JPH08116633A - Bonded body of permanent magnet and member of different kind of material and bonding method - Google Patents

Bonded body of permanent magnet and member of different kind of material and bonding method

Info

Publication number
JPH08116633A
JPH08116633A JP6277027A JP27702794A JPH08116633A JP H08116633 A JPH08116633 A JP H08116633A JP 6277027 A JP6277027 A JP 6277027A JP 27702794 A JP27702794 A JP 27702794A JP H08116633 A JPH08116633 A JP H08116633A
Authority
JP
Japan
Prior art keywords
permanent magnet
joining
bonding
dissimilar material
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6277027A
Other languages
Japanese (ja)
Other versions
JP3645925B2 (en
Inventor
Mitsuya Hosoe
光矢 細江
Naomasa Kimura
直正 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP27702794A priority Critical patent/JP3645925B2/en
Publication of JPH08116633A publication Critical patent/JPH08116633A/en
Application granted granted Critical
Publication of JP3645925B2 publication Critical patent/JP3645925B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To increase the bonding strength between a permanent magnet and a member of a different kind of material by constituting the bonding layer of a bonded body having the bonding layer formed through a heating process for bonding the permanent magnet to the member of a rare-earth-based alloy which becomes a liquid during the heating process and controlling the average thickness of the bonding layer within a prescribed range. CONSTITUTION: A bonded body 1 has a bonding layer 4 formed through a heating process for a permanent magnet 2 to a member 3 of a different kind of material 3. The layer 4 is composed of a rare-earth-based alloy which becomes a liquid during the heating process and the average thickness t1 of the layer 4 is controlled to 1μm<=t1 2,000μm. The liquid resulting from the rare- earth-based alloy constituting the layer 4 is highly active and exerts excellent wettability against the magnet 2 and member 3. Since the liquefying temperature of the alloy can be adjusted to a relatively low level, the changes of the characteristics of the magnet 2 and member 3 can be avoided at the time of bonding the magnet 2 to the member 3 by heating. Therefore, a high bonding strength can be obtained between the magnet 2 and member 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は永久磁石と異材種部材と
を接合層を介して接合した接合体、および永久磁石と異
材種部材とを接合する接合方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a joined body in which a permanent magnet and a dissimilar material member are joined via a joining layer, and a joining method for joining the permanent magnet and the dissimilar material member.

【0002】[0002]

【従来の技術】希土類元素を含む永久磁石は、非常に脆
いため機械加工性が悪く、また高温下に曝されると金属
組織が変化するためそれに伴い磁気特性が低下する、と
いった性質を有する。
2. Description of the Related Art Permanent magnets containing rare earth elements have the property that they are extremely brittle and have poor machinability, and that when exposed to high temperatures, the metal structure changes and the magnetic properties deteriorate accordingly.

【0003】そのため、例えば永久磁石とモータの金属
製ロータとの接合体においては、それらの接合に当り、
あり差し構造、ねじ止め、溶接等の接合手段を採用する
ことができないので、従来は接着剤が用いられている。
Therefore, for example, in a joined body of a permanent magnet and a metal rotor of a motor, when joining them,
Conventionally, an adhesive has been used because it is not possible to adopt a joining means such as an insertion structure, screwing, and welding.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、接着剤
を用いると、永久磁石の濡れ性が悪いため接合体の接着
強度が低く、また温度上昇に伴いその接着強度が著しく
低下する、といった問題を生ずる。このような状況下で
はモータの高速回転化の要請に到底対応することはでき
ない。
However, when an adhesive is used, the adhesive strength of the bonded body is low due to the poor wettability of the permanent magnet, and the adhesive strength is significantly reduced with a rise in temperature. . Under such circumstances, it is impossible to meet the demand for high-speed rotation of the motor.

【0005】本発明は前記に鑑み、永久磁石と異材種部
材との接合強度の高い前記接合体、および永久磁石と異
材種部材との接合強度を高めることが可能な前記接合方
法を提供することを目的とする。
In view of the above, the present invention provides the above-mentioned joined body having a high joining strength between the permanent magnet and the dissimilar material member, and the joining method capable of increasing the joining strength between the permanent magnet and the dissimilar material member. With the goal.

【0006】[0006]

【課題を解決するための手段】本発明は、永久磁石と、
異材種部材と、それらを接合すべく加熱工程を経て形成
された接合層とを有する接合体であって、前記接合層
は、前記加熱工程で液相を生じる希土類元素系合金より
なり、且つ平均厚さt1 が1μm≦t1 ≦2000μm
であることを特徴とする。
The present invention comprises a permanent magnet,
A dissimilar material member, and a joined body having a joining layer formed through a heating step for joining them, wherein the joining layer is made of a rare earth element-based alloy that produces a liquid phase in the heating step, and an average. Thickness t 1 is 1 μm ≦ t 1 ≦ 2000 μm
It is characterized by being.

【0007】本発明は、永久磁石と異材種部材とを接合
するに当り、前記永久磁石と異材種部材との間に、希土
類元素系合金よりなる接合材を介在させ、次いでその接
合材をそれの液相発生温度T以上に加熱することを特徴
とする。
According to the present invention, when joining a permanent magnet and a dissimilar material member, a joining material made of a rare earth element alloy is interposed between the permanent magnet and the dissimilar material member, and the joining material is then bonded. It is characterized in that it is heated to the liquid phase generation temperature T or higher.

【0008】[0008]

【作用】接合層を構成する希土類元素系合金において、
その合金より生じた液相は高活性であるから永久磁石お
よび異材種部材に対して優れた濡れ性を発揮する。この
ような接合層の厚さt1 を前記のように設定することに
よって接合強度の高い接合体を提供することができる。
この場合、希土類元素系合金の液相発生温度を比較的低
くし得るので、加熱接合時における永久磁石および異材
種部材の特性変化を回避することが可能である。
[Function] In the rare earth element-based alloy forming the bonding layer,
Since the liquid phase generated from the alloy is highly active, it exhibits excellent wettability with respect to the permanent magnet and the dissimilar material member. By setting the thickness t 1 of the bonding layer as described above, a bonded body having high bonding strength can be provided.
In this case, since the liquid phase generation temperature of the rare earth element-based alloy can be made relatively low, it is possible to avoid characteristic changes of the permanent magnet and the dissimilar material member during heating and joining.

【0009】ただし、接合層の平均厚さt1 がt1 <1
μmでは、永久磁石に熱応力に起因した割れが発生し易
くなるため接合体の接合強度が低下し、一方、t1 >2
000μmでは接合体の接合強度が接合層のそれに依存
することになるので、前記同様に接合体の接合強度が低
下する。
However, the average thickness t 1 of the bonding layer is t 1 <1.
At μm, cracking due to thermal stress is likely to occur in the permanent magnet, and thus the joint strength of the joined body decreases, while t 1 > 2
At 000 μm, the bonding strength of the bonded body depends on that of the bonding layer, so that the bonding strength of the bonded body decreases as described above.

【0010】前記接合方法によれば、前記のような接合
材を用いることによって、永久磁石と異材種部材との接
合強度を高めることが可能である。
According to the above joining method, the joining strength between the permanent magnet and the dissimilar material member can be increased by using the above joining material.

【0011】[0011]

【実施例】図1において、接合体1は、永久磁石2と、
異材種部材3と、それら2,3を接合すべく加熱工程を
経て形成された接合層4とを有する。
EXAMPLE Referring to FIG. 1, a bonded body 1 comprises a permanent magnet 2 and
It has a dissimilar material seed member 3 and a joining layer 4 formed through a heating process to join the members 2 and 3.

【0012】接合層4は、加熱工程で液相を生じる希土
類元素系合金よりなり、且つ平均厚さt1 が1μm≦t
1 ≦2000μmである。
The bonding layer 4 is made of a rare earth element-based alloy that produces a liquid phase in the heating step, and has an average thickness t 1 of 1 μm ≦ t.
1 ≦ 2000 μm.

【0013】接合層4を構成する希土類元素系合金にお
いて、その合金より生じた液相は高活性であるから、永
久磁石2および異材種部材3に対して優れた濡れ性を発
揮する。このような接合層4の厚さt1 を前記のように
設定することによって接合強度の高い接合体1を提供す
ることができる。この場合、希土類元素系合金の液相発
生温度を比較的低くし得るので、加熱接合時における永
久磁石2および異材種部材3の特性変化を回避すること
が可能である。
In the rare earth element-based alloy forming the bonding layer 4, the liquid phase generated from the alloy is highly active, and therefore exhibits excellent wettability to the permanent magnet 2 and the dissimilar material member 3. By setting the thickness t 1 of the bonding layer 4 as described above, the bonded body 1 having high bonding strength can be provided. In this case, since the liquid phase generation temperature of the rare earth element-based alloy can be made relatively low, it is possible to avoid the characteristic changes of the permanent magnet 2 and the dissimilar material member 3 during heating and joining.

【0014】接合層4の平均厚さt1 は、好ましくは3
0μm≦t1 ≦200μmであり、このように平均厚さ
1 を設定すると、永久磁石2と異材種部材3との接合
強度は最高となる。
The average thickness t 1 of the bonding layer 4 is preferably 3
0 μm ≦ t 1 ≦ 200 μm, and when the average thickness t 1 is set in this way, the bonding strength between the permanent magnet 2 and the dissimilar material seed member 3 becomes maximum.

【0015】希土類元素系合金は、基本的には主成分で
ある希土類元素と、その希土類元素と共晶反応を行う合
金元素AEとから構成される。希土類元素は、Y、L
a、Ce、Pr、Nd、Sm、Eu、Gd、Tb、D
y、Ho、Er、Tm、YbおよびLuから選択される
少なくとも一種である。また合金元素AEは、Al、M
n、Fe、Co、Ni、Cu、Zn、Ga、Pd、A
g、Sn、Sb、Au、Pb、Bi、CdおよびInか
ら選択される少なくとも一種である。その合金元素AE
の含有量は5原子%≦AE≦50原子%に設定される。
The rare earth element-based alloy is basically composed of a rare earth element which is a main component and an alloy element AE which causes a eutectic reaction with the rare earth element. Rare earth elements are Y, L
a, Ce, Pr, Nd, Sm, Eu, Gd, Tb, D
It is at least one selected from y, Ho, Er, Tm, Yb and Lu. Further, the alloy element AE is Al, M
n, Fe, Co, Ni, Cu, Zn, Ga, Pd, A
It is at least one selected from g, Sn, Sb, Au, Pb, Bi, Cd and In. The alloy element AE
Content is set to 5 atomic% ≤ AE ≤ 50 atomic%.

【0016】ただし、合金元素AEの含有量がAE<5
原子%であるか、またはAE>50原子%であると、固
液共存状態における液相の体積分率Vfが低くなるため
接合強度が低下する。このことから、合金元素AEの含
有量は、希土類元素との関係において共晶組成またはそ
れに近い組成となるように設定するのが望ましい。
However, if the content of the alloy element AE is AE <5
When the atomic percentage is AE> 50% by atom, the volume fraction Vf of the liquid phase in the solid-liquid coexistence state becomes low, and the bonding strength decreases. From this, it is desirable that the content of the alloy element AE is set so as to have a eutectic composition or a composition close thereto in relation to the rare earth element.

【0017】なお、二種以上の合金元素AEを含有する
場合には、それらの合計含有量が5原子%≦AE≦50
原子%となる。
When two or more kinds of alloying elements AE are contained, the total content of them is 5 atomic% ≦ AE ≦ 50.
It becomes atomic%.

【0018】希土類元素系合金を例示すれば表1の通り
である。
Table 1 shows examples of rare earth element type alloys.

【0019】[0019]

【表1】 永久磁石2と異材種部材3との接合に当っては、両者
2,3を、前記希土類系合金よりなる薄板状接合材を介
して重ね合せ、次いでその重ね合せ物を真空加熱炉内に
設置して、加熱下で接合材を液相状態または固液共存状
態にし、その後炉冷する、といった方法が採用される。
[Table 1] In joining the permanent magnet 2 and the dissimilar material member 3, both 2 and 3 are superposed with a thin plate-like joining material made of the rare earth alloy, and then the superposed product is placed in a vacuum heating furnace. Then, the joining material is brought into a liquid phase state or a solid-liquid coexisting state under heating, and then the furnace is cooled.

【0020】この場合、加熱温度Tは接合材の組成によ
って異なるが、前記組成の各種希土類元素系合金は比較
的低い温度で液相状態または固液共存状態となるので永
久磁石2および異材種部材3の特性を変化させるような
ことはない。
In this case, the heating temperature T varies depending on the composition of the bonding material, but the various rare earth element-based alloys having the above composition are in a liquid phase state or a solid-liquid coexisting state at a relatively low temperature, so that the permanent magnet 2 and the dissimilar material member. It does not change the characteristics of 3.

【0021】また希土類元素を主成分とする接合材より
生じた液相は高活性であって、例えば希土類元素を含む
永久磁石2(接着剤やろう材に対して非常に濡れ性が悪
い)および異材種部材3、例えば鋼製部材に対して優れ
た濡れ性を発揮する。このような接合材を用いることに
よって両者2,3を強固に接合することができる。加熱
時間hは、それが長過ぎる場合には永久磁石2および異
材種部材3の特性変化を招来するので、h≦10時間で
あることが望ましく、生産性向上の観点からはh≦1時
間である。
Further, the liquid phase generated from the bonding material containing a rare earth element as a main component is highly active, and for example, the permanent magnet 2 containing a rare earth element (having extremely poor wettability with respect to an adhesive or a brazing material) and Excellent wettability is exhibited for the dissimilar material member 3, for example, a steel member. By using such a bonding material, both 2 and 3 can be firmly bonded. If the heating time h is too long, the characteristics of the permanent magnet 2 and the dissimilar material member 3 are changed. Therefore, it is desirable that h ≦ 10 hours, and h ≦ 1 hour from the viewpoint of productivity improvement. is there.

【0022】〔実施例1〕純度99.9%のNdと純度
99.9%のCuとを、共晶組成を有するNd70Cu30
合金が得られるように秤量し、次いでその秤量物を真空
溶解炉を用いて溶解し、その後、縦10mm、横10mm、
長さ50mmのインゴットを鋳造した。このインゴットに
マイクロカッタによる切断加工を施して、Nd70Cu30
合金よりなり、且つ縦10mm、横10mm、厚さ500μ
mの薄板状接合材を得た。図2はCu−Nd系状態図の
要部を示し、共晶点は520℃である。
[Example 1] Nd 70 Cu 30 having a eutectic composition of Nd having a purity of 99.9% and Cu having a purity of 99.9%
The alloy is weighed so as to obtain, then the weighed material is melted by using a vacuum melting furnace, and then, 10 mm in length, 10 mm in width,
A 50 mm long ingot was cast. This ingot is cut with a micro-cutter to produce Nd 70 Cu 30
Made of alloy and 10mm in length, 10mm in width, 500μ in thickness
Thus, a thin plate-like bonding material having a thickness of m was obtained. FIG. 2 shows the main part of the Cu—Nd system phase diagram, and the eutectic point is 520 ° C.

【0023】永久磁石として、縦10mm、横10mm、厚
さ3mmのNdFeB系永久磁石(住友特殊金属社製、商
品名NEOMAX−28UH)2を選定し、また異材種
部材として、炭素鋼(JIS S25C)よりなり、且
つ縦10mm、横10mm、長さ15mmの短柱体3を選定し
た。
As the permanent magnet, an NdFeB system permanent magnet (length 10 mm, width 10 mm, thickness 3 mm, manufactured by Sumitomo Special Metals Co., Ltd., trade name NEOMAX-28UH) 2 was selected, and carbon steel (JIS S25C) ), And has a length of 10 mm, a width of 10 mm, and a length of 15 mm.

【0024】図3に示すように、1つの短柱体3の上に
1つの接合材5を、また接合材5の上に永久磁石2を、
さらに永久磁石2の上にもう1つの接合材5を、さらに
また接合材5の上にもう1つの短柱体3をそれぞれ重ね
合せて重ね合せ物を作製し、同様の手順で合計20個の
重ね合せ物を作製した。次いで、これら重ね合せ物を真
空加熱炉内に設置して、加熱温度T=530℃、加熱時
間h=0.5時間の加熱工程、それに次ぐ炉冷よりなる
接合処理を行って、図4に示すように2つの短柱体3に
より永久磁石2を挟むようにそれら2,3を接合材5よ
り形成された接合層4を介して接合した20個の接合体
1を得た。この接合処理においては、加熱温度TがT=
530℃であって、図2に示す共晶点520℃を超えて
いるので、接合材5は共晶組成を有することから液相状
態となる。この場合、接合層4の平均厚さt1 はt1
200μmであった。
As shown in FIG. 3, one joining material 5 is provided on one short column body 3, and a permanent magnet 2 is provided on the joining material 5.
Further, another bonding material 5 is further laid on the permanent magnet 2, and another short column body 3 is further laid on the bonding material 5, respectively, to produce a stacked product, and a total of 20 pieces are manufactured by the same procedure. A stack was made. Next, these superposed products were placed in a vacuum heating furnace, and a heating step of heating temperature T = 530 ° C. and a heating time h = 0.5 hour, followed by a joining process consisting of furnace cooling was performed, and as shown in FIG. As shown, 20 joined bodies 1 were obtained by joining the permanent magnets 2 with two short column bodies 3 via a joining layer 4 formed of a joining material 5 so as to sandwich them. In this joining process, the heating temperature T is T =
Since it is 530 ° C. and exceeds the eutectic point 520 ° C. shown in FIG. 2, since the bonding material 5 has a eutectic composition, it is in a liquid phase state. In this case, the average thickness t 1 of the bonding layer 4 is t 1 =
It was 200 μm.

【0025】比較のため、前記同様の永久磁石2と前記
同様の2つの短柱体3とをエポキシ樹脂系接着剤(日本
チバガイギ社製、商品名アラルダイト)を介し重ね合せ
て前記同様の重ね合せ物を作製し、同様の手順で合計2
0個の重ね合せ物を作製した。次いで、これら重ね合せ
物を乾燥炉内に設置して、加熱温度200℃、加熱時間
60分間の加熱工程、それに次ぐ炉冷よりなる接合処理
を行って、2つの短柱体3と永久磁石2とをエポキシ樹
脂系接着剤を介して接合した前記同様の20個の接合体
を得た。
For comparison, a permanent magnet 2 similar to the above and two short columnar bodies 3 similar to the above are superposed with an epoxy resin adhesive (manufactured by Nippon Ciba-Gaigi Co., Ltd., trade name Araldite) on top of each other. Create a thing and follow the same procedure for a total of 2
0 stacks were made. Next, these superposed products are placed in a drying furnace, and a heating step of heating the temperature of 200 ° C. for a heating time of 60 minutes, followed by a joining process consisting of furnace cooling is performed, and the two short columns 3 and the permanent magnets 2 are joined. Twenty bonded bodies similar to the above were obtained by bonding and via an epoxy resin adhesive.

【0026】接合材5を用いた各接合体1から引張り試
験用試験片Aを作製し、またエポキシ樹脂系接着剤を用
いた各接合体から同様の引張り試験用試験片Bを作製し
た。次いで、各10個の試験片A,Bについて室温下で
引張り試験を行い、また残りの各10個の試験片A,B
について150℃の加熱下で引張り試験を行ったとこ
ろ、表2の結果を得た。
A tensile test specimen A was prepared from each joint 1 using the joint material 5, and a similar tensile test specimen B was prepared from each joint using an epoxy resin adhesive. Then, a tensile test is performed at room temperature on each of the 10 test pieces A and B, and the remaining 10 test pieces A and B
Was subjected to a tensile test under heating at 150 ° C., the results shown in Table 2 were obtained.

【0027】[0027]

【表2】 表2から明らかなように、接合材5を用いた試験片A
は、室温下および150℃の加熱下において、エポキシ
樹脂系接着剤を用いた試験片Bに比べて接合強度が高
く、その接合強度は両環境下において殆ど変わらず、ま
たそのばらつきも小さい。試験片Bは室温下における接
合強度が低い上にそのばらつきが大きく、また150℃
の加熱下ではその接合強度が室温下のそれの3分の1に
低下する。
[Table 2] As is clear from Table 2, the test piece A using the bonding material 5
At room temperature and under heating at 150 ° C., the bonding strength is higher than that of the test piece B using the epoxy resin adhesive, and the bonding strength is almost the same under both environments, and its variation is small. The test piece B has a low bonding strength at room temperature and has a large variation, and is 150 ° C.
Under heating, its bonding strength is reduced to one-third of that at room temperature.

【0028】図5はNdFeB系永久磁石2における加
熱温度TとHkとの関係を示す。ここでHkとは残留磁
束密度Brが10%低下したときの磁場Hを意味し、保
磁力IC (磁化の強さI=0)の目安となる値であ
る。図5から明らかなように、接合処理時の加熱温度T
がT>650℃になると、Hk、したがって保磁力 I
C が低下傾向となる。ただし、残留磁束密度Brおよび
保磁力 BC (磁束密度B=0)は殆ど変わらず、した
がって図6に示すように最大磁気エネルギ積(BH)m
axは略一定である。前記接合材5を用いた接合処理に
おいて、その加熱温度TはT=530℃であってT≦6
50℃であるから、永久磁石2の磁気特性を変化させる
ようなことはない。
FIG. 5 shows the relationship between the heating temperature T and Hk in the NdFeB system permanent magnet 2. Here, the Hk means a magnetic field H when the residual magnetic flux density Br is lowered by 10%, which is a measure to become the value of the coercive force I H C (intensity I = 0 magnetization). As is clear from FIG. 5, the heating temperature T during the joining process
Becomes T> 650 ° C, Hk, and therefore coercive force I H
C tends to decrease. However, the residual magnetic flux density Br and the coercive force B H C (magnetic flux density B = 0) are almost unchanged, and therefore the maximum magnetic energy product (BH) m as shown in FIG.
ax is substantially constant. In the joining process using the joining material 5, the heating temperature T is T = 530 ° C. and T ≦ 6.
Since the temperature is 50 ° C., the magnetic characteristics of the permanent magnet 2 are not changed.

【0029】また前記永久磁石2の濡れ性の悪さは、そ
の結晶粒界に希土類元素濃度、この実施例ではNd濃度
の高い相が存在していることに起因する。前記接合材5
を用いた接合処理において、その接合材5は液相状態と
なっており、Ndを主成分とするNd70Cu30合金より
生じた液相は、高活性であると共に前記結晶粒界に存す
るNd濃度の高い相と主成分を共通にすることから永久
磁石2に対して優れた濡れ性を発揮し、また前記高活性
化に伴い炭素鋼よりなる短柱体3に対する濡れ性も極め
て良好である。
The poor wettability of the permanent magnet 2 is due to the presence of a phase having a high rare earth element concentration, that is, a high Nd concentration in this embodiment, at its crystal grain boundaries. The bonding material 5
In the joining process using, the joining material 5 is in a liquid phase state, and the liquid phase generated from the Nd 70 Cu 30 alloy containing Nd as a main component is highly active and Nd existing in the grain boundaries. Since the main component is common to the high-concentration phase, it exhibits excellent wettability with respect to the permanent magnet 2 and, due to the high activation, the wettability with respect to the short columns 3 made of carbon steel is also very good. .

【0030】したがって、前記のような接合材5を用い
ることによって、永久磁石2の磁気特性を損うことな
く、その永久磁石2と短柱体3とを強固に接合すること
ができる。この接合技術は、モータ用ロータに対する永
久磁石の接合に適用され、回転数が10000rpm 以上
である高速回転モータの実現を可能にするものである。
Therefore, by using the bonding material 5 as described above, the permanent magnet 2 and the short column 3 can be firmly bonded without deteriorating the magnetic characteristics of the permanent magnet 2. This joining technique is applied to joining a permanent magnet to a rotor for a motor and makes it possible to realize a high-speed rotation motor having a rotation speed of 10,000 rpm or more.

【0031】〔実施例2〕純度99.9%のNdと純度
99.9%のCuとを、亜共晶組成を有するNd60Cu
40合金が得られるように秤量し、次いでその秤量物を真
空溶解炉を用いて溶解し、その後、縦10mm、横10m
m、長さ50mmのインゴットを鋳造した。このインゴッ
トにマイクロカッタによる切断加工を施して、Nd60
40合金よりなり、且つ縦10mm、横10mm、厚さ50
0μmの薄板状接合材5を得た。
Example 2 Nd 60 Cu having a purity of 99.9% and Cu having a purity of 99.9% were converted into Nd 60 Cu having a hypoeutectic composition.
40 alloy is weighed to obtain, then the weighed material is melted using a vacuum melting furnace, and then 10 mm in length and 10 m in width.
An ingot of m and 50 mm in length was cast. This ingot is cut with a micro-cutter and Nd 60 C
Made of u 40 alloy, length 10 mm, width 10 mm, thickness 50
A thin plate-like bonding material 5 having a thickness of 0 μm was obtained.

【0032】永久磁石として、縦10mm、横10mm、厚
さ5mmのNdFeB系永久磁石(住友特殊金属社製、商
品名NEOMAX−28UH)2を選定し、また異材種
部材として、図7に示すように厚さ1.0mmのケイ素鋼
板(JIS MES−3F)を積層しボルト7およびナ
ット8により緊締した、縦10mm、横10mm、長さ15
mmの積層体3を選定した。
As the permanent magnet, an NdFeB system permanent magnet (product name: NEOMAX-28UH, manufactured by Sumitomo Special Metals Co., Ltd.) 2 having a length of 10 mm, a width of 10 mm, and a thickness of 5 mm was selected. A 1.0 mm thick silicon steel plate (JIS MES-3F) was layered on it and tightened with bolts 7 and nuts, 10 mm long, 10 mm wide, 15 length long.
A laminate 3 of mm was selected.

【0033】それら積層体3、接合材5および永久磁石
2を用い、図7に示すように実施例1と同様の方法で合
計20個の重ね合せ物を作製し、次いで、これら重ね合
せ物を真空加熱炉内に設置して、加熱温度T=560
℃、加熱時間h=0.5時間の加熱工程、それに次ぐ炉
冷よりなる接合処理を行って、2つの積層体3により永
久磁石2を挟むようにそれら2,3を接合材5より形成
された接合層4を介して接合した20個の接合体1を得
た(図4参照)。この接合処理においては加熱温度Tが
T=560℃であって、図2に示す共晶点520℃と液
相線aとの間の温度領域に存するので、接合材5は固液
共存状態となる。この場合、接合層4の平均厚さt1
200μmであった。
Using the laminate 3, the bonding material 5 and the permanent magnet 2, a total of 20 stacks were produced in the same manner as in Example 1 as shown in FIG. Installed in a vacuum heating furnace, heating temperature T = 560
C., a heating process of heating time h = 0.5 hours, and then a joining process of furnace cooling is performed to form the two and 3 from the joining material 5 so as to sandwich the permanent magnet 2 between the two laminated bodies 3. 20 joined bodies 1 joined through the joining layer 4 were obtained (see FIG. 4). In this bonding treatment, the heating temperature T is T = 560 ° C., which exists in the temperature range between the eutectic point 520 ° C. and the liquidus line a shown in FIG. Become. In this case, the average thickness t 1 of the bonding layer 4 was 200 μm.

【0034】各接合体1から引張り試験用試験片Aを作
製し、次いで、各10個の試験片Aについて室温下で引
張り試験を行い、また残りの各10個の試験片Aについ
て150℃の加熱下で引張り試験を行ったところ、表3
の結果を得た。比較のため、表3には実施例1の試験片
Bに関する測定値も示されている。
Tensile test specimens A were produced from each of the bonded bodies 1, and then ten tensile specimens A were subjected to a tensile test at room temperature, and the remaining ten specimens A were each tested at 150 ° C. When a tensile test was performed under heating, Table 3
Was obtained. For comparison, Table 3 also shows measured values for the test piece B of Example 1.

【0035】[0035]

【表3】 表3から明らかなように、接合材5を用いた試験片A
は、室温下および150℃の加熱下において、エポキシ
樹脂系接着剤を用いた試験片Bに比べて接合強度が高
く、その接合強度は両環境下において全然変わらず、ま
たそのばらつきも小さい。
[Table 3] As is clear from Table 3, the test piece A using the bonding material 5
At room temperature and under heating at 150 ° C., the bonding strength is higher than that of the test piece B using the epoxy resin adhesive, and the bonding strength does not change at all under both environments, and its variation is small.

【0036】前記接合処理において、その加熱温度Tは
T=560℃であってT≦650℃であるから、永久磁
石2の磁気特性を変化させるようなことはない。
In the joining process, since the heating temperature T is T = 560 ° C. and T ≦ 650 ° C., the magnetic characteristics of the permanent magnet 2 are not changed.

【0037】その上、前記接合処理において、その接合
材5は固液共存状態となっており、Ndを主成分とする
Nd60Cu40合金より生じた液相は高活性であると共に
永久磁石2の結晶粒界に存するNd濃度の高い相と主成
分を共通にすることから永久磁石2に対して優れた濡れ
性を発揮し、また前記高活性化に伴いケイ素鋼板よりな
る積層体3に対する濡れ性も極めて良好である。
Moreover, in the joining process, the joining material 5 is in a solid-liquid coexisting state, and the liquid phase produced from the Nd 60 Cu 40 alloy containing Nd as a main component is highly active and the permanent magnet 2 Exhibits a high wettability with respect to the permanent magnet 2 by sharing the main component with the phase having a high Nd concentration existing in the crystal grain boundary, and wets the laminate 3 made of a silicon steel sheet due to the high activation. The property is also very good.

【0038】したがって、前記のような接合材5を用い
ることによって、永久磁石2の磁気特性を損うことな
く、その永久磁石2と積層体3とを強固に接合すること
ができる。
Therefore, by using the bonding material 5 as described above, the permanent magnet 2 and the laminated body 3 can be firmly bonded without impairing the magnetic characteristics of the permanent magnet 2.

【0039】永久磁石2と異材種部材3との接合におい
て、その接合強度向上の観点からは、前記実施例1,2
のように永久磁石2に含まれる希土類元素と接合材5の
主成分である希土類元素とを一致させるのが望ましい
が、例えばSmを含む永久磁石2の接合に当り、Smを
主成分とする接合材の外にLa、Ce、Nd、Pr等を
主成分とする接合材5を用いても前記実施例1,2と略
同等の接合強度を得ることができる。
In joining the permanent magnet 2 and the dissimilar material member 3, from the viewpoint of improving the joining strength, the above-mentioned Examples 1 and 2 are used.
As described above, it is desirable to match the rare earth element contained in the permanent magnet 2 with the rare earth element which is the main component of the bonding material 5. For example, when joining the permanent magnet 2 containing Sm, the bonding containing Sm as the main component. Even if the bonding material 5 containing La, Ce, Nd, Pr or the like as a main component is used in addition to the material, the bonding strength substantially equal to those in the first and second embodiments can be obtained.

【0040】〔実施例3〕純度99.9%のNdと純度
99.9%のCuとを、共晶組成を有するNd70Cu30
合金が得られるように秤量し、次いでその秤量物を真空
溶解炉を用いて溶解し、その後、縦10mm、横10mm、
長さ50mmのインゴットを鋳造した。このインゴットに
マイクロカッタによる切断加工を施して、Nd70Cu30
合金よりなり、且つ縦10mm、横10mmで厚さを異にす
る種々の薄板状接合材5を得た。
[Example 3] Nd 70 Cu 30 having a eutectic composition of Nd having a purity of 99.9% and Cu having a purity of 99.9%
The alloy is weighed so as to obtain, then the weighed material is melted by using a vacuum melting furnace, and then, 10 mm in length, 10 mm in width,
A 50 mm long ingot was cast. This ingot is cut with a micro-cutter to produce Nd 70 Cu 30
Various thin plate-like bonding materials 5 made of an alloy and having different lengths of 10 mm in length and 10 mm in width were obtained.

【0041】永久磁石として、縦10mm、横10mm、厚
さ3mmのNdFeB系永久磁石2(住友特殊金属社製、
商品名NEOMAX−28UH)を選定し、また異材種
部材として、厚さ1.0mmの圧延鋼板を積層しボルト7
およびナット8により緊締した縦10mm、横10mm、長
さ15mmの積層体3を選定した。
As a permanent magnet, an NdFeB system permanent magnet 2 (made by Sumitomo Special Metals Co., Ltd.) having a length of 10 mm, a width of 10 mm, and a thickness of 3 mm is used.
Product name NEOMAX-28UH) is selected, and rolled steel plates with a thickness of 1.0 mm are laminated as bolts 7
Also, a laminated body 3 having a length of 10 mm, a width of 10 mm, and a length of 15 mm, tightened with nuts 8, was selected.

【0042】それら積層体3、接合材5および永久磁石
2を用い、図7に示すように実施例1と同様の方法で複
数の重ね合せ物を作製し、次いで、これら重ね合せ物を
真空加熱炉内に設置して、加熱温度T=530℃、加熱
時間h=0.5時間の加熱工程、それに次ぐ炉冷よりな
る接合処理を行って実施例2と同様に2つの積層体3に
より永久磁石2を挟むようにそれら2,3を接合材5よ
り形成された接合層4を介して接合した複数の接合体1
を得た(図4参照)。
Using the laminate 3, the bonding material 5 and the permanent magnet 2, a plurality of superposed products are produced in the same manner as in Example 1 as shown in FIG. 7, and then these superposed products are heated in vacuum. It is installed in a furnace, a heating step of heating temperature T = 530 ° C. and a heating time h = 0.5 hour, followed by a joining process consisting of furnace cooling is performed, and as in the second embodiment, the two laminated bodies 3 are permanently bonded together. A plurality of bonded bodies 1 in which the magnets 2 are sandwiched by a bonding layer 4 formed of a bonding material 5 so as to sandwich the magnet 2.
Was obtained (see FIG. 4).

【0043】各接合体1から引張り試験用試験片を作製
し、それらについて150℃の加熱下で引張り試験を行
ったところ、表4の結果を得た。
Specimens for tensile test were prepared from each bonded body 1 and subjected to a tensile test under heating at 150 ° C., and the results shown in Table 4 were obtained.

【0044】[0044]

【表4】 図8は表4をグラフ化したもので、図中、点(1)〜
(11)は接合体1の例1〜11にそれぞれ対応する。
[Table 4] FIG. 8 is a graph of Table 4, and points (1) to
(11) corresponds to Examples 1 to 11 of the joined body 1, respectively.

【0045】この種接合体1においては引張強さσB
2kgf/mm2 が要求され、この要求を満たすためには、
表4、図8から明らかなように、接合材5の厚さt2
30μm≦t2 ≦2500μmに設定して接合層4の平
均厚さt1 を1μm≦t1 ≦2000μmに設定すれば
よい。好ましくは、接合材5の厚さt2 は150μm≦
2 ≦500μmであり、また接合層4の平均厚さt1
は30μm≦t1 ≦200μmである。
In this kind of bonded body 1, the tensile strength σ B
2kgf / mm 2 is required, and to meet this requirement,
As is clear from Table 4 and FIG. 8, if the thickness t 2 of the bonding material 5 is set to 30 μm ≦ t 2 ≦ 2500 μm and the average thickness t 1 of the bonding layer 4 is set to 1 μm ≦ t 1 ≦ 2000 μm. Good. Preferably, the thickness t 2 of the bonding material 5 is 150 μm ≦
t 2 ≦ 500 μm and the average thickness t 1 of the bonding layer 4
Is 30 μm ≦ t 1 ≦ 200 μm.

【0046】図9は接合体1の例6における接合部分を
示し、(a)は接合部分の金属組織を示す顕微鏡写真で
あり、(b)は(a)の概略写図である。図9より、永
久磁石2と各圧延鋼板とが接合層を介して接合されてい
ることが判る。
FIG. 9 shows a joint portion in Example 6 of the joint body 1, (a) is a micrograph showing the metal structure of the joint portion, and (b) is a schematic drawing of (a). From FIG. 9, it can be seen that the permanent magnet 2 and each rolled steel plate are joined together via the joining layer.

【0047】[0047]

【発明の効果】本発明によれば、前記のように構成する
ことによって、永久磁石と異材種部材との接合強度の高
い接合体を提供することができる。
EFFECTS OF THE INVENTION According to the present invention, with the above-described structure, it is possible to provide a bonded body having a high bonding strength between the permanent magnet and the dissimilar material type member.

【0048】また本発明によれば、前記のような手段を
用いることによって、永久磁石と異材種部材との接合強
度を高めることが可能な接合方法を提供することができ
る。
Further, according to the present invention, it is possible to provide a joining method capable of increasing the joining strength between the permanent magnet and the dissimilar material seed member by using the above means.

【図面の簡単な説明】[Brief description of drawings]

【図1】接合体の斜視図である。FIG. 1 is a perspective view of a joined body.

【図2】Cu−Nd系状態図の要部を示す。FIG. 2 shows a main part of a Cu—Nd system phase diagram.

【図3】永久磁石、接合材および短柱体の重ね合せ関係
を示す斜視図である。
FIG. 3 is a perspective view showing a superposed relationship of a permanent magnet, a bonding material, and a short column body.

【図4】接合体の斜視図である。FIG. 4 is a perspective view of a joined body.

【図5】加熱温度TとHkとの関係を示すグラフであ
る。
FIG. 5 is a graph showing the relationship between heating temperature T and Hk.

【図6】加熱温度Tと(BH)maxとの関係を示すグ
ラフである。
FIG. 6 is a graph showing the relationship between heating temperature T and (BH) max.

【図7】永久磁石、接合材および積層体の重ね合せ関係
を示す斜視図である。
FIG. 7 is a perspective view showing a superposing relationship of a permanent magnet, a bonding material, and a laminated body.

【図8】接合層の平均厚さt1 と引張強さσB との関係
を示すグラフである。
FIG. 8 is a graph showing the relationship between the average thickness t 1 of the bonding layer and the tensile strength σ B.

【図9】(a)は接合部分の金属組織を示す顕微鏡写真
であり、(b)は(a)の概略写図である。
9A is a micrograph showing a metallographic structure of a joint portion, and FIG. 9B is a schematic diagram of FIG. 9A.

【符号の説明】[Explanation of symbols]

1 接合体 2 永久磁石 3 短柱体、積層体(異材種部材) 4 接合層 5 接合材 DESCRIPTION OF SYMBOLS 1 Bonded body 2 Permanent magnet 3 Short column body, laminated body (dissimilar material member) 4 Bonding layer 5 Bonding material

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 永久磁石(2)と、異材種部材(3)
と、それら(2,3)を接合すべく加熱工程を経て形成
された接合層(4)とを有する接合体(1)であって、
前記接合層(4)は、前記加熱工程で液相を生じる希土
類元素系合金よりなり、且つ平均厚さt1 が1μm≦t
1 ≦2000μmであることを特徴とする永久磁石と異
材種部材との接合体。
1. A permanent magnet (2) and a dissimilar material member (3).
And a bonding layer (4) formed through a heating step to bond them (2, 3),
The bonding layer (4) is made of a rare earth element-based alloy that produces a liquid phase in the heating step, and has an average thickness t 1 of 1 μm ≦ t.
1. A bonded body of a permanent magnet and a dissimilar material member, wherein 1 ≦ 2000 μm.
【請求項2】 前記接合層(4)の平均厚さt1 が30
μm≦t1 ≦200μmである、請求項1記載の永久磁
石と異材種部材との接合体。
2. The average thickness t 1 of the bonding layer (4) is 30.
The joined body of the permanent magnet and the dissimilar material member according to claim 1, wherein μm ≦ t 1 ≦ 200 μm.
【請求項3】 前記希土類元素系合金は、合金元素AE
としてAl、Mn、Fe、Co、Ni、Cu、Zn、G
a、Pd、Ag、Sn、Sb、Au、Pb、Bi、Cd
およびInから選択される少なくとも一種を5原子%≦
AE≦50原子%含有する、請求項1または2記載の永
久磁石と異材種部材との接合体。
3. The rare earth element-based alloy is an alloy element AE.
As Al, Mn, Fe, Co, Ni, Cu, Zn, G
a, Pd, Ag, Sn, Sb, Au, Pb, Bi, Cd
And at least one selected from In and 5 atomic% ≦
The bonded body of the permanent magnet according to claim 1 or 2, and the dissimilar material member, containing AE ≦ 50 atomic%.
【請求項4】 前記永久磁石(2)は希土類元素を含む
永久磁石である、請求項1,2または3記載の永久磁石
と異材種部材との接合体。
4. The bonded body of a permanent magnet and a dissimilar material member according to claim 1, wherein the permanent magnet (2) is a permanent magnet containing a rare earth element.
【請求項5】 前記永久磁石(2)はNdFeB系永久
磁石である、請求項4記載の永久磁石と異材種部材との
接合体。
5. The bonded body of a permanent magnet and a dissimilar material member according to claim 4, wherein the permanent magnet (2) is an NdFeB-based permanent magnet.
【請求項6】 永久磁石(2)と異材種部材(3)とを
接合するに当り、前記永久磁石(2)と異材種部材
(3)との間に、希土類元素系合金よりなる接合材
(5)を介在させ、次いでその接合材(5)をそれの液
相発生温度T以上に加熱することを特徴とする、永久磁
石と異材種部材との接合方法。
6. A joining material made of a rare earth element-based alloy between the permanent magnet (2) and the different material seed member (3) when joining the permanent magnet (2) and the different material seed member (3). A method of joining a permanent magnet and a dissimilar material member, characterized in that (5) is interposed, and then the joining material (5) is heated to a liquidus generation temperature T or higher thereof.
【請求項7】 前記接合材(5)の厚さt2 は10μm
≦t2 ≦2500μmである、請求項6記載の永久磁石
と異材種部材との接合方法。
7. The thickness t 2 of the bonding material (5) is 10 μm.
The method for joining the permanent magnet and the dissimilar material member according to claim 6, wherein ≦ t 2 ≦ 2500 μm.
【請求項8】 前記接合材(5)の厚さt2 は150μ
m≦t2 ≦500μmである、請求項6記載の永久磁石
と異材種部材との接合方法。
8. The thickness t 2 of the bonding material (5) is 150 μm.
The method for joining a permanent magnet and a dissimilar material member according to claim 6, wherein m ≦ t 2 ≦ 500 μm.
【請求項9】 前記希土類元素系合金は、合金元素AE
としてAl、Mn、Fe、Co、Ni、Cu、Zn、G
a、Pd、Ag、Sn、Sb、Au、Pb、Bi、Cd
およびInから選択される少なくとも一種を5原子%≦
AE≦50原子%含有する、請求項6,7または8記載
の永久磁石と異材種部材との接合方法。
9. The rare earth element-based alloy is an alloy element AE.
As Al, Mn, Fe, Co, Ni, Cu, Zn, G
a, Pd, Ag, Sn, Sb, Au, Pb, Bi, Cd
And at least one selected from In and 5 atomic% ≦
The method for joining a permanent magnet and a dissimilar material member according to claim 6, 7 or 8 containing AE ≦ 50 atomic%.
【請求項10】 前記永久磁石(2)は希土類元素を含
む永久磁石である、請求項6,7,8または9記載の永
久磁石と異材種部材との接合方法。
10. The method for joining a permanent magnet and a dissimilar material member according to claim 6, 7, 8 or 9, wherein the permanent magnet (2) is a permanent magnet containing a rare earth element.
【請求項11】 前記永久磁石(2)はNdFeB系永
久磁石であり、前記接合材(5)はその液相発生温度T
がT≦650℃である、請求項10記載の永久磁石と異
材種部材との接合方法。
11. The permanent magnet (2) is an NdFeB-based permanent magnet, and the bonding material (5) has a liquidus generation temperature T thereof.
The method for joining a permanent magnet and a dissimilar material member according to claim 10, wherein T ≦ 650 ° C.
JP27702794A 1994-10-17 1994-10-17 Joined body and joining method of permanent magnet and different kind of member Expired - Fee Related JP3645925B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27702794A JP3645925B2 (en) 1994-10-17 1994-10-17 Joined body and joining method of permanent magnet and different kind of member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27702794A JP3645925B2 (en) 1994-10-17 1994-10-17 Joined body and joining method of permanent magnet and different kind of member

Publications (2)

Publication Number Publication Date
JPH08116633A true JPH08116633A (en) 1996-05-07
JP3645925B2 JP3645925B2 (en) 2005-05-11

Family

ID=17577758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27702794A Expired - Fee Related JP3645925B2 (en) 1994-10-17 1994-10-17 Joined body and joining method of permanent magnet and different kind of member

Country Status (1)

Country Link
JP (1) JP3645925B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031497A1 (en) * 1997-01-20 1998-07-23 Kabushiki Kaisha Meidensha Unified junction structure of rare-earth magnet and metal material and the jointing method
JP2002540595A (en) * 1999-03-19 2002-11-26 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング Composite part and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998031497A1 (en) * 1997-01-20 1998-07-23 Kabushiki Kaisha Meidensha Unified junction structure of rare-earth magnet and metal material and the jointing method
US6331214B1 (en) 1997-01-20 2001-12-18 Kabushiki Kaisha Meidensha Monolithically bonded construct of rare-earth magnet and metal material and method for bonding same
JP2002540595A (en) * 1999-03-19 2002-11-26 バクームシュメルツェ ゲゼルシャフト ミット ベシュレンクテル ハフツング Composite part and method of manufacturing the same

Also Published As

Publication number Publication date
JP3645925B2 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
US5830585A (en) Article made by joining two members together, and a brazing filler metal
US6081052A (en) Rotor for rotating machine, process for producing the same, and magnet unit
JP4036344B2 (en) Integrally bonded structure of rare earth magnet and metal material and its bonding method
US5110376A (en) Super-magnetostrictive alloy
JP3645925B2 (en) Joined body and joining method of permanent magnet and different kind of member
JP3592425B2 (en) Rare earth alloy brazing filler metal
JP3441197B2 (en) Paste joining material for brazing
JP3373950B2 (en) Heat bonding method of two kinds of members having different thermal expansion coefficients
CN110993311A (en) Method for preparing high-performance bulk neodymium-iron-boron magnet through grain boundary diffusion
JP3382383B2 (en) Bonding material for metal members
JP3802586B2 (en) Heat joining method using brazing material for two kinds of members with different thermal expansion coefficients
JP3472358B2 (en) Permanent magnet for heat bonding and method of manufacturing the same
JPH02107762A (en) Alloy target for magneto-optical recording
JP3759198B2 (en) Joining method of workpieces
JPH08290265A (en) Method for heating and joining two materials of different coefficient of thermal expansion
JPH1072637A (en) Composite magnetostrictive material and its production
JP3631809B2 (en) Joining method of workpieces
JPH08118066A (en) Production of joined body consisting of permanent magnet having rust preventability and member of different material kind
JPH08309581A (en) Joined body comprising two members to be joined
JPH08141781A (en) Joining material for brazing
JPH099538A (en) Rotary machine rotor, manufacture of the rotor and magnet unit
JPH0472900B2 (en)
CN112439963A (en) Hard welding method
JP2003153477A (en) Rare earth element magnet unit
JPH08264309A (en) Rare earth permanent magnet and magnetic circuit using the magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees