prevent deterioration of magnetic properties due to processing deterioration (patent document 2). It is proposed.

[특허문헌 1] 일본특허공개 평01-117303호 공보[Patent Document 1] Japanese Patent Publication No. 01-117303 [특허문헌 2] 일본특허공개 소62-074048호 공보[Patent Document 2] Japanese Patent Publication No. 62-074048 [특허문헌 3] 한국등록특허 10-1447301[Patent Document 3] Korean Patent 10-1447301

본 발명에서는 희토류 영구자석의 제조방법에 관한 것으로, xwt%RE-ywt%B-zwt%TM-bal.wt%Fe(RE=희토류원소, TM=3d 천이원소, x=28∼35, y=0.5∼1.5, z=0∼15)조성의 희토류 합금으로 이루어진 소결체의 표면에 저융점금속시트 접착, 중희토금속 화합물 슬러리 순으로 도포 후, 입계확산시켜 온도에 따른 자기특성인 잔류자속밀도의 온도계수와 보자력을 향상시킨 희토류 영구자석의 제공한다.The present invention relates to a method for manufacturing rare earth permanent magnets, xwt%RE-ywt%B-zwt%TM-bal.wt%Fe (RE=rare earth element, TM=3d transition element, x=28-35, y= After adhering a low-melting point metal sheet to the surface of a sintered body made of a rare earth alloy with a composition of 0.5~1.5, z=0~15, applying slurry of a medium rare earth metal compound in that order, grain boundary diffusion is performed to measure the residual magnetic flux density, which is a magnetic property according to temperature. We provide rare earth permanent magnets with improved number and coercivity.

상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 희토류 영구자석의 제조방법은 xwt%RE-ywt%B-zwt%TM-bal.wt%Fe(RE=희토류원소, TM=3d 천이원소, x=28∼35, y=0.5∼1.5, z=0∼15)조성의 희토류 합금을 제조하는 단계; 상기 제조된 합금을 1.0 ~ 5.0㎛ 이하 크기로 분쇄하는 단계; 상기 분쇄된 합금을 자장배향 및 압축성형하여 자화시키는 단계; 상기 자화된 합금을 소결하는 단계; 상기 소결된 소결체를 세정하는 단계; 세정된 소결체의 표면에 저융점금속 시트를 접착하는 단계; 소결체에 접착된 저융점금속 시트 표면에 중희토화합물을 액상용매와 혼련된 슬러리를 도포하는 단계; 상기 저융점금속 시트 접착 및 중희토금속화합물 슬러리가 도포된 소결체를 가열로에 장입하고 진공 또는 불활성기체 분위기에서 소결체의 결정립계상으로 중희토류를 확산시키는 단계; 상기 합금의 결정립계상으로 중희토금속이 확산된 소결체를 가열로에 장입하고 진공 또는 불활성기체 분위기에서 응력제거열처리하는 응력제거열처리단계; 상기 응력제거열처리단계이후 열처리를 하는 최종열처리단계;로 이루어지는 것을 특징으로 한다.In order to achieve the above-described object, the method for manufacturing rare earth permanent magnets according to the present invention is xwt%RE-ywt%B-zwt%TM-bal.wt%Fe (RE=rare earth element, TM=3d transition element, manufacturing a rare earth alloy having a composition of x=28-35, y=0.5-1.5, z=0-15; Grinding the prepared alloy to a size of 1.0 ~ 5.0㎛ or less; Magnetizing the pulverized alloy by magnetic field orientation and compression molding; Sintering the magnetized alloy; cleaning the sintered body; Adhering a low melting point metal sheet to the surface of the cleaned sintered body; Applying a slurry obtained by mixing a heavy rare earth compound with a liquid solvent to the surface of a low-melting point metal sheet adhered to the sintered body; charging the sintered body coated with the low-melting-point metal sheet and heavy rare earth metal compound slurry into a heating furnace and diffusing the heavy rare earth elements onto the grain boundaries of the sintered body in a vacuum or inert gas atmosphere; A stress relief heat treatment step of charging the sintered body in which the heavy rare earth metal is diffused into the grain boundaries of the alloy into a heating furnace and performing stress relief heat treatment in a vacuum or inert gas atmosphere; It is characterized in that it consists of a final heat treatment step of heat treatment after the stress relief heat treatment step.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 저융점금속 시트는 Cu, Al, Ga 중 하나인 것을 특징으로 한다.In the method of manufacturing a rare earth permanent magnet according to the present invention, the low melting point metal sheet is one of Cu, Al, and Ga.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 저융점금속 시트의 두께는 1 ~ 60㎛ 인 것을 특징으로 한다. 바람직하기는 1 ~ 10㎛ 이고, 더 바람직하기는 1 ~ 6㎛ 이다.In the method of manufacturing a rare earth permanent magnet according to the present invention, the thickness of the low melting point metal sheet is 1 to 60㎛. Preferably it is 1 to 10㎛, more preferably 1 to 6㎛.

본 발명에 따른 희토류 영구자석의 제조방법에서 PVP(Polyvinylpyrrolidone) 또는 PVA(Polyvinyl alcohol)를 액상용매와 혼련하여 제조된 접착제를 매개로 소결체와 저융점 금속 시트를 접착하는 것을 특징으로 한다.The method for manufacturing a rare earth permanent magnet according to the present invention is characterized in that the sintered body and the low melting point metal sheet are bonded using an adhesive prepared by mixing PVP (Polyvinylpyrrolidone) or PVA (Polyvinyl alcohol) with a liquid solvent.

액상용매는 에탄올이다.The liquid solvent is ethanol.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 중희토화합물은 Gd-Hydride, Gd-Fluoride, Nd-Hydride, Ho-Fluoride, Ho-Hydride, Dy-Hydride, Dy-Fluoride, Tb-Hydride, Tb-Fluoride 분말 중 하나인 것을 특징으로 한다.In the method for manufacturing rare earth permanent magnets according to the present invention, the heavy rare earth compounds include Gd-Hydride, Gd-Fluoride, Nd-Hydride, Ho-Fluoride, Ho-Hydride, Dy-Hydride, Dy-Fluoride, Tb-Hydride, Tb- It is characterized as one of the fluoride powders.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 슬러리는 중희토화합물의 고상분말과 액상용매를 40~60체적%:40~60체적%로 혼련하는 것을 특징으로 한다.In the method for producing a rare earth permanent magnet according to the present invention, the slurry is characterized by mixing solid powder of a heavy rare earth compound and a liquid solvent at a ratio of 40 to 60% by volume: 40 to 60% by volume.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 xwt%RE-ywt%B-zwt%TM-bal.wt%Fe(RE=희토류원소, TM=3d 천이원소, x=28∼35, y=0.5∼1.5, z=0∼15)조성의 희토류 합금에서 RE=Nd, Pr, La, Ce, Ho, Dy, Tb 중 하나 이상의 희토금속을 포함하는 것을 특징으로 한다.In the method of manufacturing a rare earth permanent magnet according to the present invention, the xwt%RE-ywt%B-zwt%TM-bal.wt%Fe (RE=rare earth element, TM=3d transition element, A rare earth alloy with a composition of ∼1.5, z=0∼15) is characterized in that it contains one or more rare earth metals among RE=Nd, Pr, La, Ce, Ho, Dy, and Tb.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 xwt%RE-ywt%B-zwt%TM-bal.wt%Fe(RE=희토류원소, TM=3d 천이원소, x=28∼35, y=0.5∼1.5, z=0∼15)조성의 희토류 합금에서 TM=Co, Cu, Al, Ga, Nb, Ti, Mo, V, Zr, Zn 중 하나 이상의 3d 천이금속을 포함하는 것을 특징으로 한다.In the method of manufacturing a rare earth permanent magnet according to the present invention, the xwt%RE-ywt%B-zwt%TM-bal.wt%Fe (RE=rare earth element, TM=3d transition element, ∼1.5, z=0∼15), and is characterized in that it contains one or more 3d transition metals among TM=Co, Cu, Al, Ga, Nb, Ti, Mo, V, Zr, and Zn.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 자장성형에 의해 얻어진 성형체를 소결로에 장입하고 진공분위기 및 400℃ 이하에서 충분히 유지하여 잔존하는 불순 유기물을 완전히 제거한다.In the method of manufacturing a rare earth permanent magnet according to the present invention, the molded body obtained by magnetic field molding is charged into a sintering furnace and sufficiently maintained in a vacuum atmosphere and below 400° C. to completely remove remaining impurity organic substances.

다시 소결 조건인 온도 900℃∼1200℃, 유지 시간: 2시간∼8시간, 분위기: 진공, 아르곤 등의 조건에서 소결한다. 바람직하기로는 1,000 ~ 1,100℃의 온도범위가 바람직하고, 유지시간은 4 ~6시간이 바람직하다.Sinter again under the sintering conditions: temperature 900°C to 1200°C, holding time: 2 to 8 hours, atmosphere: vacuum, argon, etc. Preferably, the temperature range is 1,000 to 1,100°C, and the holding time is preferably 4 to 6 hours.

본 발명에 따른 희토류 영구자석의 제조방법에서 합금의 결정립계상으로 중희토금속을 확산시키는 단계에서 확산온도는 400∼1000℃ 범위에서 1∼10회 이상 수행하는 것을 특징으로 한다.In the method of manufacturing a rare earth permanent magnet according to the present invention, the step of diffusing the heavy rare earth metal into the grain boundary phase of the alloy is characterized in that the diffusion temperature is in the range of 400 to 1000°C 1 to 10 times or more.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 입계확산처리 후 표면에 잔존하는 슬러지 도포층을 제거한 후 400 ~ 1,000℃ 온도에서 2 ~ 15시간 응력제거열처리를 실시한다. 바람직하기로는 850 ~ 950℃ 온도에서 8 ~ 12시간 응력제거열처리를 실시한다. 더 바람직하기로는 900℃ 온도에서 10시간 응력제거열처리를 실시하는 것을 특징으로 한다.In the method of manufacturing a rare earth permanent magnet according to the present invention, the sludge coating layer remaining on the surface after the grain boundary diffusion treatment is removed, and then stress relief heat treatment is performed at a temperature of 400 to 1,000°C for 2 to 15 hours. Preferably, stress relief heat treatment is performed at a temperature of 850 to 950°C for 8 to 12 hours. More preferably, stress relief heat treatment is performed at 900°C for 10 hours.

본 발명에 따른 희토류 영구자석의 제조방법에서 상기 응력제거열처리이후, 400 ~ 600℃ 온도에서 0.5 ~ 3시간 최종열처리를 실시한다. 바람직하기로는 450 ~ 550℃ 온도에서 1.5 ~ 2.5시간 최종열처리를 실시하는 것을 특징으로 한다.In the method of manufacturing a rare earth permanent magnet according to the present invention, after the stress relief heat treatment, a final heat treatment is performed at a temperature of 400 to 600° C. for 0.5 to 3 hours. Preferably, the final heat treatment is performed at a temperature of 450 to 550°C for 1.5 to 2.5 hours.

본 발명에 따른 희토류 영구자석의 제조방법에 의하면, 희토류 합금으로 이루어진 소결체의 표면에 저융점금속시트 접착, 중희토금속 화합물 슬러리 순으로 도포시켜 진공 또는 불활성기체 분위기에서 소결체의 결정립계상으로 중희토금속을 확산시키면 확산온도에서 저융점금속이 액화된 액상과 중희토 금속 고상이 공존하게 되어 저융점금속 액상이 용매로 작용하여 중희토 금속화합물에서 분해된 중희토 금속의 자유도가 높아져 결정입계로의 확산성이 향상되는 효과를 갖는다.According to the method of manufacturing a rare earth permanent magnet according to the present invention, a low melting point metal sheet is adhered to the surface of a sintered body made of a rare earth alloy, and a heavy rare earth metal compound slurry is applied in that order to deposit the heavy rare earth metal on the grain boundaries of the sintered body in a vacuum or inert gas atmosphere. When diffused, the liquid phase in which the low melting point metal is liquefied and the solid phase of the heavy rare earth metal coexist at the diffusion temperature, and the liquid phase of the low melting point metal acts as a solvent, increasing the degree of freedom of the heavy rare earth metal decomposed from the heavy rare earth metal compound and diffusion to the grain boundary. It has the effect of improving performance.

또한 시트인 저융점금속이 소결체 표면에서 균일하게 액상으로 존재하여 소결체의 결정립계상으로 중희토류 확산도 소결체 표면 전체에 걸처 균일해지는 효과가 있다.In addition, the sheet of low-melting point metal exists uniformly in a liquid state on the surface of the sintered body, which has the effect of making the diffusion of heavy rare earths into the grain boundary phase of the sintered body uniform across the entire surface of the sintered body.

도 1은 본 발명에 의한 희토류 영구자석의 제조방벙의 제조과정을 나타낸 순서도이다.Figure 1 is a flowchart showing the manufacturing process of the rare earth permanent magnet according to the present invention.

이하, 본 발명을 더욱 상세하게 설명한다. 이하에서, "상방", "하방", "전방" 및 "후방" 및 그 외 다른 방향성 용어들은 도면에 도시된 상태를 기준으로 정의한다.Hereinafter, the present invention will be described in more detail. Hereinafter, “upward”, “downward”, “front” and “rear” and other directional terms are defined based on the states shown in the drawings.

[제조 방법][Manufacturing method]

(1) 희토류 합금 분말을 제조하는 단계(1) Steps for producing rare earth alloy powder

원료 분말로서, 희토류 합금으로 이루어진 분말을 준비한다. 희토류 합금은, RE=Nd, Pr, La, Ce, Ho, Dy, Tb에서 선택되는 적어도 1종 및 Fe, TM=Co, Cu, Al, Ga, Nb, Ti, Mo, V, Zr, Zn 중 하나 이상의 3d 천이금속에서 선택되는 적어도 1종, B로 할 때, RE-Fe 합금, 또는 RE-Fe-TM 합금, RE-Fe-B 합금, RE-Fe-TM-B 합금을 들 수 있다. 보다 구체적으로는, Nd-Fe-B 합금, Nd-Fe-Co 합금, Nd-Fe-Co-B 합금 등을 들 수 있다. 희토류 소결 자석에 이용되고 있는 공지된 희토류 합금으로 이루어진 분말을 원료 분말에 이용할 수 있다.As a raw material powder, a powder made of a rare earth alloy is prepared. The rare earth alloy is at least one selected from RE=Nd, Pr, La, Ce, Ho, Dy, Tb, and Fe, TM=Co, Cu, Al, Ga, Nb, Ti, Mo, V, Zr, and Zn. When B is at least one type selected from one or more 3d transition metals, RE-Fe alloy, RE-Fe-TM alloy, RE-Fe-B alloy, or RE-Fe-TM-B alloy may be mentioned. More specifically, Nd-Fe-B alloy, Nd-Fe-Co alloy, Nd-Fe-Co-B alloy, etc. can be mentioned. Powders made of known rare earth alloys used in rare earth sintered magnets can be used as the raw material powder.

원료분말은 xwt%RE-ywt%B-zwt%TM-bal.wt%Fe(RE=희토류원소, TM=3d 천이원소, x=28∼35, y=0.5∼1.5, z=0∼15)조성의 합금이다.Raw material powder is xwt%RE-ywt%B-zwt%TM-bal.wt%Fe (RE=rare earth element, TM=3d transition element, x=28~35, y=0.5~1.5, z=0~15) It is an alloy of composition.

원하는 조성의 합금으로 이루어진 원료분말을 용해 주조 잉곳이나 급냉 응고법에 의해 얻어진 박상체(箔狀體;foil)를 젯밀, 아트리타밀, 볼밀, 진동밀 등의 분쇄 장치에 의해 분쇄하거나, 가스 아토마이즈법과 같은 아토마이즈법을 이용하여 제조할 수 있다. 공지된 분말의 제조 방법에 의해 얻어진 분말이나 아토마이즈법에 의해 제조한 분말을 더 분쇄하여 이용하여도 좋다. 분쇄 조건이나 제조 조건을 적절하게 변경함으로써, 원료 분말의 입도 분포나 분말을 구성하는 각 입자의 형상을 조정할 수 있다. 입자의 형상은, 특별히 상관없지만, 진구(眞球)에 가까울수록 치밀화하기 쉬운 데다가, 자장의 인가에 의해 입자가 회전하기 쉽다. 아토마이즈법을 이용하면, 진구도가 높은 분말을 얻을 수 있다.The raw material powder made of an alloy of the desired composition is melted and cast ingots or the thin body obtained by rapid solidification is pulverized by a grinding device such as a jet mill, atritamil, ball mill, or vibrating mill, or gas atomized. It can be manufactured using the same atomization method. Powder obtained by a known powder production method or powder produced by an atomization method may be further pulverized and used. By appropriately changing the grinding conditions or manufacturing conditions, the particle size distribution of the raw material powder and the shape of each particle constituting the powder can be adjusted. The shape of the particle is not particularly important, but the closer it is to a true sphere, the easier it is to become densified, and the more easily the particle rotates when a magnetic field is applied. By using the atomization method, powder with a high degree of sphericity can be obtained.

제조된 합금스트립을 조분쇄하는 과정에서는 스트립을 진공로에 장입하고 진공배기한 후 수소분위기에서 2시간 이상 유지함으로서 스트립 내부로 수소를 흡수시키고, 이어서 진공분위기에서 600℃ 로 가열하여 스트립 내부에 존재하는 수소를 제거한다.In the process of coarsely crushing the manufactured alloy strip, the strip is charged into a vacuum furnace, evacuated, and maintained in a hydrogen atmosphere for more than 2 hours to absorb hydrogen into the strip, and then heated to 600°C in a vacuum atmosphere to exist inside the strip. Remove hydrogen.

조분쇄를 완료한 수소처리 분말을 사용하여 질소 혹은 불활성가스 분위기에서 젯밀기술을 이용한 분쇄방식에 의해 평균입경 1∼5.0㎛ 범위의 균일하고 미세한 분말로 제조한다.Using hydrogen-treated powder that has completed coarse grinding, it is manufactured into a uniform, fine powder with an average particle diameter in the range of 1 to 5.0㎛ by grinding using jet mill technology in a nitrogen or inert gas atmosphere.

원료 분말은, 미세할수록 충전 밀도를 높이기 쉽기 때문에, 최대 입경은 5.0㎛ 이하가 바람직하다.Since the finer the raw material powder, the easier it is to increase the packing density, the maximum particle size is preferably 5.0 μm or less.

(2) 자장배향 및 성형하는 단계(2) Magnetic field orientation and forming steps

원료 분말에는 윤활제를 첨가할 수 있다. 윤활제를 포함하는 혼합물로 하면, 자장의 인가시에 원료 분말을 구성하는 각 입자가 회전하기 쉬워져, 배향성을 높이기 쉽다. 윤활제는 원료 분말과 실질적으로 반응하지 않는 여러 가지 재질, 형태(액상, 고체상)의 것을 이용할 수 있다. 예컨대, 액상 윤활제는, 에탄올, 기계유, 실리콘오일, 피마자유 등을 들 수 있고, 고체상 윤활제는, 스테아르산아연 등의 금속염, 육방정 질화붕소, 왁스 등을 들 수 있다. 윤활제의 첨가량은, 액상 윤활제에서는, 원료 분말 100 g에 대하여 0.01 질량% 이상 10 질량% 이하 정도, 고체상 윤활제에서는, 원료 분말의 질량에 대하여 0.01 질량% 이상 5 질량% 이하 정도를 들 수 있다.A lubricant can be added to the raw powder. When a mixture containing a lubricant is used, each particle constituting the raw material powder is likely to rotate when a magnetic field is applied, and the orientation is likely to be improved. Lubricants can be used in various materials and forms (liquid, solid) that do not substantially react with the raw material powder. For example, liquid lubricants include ethanol, machine oil, silicone oil, and castor oil, and solid lubricants include metal salts such as zinc stearate, hexagonal boron nitride, and wax. The amount of lubricant added is in the range of 0.01 mass% to 10 mass% based on 100 g of raw material powder for liquid lubricants, and in the range of 0.01 mass% to 5 mass% based on the mass of raw material powder for solid lubricants.

원하는 형상·크기의 압분 성형체를 얻을 수 있도록, 원하는 형상·크기의 성형용 금형을 준비한다. 성형용 금형은, 종래, 소결 자석의 소재에 이용되고 있는 압분 성형체의 제조에 이용되고 있는 것, 대표적으로는, 다이, 상하 펀치를 구비한 것을 이용할 수 있다. 기타, 정수압 가압(Cold Isostatic Press)을 이용할 수 있다.In order to obtain a powder compact of the desired shape and size, a mold for molding of the desired shape and size is prepared. The mold for molding can be one that has conventionally been used in the production of compacted compacts used as materials for sintered magnets, and typically has a die and an upper and lower punch. In addition, cold isostatic press can be used.

원료분말이 성형용 금형에 충진되면, 질소분위기에서 성형용 금형의 좌측과 우측에 위치하는 전자석에 펄스전류를 인가하여 고자장을 발생시킴으로서 분말을 완전히 배향시키고, 이어서 직류전류를 인가함으로서 발생되는 직류자장에 의해 이미 완전히 배향시킨 분말의 방향을 유지하면서 동시에 압축성형을 실시하여 성형체를 제조한다.When the raw material powder is filled into the mold for molding, a pulse current is applied to the electromagnets located on the left and right sides of the mold for molding in a nitrogen atmosphere to generate a high magnetic field to completely orient the powder, and then a direct current is generated by applying a direct current. A molded body is manufactured by simultaneously performing compression molding while maintaining the direction of the powder that has already been completely oriented by a magnetic field.

(3) 소결단계(3) Sintering step

자장성형에 의해 얻어진 성형체를 소결로에 장입하고 진공분위기 및 400℃ 이하에서 충분히 유지하여 잔존하는 불순 유기물을 완전히 제거한다.The molded body obtained by magnetic field molding is charged into a sintering furnace and sufficiently maintained in a vacuum atmosphere and below 400°C to completely remove remaining impure organic substances.

다시 소결 조건인 온도 900℃∼1200℃, 유지 시간: 0.5시간∼3시간, 분위기: 진공, 아르곤 등의 조건에서 소결한다. 바람직하기로는 1,000 ~ 1,100℃의 온도범위가 바람직하고, 유지시간은 1 ~2시간 30분이 바람직하다.Sinter again under the sintering conditions: temperature 900°C to 1200°C, holding time: 0.5 to 3 hours, atmosphere: vacuum, argon, etc. Preferably, the temperature range is 1,000 to 1,100°C, and the holding time is preferably 1 to 2 hours and 30 minutes.

소결체는 12.5*12.5*5mm 크기의 자석으로 가공한다.The sintered body is processed into a magnet with a size of 12.5*12.5*5mm.

소정크기로 분할된 자석가공품을 알칼리탈지제 용액에 담근 후, 직경 2~10 크기의 세라믹볼과 함께 문질러줌으로써 자석 표면에 묻어있는 기름성분을 제거하였고, 다시 자석을 증류수로 수차례 깨끗이 세정함으로써 잔존하는 탈지제를 완전히 제거한다.After immersing the processed magnet into predetermined sizes in an alkaline degreaser solution, the oil on the surface of the magnet was removed by rubbing it with a ceramic ball with a diameter of 2 to 10, and the remaining magnet was thoroughly cleaned with distilled water several times. Remove the degreaser completely.

(4) 희토류 소결체 표면에 저융점금속 시트를 접착하는 접착단계(4) Adhesion step of adhering a low melting point metal sheet to the surface of the rare earth sintered body

저융점금속은 Cu, Al, Ga 중 하나이고, 상기 저융점금속은 얇은 두께의 시트이다. 저융점금속 시트의 두께는 1 ~ 60㎛ 인 것이 바람직하다.The low melting point metal is one of Cu, Al, and Ga, and the low melting point metal is a thin sheet. The thickness of the low melting point metal sheet is preferably 1 to 60㎛.

저융점금속 시트가 소결체 표면에 고정되지 않으면 후술할 중희토금속화합물 슬러리 도포시 저융점금속 시트가 소결체로부터 이탈될 수 있다.If the low melting point metal sheet is not fixed to the surface of the sintered body, the low melting point metal sheet may be separated from the sintered body when applying the heavy rare earth metal compound slurry, which will be described later.

따라서 소결체와 저융점금속 시트는 접착재에 의해 접착된다.Therefore, the sintered body and the low melting point metal sheet are bonded using an adhesive.

소결체와 저융점금속 시트의 접착재는 PVP(Polyvinylpyrrolidone) 혹은 PVA(Polyvinyl alcohol)를 액상용매와 혼련하여 제조된다.The adhesive between the sintered body and the low-melting point metal sheet is manufactured by mixing PVP (Polyvinylpyrrolidone) or PVA (Polyvinyl alcohol) with a liquid solvent.

PVP(Polyvinylpyrrolidone)는 기화온도 217.6 ℃, 화학식 (C6H9NO)n 이고, PVA(Polyvinyl alcohol)은 기화온도녹는점: 228℃, (C2H4O)x의 물성을 갖는다.PVP (Polyvinylpyrrolidone) has a vaporization temperature of 217.6°C and the chemical formula (C 6 H 9 NO)n, and PVA (Polyvinyl alcohol) has a vaporization temperature and melting point of 228°C and the physical properties of (C2H4O)x.

PVP(Polyvinylpyrrolidone)은 상온에서 액상용매인 에탄올에 용해하여 세정된 소결체 표면에 20 ~70um 의 두께로 도포하여 저융점금속 시트를 접착한다. PVP (Polyvinylpyrrolidone) is dissolved in ethanol, a liquid solvent, at room temperature and applied to the surface of the cleaned sintered body at a thickness of 20 to 70 um to adhere the low melting point metal sheet.

상기 접착제 성분인 PVP(Polyvinylpyrrolidone)과 PVA(Polyvinyl alcohol)은 입계확산온도에서 기화되어 증발되고, 성분이 탄소, 수소, 질소, 산소로 이루어져 기화후 잔류물이 남지 않아 소결체의 표면에 아무런 영향을 주지 않는 성분이다.The adhesive components, PVP (Polyvinylpyrrolidone) and PVA (Polyvinyl alcohol), are vaporized and evaporated at the grain boundary diffusion temperature, and the components are composed of carbon, hydrogen, nitrogen, and oxygen, so no residue remains after evaporation, so they have no effect on the surface of the sintered body. It is an ingredient that does not exist.

액상용매는 에탄올, 알콜이다.Liquid solvents are ethanol and alcohol.

(5) 희토류 소결체에 접착된 저융점금속 시트 표면에 중희토 화합물 슬러리를 도포하는 도포단계(5) Application step of applying heavy rare earth compound slurry to the surface of the low melting point metal sheet adhered to the rare earth sintered body.

본 발명은 중희토금속을 첨가함으로서 보자력 및 잔류자속밀도의 온도특성을 향상시키고자 하는 것으로, 결정립계확산 공정을 이용하여 중희토금속을 첨가함으로서 잔류자속밀도의 온도계수와 보자력을 동시에 향상시키고자 하는 것이다. The present invention seeks to improve the temperature characteristics of the coercive force and residual magnetic flux density by adding a heavy rare earth metal, and simultaneously improves the temperature coefficient of the residual magnetic flux density and the coercive force by adding a heavy rare earth metal using a grain boundary diffusion process. will be.

본 발명에 따른 희토류 소결체에 접착된 저융점금속의 표면에 중희토로 균일하게 도포하기 위해 중희토화합물의 고상분말과 액상용매를 40~60체적%:40~60체적%로 혼련함으로써 제조된 중희토화합물 슬러리를 용기에 담아 교반기(마그네틱 스티어)를 이용하여 균일하게 분산시키면서 가공체를 침적한 후 1~2분 유지하면서 중희토가 자석 표면에 균일하게 도포시키거나, 스프레이 분무방식으로 도포시킨다.In order to uniformly apply heavy rare earth to the surface of the low-melting point metal bonded to the rare earth sintered body according to the present invention, the heavy rare earth compound is manufactured by mixing the solid powder of the heavy rare earth compound and the liquid solvent at 40 to 60% by volume: 40 to 60% by volume. Put the rare earth compound slurry in a container and evenly disperse it using a stirrer (magnetic stirrer). After depositing the processed body, the rare earth compounds are evenly applied to the surface of the magnet while holding for 1 to 2 minutes, or applied by spraying method.

상기 액상용매는 알콜일 수 있다.The liquid solvent may be alcohol.

상기 중희토화합물은 Gd-Hydride, Gd-Fluoride, Gd-oxide, Gd-oxyfluoride, Nd-Hydride, Ho-Fluoride, Ho-Hydride, Dy-Hydride, Dy-Fluoride, Tb-Hydride, Tb-Fluoride 분말 중 하나 이상이다.The heavy rare earth compounds include Gd-Hydride, Gd-Fluoride, Gd-oxide, Gd-oxyfluoride, Nd-Hydride, Ho-Fluoride, Ho-Hydride, Dy-Hydride, Dy-Fluoride, Tb-Hydride, and Tb-Fluoride powder. There is more than one.

상기 슬러리에서 고상분말인 중희토화합물 분말에는 수소(H), 불소(F), 산소(O)가 화합물 형태로 함유되어 있는데, 후술한 입계확산을 위한 가열시 분해되어 배출된다. 분해된 수소 등의 기체는 입자를 미세화시키는데 기여하기도 한다. 가열에 의해 분해된 중희토류인 Gd, Nd, Ho, Dy, Tb가 분해되어 입계로 확산되게 된다.In the slurry, the heavy rare earth compound powder, which is a solid powder, contains hydrogen (H), fluorine (F), and oxygen (O) in the form of a compound, which is decomposed and discharged when heated for grain boundary diffusion as described later. Gases such as decomposed hydrogen also contribute to miniaturizing particles. Heavy rare earth elements Gd, Nd, Ho, Dy, and Tb decomposed by heating are decomposed and diffuse into grain boundaries.

본 발명에서 이용하는 고상분말의 평균 입경은 5㎛ 이하가 좋으며, 바람직하게는 4㎛ 이하, 더욱 바람직하게는 3㎛ 이하가 좋다, 입경이 지나치게 크면 가열시에 기지조직과의 합금화가 일어나기 어려우며, 또한 형성되는 표면층의 기지조직으로의 밀착성에 문제가 생긴다. 입경은 작을수록 가열 후에 고밀도의 표면층이 형성된다. 표면층을 부식방지막으로서 사용하기 위하여서도 입경이 작은 쪽이 좋다. 그 때문에 입경의 하한값은 특별히 없으며, 비용의 고려를 하지 않는다면 수십 ㎚의 초미분이 이상적이지만, 실용상 가장 바람직한 금속분말의 평균 입경은 03㎛∼3㎛ 정도이다.The average particle size of the solid powder used in the present invention is preferably 5 ㎛ or less, preferably 4 ㎛ or less, more preferably 3 ㎛ or less. If the particle size is too large, alloying with the matrix structure is difficult to occur when heated. Problems arise in the adhesion of the formed surface layer to the matrix tissue. The smaller the particle size, the more dense the surface layer is formed after heating. In order to use the surface layer as a corrosion prevention film, it is better to have a smaller particle size. Therefore, there is no particular lower limit for the particle size, and if cost is not considered, ultrafine particles of several tens of nm are ideal, but the average particle size of the most desirable metal powder for practical use is about 03㎛ to 3㎛.

(6) 입계확산단계(6) Grain boundary diffusion step

상기 저융점금속 시트와 도포된 중희토화합물 슬러리가 도포된에서 소결체를 중희토금속이 자석내부의 결정립계로 확산시키기 위해 가열로에 장입하고 알곤 분위기에서 승온속도=1℃/min.으로 가열하여 700 ~ 1,000℃ 온도에서 1 내지 10시간 유지하면서 중희토화합물 또는 중희토금속합금이 중희토로 분해되어 자석 내부로 확산되어 침투반응을 진행시킨다.The sintered body with the low melting point metal sheet and the applied heavy rare earth compound slurry is charged into a heating furnace to diffuse the heavy rare earth metal into the grain boundaries inside the magnet, and heated in an argon atmosphere at a temperature increase rate = 1°C/min. to 700°C. While maintaining the temperature at ~1,000°C for 1 to 10 hours, the heavy rare earth compound or heavy rare earth metal alloy decomposes into heavy rare earth and diffuses into the magnet to proceed with the penetration reaction.

바람직하기는 900℃ 온도에서 6시간 또는 800℃ 온도에서 10시간, 850℃ 온도에서 9시간 유지한다.Preferably, the temperature is maintained at 900°C for 6 hours, at 800°C for 10 hours, or at 850°C for 9 hours.

이와 같이 가열하면 입계확산법은 용이하게 실시할 수 있어, 소결자석의 고특성화, 즉, 잔류자속밀도(Br)나 최대 에너지 적(積)((BH)max)을 입계확산 처리 전보다 높은 상태로 유지할 수 있고, 고보자력(Hcj)화할 수 있다. 입계확산법이 두께가 얇은 자석에 대하여 효과가 큰 것도 지금까지의 보고와 같다 5㎜ 이하의 두께에 대하여 특히 유효하다.By heating in this way, the grain boundary diffusion method can be easily carried out, and the sintered magnet can have high characteristics, that is, the residual magnetic flux density (Br) and maximum energy product ((BH)max) can be maintained at a higher state than before the grain boundary diffusion treatment. It can be converted to high coercivity (Hcj). The fact that the grain boundary diffusion method is highly effective for thin magnets is consistent with previous reports. It is especially effective for thicknesses of 5 mm or less.

(7) 응력제거열처리 및 최종열처리단계(7) Stress relief heat treatment and final heat treatment step

상기 입계확산처리 후 표면에 잔존하는 슬러지 도포층을 제거한 후 400 ~ 1,000℃ 온도에서 2 ~ 15시간 응력제거열처리를 실시한다. 바람직하기로는 850 ~ 950℃ 온도에서 8 ~ 12시간 응력제거열처리를 실시한다.After the grain boundary diffusion treatment, the sludge coating layer remaining on the surface is removed, and then stress relief heat treatment is performed at a temperature of 400 to 1,000°C for 2 to 15 hours. Preferably, stress relief heat treatment is performed at a temperature of 850 to 950°C for 8 to 12 hours.

상기 응력제거열처리이후, 400 ~ 600℃ 온도에서 0.5 ~ 3시간 최종열처리를 실시한다. 바람직하기로는 450 ~ 550℃ 온도에서 1.5 ~ 2.5시간 최종열처리를 실시한다.After the stress relief heat treatment, a final heat treatment is performed at a temperature of 400 to 600°C for 0.5 to 3 hours. Preferably, the final heat treatment is performed at a temperature of 450 to 550°C for 1.5 to 2.5 hours.

이하, 시험예를 들어, 본 발명의 보다 구체적인 실시형태를 설명한다.Hereinafter, more specific embodiments of the present invention will be described using test examples.

본 실시예에서는 32wt%RE-1wt%B-1.5wt%TM-bal.wt%Fe(여기서, RE=희토류원소, TM=3d 천이원소, x=28∼35, y=0.5∼1.5, z=0∼15) 조성의 합금을 알곤분위기에서 유도 가열방식으로 용해하고, 이어서 스트립케스팅 방법을 이용하여 급속냉각하여 합금스트립을 제조하였다.In this example, 32wt%RE-1wt%B-1.5wt%TM-bal.wt%Fe (where RE = rare earth element, TM = 3d transition element, x = 28 to 35, y = 0.5 to 1.5, z = An alloy with a composition of 0 to 15) was melted by induction heating in an argon atmosphere, and then rapidly cooled using a strip casting method to prepare an alloy strip.

제조된 합금스트립을 조분쇄하는 과정에서는 스트립을 진공로에 장입하고 진공배기한 후 수소분위기에서 2시간 이상 유지함으로서 스트립 내부로 수소를 흡수시키고, 이어서 진공분위기에서 600℃ 로 가열하여 스트립 내부에 존재하는 수소를 제거하였다. 조분쇄를 완료한 수소처리 분말을 사용하여 젯밀기술을 이용한 분쇄방식에 의해 평균입경 1∼5.0㎛ 범위의 균일하고 미세한 분말로 제조하였다. 이때, 합금스트립을 미세 분말로 제조하는 공정은 산소가 오염되어 자기특성이 저하되는 것을 방지하기 위하여 질소 혹은 불활성가스 분위기에서 수행하였다.In the process of coarsely crushing the manufactured alloy strip, the strip is charged into a vacuum furnace, evacuated, and maintained in a hydrogen atmosphere for more than 2 hours to absorb hydrogen into the strip, and then heated to 600°C in a vacuum atmosphere to exist inside the strip. Hydrogen was removed. Using hydrogen-treated powder that had completed coarse grinding, it was manufactured into a uniform, fine powder with an average particle diameter ranging from 1 to 5.0㎛ by grinding using jet mill technology. At this time, the process of manufacturing the alloy strip into fine powder was performed in a nitrogen or inert gas atmosphere to prevent oxygen contamination and deterioration of magnetic properties.

젯밀에 의해 분쇄된 미세 희토분말을 이용하여 다음과 같이 자장성형을 실시하였다. 질소분위기에서 희토분말을 금형에 충진하고, 금형의 좌/우에 위치하는 전자석에 의해 직류자장을 인가하여 희토분말을 일축방향으로 배향시키고, 동시에 상/하펀치의 가압에 의해 압축성형을 실시하여 성형체를 제조하였다. Magnetic field forming was performed as follows using fine rare earth powder ground by a jet mill. Rare earth powder is filled into a mold in a nitrogen atmosphere, and a direct current magnetic field is applied by electromagnets located on the left and right sides of the mold to orient the rare earth powder in a uniaxial direction. At the same time, compression molding is performed by pressing the upper and lower punches to form a molded body. was manufactured.

자장성형에 의해 얻어진 성형체를 소결로에 장입하고 진공분위기 및 400℃ 이하에서 충분히 유지하여 잔존하는 불순 유기물을 완전히 제거하고, 다시 1050℃ 까지 승온시켜 2시간 유지함으로서 소결치밀화 과정을 실시하였다. The molded body obtained by magnetic field molding was charged into a sintering furnace, maintained sufficiently in a vacuum atmosphere and below 400°C to completely remove any remaining impurity organic matter, and then raised to 1050°C and held for 2 hours to carry out the sintering and densification process.

상기와 같은 소결 제조공정에 의해 소결체를 제조한 후, 소결체는 12.5*12.5*5mm 크기의 자석으로 가공하였다. After manufacturing the sintered body through the sintering manufacturing process described above, the sintered body was processed into a magnet with a size of 12.5*12.5*5mm.

자석가공품을 알칼리탈지제 용액에 담근 후, 직경 2~10 크기의 세라믹볼과 함께 문질러줌으로써 자석 표면에 묻어있는 기름성분을 제거하였고, 다시 자석을 증류수로 수차례 깨끗이 세정함으로써 잔존하는 탈지제를 완전히 제거하였다. After immersing the processed magnet in an alkaline degreaser solution, the oil on the surface of the magnet was removed by rubbing it with a ceramic ball with a diameter of 2 to 10, and the remaining degreaser was completely removed by thoroughly washing the magnet several times with distilled water. .

세정된 소결체의 표면은 구리 시트를 6, 10, 60, 100um 두께로 각각 소결체 표면에 접착하였다. 이때 접착재는 PVP(Polyvinylpyrrolidone) 또는 PVA(Polyvinyl alcohol)를 액상용매와 혼련하여 제조된 접착제를 매개로 소결체와 저융점 금속 시트를 접착하였다.Copper sheets with thicknesses of 6, 10, 60, and 100 um were adhered to the surface of the cleaned sintered body, respectively. At this time, the sintered body and the low-melting-point metal sheet were bonded using an adhesive prepared by mixing PVP (Polyvinylpyrrolidone) or PVA (Polyvinyl alcohol) with a liquid solvent.

이후 소결체의 표면에 접착된 구리 시트 위에 Tb Hydride 분말과 액상용매인 알콜의 비율이 각각 50%:50%로 조절하여 균일하게 혼련된 Tb Hydride 분말 슬러리를 도포하였다.Afterwards, the uniformly kneaded Tb Hydride powder slurry was applied on the copper sheet adhered to the surface of the sintered body, with the ratio of Tb Hydride powder and alcohol as a liquid solvent adjusted to 50%:50%, respectively.

도포된 Tb Hydride 분말 슬러리량은 소결체 100중량부에 1.0 중량부 도포하였다.The amount of Tb Hydride powder slurry applied was 1.0 parts by weight per 100 parts by weight of the sintered body.

본 발명의 저융점금속인 구리 시트를 사용함으로서 분말을 도포하는 것보다 도포가 단순해지고, 시트인 저융점금속이 소결체 표면에서 균일하게 액상으로 존재하여 소결체의 결정립계상으로 중희토류 확산도 소결체 표면 전체에 걸처 균일해지는 효과가 있다.By using the copper sheet, which is a low-melting point metal of the present invention, application is simpler than applying powder, and the low-melting point metal, which is a sheet, exists uniformly in a liquid state on the surface of the sintered body, so that heavy rare earth diffusion on the grain boundaries of the sintered body spreads across the entire surface of the sintered body. There is a uniformity effect throughout.

이후, 도포된 Tb Hydride 화합물을 자석내부의 결정립계로 확산시키기 위해 도포체를 가열로에 장입하고 알곤 분위기에서 승온속도=1℃/min.으로 가열하여 900℃ 온도에서 6시간 유지하면서 Tb Hydride 화합물이 Tb로 분해되어 자석 내부로 확산되어 침투반응이 진행되도록 하였다. 확산처리 후 표면에 확산층을 제거한 후 900℃ 온도에서 10시간 응력제거열처리를 실시하고, 이어서 500℃ 온도에서 2시간 최종열처리를 실시하였다.Afterwards, in order to spread the applied Tb Hydride compound to the grain boundaries inside the magnet, the coated material was placed in a heating furnace and heated in an argon atmosphere at a temperature increase rate of 1°C/min. The Tb Hydride compound was maintained at 900°C for 6 hours. It was decomposed into Tb and diffused inside the magnet, allowing the penetration reaction to proceed. After diffusion treatment, the diffusion layer was removed from the surface, and then stress relief heat treatment was performed at 900°C for 10 hours, followed by final heat treatment at 500°C for 2 hours.

비교예 1은 본 발명의 실시예 1과 구리시트 적용여부만 상이할 뿐 모든 공정이 동일하게 제조되었다. Comparative Example 1 was manufactured in the same manner as Example 1 of the present invention, with the only difference being whether or not a copper sheet was applied.

실시예 1-1 내지 실시예 1-4와 비교예 1의 확산에 사용된 모재의 특성은 Br=14.4 kG, Hcj=14.65 kOe로 측정되었고, 최종입계확산이 완료된 자석은 다시 표면을 가공하여 잔류 확산층을 제거한 후 자기특성을 평가한 결과는 표 1과 같다.The properties of the base material used in the diffusion of Examples 1-1 to 1-4 and Comparative Example 1 were measured as Br = 14.4 kG, Hcj = 14.65 kOe, and the magnet for which final grain boundary diffusion was completed was processed again and the remaining surface was The results of evaluating the magnetic properties after removing the diffusion layer are shown in Table 1.

소결체에 구리 시트 접착, Tb Hydride 화합물 슬러리 도포후 자기특성비교Adhesion of copper sheet to sintered body and comparison of magnetic properties after application of Tb Hydride compound slurry 샘플Sample 공정조건Process conditions 자기특성magnetic characteristics 재질texture 접착시트두께(um)Adhesive sheet thickness (um) 잔류자속밀도
Br(kG)
Residual magnetic flux density
Br(kG)
보자력
Hcj(kOe)
coercivity
Hcj(kOe)
비가역
열감자(180℃)%
irreversible
Heat Potato (180℃)%
비교예 1Comparative Example 1 -- 14.2214.22 28.3728.37 2.522.52 실시예 1-1Example 1-1 Cu SheetCu Sheet 66 14.2314.23 28.6228.62 1.141.14 실시예 1-2Example 1-2 1010 14.1914.19 28.7728.77 1.471.47 실시예 1-3Example 1-3 6060 14.2214.22 26.9326.93 3.173.17 실시예 1-4Example 1-4 100100 14.1214.12 22.7422.74 21.5221.52

표 1의 자기특성 평가결과에서 보는 바와 같이 구리 시트 두께 6um에서 가장 우수한 자기특성이 얻어졌다. 보다 정확히는 비가역 열감자에서 1.38%의 개선효과를 확인하였다. As shown in the magnetic property evaluation results in Table 1, the best magnetic properties were obtained at a copper sheet thickness of 6um. More precisely, an improvement effect of 1.38% was confirmed in irreversible thermal decomposition.

비가역 열감자는 입계확산에 균일도를 평가할 수 있는 수치이기 때문에 그 의미가 더욱 중요하다. Irreversible thermal demagnetization is more important because it is a value that can evaluate the uniformity of grain boundary diffusion.

본 발명 실시예 1의 비가역 열감자의 평가방법은 3 Tesla 자장을 이용하여 자석시편을 착자하고, 플럭스메터를 이용하여 자석의 총플럭스(F1)를 측정한다. 그리고 착자된 자석을 180도로 가열된 오븐에 장입하여 2시간을 유지하면서 열감자를 실시한다. 열감자를 실시한 후 다시 자석을 상온으로 냉각시켜 총플럭스(F2)를 측정한다. 열감자 전/후에 측정된 자석의 플럭스를 비교하여 열감자율(=(F1-F2)/F1 * 100)을 계산한다. In the method for evaluating irreversible thermal demagnetization in Example 1 of the present invention, a magnetic specimen is magnetized using a 3 Tesla magnetic field, and the total flux (F1) of the magnet is measured using a flux meter. Then, the magnetized magnet is placed in an oven heated to 180 degrees and maintained for 2 hours to perform thermal magnetization. After thermal demagnetization, the magnet is cooled to room temperature again and the total flux (F2) is measured. Compare the flux of the magnet measured before and after thermal demagnetization to calculate the thermal demagnetization rate (=(F1-F2)/F1 * 100).

중희토 및 경희토류 입계확산시 대개의 저융점 물질을 혼합하여 사용하면 잔류자속밀도가 큰 폭으로 하락하지만 구리 시트를 사용하면 잔류자속밀도에 큰 영향을 끼치지 않는다. 즉, 잔류자속밀도는 자석의 세기를 결정짓는 중요한 특성이므로 하나의 장점이라고 할 수 있다. When medium rare earth and light rare earth grain boundary diffusion is used by mixing most low-melting point materials, the residual magnetic flux density decreases significantly, but when copper sheets are used, the residual magnetic flux density is not significantly affected. In other words, residual magnetic flux density is an important characteristic that determines the strength of a magnet, so it can be said to be an advantage.

이는 구리가 저융점 원소로서 입계로 확산시켜 Nd-rich의 융점을 낮추고 모재결정립 계면의 미세구조 및 결정구조를 개선하여 중희토 및 경희토류의 입계확산을 개선하는 효과가 있으나, 구리 시트의 두께가 일정두께를 초과하는 경우에는 확산효과가 낮아진다. This has the effect of lowering the melting point of Nd-rich by diffusing copper as a low melting point element into the grain boundaries and improving the grain boundary diffusion of medium and light rare earth elements by improving the microstructure and crystal structure of the base crystal grain interface. However, the thickness of the copper sheet is If the thickness exceeds a certain level, the diffusion effect decreases.

본 실시예 2는 중희토화합물을 Dy Hydride 로 변경하여 도포한 것을 제외하고는 모든 과정이 동일한 조건으로 수행되었고, 비교예 2 중희토화합물을 Dy Hydride 로 변경하여 도포한 것을 제외하고는 모든 과정이 동일한 조건으로 수행되었다.In Example 2, all processes were performed under the same conditions except that the heavy rare earth compound was changed to Dy Hydride and applied, and in Comparative Example 2, all processes were performed except that the heavy rare earth compound was changed to Dy Hydride and applied. It was carried out under the same conditions.

실시예 2-1 내지 실시예 2-4와 비교예 2의 확산에 사용된 모재의 특성은 Br=14.4 kG, Hcj=14.65 kOe로 측정되었고, 최종입계확산이 완료된 자석은 다시 표면을 가공하여 잔류 확산층을 제거한 후 자기특성을 평가한 결과는 표 2와 같다.The properties of the base material used for diffusion in Examples 2-1 to 2-4 and Comparative Example 2 were measured as Br = 14.4 kG, Hcj = 14.65 kOe, and the magnet for which final grain boundary diffusion was completed was processed again on the surface and the remaining The results of evaluating the magnetic properties after removing the diffusion layer are shown in Table 2.

소결체에 구리 시트 접착, Dy Hydride 화합물 슬러리 도포후 자기특성비교Adhesion of copper sheet to sintered body and comparison of magnetic properties after application of Dy Hydride compound slurry 샘플Sample 공정조건Process conditions 자기특성magnetic characteristics 재질texture 접착시트두께(um)Adhesive sheet thickness (um) 잔류자속밀도
Br(kG)
Residual magnetic flux density
Br(kG)
보자력
Hcj(kOe)
coercivity
Hcj(kOe)
비가역
열감자(160℃)
irreversible
Hot potato (160℃)
비교예 2Comparative Example 2 -- 13.8613.86 24.1424.14 6.666.66 실시예 2-1Example 2-1 Cu SheetCu Sheet 66 13.8413.84 24.6224.62 5.175.17 실시예 2-2Example 2-2 1010 13.8513.85 24.2524.25 5.575.57 실시예 2-3Example 2-3 6060 13.8713.87 22.6622.66 7.217.21 실시예 2-4Example 2-4 100100 13.97013.970 19.7419.74 25.5225.52

표 2의 자기특성 평가결과에서 보는 바와 같이 구리 시트 두께 6um에서 가장 우수한 자기특성이 얻어졌다. 보다 정확히는 비가역 열감자에서 5.17%로 실시예 2-1 내지 실시예 2-4와 비교예 2에서 가장 우수한 결과을 얻었다. As shown in the magnetic property evaluation results in Table 2, the best magnetic properties were obtained at a copper sheet thickness of 6um. More precisely, the best results were obtained in Examples 2-1 to 2-4 and Comparative Example 2 at 5.17% in irreversible thermal demagnetization.

비가역 열감자는 입계확산에 균일도를 평가할 수 있는 수치이기 때문에 경감자의 수치가 낮을 수록 좋은 자석이라는 것을 의미한다. Since irreversible thermal demagnetization is a value that can evaluate the uniformity of grain boundary diffusion, the lower the demagnetization value, the better the magnet.

본 발명 실시예 2의 3 Tesla 자장을 이용하여 자석시편을 착자하고, 플럭스메터를 이용하여 자석의 총플럭스(F1)를 측정한다. 그리고 착자된 자석을 160도로 가열된 오븐에 장입하여 2시간을 유지하면서 열감자를 실시한다. 열감자를 실시한 후 다시 자석을 상온으로 냉각시켜 총플럭스(F2)를 측정한다. 열감자 전/후에 측정된 자석의 플럭스를 비교하여 열감자율(=(F1-F2)/F1 * 100)을 계산한다.The magnetic specimen was magnetized using the 3 Tesla magnetic field of Example 2 of the present invention, and the total flux (F1) of the magnet was measured using a flux meter. Then, the magnetized magnet is placed in an oven heated to 160 degrees and maintained for 2 hours to perform thermal magnetization. After thermal demagnetization, the magnet is cooled to room temperature again and the total flux (F2) is measured. Compare the flux of the magnet measured before and after thermal demagnetization to calculate the thermal demagnetization rate (=(F1-F2)/F1 * 100).

실시예 3은 중희토화합물을 Nd Hydride 로 변경하여 도포한 것을 제외하고는 모든 과정이 동일한 조건으로 수행되었고, 비교예 3은 중희토화합물을 Nd Hydride 로 변경하여 도포한 것을 제외하고는 모든 과정이 동일한 조건으로 수행되었다.In Example 3, all processes were performed under the same conditions except that the heavy rare earth compound was changed to Nd Hydride and applied, and in Comparative Example 3, all processes were performed except that the heavy rare earth compound was changed to Nd Hydride and applied. It was carried out under the same conditions.

실시예 3-1 내지 실시예 3-4와 비교예 3의 확산에 사용된 모재의 특성은 Br=14.4 kG, Hcj=14.65 kOe로 측정되었고, 최종입계확산이 완료된 자석은 다시 표면을 가공하여 잔류 확산층을 제거한 후 자기특성을 평가한 결과는 표 3과 같다.The properties of the base material used for diffusion in Examples 3-1 to 3-4 and Comparative Example 3 were measured as Br = 14.4 kG, Hcj = 14.65 kOe, and the magnet for which final grain boundary diffusion was completed was processed again and the remaining surface was processed. The results of evaluating the magnetic properties after removing the diffusion layer are shown in Table 3.

소결체에 구리 시트 접착, Nd Hydride 화합물 슬러리 도포후 자기특성비교Comparison of magnetic properties after adhering copper sheet to sintered body and applying Nd Hydride compound slurry 샘플Sample 공정조건Process conditions 자기특성magnetic characteristics 재질texture 접착시트두께(um)Adhesive sheet thickness (um) 잔류자속밀도
Br(kG)
Residual magnetic flux density
Br(kG)
보자력
Hcj(kOe)
coercivity
Hcj(kOe)
비가역
열감자(140℃)
irreversible
Hot potato (140℃)
비교예 3Comparative Example 3 -- -- 14.3614.36 16.2016.20 33.5233.52 실시예 3-1Example 3-1 Cu SheetCu Sheet 66 14.3714.37 16.3016.30 30.0430.04 실시예 3-2Example 3-2 1010 14.3614.36 16.2816.28 30.6730.67 실시예 3-3Example 3-3 6060 14.3614.36 14.5614.56 34.2134.21 실시예 3-4Example 3-4 100100 14.3914.39 12.6412.64 40.5240.52

표 3의 자기특성 평가결과에서 보는 바와 같이 구리 시트 두께 6um에서 가장 우수한 자기특성이 얻어졌다. 보다 정확히는 비가역 열감자에서 30.04%로 실시예 3-1 내지 실시예 3-4와 비교예 3에서 가장 우수한 결과을 얻었다. As shown in the magnetic property evaluation results in Table 3, the best magnetic properties were obtained at a copper sheet thickness of 6um. More precisely, the best results were obtained in Examples 3-1 to 3-4 and Comparative Example 3 at 30.04% in irreversible thermal demagnetization.

본 발명 실시예 3의 3 Tesla 자장을 이용하여 자석시편을 착자하고, 플럭스메터를 이용하여 자석의 총플럭스(F1)를 측정한다. 그리고 착자된 자석을 140도로 가열된 오븐에 장입하여 2시간을 유지하면서 열감자를 실시한다. 열감자를 실시한 후 다시 자석을 상온으로 냉각시켜 총플럭스(F2)를 측정한다. 열감자 전/후에 측정된 자석의 플럭스를 비교하여 열감자율(=(F1-F2)/F1 * 100)을 계산한다.The magnetic specimen was magnetized using the 3 Tesla magnetic field of Example 3 of the present invention, and the total flux (F1) of the magnet was measured using a flux meter. Then, the magnetized magnet is placed in an oven heated to 140 degrees and maintained for 2 hours to perform thermal magnetization. After thermal demagnetization, the magnet is cooled to room temperature again and the total flux (F2) is measured. Compare the flux of the magnet measured before and after thermal demagnetization to calculate the thermal demagnetization rate (=(F1-F2)/F1 * 100).

실시예 4는 중희토화합물을 Pr Hydride 로 변경하여 도포한 것을 제외하고는 모든 과정이 동일한 조건으로 수행되었고, 비교예 4는 중희토화합물을 Pr Hydride 로 변경하여 도포한 것을 제외하고는 모든 과정이 동일한 조건으로 수행되었다.In Example 4, all processes were performed under the same conditions except that the heavy rare earth compound was changed to Pr Hydride and applied, and in Comparative Example 4, all processes were performed except that the heavy rare earth compound was changed to Pr Hydride and applied. It was carried out under the same conditions.

실시예 4-1 내지 실시예 4-4와 비교예 4의 확산에 사용된 모재의 특성은 Br=14.4 kG, Hcj=14.65 kOe로 측정되었고, 최종입계확산이 완료된 자석은 다시 표면을 가공하여 잔류 확산층을 제거한 후 자기특성을 평가한 결과는 표 4와 같다.The properties of the base material used in the diffusion of Examples 4-1 to 4-4 and Comparative Example 4 were measured as Br = 14.4 kG, Hcj = 14.65 kOe, and the magnet for which final grain boundary diffusion was completed was processed again on the surface to remain. The results of evaluating the magnetic properties after removing the diffusion layer are shown in Table 4.

소결체에 구리 시트 접착, Pr Hydride 화합물 슬러리 도포후 자기특성비교Adhesion of copper sheet to sintered body and comparison of magnetic properties after applying Pr Hydride compound slurry 샘플Sample 공정조건Process conditions 자기특성magnetic characteristics 재질texture 접착시트두께(um)Adhesive sheet thickness (um) 잔류자속밀도
Br(kG)
Residual magnetic flux density
Br(kG)
보자력
Hcj(kOe)
coercivity
Hcj(kOe)
비가역
열감자(180℃)
irreversible
Hot Potatoes (180℃)
비교예 4Comparative Example 4 -- 14.4114.41 17.0817.08 34.1734.17 실시예 1-1Example 1-1 Cu SheetCu Sheet 66 14.4214.42 17.1317.13 31.0931.09 실시예 4-2Example 4-2 1010 14.4014.40 17.1017.10 31.8731.87 실시예 4-3Example 4-3 6060 14.4214.42 15.2515.25 35.3235.32 실시예 4-4Example 4-4 100100 14.4814.48 13.3113.31 41.5441.54

표 4의 자기특성 평가결과에서 보는 바와 같이 구리 시트 두께 6um에서 가장 우수한 자기특성이 얻어졌다. 보다 정확히는 비가역 열감자에서 31.09%로 실시예 4-1 내지 실시예 4-4와 비교예 4에서 가장 우수한 결과을 얻었다. As shown in the magnetic property evaluation results in Table 4, the best magnetic properties were obtained at a copper sheet thickness of 6 μm. More precisely, the best result was obtained in Examples 4-1 to 4-4 and Comparative Example 4 at 31.09% in irreversible heat demagnetization.

본 발명 실시예 4의 3 Tesla 자장을 이용하여 자석시편을 착자하고, 플럭스메터를 이용하여 자석의 총플럭스(F1)를 측정한다. 그리고 착자된 자석을 140도로 가열된 오븐에 장입하여 2시간을 유지하면서 열감자를 실시한다. 열감자를 실시한 후 다시 자석을 상온으로 냉각시켜 총플럭스(F2)를 측정한다. 열감자 전/후에 측정된 자석의 플럭스를 비교하여 열감자율(=(F1-F2)/F1 * 100)을 계산한다.The magnetic specimen was magnetized using the 3 Tesla magnetic field of Example 4 of the present invention, and the total flux (F1) of the magnet was measured using a flux meter. Then, the magnetized magnet is placed in an oven heated to 140 degrees and maintained for 2 hours to perform thermal magnetization. After thermal demagnetization, the magnet is cooled to room temperature again and the total flux (F2) is measured. Compare the flux of the magnet measured before and after thermal demagnetization to calculate the thermal demagnetization rate (=(F1-F2)/F1 * 100).

본 발명의 실시예 1 내지 실시예4의 자기특성 평가결과 모든 실시예에서 구리 시트의 두께는 1 ~ 10㎛ 인 경우가 바람직한 결과를 얻었다.As a result of evaluating the magnetic properties of Examples 1 to 4 of the present invention, preferable results were obtained when the thickness of the copper sheet was 1 to 10 μm in all examples.

본 발명은, 전술한 실시형태의 형태에 한정되지 않고, 본 발명의 요지를 벗어나지 않게 적절하게 변경하는 것이 가능하다. 예컨대, 원료 분말의 조성, 성형체의 형상·크기, 자장인가 속도, 소결 조건 등을 적절하게 변경할 수 있다.The present invention is not limited to the above-described embodiments, and appropriate changes can be made without departing from the gist of the present invention. For example, the composition of the raw material powder, the shape and size of the molded body, the magnetic field application speed, the sintering conditions, etc. can be appropriately changed.

Claims (4)

희토류 합금 분말을 소결하여 소결체를 제조하는 단계;
상기 소결체를 세정하는 단계;
상기 소결체 표면에 저융점금속 시트를 접착하는 단계;
소결체에 접착된 저융점금속 시트 표면에 중희토화합물을 액상용매와 혼련된 슬러리를 도포하는 단계;
상기 저융점금속 시트 접착, 슬러리가 도포된 소결체를 가열로에 장입하고 진공 또는 불활성기체 분위기에서 소결체의 결정립계상으로 중희토 금속을 확산시키는 단계;
상기 합금의 결정립계상으로 중희토 금속이 확산된 소결체를 가열로에 장입하고 진공 또는 불활성기체 분위기에서 응력제거열처리하는 응력제거열처리단계;
상기 응력제거열처리단계이후 열처리를 하는 최종열처리단계;로 이루어지는 것을 특징으로 하는 희토류 영구자석의 제조방법.
Manufacturing a sintered body by sintering rare earth alloy powder;
cleaning the sintered body;
Adhering a low melting point metal sheet to the surface of the sintered body;
Applying a slurry obtained by mixing a heavy rare earth compound with a liquid solvent to the surface of a low-melting point metal sheet adhered to the sintered body;
Adhering the low melting point metal sheet, charging the sintered body coated with slurry into a heating furnace, and diffusing heavy rare earth metal onto the grain boundaries of the sintered body in a vacuum or inert gas atmosphere;
A stress relief heat treatment step of charging the sintered body in which the heavy rare earth metal is diffused into the grain boundaries of the alloy into a heating furnace and performing stress relief heat treatment in a vacuum or inert gas atmosphere;
A method of manufacturing a rare earth permanent magnet, characterized in that it consists of a final heat treatment step of heat treatment after the stress relief heat treatment step.
제 1 항에 있어서,
상기 저융점금속 시트는 Cu, Al, Ga 중 하나의 시트인 것을 특징으로 하는 희토류 영구자석의 제조방법.
According to claim 1,
A method of manufacturing a rare earth permanent magnet, characterized in that the low melting point metal sheet is one of Cu, Al, and Ga.
제 1 항에 있어서,
상기 저융점금속 시트의 두께는 1 ~ 60㎛ 인 것을 특징으로 하는 희토류 영구자석의 제조방법.
According to claim 1,
A method of manufacturing a rare earth permanent magnet, characterized in that the thickness of the low melting point metal sheet is 1 to 60㎛.
제 1 항에 있어서,
상기 중희토화합물은 Gd-Hydride, Gd-Fluoride, Nd-Hydride, Ho-Fluoride, Ho-Hydride, Dy-Hydride, Dy-Fluoride, Tb-Hydride, Tb-Fluoride 분말 중 하나인 것을 특징으로 하는 희토류 영구자석의 제조방법.
According to claim 1,
The heavy rare earth compound is a permanent rare earth compound, characterized in that one of Gd-Hydride, Gd-Fluoride, Nd-Hydride, Ho-Fluoride, Ho-Hydride, Dy-Hydride, Dy-Fluoride, Tb-Hydride, and Tb-Fluoride powder. Magnet manufacturing method.
KR1020220173373A 2022-12-13 2022-12-13 Manufacturing method of rare earth sintered magnet KR20240088038A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220173373A KR20240088038A (en) 2022-12-13 2022-12-13 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220173373A KR20240088038A (en) 2022-12-13 2022-12-13 Manufacturing method of rare earth sintered magnet

Publications (1)

Publication Number Publication Date
KR20240088038A true KR20240088038A (en) 2024-06-20

Family

ID=91669849

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220173373A KR20240088038A (en) 2022-12-13 2022-12-13 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
KR (1) KR20240088038A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447301B1 (en) 2006-09-15 2014-10-06 인터메탈릭스 가부시키가이샤 Process for producing sintered NdFeB MAGNET

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101447301B1 (en) 2006-09-15 2014-10-06 인터메탈릭스 가부시키가이샤 Process for producing sintered NdFeB MAGNET

Similar Documents

Publication Publication Date Title
KR102045399B1 (en) Manufacturing method of rare earth sintered magnet
JP6488976B2 (en) R-T-B sintered magnet
KR101495899B1 (en) R-fe-b type rare earth sintered magnet and process for production of the same
JP7251917B2 (en) RTB system permanent magnet
US10672545B2 (en) R-T-B based permanent magnet
US10672544B2 (en) R-T-B based permanent magnet
KR102045400B1 (en) Manufacturing method of rare earth sintered magnet
JP5643355B2 (en) Manufacturing method of NdFeB sintered magnet
JP2019102708A (en) R-t-b based permanent magnet
JP5209349B2 (en) Manufacturing method of NdFeB sintered magnet
CN109585152B (en) Method for producing R-T-B sintered magnet and diffusion source
CN111724955A (en) R-T-B permanent magnet
CN110323021A (en) R-T-B system permanent magnet
KR20240088038A (en) Manufacturing method of rare earth sintered magnet
KR102045406B1 (en) Method Of rare earth sintered magnet
JPH07272914A (en) Sintered magnet, and its manufacture
KR102261143B1 (en) Manufacturing method of rare earth sintered magnet
CN109585151B (en) Method for producing R-T-B sintered magnet and diffusion source
KR102159079B1 (en) Method Of rare earth sintered magnet
KR102057870B1 (en) Method Of rare earth sintered magnet
KR102589870B1 (en) Manufacturing method of rare earth sintered magnet
KR20240085461A (en) Manufacturing method of rare earth sintered magnet
JPH07201545A (en) Sintered magnet and its manufacture thereof
JP2022141577A (en) Rare earth magnet powder, bonded magnet, compound for bonded magnet, sintered magnet, manufacturing method of rare earth magnet powder, and manufacturing method of rare earth permanent magnet
JPH07201623A (en) Sintered magnet and its production

Legal Events

Date Code Title Description
E902 Notification of reason for refusal