JP3472358B2 - Permanent magnet for heat bonding and method of manufacturing the same - Google Patents

Permanent magnet for heat bonding and method of manufacturing the same

Info

Publication number
JP3472358B2
JP3472358B2 JP27270994A JP27270994A JP3472358B2 JP 3472358 B2 JP3472358 B2 JP 3472358B2 JP 27270994 A JP27270994 A JP 27270994A JP 27270994 A JP27270994 A JP 27270994A JP 3472358 B2 JP3472358 B2 JP 3472358B2
Authority
JP
Japan
Prior art keywords
permanent magnet
bonding
rare earth
material layer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27270994A
Other languages
Japanese (ja)
Other versions
JPH08138920A (en
Inventor
直正 木村
勝敏 野崎
光矢 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP27270994A priority Critical patent/JP3472358B2/en
Publication of JPH08138920A publication Critical patent/JPH08138920A/en
Application granted granted Critical
Publication of JP3472358B2 publication Critical patent/JP3472358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は加熱接合用永久磁石およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-bonding permanent magnet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】土類元素を含む永久磁石は、非常に脆
いため機械加工性が悪く、また高温下に曝されると、金
属組織が変化するためそれに伴い磁気特性が低下する、
といった性質を有する。
Permanent magnets containing BACKGROUND ART rare earth elements are very fragile because of poor machinability, also when exposed to a high temperature, the magnetic properties deteriorate along with it the metal structure is changed,
It has such a property.

【0003】そのため、永久磁石を、例えば異種金属
材であるモータの金属製ロータに接合する場合、あり差
し構造、ねじ止め、溶接等の取付手段を採用することが
できないので、従来は接着剤が用いられている(例え
ば、特開昭55−58760号公報参照)。
Therefore, when the permanent magnet is joined to, for example, a metal rotor of a motor, which is a dissimilar metal part, it is not possible to adopt a mounting structure such as an insertion structure, screwing or welding. Conventionally, an adhesive has been used (see, for example, JP-A-55-58760).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、接着剤
を用いると、永久磁石の濡れ性が悪いため接着強度が低
く、その上、温度上昇に伴いその接着強度が著しく低下
する、といった問題を生ずる。このような状況下ではモ
ータの高速回転化の要請に到底対応することはできな
い。また希土類元素を含む永久磁石は耐食性に乏しいの
で何等かの防錆処理が必要である。
However, the use of an adhesive causes a problem that the adhesive strength is low because the wettability of the permanent magnet is poor, and the adhesive strength is remarkably reduced as the temperature rises. Under such circumstances, it is impossible to meet the demand for high-speed rotation of the motor. Permanent magnet, including or rare earth element, it is necessary to some kind of anti-rust treatment so poor in corrosion resistance.

【0005】本発明は前記に鑑み、異種金属部材に対し
て強固に接合することが可能であり、また防錆能を有す
る加熱接合用永久磁石およびその製造方法を提供するこ
とを目的とする。
In view of the above, it is an object of the present invention to provide a heat-bonding permanent magnet that can be firmly bonded to dissimilar metal members and that has a rust preventive property, and a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】前記目的を達成するため
本発明によれば、異種金属部材に加熱接合される永久磁
石であって、希土類元素を含む永久磁石本体における前
記異種金属部材に接合される面に、前記永久磁石本体の
保磁力 I c の低下を回避し得る加熱温度で液相状態お
よび固液共存状態の一方の状態となる、希土類元素系合
金より構成された接合材層を一体的に有し、その希土類
元素系合金は合金元素AEと残部希土類元素とからな
り、その合金元素AEは、Cu、Al、Ga、Co、F
e、Ag、Ni、Au、Mn、Zn、Pd、Sn、S
b、Pb、Bi、CdおよびInから選択される少なく
とも一種であって、その含有量は5原子%≦AE≦50
原子%であり、前記希土類元素はY、La、Ce、P
r、Nd、Sm、Eu、Gd、Tb、Dy、Ho、E
r、Tm、Yb、Mm(ミッシュメタル)およびLuか
ら選択される少なくとも一種である加熱接合永久磁石
が提供される。
In order to achieve the above object , according to the present invention, a permanent magnet that is heat bonded to a dissimilar metal member is used.
A stone in front of a permanent magnet body containing rare earth elements
On the surface to be joined to the dissimilar metal member,
A liquid phase state is maintained at a heating temperature that can avoid a decrease in coercive force I H c
And rare-earth element system
It has a joint material layer made of gold,
Elemental alloys consist of alloy elements AE and the balance rare earth elements.
And its alloying element AE is Cu, Al, Ga, Co, F
e, Ag, Ni, Au, Mn, Zn, Pd, Sn, S
less selected from b, Pb, Bi, Cd and In
Both are one kind, and the content is 5 atomic% ≤ AE ≤ 50
%, And the rare earth element is Y, La, Ce, P
r, Nd, Sm, Eu, Gd, Tb, Dy, Ho, E
r, Tm, Yb, Mm (Misch metal) and Lu
At least one permanent magnet for heating and joining
Will be provided.

【0007】また本発明によれば、前記永久磁石本体
、前記接合材層を除いた全部の表面を、Al、Ni、
Au、TiまたはTiNの一種よりなる防錆膜により被
覆されている加熱接合用永久磁石が提供される。
Further, according to the present invention, the permanent magnet body is
However , the entire surface excluding the bonding material layer is Al, Ni,
Provided is a permanent magnet for heating bonding, which is covered with a rust preventive film made of one of Au, Ti and TiN .

【0008】さらに本発明によれば、希土類元素を含む
永久磁石本体における異種金属部材と加熱接合される面
を除いた全部の表面に防錆膜を形成する工程と、前記加
熱接合される面に接合材層を形成する工程とを用い、前
記防錆膜はAl、Ni、Au 、TiおよびTiNから選
択される一種よりなり、前記接合材層は、前記永久磁石
本体の保磁力 I c の低下を回避し得る加熱温度で液相
状態および固液共存状態の一方の状態となる希土類元素
系合金より構成され、その希土類元素系合金は合金元素
AEと残部希土類元素とからなり、その合金元素AE
は、Cu、Al、Ga、Co、Fe、Ag、Ni、A
u、Mn、Zn、Pd、Sn、Sb、Pb、Bi、Cd
およびInから選択される少なくとも一種であって、そ
の含有量は5原子%≦AE≦50原子%であり、前記希
土類元素はY、La、Ce、Pr、Nd、Sm、Eu、
Gd、Tb、Dy、Ho、Er、Tm、Yb、Mm(ミ
ッシュメタル)およびLuから選択される少なくとも一
種である加熱接合用永久磁石製造方法が提供される。
Further according to the present invention , a rare earth element is included.
The surface of the permanent magnet body that is heat bonded to the dissimilar metal member
The process of forming a rust preventive film on all surfaces except
And a step of forming a bonding material layer on the surfaces to be thermally bonded,
The anticorrosion film is selected from Al, Ni, Au , Ti and TiN.
One of the permanent magnets, and the bonding material layer is a permanent magnet.
Liquid phase at a heating temperature that can avoid a decrease in coercive force I H c of the main body
Element in one of the solid state and solid-liquid coexisting state
It is composed of a series alloy, and the rare earth element alloy is an alloy element.
AE and the balance rare earth element, its alloy element AE
Is Cu, Al, Ga, Co, Fe, Ag, Ni, A
u, Mn, Zn, Pd, Sn, Sb, Pb, Bi, Cd
And at least one selected from In,
Content of 5 atomic% ≤ AE ≤ 50 atomic%,
Earth elements are Y, La, Ce, Pr, Nd, Sm, Eu,
Gd, Tb, Dy, Ho, Er, Tm, Yb, Mm (Mi
Metal) and at least one selected from Lu
A method of manufacturing a permanent magnet for heat bonding, which is a seed, is provided.

【0009】[0009]

【作用】接合材層を前記のように構成すると、接合時に
おける永久磁石本体の磁気特性の損傷を回避することが
できる。また希土類元素を主成分とする接合材層より生
じた液相は高活性であって、永久磁石本体および異種金
部材に対して優れた濡れ性を発揮するので、永久磁石
本体を異種金属部材に対して強固に接合することができ
る。さらに永久磁石は接合材層を一体的に有するので、
接合作業性が良い。
[Action] When the bonding material layer that make up as described above, it is possible to avoid damage to the magnetic properties of the permanent magnet the body at the time of junction. The liquid phase resulting from the bonding material layer mainly composed of a rare earth element is a highly active, permanent magnet body and a heterologous gold
Since excellent wettability to the genus member, it is possible to firmly bond the permanent magnet body relative dissimilar metal member. Furthermore, since the permanent magnet has the bonding material layer integrally,
Good joining workability.

【0010】ただし、希土類元素系合金において、合金
元素AEの含有量がAE<5原子%であるか、またはA
E>50原子%であると、固液共存状態における液相の
体積分率Vfが低くなるため接合強度が低下する。この
ことから、合金元素AEの含有量は、希土類元素との関
係において共晶組成またはそれに近い組成となるように
設定するのが望ましい。なお、二種以上の合金元素AE
を含有する場合には、それらの合計含有量が5原子%≦
AE≦50原子%となる。
However, in the rare earth element-based alloy, the content of the alloy element AE is AE <5 atomic% or A
When E> 50 atomic%, the volume fraction Vf of the liquid phase in the solid-liquid coexisting state becomes low, so that the bonding strength decreases. From this, it is desirable that the content of the alloy element AE is set so as to have a eutectic composition or a composition close thereto in relation to the rare earth element. In addition, two or more alloy elements AE
In the case of containing, the total content thereof is 5 atomic% ≦
AE ≦ 50 atomic%.

【0011】また加熱接合用永久磁石は接合材層以外の
全部の表面に前記のように特定された防錆膜を有するの
で優れた耐食性を発揮する。
The permanent magnet for heat bonding exhibits excellent corrosion resistance because it has the rust preventive film specified as described above on the entire surface other than the bonding material layer.

【0012】さらに前記製造方法によれば、防錆膜を備
えた加熱接合用永久磁石を容易に得ることができる。こ
の場合、前記両工程は何れが先に行われてもよい。
Further, according to the above-mentioned manufacturing method, it is possible to easily obtain the permanent magnet for heating and joining which is provided with the rust preventive film. In this case, either of the above steps may be performed first.

【0013】[0013]

【実施例】図1,2において、加熱接合用永久磁石1
は、希土類元素を含む永久磁石本体2と、その永久磁石
本体2における異種金属部材に接合される面3に一体的
に形成され、且つ希土類元素系合金よりなる接合材層4
と、接合材層4を除いた永久磁石本体2の全部の表面5
を被覆する防錆膜6とよりなる。この防錆膜6は必要に
応じて設けられる。
EXAMPLES Referring to FIGS. 1 and 2, a permanent magnet 1 for heating and joining.
Is a permanent magnet body 2 containing a rare earth element and a bonding material layer 4 integrally formed on the surface 3 of the permanent magnet body 2 to be bonded to a dissimilar metal member and made of a rare earth element alloy.
And the entire surface 5 of the permanent magnet body 2 excluding the bonding material layer 4
And a rust preventive film 6 for covering the. This rust preventive film 6 is provided as needed.

【0014】希土類元素系合金は合金元素AEと残部
土類元素とからなり、基本的には合金元素AEは希土類
元素と共晶反応を行う。希土類元素はY、La、Ce、
Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、E
r、Tm、Yb、Mm(ミッシュメタル)およびLuか
ら選択される少なくとも一種である。また合金元素AE
は、Cu、Al、Ga、Co、Fe、Ag、Ni、A
u、Mn、Zn、Pd、Sn、Sb、Pb、Bi、Cd
およびInから選択される少なくとも一種である。その
合金元素AEの含有量は5原子%≦AE≦50原子%に
設定される。
The rare earth element-based alloy is composed of the alloy element AE and the remaining rare earth element, and basically the alloy element AE undergoes a eutectic reaction with the rare earth element . Rare earth elements Y, La, Ce,
Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, E
It is at least one selected from r, Tm, Yb, Mm (Misch metal) and Lu. In addition, alloy element AE
Is Cu, Al, Ga, Co, Fe, Ag, Ni, A
u, Mn, Zn, Pd, Sn, Sb, Pb, Bi, Cd
And at least one selected from In. The content of the alloy element AE is set to 5 atomic% ≦ AE ≦ 50 atomic%.

【0015】希土類元素系合金における共晶合金を例示
すれば表1の通りである。
Table 1 shows examples of eutectic alloys in rare earth element-based alloys.

【0016】[0016]

【表1】 [Table 1]

【0017】また希土類元素系合金における亜、過共晶
合金としては以下のものを挙げることができる。各化学
式において、数値の単位は原子%である(これは以下同
じ)。Nd60Cu40合金、Nd80Cu20合金、Nd50
50合金、Nd90Al10合金、Nd80Co20合金、Sm
75Cu25合金、Sm65Cu35合金、La85Ga15合金。
さらに三元系合金としては、Nd65Fe5 Cu30合金
(液相発生温度501℃)およびNd70Cu25Al
5 (液相発生温度474℃)を挙げることができる。
Further, examples of the hypoeutectic and hypereutectic alloys in the rare earth element type alloys include the following. In each chemical formula, the unit of the numerical value is atomic% (the same applies hereinafter). Nd 60 Cu 40 alloy, Nd 80 Cu 20 alloy, Nd 50 C
u 50 alloy, Nd 90 Al 10 alloy, Nd 80 Co 20 alloy, Sm
75 Cu 25 alloy, Sm 65 Cu 35 alloy, La 85 Ga 15 alloy.
Further, as a ternary alloy, Nd 65 Fe 5 Cu 30 alloy (liquid phase generation temperature 501 ° C.) and Nd 70 Cu 25 Al
5 (liquid phase generation temperature 474 ° C.).

【0018】防錆膜6はAl、Ni、Au、Tiまたは
TiNの一種よりなる。
The rust preventive film 6 is made of one of Al, Ni, Au, Ti or TiN.

【0019】接合材層4、または接合材層4および防錆
膜6の形成には、電気メッキ処理または気相メッキ処
理、例えば物理蒸着法(イオンプレーティング、スパッ
タリング等)が適用される。
To form the bonding material layer 4, or the bonding material layer 4 and the rustproof film 6, an electroplating process or a vapor phase plating process, for example, a physical vapor deposition method (ion plating, sputtering, etc.) is applied.

【0020】このように物理蒸着法を適用すると、薄
く、且つ組成が均一で、付着強度の高い薄層である接合
材層4および防錆膜6を能率良く形成することができ
る。これは、永久磁石本体2の前記面3および表面5が
複雑でも回り込み効果により実現される。
By applying the physical vapor deposition method as described above, it is possible to efficiently form the bonding material layer 4 and the rust preventive film 6 which are thin and have a uniform composition and high adhesion strength. This is achieved by the wraparound effect even if the surface 3 and the surface 5 of the permanent magnet body 2 are complicated.

【0021】接合材層4は、それを構成する希土類元素
系合金が共晶系合金であって、比較的液相発生温度が低
いことから容易に非晶質化される。非晶質化接合材層4
は結晶粒界が少ないので優れた耐酸化性を有し、また接
合時に不純物となる酸化物を殆ど含まず、その上組成も
均一である。接合材層4の耐酸化性向上を図るために
は、その層4における非晶質相の体積分率VfがVf≧
50%(ただし、Vf=100%を含む)であることが
望ましい。
The bonding material layer 4 is easily made amorphous because the rare earth element-based alloy forming it is a eutectic alloy and has a relatively low liquidus generation temperature. Amorphous bonding material layer 4
Has excellent oxidation resistance because it has few crystal grain boundaries, contains almost no oxides that become impurities during bonding, and has a uniform composition. In order to improve the oxidation resistance of the bonding material layer 4, the volume fraction Vf of the amorphous phase in the layer 4 is Vf ≧.
It is preferably 50% (including Vf = 100%).

【0022】加熱接合用永久磁石1の製造に当っては、
永久磁石本体2における異種金属部材と接合される面3
にCu板、Al板、四フッ化エチレン樹脂板等によりマ
スキングを施し、その面3を除いた全部の表面5に防錆
膜6を形成する工程と、前記マスキングを除去した後前
記面3に接合材層4を形成する工程とが用いられる。
In manufacturing the permanent magnet 1 for heating and joining,
A surface 3 of the permanent magnet body 2 to be joined to a dissimilar metal member
A step of masking with a Cu plate, an Al plate, a tetrafluoroethylene resin plate or the like, and forming a rust preventive film 6 on all surfaces 5 except the surface 3, and after removing the masking, the surface 3 is removed. And the step of forming the bonding material layer 4.

【0023】加熱接合用永久磁石1を異種金属部材に接
合するに当っては、永久磁石1の接合材層4に異種金属
部材を重ね合せ、次いでその重ね合せ物を真空加熱炉内
に設置して、加熱下で接合材層4を液相状態または固液
共存状態にし、その後炉冷する、といった方法が採用さ
れる。
[0023] The heating bonding permanent magnet 1 hitting the joining the dissimilar metal members, superimposing the dissimilar metal <br/> member in the bonding material layer 4 of the permanent magnet 1, then a vacuum heating furnace and the superposition thereof A method is employed in which the bonding material layer 4 is placed inside, the bonding material layer 4 is brought into a liquid phase state or a solid-liquid coexisting state under heating, and then the furnace is cooled.

【0024】この場合、加熱温度Tは接合材層4の組成
によって異なるが、前記組成の各種希土類元素系合金は
比較的低い加熱温度Tにて液相状態または固液共存状態
となるので永久磁石本体2および異種金属部材の特性を
変化させるようなことはない。
In this case, the heating temperature T varies depending on the composition of the bonding material layer 4 , but various rare earth element-based alloys having the above-mentioned composition are in a liquid phase state or a solid-liquid coexisting state at a relatively low heating temperature T, so that the permanent magnet is used. The characteristics of the main body 2 and the dissimilar metal member are not changed.

【0025】また希土類元素を主成分とする接合材層4
より生じた液相は高活性であって、種々の材質の部材、
例えば鋼製部材、希土類元素を含む永久磁石本体2(接
着剤やろう材に対して非常に濡れ性が悪い)等に対して
優れた濡れ性を発揮する。このような接合材層4を用い
ることによって永久磁石本体2を異種金属部材に対して
強固に接合することができる。
A bonding material layer 4 containing a rare earth element as a main component
The resulting liquid phase is highly active, and members made of various materials,
For example, it exhibits excellent wettability with respect to a steel member, a permanent magnet body 2 containing a rare earth element (which has very poor wettability with respect to an adhesive or a brazing material), and the like. By using such a bonding material layer 4, the permanent magnet body 2 can be firmly bonded to a dissimilar metal member.

【0026】加熱時間tは、それが長過ぎる場合には永
久磁石本体2および異種金属部材の特性変化を招来する
ので、t≦10時間であることが望ましく、生産性向上
の観点からはt≦1時間である。
If the heating time t is too long, the characteristics of the permanent magnet body 2 and the dissimilar metal member will change, so t ≦ 10 hours is desirable, and t ≦ from the viewpoint of productivity improvement. It's an hour.

【0027】〔実施例1〕 純度99.9%のNdと純度99.9%のCuとを、共
晶組成を有するNd70Cu30合金が得られるように秤量
し、次いでその秤量物を真空溶解炉を用いて溶解し、そ
の後鋳造を行ってNd70Cu30合金インゴットを得た。
Example 1 Nd having a purity of 99.9% and Cu having a purity of 99.9% were weighed so as to obtain an Nd 70 Cu 30 alloy having a eutectic composition, and then the weighed materials were vacuumed. The Nd 70 Cu 30 alloy ingot was obtained by melting using a melting furnace and then casting.

【0028】図3に示すように、永久磁石本体2とし
て、縦20mm、横20mm、厚さ3mmのNdFeB系永久
磁石(住友特殊金属社製、商品名NEOMAX−28U
H)を選定した。
As shown in FIG. 3, as the permanent magnet body 2, an NdFeB type permanent magnet having a length of 20 mm, a width of 20 mm, and a thickness of 3 mm (manufactured by Sumitomo Special Metals Co., Ltd., trade name NEOMAX-28U) is used.
H) was selected.

【0029】先ず、永久磁石本体2の前記面3にCu板
を用いてマスキングを施し、また蒸発源として純度9
9.9%のAlインゴットを用い、電源電圧4kV、A
r雰囲気10-3Torr、Alインゴットの加熱温度約14
00℃の条件でイオンプレーティングを行い、前記面3
を除いた全部の表面5に厚さ約10μmのAl製防錆膜
6を形成した。
First, the surface 3 of the permanent magnet body 2 is masked by using a Cu plate, and a purity of 9 is used as an evaporation source.
Using 9.9% Al ingot, power supply voltage 4kV, A
r atmosphere 10 -3 Torr, heating temperature of Al ingot about 14
Ion plating was performed under the condition of 00 ° C, and the surface 3
An Al anticorrosion film 6 having a thickness of about 10 μm was formed on the entire surface 5 except for.

【0030】次いで永久磁石本体2よりマスキングを除
去し、また蒸発源として前記Nd70Cu30合金インゴッ
トを用い、電源電圧5kV、Ar雰囲気10-3Torr、N
70Cu30合金インゴットの加熱温度約1300℃の条
件でイオンプレーティングを行い、永久磁石本体2の前
記面3に厚さ約50μmのNd70Cu30合金製接合材層
4を形成して、図3に示す加熱接合用永久磁石1を得
た。
Next, the masking is removed from the permanent magnet body 2, and the Nd 70 Cu 30 alloy ingot is used as the evaporation source, the power supply voltage is 5 kV, the Ar atmosphere is 10 -3 Torr, and the N atmosphere is 10 -3 Torr.
Ion plating is performed under the condition that the heating temperature of the d 70 Cu 30 alloy ingot is about 1300 ° C., and the Nd 70 Cu 30 alloy bonding material layer 4 having a thickness of about 50 μm is formed on the surface 3 of the permanent magnet body 2. The permanent magnet 1 for heating and joining shown in FIG. 3 was obtained.

【0031】異種金属部材として、図3に示すように厚
さ0.4mmの冷間圧延鋼板7を積層してなり、縦10m
m、横10mm、長さ20mmの直方体状積層体8を選定し
た。その積層体8において、各冷間圧延鋼板7はかしめ
手段9により接合されている。また積層体8の貫通孔1
0は引張り試験においてチャックとの連結に用いられ
る。
As a dissimilar metal member, a cold rolled steel plate 7 having a thickness of 0.4 mm is laminated as shown in FIG.
A rectangular parallelepiped laminated body 8 having m, a width of 10 mm and a length of 20 mm was selected. In the laminated body 8, the cold rolled steel sheets 7 are joined by the caulking means 9. Further, the through hole 1 of the laminated body 8
0 is used for connection with the chuck in the tensile test.

【0032】加熱接合に当っては、加熱接合用永久磁石
1の接合材層4上に、積層体8の各鋼板端面よりなる接
合面を下向きにして重ね合わせ、その重ね合せ物を真空
加熱炉内に設置して、加熱温度T=530℃、加熱時間
t=10分間の加熱工程、それに次ぐ炉冷よりなる接合
処理を行って、図4に示すように永久磁石1と積層体8
とよりなる接合体11を得た。この接合処理において
は、加熱温度TがT=530℃であって、図5に示す共
晶点520℃を超えているので、接合材層4は共晶組成
を有することから液相状態となる。
In the heat-bonding, on the bonding material layer 4 of the permanent magnet 1 for heat-bonding, the laminate 8 is superposed with the joint surfaces consisting of the steel plate end faces facing downward, and the superposed product is vacuum-heated. The permanent magnet 1 and the laminated body 8 are installed as shown in FIG. 4 by performing a joining process of heating temperature T = 530 ° C. and heating time t = 10 minutes, followed by furnace cooling.
To obtain a joined body 11. In this bonding treatment, the heating temperature T is T = 530 ° C., which exceeds the eutectic point 520 ° C. shown in FIG. 5, so that the bonding material layer 4 has a eutectic composition and thus is in a liquid phase state. .

【0033】比較のため、前記同様の永久磁石本体2と
前記同様の積層体8とをエポキシ樹脂系接着剤(日本チ
バガイギ社製、商品名アラルダイト)を介し重ね合せて
重ね合せ物を作製し、その重ね合せ物を乾燥炉内に設置
して、加熱温度200℃、加熱時間60分間の加熱工
程、それに次ぐ炉冷よりなる接合処理を行って、永久磁
石本体2と積層体8とをエポキシ樹脂系接着剤を介して
接合した接合体を得た。
For comparison, a permanent magnet body 2 similar to the above and a laminate 8 similar to the above are laminated with an epoxy resin adhesive (manufactured by Nippon Ciba-Gaigi Co., Ltd., trade name Araldite) to prepare a laminate. The superposed product is placed in a drying furnace, a heating process at a heating temperature of 200 ° C. and a heating time of 60 minutes, and then a joining process consisting of furnace cooling are performed, and the permanent magnet body 2 and the laminated body 8 are bonded together with an epoxy resin. A joined body joined through a system adhesive was obtained.

【0034】各接合体について室温下および150℃の
加熱下で引張り試験を行ったところ、表2の結果を得
た。
When a tensile test was conducted on each of the bonded bodies at room temperature and under heating at 150 ° C., the results shown in Table 2 were obtained.

【0035】[0035]

【表2】 [Table 2]

【0036】表2から明らかなように、接合材層4を用
いた接合体11は、室温下および150℃の加熱下にお
いて、エポキシ樹脂系接着剤を用いたものに比べて接合
強度が高く、その接合強度は両環境下において殆ど変わ
らず、またそのばらつきも小さかった。
As is clear from Table 2, the bonded body 11 using the bonding material layer 4 has a higher bonding strength at room temperature and under heating at 150 ° C. than that using the epoxy resin adhesive, The bonding strength was almost the same under both environments, and the variation was small.

【0037】接着剤を用いた接合体は室温下における接
合強度が低い上にそのばらつきが大きく、また150℃
の加熱下ではその接合強度が室温下のそれの3分の1に
低下した。
The bonded body using the adhesive has a low bonding strength at room temperature and has a large variation, and is 150 ° C.
Under heating, its bonding strength decreased to one-third of that at room temperature.

【0038】NdFeB系永久磁石、SmCo系永久磁
石等の希土類元素を含む永久磁石本体2は、接合処理時
の加熱温度TがT>650℃になると、その磁気特性、
特に保磁力 Ic (磁化の強さI=0)が低下傾向とな
る。ただし、残留磁束密度Brおよび保磁力 Bc (磁
束密度B=0)は殆ど変わらず、したがって最大磁気エ
ネルギ積(BH)maxは略一定である。前記接合材層
4を用いた接合処理において、その加熱温度TはT=5
30℃であってT≦650℃であるから、永久磁石本体
2の磁気特性を変化させるようなことはない。
The permanent magnet body 2 containing a rare earth element such as NdFeB system permanent magnet and SmCo system permanent magnet has its magnetic characteristics when the heating temperature T during the joining process becomes T> 650 ° C.
In particular, the coercive force I H c (magnetization intensity I = 0) tends to decrease. However, the residual magnetic flux density Br and the coercive force B H c (magnetic flux density B = 0) hardly change, and therefore the maximum magnetic energy product (BH) max is substantially constant. In the joining process using the joining material layer 4, the heating temperature T is T = 5.
Since 30 ° C. and T ≦ 650 ° C., the magnetic characteristics of the permanent magnet body 2 are not changed.

【0039】また前記永久磁石本体2の濡れ性の悪さ
は、その結晶粒界に希土類元素濃度、この実施例ではN
d濃度の高い相が存在していることに起因する。前記接
合材層4を用いた接合処理において、その接合材層4は
液相状態となっており、Ndを主成分とするNd70Cu
30合金より生じた液相は、高活性であると共に前記結晶
粒界に存するNd濃度の高い相と主成分を共通にするこ
とから永久磁石本体2に対して優れた濡れ性を発揮し、
また前記高活性化に伴い冷間圧延鋼板7よりなる積層体
8に対する濡れ性も極めて良好である。
The poor wettability of the permanent magnet body 2 is due to the rare earth element concentration at the crystal grain boundaries, which is N in this embodiment.
This is due to the existence of a phase having a high d concentration. In the joining process using the joining material layer 4, the joining material layer 4 is in a liquid phase state and contains Nd 70 Cu containing Nd as a main component.
The liquid phase generated from the No. 30 alloy exhibits high wettability with respect to the permanent magnet main body 2 because it has a high activity and shares the main component with the phase having a high Nd concentration existing in the grain boundaries.
In addition, the wettability of the laminated body 8 made of the cold-rolled steel sheet 7 is extremely good due to the high activation.

【0040】したがって、前記のような接合材層4を用
いることによって、永久磁石本体2の磁気特性を損うこ
となく、その永久磁石本体2を積層体8に対して強固に
接合することができる。この接合技術は、モータ用ロー
タに対する永久磁石本体2の接合に適用され、回転数が
10000rpm 以上である高速回転モータの実現を可能
にするものである。
Therefore, by using the bonding material layer 4 as described above, the permanent magnet body 2 can be firmly bonded to the laminated body 8 without impairing the magnetic characteristics of the permanent magnet body 2. . This joining technique is applied to the joining of the permanent magnet body 2 to the motor rotor, and makes it possible to realize a high-speed rotation motor having a rotation speed of 10,000 rpm or more.

【0041】また前記接合体11について、その接合体
11を、60℃、相対湿度90%の環境に30日間保持
する、といった耐食性試験を行ったところ、永久磁石本
体2における錆の発生がAl系防錆膜6によって確実に
防止されていることが判明した。
Further, the joint body 11 was subjected to a corrosion resistance test such that the joint body 11 was kept in an environment of 60 ° C. and a relative humidity of 90% for 30 days. It was found that the rust preventive film 6 surely prevented the rust.

【0042】〔実施例2〕 実施例1と同様のNd70Cu30合金インゴットにスタン
プミルによる粉砕処理を施し、次いで分級処理を行って
粒径106μm以下のNd70Cu30合金粉末を得た。
Example 2 The same Nd 70 Cu 30 alloy ingot as in Example 1 was crushed by a stamp mill and then classified to obtain Nd 70 Cu 30 alloy powder having a particle size of 106 μm or less.

【0043】永久磁石本体2として、実施例1と同様の
縦10mm、横10mm、厚さ3mmのNdFeB系永久磁石
(住友特殊金属社製、商品名NEOMAX−28UH)
を選定した。
As the permanent magnet main body 2, a NdFeB system permanent magnet having a length of 10 mm, a width of 10 mm and a thickness of 3 mm, which is the same as that of the first embodiment (manufactured by Sumitomo Special Metals Co., Ltd., trade name NEOMAX-28UH).
Was selected.

【0044】そして、図6に示すように、永久磁石本体
2の正方形をなす両面3に、Nd70Cu30合金粉末を用
いたフラッシュ蒸着法を施して、厚さ20μmのNd70
Cu30合金製接合材層4を形成し、これにより加熱接合
用永久磁石1を得た。
Then, as shown in FIG. 6, both sides 3 forming a square of the permanent magnet main body 2 were subjected to flash vapor deposition using Nd 70 Cu 30 alloy powder to obtain Nd 70 having a thickness of 20 μm.
The Cu 30 alloy bonding material layer 4 was formed, and thereby the permanent magnet 1 for heat bonding was obtained.

【0045】フラッシュ蒸着法の条件は、Pt製加熱ボ
ートの温度900℃、加熱ボートへのNd70Cu30合金
粉末の供給量15mg/min 、雰囲気の圧力5×10-5To
rrである。Nd70Cu30合金粉末を前記供給量にて加熱
ボートに供給すると、加熱ボートに到達したNd70Cu
30合金粉末は、その全部が直ちに蒸発して永久磁石本体
2の面3に付着するので、接合材層4における組成がN
70Cu30合金のそれと略同一となり、組成変化が抑制
される。
The conditions of the flash vapor deposition method are as follows: the temperature of the Pt heating boat is 900 ° C., the supply amount of Nd 70 Cu 30 alloy powder to the heating boat is 15 mg / min, and the atmospheric pressure is 5 × 10 −5 To.
It is rr. When the Nd 70 Cu 30 alloy powder is supplied to the heating boat in the supply amount was reached heating boat Nd 70 Cu
The entire 30 alloy powder immediately evaporates and adheres to the surface 3 of the permanent magnet body 2, so that the composition of the bonding material layer 4 is N.
It is almost the same as that of the d 70 Cu 30 alloy, and the composition change is suppressed.

【0046】異種金属部材として、図6に示すように実
施例1と同様の厚さ0.3mmの冷間圧延鋼板7を積層し
てなり、縦10mm、横10mm、長さ15mmの2つの直方
体状積層体8を選定した。その積層体8において、各冷
間圧延鋼板7はかしめ手段9により接合されている。ま
た積層体8の貫通孔10は引張り試験においてチャック
との連結に用いられる。
As shown in FIG. 6, as the dissimilar metal member, a cold rolled steel plate 7 having a thickness of 0.3 mm similar to that of Example 1 is laminated, and two rectangular parallelepipeds having a length of 10 mm, a width of 10 mm and a length of 15 mm are formed. The laminated body 8 was selected. In the laminated body 8, the cold rolled steel sheets 7 are joined by the caulking means 9. The through hole 10 of the laminated body 8 is used for connection with the chuck in the tensile test.

【0047】加熱接合に当っては、図6に示すように、
一方の積層体8の各鋼板端面よりなる接合面上に加熱接
合用永久磁石1を、その一方の接合材層4を下向きにし
て重ね合せ、また他方の接合材層4上に他方の積層体8
を、その各鋼板端面よりなる接合面を下向きにして重ね
合せ、これにより重ね合せ物を作製した。次いで、重ね
合せ物を真空加熱炉内に設置して、加熱温度T=530
℃、加熱時間t=30分間の加熱工程、それに次ぐ炉冷
よりなる接合処理を行って、図7に示すように2つの積
層体8により永久磁石1を挟むようにそれら1,8を接
合材層4を介して接合した接合体11を得た。
In heat bonding, as shown in FIG.
The heating-bonding permanent magnet 1 is superposed on the joint surface formed by the steel plate end faces of the one laminate 8 with one of the joining material layers 4 thereof facing downward, and the other of the joining material layers 4 is laminated. 8
Were laminated with the joint surface consisting of the end faces of the respective steel plates facing downward, thereby producing a laminated product. Then, the stack is placed in a vacuum heating furnace and the heating temperature T = 530.
A heating step at a temperature of 30 ° C. for a heating time of t = 30 minutes, followed by a joining process consisting of furnace cooling to join the permanent magnets 1 and 8 with the two laminated bodies 8 as shown in FIG. A joined body 11 joined through the layer 4 was obtained.

【0048】比較のため前記同様のNd70Cu30合金イ
ンゴットにマイクロカッタによる切断加工を施して、N
70Cu30合金よりなり、且つ縦10mm、横10mm、厚
さ0.2mmの薄板状接合材を得た。
For comparison, the same Nd 70 Cu 30 alloy ingot as described above was cut with a micro-cutter to obtain N
A thin plate-like bonding material made of a d 70 Cu 30 alloy and having a length of 10 mm, a width of 10 mm and a thickness of 0.2 mm was obtained.

【0049】そして前記同様のNdFeB系永久磁石と
2つの積層体とを2つの接合材を用いて前記と同一条件
で加熱接合し、これにより、図7に示す接合体11と同
様の接合体を得た。
Then, the same NdFeB-based permanent magnet and the two laminated bodies were heat-bonded by using two bonding materials under the same conditions as described above, whereby a bonded body similar to the bonded body 11 shown in FIG. 7 was obtained. Obtained.

【0050】各接合体について室温下および150℃の
加熱下で引張り試験を行ったところ、表3の結果を得
た。
A tensile test was conducted on each of the bonded bodies at room temperature and under heating at 150 ° C., and the results shown in Table 3 were obtained.

【0051】[0051]

【表3】 [Table 3]

【0052】表3から明らかなように、接合材層4を用
いた接合体11は、室温下および150℃の加熱下にお
いて、薄板状接合材を用いた接合体に比べて接合強度が
高く、その接合強度は両環境下において全然変わらず、
またそのばらつきも小さかった。これは、フラッシュ蒸
着による接合材層4の組成が均一であって、その強度が
鋳造による接合材のそれよりも高いことに起因する。
As is clear from Table 3, the bonded body 11 using the bonding material layer 4 has higher bonding strength at room temperature and under heating at 150 ° C. than the bonded body using the thin plate-shaped bonding material. The joint strength does not change at all under both environments,
The variation was also small. This is because the composition of the bonding material layer 4 formed by flash vapor deposition is uniform and its strength is higher than that of the bonding material formed by casting.

【0053】〔実施例3〕 永久磁石本体2として、実施例2と同様の縦10mm、横
10mm、厚さ3mmのNdFeB系永久磁石(住友特殊金
属社製、商品名NEOMAX−28UH)を選定した。
[Example 3] As the permanent magnet body 2, the same NdFeB-based permanent magnet (length 10 mm, width 10 mm, thickness 3 mm, manufactured by Sumitomo Special Metals Co., Ltd., trade name NEOMAX-28UH) as in Example 2 was selected. .

【0054】そして、図6に示すように、永久磁石本体
2の正方形をなす両面3に、NdターゲットおよびCu
ターゲットを用いた多元スパッタ法(実施例2ではN
d、Cuの二元スパッタ法)を施して堆積速度 約0.
3μm/min にて厚さ20μmのNd70Cu30合金製接
合材層4を形成し、これにより加熱接合用永久磁石1を
得た。この場合、Nd70Cu30合金は非晶質単相構造で
あった(即ち、Vf=100%)。
Then, as shown in FIG. 6, Nd target and Cu are formed on both sides 3 of the permanent magnet body 2 forming a square.
Multi-source sputtering method using target (N in Example 2
d, Cu binary sputtering method) and the deposition rate is about 0.
A Nd 70 Cu 30 alloy bonding material layer 4 having a thickness of 20 μm was formed at 3 μm / min, whereby a permanent magnet 1 for heating bonding was obtained. In this case, the Nd 70 Cu 30 alloy had an amorphous single phase structure (ie, Vf = 100%).

【0055】多元スパッタ法の条件は次の通りである。
使用装置 マグネトロン型三元同時高周波スパッタ装置
(実施例では二元のみ使用);永久磁石本体の冷却方式
水冷;永久磁石本体の回転数 30rpm ;Ndターゲ
ットのNd純度 99.9%;Ndターゲットの寸法
直径80mm、厚さ5mm;CuターゲットのCu純度9
9.9%;Cuターゲットの寸法 直径80mm、厚さ5
mm;スパッタガス Ar;スパッタガス圧 1Pa;永
久磁石本体の面を洗浄するための逆スパッタ投入電力1
00W、10分間;Nd、Cuターゲット表面をエッチ
ングして洗浄するためのプレスパッタ 投入電力100
W、20分間;接合材層形成時のスパッタ Ndターゲ
ットでは投入電力300W、Cuターゲットでは投入電
力250W(Cuのスパッタ率はNdのそれの3倍であ
るため、前記のように投入電力を調節する)。
The conditions of the multi-source sputtering method are as follows.
Equipment used Magnetron type three-way simultaneous high frequency sputtering apparatus (only two elements are used in the embodiment); Cooling method of permanent magnet body Water cooling; Rotation speed of permanent magnet body 30 rpm; Nd purity of Nd target 99.9%; Nd target size
Diameter 80 mm, thickness 5 mm; Cu target Cu purity 9
9.9%; Cu target dimensions 80 mm diameter, 5 thickness
mm; Sputter gas Ar; Sputter gas pressure 1 Pa; Reverse sputter input power 1 for cleaning the surface of the permanent magnet body
00W, 10 minutes; Pre-sputtering for etching and cleaning Nd, Cu target surface Input power 100
W, 20 minutes; Sputtering at the time of forming the bonding material layer Input power 300 W for Nd target, input power 250 W for Cu target (Since the sputtering rate of Cu is 3 times that of Nd, the input power is adjusted as described above. ).

【0056】加熱接合に当っては、加熱接合用永久磁石
1と2つの積層体8とを、実施例2同様に重ね合せて重
ね合せ物(図6参照)を作製し、次いで実施例2と同一
条件で加熱接合し、これにより接合体11を得た(図7
参照)。
In the heat-bonding, the heat-bonding permanent magnet 1 and the two laminated bodies 8 were superposed in the same manner as in Example 2 to produce a superposed product (see FIG. 6), and then in Example 2. Heat bonding was performed under the same conditions, and thereby a bonded body 11 was obtained (Fig. 7).
reference).

【0057】接合体11について室温下および150℃
の加熱下で引張り試験を行ったところ、表4の結果を得
た。表4には、比較のため表3の薄板状接合材を用いた
場合の測定値も示されている。
About the bonded body 11 at room temperature and 150 ° C.
When the tensile test was performed under heating, the results shown in Table 4 were obtained. For comparison, Table 4 also shows the measured values when the thin plate-like bonding material of Table 3 was used.

【0058】[0058]

【表4】 [Table 4]

【0059】表4から明らかなように、接合材層4を用
いた接合体11は、室温下および150℃の加熱下にお
いて、薄板状接合材を用いた接合体に比べて接合強度が
高く、その接合強度は両環境下において全然変わらず、
またそのばらつきも小さかった。これは、多元スパッタ
法による接合材層4の金属組織が非晶質単相構造である
ことから組成が極めて均一であると共に酸化物量が僅少
であって、その強度が鋳造による接合材のそれよりも高
いことに起因する。
As is clear from Table 4, the bonded body 11 using the bonding material layer 4 has higher bonding strength at room temperature and under heating at 150 ° C. than the bonded body using the thin plate-shaped bonding material. The joint strength does not change at all under both environments,
The variation was also small. This is because the composition of the bonding material layer 4 formed by the multi-source sputtering method is an amorphous single-phase structure, so that the composition is extremely uniform and the amount of oxide is small, and the strength thereof is higher than that of the bonding material formed by casting. Is also high.

【0060】[0060]

【発明の効果】請求項1〜3記載の発明によれば、前記
のように構成することによって、異種金属部材に対し
希土類元素を含む永久磁石本体をその磁気特性を損うこ
となく強固に接合することが可能な加熱接合用永久磁石
を提供することができる。また永久磁石本体と接合材層
とを一体化したので、接合作業性を向上させることがで
きる。
According to the invention of claim 1 to 3, wherein, according to the present invention, with the structure described above, with respect to members of different metals,
Permanent magnets containing rare earth elements may be damaged by their magnetic properties.
It is possible to provide a heating-bonding permanent magnet that can be firmly bonded without exception . Having integrated or permanent magnet body and the bonding material layer, thereby improving the bonding workability.

【0061】請求項記載の発明によれば、前記効果に
加え防錆能を有する加熱接合用永久磁石を提供すること
ができる。
According to the invention described in claim 4 , it is possible to provide a permanent magnet for heating bonding which has the rust preventive effect in addition to the above effects.

【0062】請求項5〜7記載の発明によれば、防錆能
を持つ加熱接合用永久磁石を容易に量産することができ
る。
According to the invention described in claims 5 to 7 , it is possible to easily mass-produce the heat-bonding permanent magnet having the rust preventive ability.

【図面の簡単な説明】[Brief description of drawings]

【図1】加熱接合用永久磁石の斜視図である。FIG. 1 is a perspective view of a permanent magnet for heating and joining.

【図2】図1の2−2線断面図である。FIG. 2 is a sectional view taken along line 2-2 of FIG.

【図3】加熱接合用永久磁石と積層体との重ね合せ関係
を示す斜視図である。
FIG. 3 is a perspective view showing a superposition relationship between a heat-bonding permanent magnet and a laminated body.

【図4】接合体の正面図である。FIG. 4 is a front view of a joined body.

【図5】Cu−Nd系状態図の要部を示す。FIG. 5 shows a main part of a Cu—Nd system phase diagram.

【図6】加熱接合用永久磁石と積層体との重ね合せ関係
を示す斜視図である。
FIG. 6 is a perspective view showing a superposition relationship between a heating-bonding permanent magnet and a laminated body.

【図7】接合体の斜視図である。FIG. 7 is a perspective view of a joined body.

【符号の説明】[Explanation of symbols]

1 加熱接合用永久磁石 2 永久磁石本体 3 面 4 接合材層 5 表面 6 防錆膜 8 積層体(異種金属部材)1 Permanent Magnet for Heating and Bonding 2 Permanent Magnet Main Body 3 Surface 4 Bonding Material Layer 5 Surface 6 Anticorrosion Film 8 Laminate ( Different Metal Member)

フロントページの続き (51)Int.Cl.7 識別記号 FI // C23C 30/00 H01F 1/04 Z (56)参考文献 特開 平6−86512(JP,A) 特開 平2−14502(JP,A) 特開 平7−116866(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/04 C22C 28/00 C22C 45/00 H01F 41/02 C23C 30/00 H01F 7/02 H02K Continuation of front page (51) Int.Cl. 7 Identification code FI // C23C 30/00 H01F 1/04 Z (56) References JP-A-6-86512 (JP, A) JP-A-2-14502 (JP , A) JP-A-7-116866 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) H01F 1/04 C22C 28/00 C22C 45/00 H01F 41/02 C23C 30/00 H01F 7/02 H02K

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 異種金属部材(8)に加熱接合される永
久磁石(1)であって、希土類元素を含む永久磁石本体
(2)における前記異種金属部材(8)に接合される面
(3)に、前記永久磁石本体(2)の保磁力 I c の低
下を回避し得る加熱温度で液相状態および固液共存状態
の一方の状態となる、希土類元素系合金より構成された
接合材層(4)を一体的に有し、その希土類元素系合金
は合金元素AEと残部希土類元素とからなり、その合金
元素AEは、Cu、Al、Ga、Co、Fe、Ag、N
i、Au、Mn、Zn、Pd、Sn、Sb、Pb、B
i、CdおよびInから選択される少なくとも一種であ
って、その含有量は5原子%≦AE≦50原子%であ
り、前記希土類元素はY、La、Ce、Pr、Nd、S
m、Eu、Gd、Tb、Dy、Ho、Er、Tm、Y
b、Mm(ミッシュメタル)およびLuから選択される
少なくとも一種であることを特徴とする加熱接合用永久
磁石。
1. A permanent magnet that is heat-bonding to dissimilar metal member (8) (1), the surface (3 joined to the dissimilar metal member (8) in the permanent magnet body (2) containing a rare earth element ), The coercive force I H c of the permanent magnet body (2) is low.
Liquid phase and solid-liquid coexisting state at heating temperature that can avoid lowering
The rare earth element-based alloy that integrally has the bonding material layer (4) composed of the rare earth element-based alloy in one state
It consists of The alloy element AE and the remainder rare earth elements, the alloy
The element AE is Cu, Al, Ga, Co, Fe, Ag, N
i, Au, Mn, Zn, Pd, Sn, Sb, Pb, B
i, at least one Der selected from Cd and In
I, the content is 5 atomic% ≦ AE ≦ 50 atomic% der
And the rare earth elements are Y, La, Ce, Pr, Nd, S
m, Eu, Gd, Tb, Dy, Ho, Er, Tm, Y
b, selected from Mm (Misch metal) and Lu
Permanent magnets for heat-bonding, wherein at least one Der Rukoto.
【請求項2】 前記接合材層(4)は物理蒸着による薄
層である、請求項1記載の加熱接合用永久磁石。
2. The permanent magnet for heat bonding according to claim 1, wherein the bonding material layer (4) is a thin layer formed by physical vapor deposition.
【請求項3】 前記接合材層(4)における非晶質相の
体積分率VfがVf≧50%である、請求項1または2
記載の加熱接合用永久磁石。
3. The volume fraction Vf of the amorphous phase in the bonding material layer (4) is Vf ≧ 50%.
The heat-bonding permanent magnet described.
【請求項4】 前記永久磁石本体(2)は、前記接合材
層(4)を除いた全部の表面(5)を、Al、Ni、A
u、TiまたはTiNの一種よりなる防錆膜(6)によ
り被覆されている、請求項1,2または記載の加熱接
合用永久磁石。
4. The permanent magnet body (2) has Al, Ni, A on the entire surface (5) excluding the bonding material layer (4).
u, Ti or TiN of being covered by the anti-corrosion film (6) consisting of one claim 1, 2 or a permanent magnet for heat-bonding of the 3 described.
【請求項5】 希土類元素を含む永久磁石本体(2)に
おける異種金属部材(8)と加熱接合される面(3)を
除いた全部の表面(5)に防錆膜(6)を形成する工程
と、前記加熱接合される面(3)に接合材層(4)を形
成する工程とを用い、前記防錆膜(6)はAl、Ni、
Au、TiおよびTiNから選択される一種よりなり、
前記接合材層(4)は、前記永久磁石本体(2)の保磁
I c の低下を回避し得る加熱温度で液相状態および
固液共存状態の一方の状態とな る希土類元素系合金より
構成され、その希土類元素系合金は合金元素AEと残部
希土類元素とからなり、その合金元素AEは、Cu、A
l、Ga、Co、Fe、Ag、Ni、Au、Mn、Z
n、Pd、Sn、Sb、Pb、Bi、CdおよびInか
ら選択される少なくとも一種であって、その含有量は5
原子%≦AE≦50原子%であり、前記希土類元素は
Y、La、Ce、Pr、Nd、Sm、Eu、Gd、T
b、Dy、Ho、Er、Tm、Yb、Mm(ミッシュメ
タル)およびLuから選択される少なくとも一種であ
ことを特徴とする加熱接合用永久磁石の製造方法。
Forming an anti Sabimaku (6) to the dissimilar metal member (8) and heat-bonding the surface to (3) obtained by removing all of the surface of the permanent magnet body (2) (5) containing 5. A rare earth element process and, using a step of forming a junction material layer (4) on the surface (3) which is the heat-bonding, the anti-corrosion film (6) is Al, Ni,
Consisting of one selected from Au, Ti and TiN,
The bonding material layer (4) is a coercive force of the permanent magnet body (2).
At the heating temperature that can avoid the decrease of the force I H c
Than one state and ing rare earth element-based alloy of the solid-liquid coexistence state
The rare earth element alloy is composed of alloy element AE and the balance
It is composed of rare earth elements, and its alloying element AE is Cu, A
l, Ga, Co, Fe, Ag, Ni, Au, Mn, Z
n, Pd, Sn, Sb, Pb, Bi, Cd and In
At least one selected from the group, the content of which is 5
Atomic% ≦ AE ≦ 50 atomic%, and the rare earth element is
Y, La, Ce, Pr, Nd, Sm, Eu, Gd, T
b, Dy, Ho, Er, Tm, Yb, Mm (Mischme
At least one Der manufacturing method of heat-bonding permanent magnet, characterized in Rukoto selected from tall) and Lu.
【請求項6】 前記接合材層(4)の形成に物理蒸着法
を適用する、請求項記載の加熱接合用永久磁石の製造
方法。
6. The method for producing a permanent magnet for heat bonding according to claim 5 , wherein a physical vapor deposition method is applied to the formation of the bonding material layer (4).
【請求項7】 前記接合材層(4)および防錆膜(6)
の形成に物理蒸着法を適用する、請求項記載の加熱接
合用永久磁石の製造方法。
7. The bonding material layer (4) and the rust preventive film (6)
The method for producing a permanent magnet for heat bonding according to claim 5 , wherein a physical vapor deposition method is applied to the formation of the.
JP27270994A 1994-11-07 1994-11-07 Permanent magnet for heat bonding and method of manufacturing the same Expired - Fee Related JP3472358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27270994A JP3472358B2 (en) 1994-11-07 1994-11-07 Permanent magnet for heat bonding and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27270994A JP3472358B2 (en) 1994-11-07 1994-11-07 Permanent magnet for heat bonding and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH08138920A JPH08138920A (en) 1996-05-31
JP3472358B2 true JP3472358B2 (en) 2003-12-02

Family

ID=17517698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27270994A Expired - Fee Related JP3472358B2 (en) 1994-11-07 1994-11-07 Permanent magnet for heat bonding and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3472358B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739093B2 (en) * 2009-09-10 2015-06-24 株式会社豊田中央研究所 Rare earth magnet, manufacturing method thereof, and magnet composite member
JP2013243265A (en) * 2012-05-21 2013-12-05 Nhk Spring Co Ltd Laminate and method for producing laminate

Also Published As

Publication number Publication date
JPH08138920A (en) 1996-05-31

Similar Documents

Publication Publication Date Title
US5830585A (en) Article made by joining two members together, and a brazing filler metal
EP0786854B1 (en) Rotor for rotating machine, method of manufacturing same, and magnet unit
WO2011122577A1 (en) Rare earth sintered magnet, method for producing same, motor and automobile
EP0991085B1 (en) Corrosion-resisting permanent magnet and method for producing the same
JP3311907B2 (en) Permanent magnet material, permanent magnet, and method of manufacturing permanent magnet
US5876518A (en) R-T-B-based, permanent magnet, method for producing same, and permanent magnet-type motor and actuator comprising same
JP3472358B2 (en) Permanent magnet for heat bonding and method of manufacturing the same
JP3441197B2 (en) Paste joining material for brazing
EP0923087B1 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3645925B2 (en) Joined body and joining method of permanent magnet and different kind of member
JP3592425B2 (en) Rare earth alloy brazing filler metal
JP3373950B2 (en) Heat bonding method of two kinds of members having different thermal expansion coefficients
JP3382383B2 (en) Bonding material for metal members
JP3802586B2 (en) Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients
JP3759198B2 (en) Joining method of workpieces
JPH07283017A (en) Corrosion resistant permanent magnet and production thereof
JPH0945567A (en) Rare earth-iron-boron permanent magnet manufacturing method
JPH08118066A (en) Production of joined body consisting of permanent magnet having rust preventability and member of different material kind
JPH08290265A (en) Method for heating and joining two materials of different coefficient of thermal expansion
JPH07249509A (en) Corrosion-resistant permanent magnet and its manufacture
JP3631809B2 (en) Joining method of workpieces
JP3652816B2 (en) Corrosion-resistant permanent magnet and method for manufacturing the same
JP3424782B2 (en) High-efficiency rotor parts and rotors
JP2721187B2 (en) RF lower e-BM sintered magnet and manufacturing method thereof
JPH08141781A (en) Joining material for brazing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees