JPH08141589A - セラミックス多孔体及びそれを用いた排水処理方法 - Google Patents

セラミックス多孔体及びそれを用いた排水処理方法

Info

Publication number
JPH08141589A
JPH08141589A JP29009094A JP29009094A JPH08141589A JP H08141589 A JPH08141589 A JP H08141589A JP 29009094 A JP29009094 A JP 29009094A JP 29009094 A JP29009094 A JP 29009094A JP H08141589 A JPH08141589 A JP H08141589A
Authority
JP
Japan
Prior art keywords
ceramic
porous body
ceramics
porous
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29009094A
Other languages
English (en)
Inventor
Hisashi Nagatomi
寿 永富
Kiyoaki Chikuma
清亮 筑摩
Naomichi Nakamura
直道 中村
Nobuaki Yamaguchi
延章 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagao KK
Original Assignee
Nagao KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagao KK filed Critical Nagao KK
Priority to JP29009094A priority Critical patent/JPH08141589A/ja
Publication of JPH08141589A publication Critical patent/JPH08141589A/ja
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

(57)【要約】 【目的】 連通孔を有した3次元網目構造のセラミック
ス多孔体およびそれに活性炭が被覆された多孔体とそれ
を用いる排水処理方法を提供する。 【構成】 セラミックス原料の粉体に球状熱可塑性樹脂
を混合し、水と粘結剤を加えて混練し所定形状に成形
後、乾燥を行い、次いで焼成してなるセラミックス多孔
体と、このセラミックス多孔体の骨格に対して、有機系
高分子樹脂溶液を含浸、乾燥し、これを還元雰囲気下で
焼成、焼結、賦活してなるセラミックス多孔体、及びこ
のセラミックス多孔体をリアクターに充填し、好気性微
生物又は嫌気性微生物を該セラミックス多孔体に吸着又
は固着させて水中に含まれる有機物の分解を行うことを
特徴とする排水処理方法である。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、軽量で、熱的、化学的
耐久性も高く、炉材や断熱材に使用でき、また気孔を利
用した吸着材、触媒担体などに使用可能なセラミックス
多孔体に関するもので、特に、連通構造を有する3次元
網目構造に活性炭が被覆されたセラミックス多孔体と、
その微生物吸着能を利用した排水処理方法に関する。
【0002】
【従来の技術】セラミックス多孔体の製造法について
は、今までにいくつかの方法が提案されている。例え
ば、焼成温度において気化発泡するような無機物材料
(例えば炭酸水素ナトリウム、マグネシウムなど)を予め
セラミックス原料に混合しておき、焼成することによっ
て多孔体を形成する方法や、セラミックス構成粉末原料
に可燃性粉体、例えば鋸屑、高分子合成物を添加してお
き焼成時に気化させて空隙をつくる方法、また、多孔質
の合成樹脂多孔体、例えばポリビニルアセタール系や軟
質ウレタン系の立体的構造物に分散液を使って泥状化し
たセラミックス原料を空隙中に流し込み、乾燥、焼成
し、この焼成工程で合成樹脂を焼失する方法などが知ら
れている。
【0003】従来、多孔質物質として、多孔質セラミッ
ク、多孔質活性炭、ハニカム活性炭の単独の商品が各種
の方法で作られている。また、特開平5ー271716号は安
価な鉄多孔体と微細な気孔を備えた活性炭を組み合わせ
ることによりある程度目的を果たしている。しかしなが
ら、特開平5ー271716号でいう鉄多孔体は骨格として使
用する多孔質高分子樹脂が3次元網目構造を使用してい
るため、3次元構造ではあるが連通構造は出来ていな
い。
【0004】無機質材料、有機質材料及びこれらを多孔
質にするための孔材を組み合わせた活性炭・無機質複合
体の製造方法としては、例えば特開昭60ー225639号には
活性炭粉末に粘土、ガラス粉、無定形シリカ、シリカア
ルミナ粉、白土、金属粉など1200℃以下で焼結可能な無
機質を添加して成形物を作った後、不活性雰囲気下で焼
成、焼結している。また特開平2ー172588号では、モン
モリロナイト、カオリンなどを主成分とし、活性炭粉末
を混練し、棒状に成形した後800〜1200℃での不活性雰
囲気下で加熱処理することで作成している。
【0005】
【発明が解決しようとする課題】セラミックス多孔体の
製造法には、各々特徴があって一定の品質を保って経済
的に多孔質をつくるために、なお問題があるのが現状で
ある。すなわち、焼成温度で発泡する物体を添加する方
法は、セラミックス原料の溶融現象を伴う焼成温度と発
泡物体の分解、気化の温度を同レベルで融合させること
が必要であるが、天然産の原料を使用する場合は厳密の
意味での焼成に適する温度を詳しく事前に予測して実施
することが困難で、発泡の度合い、寸法、形状を調節す
ることが難しい。可燃性粉体を予め添加しておき、焼
成、気化する方法は天然産の添加物では形状、粒径など
均一な粉体を経済的に得ることが困難であるほか、可燃
性粉体の体積がそのまま空隙の体積として利用されるか
ら、空隙率の高い多孔質をつくるためには体積の大きい
可燃性粉体をセラミックス原料に混合成形する必要が生
じ、通常60%以上の空隙率の多孔性セラミックスを作る
ことが困難である。
【0006】また、合成高分子物質で網状の立体多孔
体、すなわちスポンジを形成し、スポンジの孔の中にセ
ラミックス原料を流入する方法は工業的には合理的であ
るが、立体多孔質を準備することに多くの工程を要し、
また孔形成の占有体積部に対応する高分子物質を必要と
するため、空隙率の高いセラミックスを得るには多量の
高分子物質を必要とする結果になり、仮に水等に分散し
たセラミックス原料を流し込む方法によっても、セラミ
ックスの構造が充実度不足により弱体化し、実際的でな
い。
【0007】セラミックス多孔体は多孔体重量1グラム
当たり表面積(以下比表面積と称する)が約1平方メート
ルあり、従来の水処理用担体に比べると格段に大きい。
しかし、ゼオライトとか活性炭等の多孔体の比表面積は
上記セラミックス多孔体の比表面積の数百倍から千倍大
きいといわれている。これらを水処理用素材として使用
する場合、比表面積が大きいほど優れた材料になりう
る。しかし、比表面積が大きいだけでは水処理用担体と
しては十分でない。例えば、活性炭やゼオライトは比表
面積が大きいにも拘わらず、限られた成分しか吸着せず
水処理用素材としては不完全なものである。
【0008】セラミックス多孔体は、一般に表面が正の
電荷を帯びているといわれており、一方微生物は負の電
荷を帯びているといわれている。実際に好気性微生物や
嫌気性微生物が非常によく固着している。従って、活性
炭やゼオライトのように比表面積が大きいセラミックス
の多孔体であれば、形成される素材は表面積が大きくな
り、セラミックス多孔体の微生物固定化性能を一層向上
させることができるはずである。
【0009】本発明は、セラミックス多孔体としての二
酸化珪素を主体とした連通の3次元網目構造をもつセラ
ミックス多孔体を開発し、下水処理場等から発生する硫
化水素を除去するために、このセラミックス多孔体に硫
黄を好んで食べる硫黄酸化細菌を馴養させた後、硫化水
素等を含んだガスの処理を行った過程において、このセ
ラミックス多孔体に更に比表面積を増やしてやれば、接
触効率がよくなり、排水処理用としても十分機能するの
ではないかと考え、かつ連通構造を持つ3次元網目構造
に沿って活性炭で被覆してやれば、吸着効果も加味され
るのではないかと考えて検討した。従って、本発明はこ
のような連通3次元網目構造のセラミックス多孔体およ
びその製造法とそれを用いた排水処理法を提供しようと
するものである。
【0010】
【課題を解決するための手段】本発明のセラミックス多
孔体は、セラミックス原料の粉体に球状熱可塑性樹脂を
混合し、水と粘結剤を加えて混練し所定形状に成形後、
乾燥を行い、次いで焼成してなることを特徴とするもの
である。乾燥は成形後80℃〜240℃の第1乾燥と、240℃
〜500℃の第2乾燥を行うのが好ましい。
【0011】その場合に、球状熱可塑性樹脂の含有比率
はセラミックス原料粉末に対して5重量部〜30重量部
添加するのが望ましい。この球状熱可塑性樹脂は、前述
した特開平5ー271716号で、その表面に微細な孔がある
ものが好ましい。球状熱可塑性樹脂の含有比率がほぼ5
重量部以上であれば、得られたセラミックス多孔体の気
孔が連通した3次元網目構造となる。
【0012】使用するセラミックス原料は、硅酸質鉱
物、例えば硅石、硅酸白土、硅藻土など、アルミナ質鉱
物、例えばダイアスポア、ボーキサイト、溶融アルミナ
など、シリカアルミナ質鉱物、例えば粘土鉱物としての
カオリン質である木節粘土、蛙目粘土、あるいはモンモ
リロナイト質であるベントナイトや、蝋石、シリマナイ
ト鉱物など、更にはマグネシア質鉱物のマグネサイト、
ドロマイトなど、石炭質鉱物の石灰石、けい灰石など、
クロム質鉱石のクロム鉄鉱、スピネルなど、ジルコニア
質鉱石のジルコン、ジルコニアなど、その他の鉱物とし
てのチタニア質鉱物、炭素質鉱物のグラファイトなどで
ある。
【0013】また、天然鉱物以外の人工のセラミックス
原料、例えば、ジルコニア、窒化硅素、チタニア、電蝕
アルミナ、合成マグネシア、合成ドロマイト、合成ムラ
イトなども利用できる。これらセラミックス原料は単独
または混合して通常の耐火物製造時のように粉末化して
使用する。
【0014】球状熱可塑性樹脂としては融点が80℃〜25
0℃、燃焼点が500℃以上の樹脂をいう。具体的には、ア
クリル樹脂、アクリロニトリル樹脂、セルロース系樹
脂、ポリアミド系樹脂(6ナイロン、6・6ナイロン、6
・12ナイロン)、ポリエチレン、エチレン共重合体、ポ
リプロピレン、ポリスチレン、ポリブタジエン-スチレ
ン共重合体、ポリウレタン系樹脂、ビニル系樹脂等の球
状物を挙げることができる。本発明で使用する高分子樹
脂溶液としては、アクリル系エマルション、合成ゴムラ
テックス、水系アクリル樹脂、スチレン樹脂、フェノー
ル樹脂などが取扱いが容易であり好ましい。
【0015】また、セラミックス原料の粉体に球状熱可
塑性樹脂を混合し、水、粘結剤を加えて混練し所定形状
に成形後、乾燥を行い、次いで焼成して得られたセラミ
ックス多孔体の骨格に対して、有機系高分子樹脂溶液を
含浸、乾燥し、これを還元雰囲気下で焼成、焼結、賦活
してなるセラミックス多孔体を開発した。
【0016】このセラミックス多孔体の製造方法は、炭
素含有率が40%以上であり粘度が10〜500センチポイズ
の有機系高分子樹脂溶液をセラミックス多孔体の連通3
次元網目骨格に含浸、乾燥して、これを還元雰囲気下で
焼成、焼結、賦活するのがよい。ここで使用する高分子
樹脂溶液としては、アクリル系エマルション、合成ゴム
ラテックス、水系アクリル樹脂、スチレン樹脂、フェノ
ール樹脂などが取扱いが容易で好適である。
【0017】本発明で使用する高分子樹脂溶液の粘度
(粘度の測定方法はJIS K7117;液状の樹脂の回転粘
度計による粘度試験方法による)が10センチポイズ以下
の場合は、高分子樹脂溶液の中へセラミックス多孔体を
浸漬させたとき付着量が十分でない。一方、粘度が500
センチポイズ以上になると、セラミックス多孔体の連通
した孔の部分へ高分子樹脂溶液が入り込まず、したがっ
て、内部に活性炭が形成されない。
【0018】また、炭素含有率が40%以上である高分子
樹脂溶液をセラミックス多孔体への被覆原料として使用
する。この樹脂溶液は、溶剤へ溶解されているもの、水
へ分散されているものいずれでも使用できる。ここで、
炭素含有率の定義として高分子樹脂を次のような化学式
CxHyOz(x、y、zは1以上の正の整数)で表せば、 炭素含有率=(Cx/CxHyOz)×100 となる。本発明で炭素含有率が40%以下であると、骨格
成分であるセラミックス多孔体に皮膜を作成した後還元
雰囲気下で焼成したとき、連続した皮膜とならずマダラ
状に活性炭の皮膜が形成される。最も適した高分子樹脂
溶液としては、炭素含有率がほぼ70%、粘度がほぼ200
センチポイズである。
【0019】この高分子樹脂溶液の中にセラミックス多
孔体を沈め、取りだした後、乾燥、還元雰囲気下で焼成
すると、セラミックス多孔体の連通3次元網目構造に沿
って活性炭の被覆膜が形成される(本発明で被覆と称
す)。従って、本来セラミックス多孔体が有している比
表面積よりも相当大きくなる。
【0020】この製造方法によって、構成する骨格がセ
ラミックス多孔体に活性炭が被覆された連通3次元網目
構造でかつ連通構造であるセラミックス多孔体が得られ
る。本発明の活性炭を被覆したセラミックス多孔体は球
状、粒状、板状いずれにも成形でき目的に応じて加工す
ることができる。
【0021】本発明は、このセラミックス多孔体をリア
クターに充填し、好気性微生物、嫌気性微生物を該セラ
ミックス多孔体に吸着あるいは固着させて水中に含まれ
る有機物の分解を行うセラミックス多孔体による排水処
理法を含む。
【0022】
【作用】セラミックス原料に球状熱可塑性樹脂、水及び
粘結剤(例えばパルプ廃液)を添加して混練機でペースト
状に混合し、球状熱可塑性樹脂で構成物の体積部分を占
有させ、成形した焼成素材を第1段階の乾燥で80℃〜24
0℃に加熱すると、この第1段階の乾燥では球状熱可塑
性樹脂が焼成素材マトリックスの中で固定され、基本的
な骨格ができる。すなわち、大きな孔がこの工程で形成
される。
【0023】その後、第2段階の乾燥で240℃〜500℃に
加熱することによって、この段階で球状熱可塑性樹脂が
溶融し、分解しながらセラミックス原料粒子の間を流れ
ていき、小さな孔が形成される。この工程では、球状熱
可塑性樹脂を含むセラミックス原料の一部が溶融し、球
状熱可塑性樹脂から空気が供給されて焼結して、大小の
孔を保ちながらセラミックス多孔体が形成される。大き
いサイズの球状の樹脂を使用すると、大きい孔を得るこ
とができ、小さいサイズのものを使用すると小さい孔を
得ることができ、大小サイズのものを適宜選択使用する
ことによって任意の孔径のものを製造することができ
る。
【0024】また、空隙率を一定に決めて、体積の大き
な孔、体積の小さな孔を得る方法としては、球状熱可塑
性樹脂のセラミックス原料に対する混合比を選ぶこと、
及び乾燥条件の選択、融点の異なる球状熱可塑性樹脂の
組み合わせでも可能となる。孔により形成される空隙
率、孔の大きさはセラミックスの物理的、熱的性質を変
える重要な因子である。例えば、空隙率が大になるほど
強度及び濾過抵抗は低下するが、通気性、通液性、熱伝
導性が向上する。
【0025】球状熱可塑性樹脂の含有比率が5重量部以
上の場合には、前記第1段階の乾燥では球状熱可塑性樹
脂同士が接触又は接近した状態で焼成素材マトリックス
の中で固定され、前記第2段階の加熱によって、球状熱
可塑性樹脂が溶融して内部の空気の放出によって、セラ
ミックス原料粒子の間に連続した気孔が形成されて、連
通3次元網目構造となる。
【0026】本発明の連通構造を持ち3次元網目構造の
セラミックス多孔体に活性炭を被覆させると、活性炭を
被覆する前と比較して、1m2/gから100m2/gへと比
表面積が増大した多孔体になる。この気孔を利用して吸
着材、触媒担体などに使用し得る。
【0027】本発明の活性炭が被覆されたセラミックス
多孔体は球状、粒状、板状いずれにも成形でき目的に応
じて加工することができる。本発明の活性炭・セラミッ
クス多孔体を板状に成形し、焼成、還元雰意気下で賦活
させリアクターにセットし嫌気性微生物を植菌した後、
有機性排水を通水し、CODMn(化学的酸素要求量、以
下CODと称す)を測定すると、流入水に比べ相当低下
していることが明らかとなっている。
【0028】また、本発明の活性炭が被覆されたセラミ
ックス多孔体を、板状に成形し、焼成、還元雰意気下で
賦活させリアクタにセットして好気性微生物を植菌した
後、有機性排水を通水し、BOD(生物学的酸素要求量)
を測定すると、流入水に比べ相当低下していることが明
らかとなており、水中有機物分解に寄与する。
【0029】本発明の活性炭・セラミックス多孔体を使
用して、有機性排水の処理試験をした後、活性炭・セラ
ミックス多孔体を取り出して、表面および内部を顕微鏡
で観察すると、微生物がびっしりと多孔質の間に固着し
ている様子が観察された。したがって、微生物固定担体
として優れている。
【0030】
【実施例】以下実施例により、本発明を具体的に説明す
るが、本発明はこれらにより制限されるものではない。
【0031】実施例1 主成分が硅酸92%、アルミナ4%で100メッシュ以下の
粒度成分が81%である市販の硅藻土100g、市販のベント
ナイトで硅酸が68%、アルミナ15%の300メッシュの篩
をパスする部分が95%のもの10gを混合したセラミック
ス原料に球状熱可塑性樹脂として市販のポリスチレン製
球状体(内山化成製,商品名スチロボール直径0.6mm)13g
を混合し、これに常温の水100g、粘結剤としてパルプ廃
液30gを入れ、万能混練機で約10分間混練し、球状熱可
塑性樹脂が均一に混ざったペーストができた。このペー
ストをオーガ型押出機にて口径12mmの口金から押し出し
20mm長の成形物が得られた。続いてロータリー型撹拌機
(市販のコンクリートミキサー)に入れ、カット及び面取
りを行った。
【0032】この素材を第1乾燥工程として90℃で12時
間乾燥を行い、球状熱可塑性樹脂を焼成素材中で固定
し、第2乾燥工程として300℃で8時間空気浴中で乾燥
し、小さい孔を形成させた。この乾燥物を電気炉で10℃
/分の昇温速度で1050℃になるまで加熱し、その温度を
30分保った後、加熱を停止して炉内を冷やし、2時間後
に取り出した。焼成物は最大0.6mm、最小0.2mm径の多数
の孔を立体的に均一に分散含有し、かつ連通のセラミッ
クス多孔体であった。この焼成物の物性は嵩比重0.35、
空隙率75%であった。
【0033】実施例2 主成分が、硅酸である200メッシュをパスした市販の硅
石粉末100g、木節粘土5g、ベントナイト10gならびに粘
結剤として市販のパルプ廃液30gを混合した。更に前記
ポリスチレン製球状体10gを水200mLと共に加え、万能混
練機で混練しペースト状物を作った。実施例1と同じ方
法で成形物を作成した。成形物のサイズは12mm径×20mm
長であった。この焼成素材を第1乾燥工程として110℃
で8時間乾燥してポリスチレン製球状体を焼成素材中で
固定し、第2乾燥工程として240℃で7時間加熱した。
引き続きこの乾燥物を電気炉に入れ6℃/分の昇温速度
で1300℃にまで加熱し、30分この温度に保持した後、加
熱を止め、6時間後に電気炉から取り出した。得られた
焼成物は孔の長寸について約0.4mmの多数の孔を立体的
に連通して持つセラミックス多孔体であり、空隙率85
%、嵩比重0.25であった。
【0034】実施例3 実施例2のセラミックス多孔体を骨格にして活性炭被覆
セラミックス多孔体を作った。骨格となる実施例2のセ
ラミックス多孔体にアクリル系エマルジョン(商品名;
ボンコート3218 大日本インキ化学製)40部、水 60部を
混ぜて作った含浸液に浸漬した。その後、空気流中で15
0℃で2時間放置し、その後180℃で2時間放置して乾燥
させ、セラミックス多孔体の骨格を薄膜で被覆した。そ
の後、樹脂被覆セラミックス多孔体をロータリーキルン
の中にいれ、昇温を開始しロータリーキルンを300℃に
して2時間かけて薄膜を硬化させた。更にロータリーキ
ルンの温度を500℃に昇温し樹脂被覆セラミックス多孔
体を炭化した。続いて、水蒸気、二酸化炭素、酸素およ
び燃焼ガスを混合してロータリーキルンに吹き込んだ。
その後800℃まで昇温し、3時間かけて賦活を行った。
【0035】このようにして作成したセラミックス多孔
体を骨格に持ち活性炭を被覆したセラミックスは表1に
示す性状を有している。
【0036】
【表1】 実施例4
【0037】このセラミックス多孔体を骨格に持ち活性
炭を被覆したセラミックスを約30mL入り試験管の中に約
6g充填し、別に作成したグルコースを主体とする表2
に示すような人工排水を試験管の中に充填し、さらにE
M菌(Effective Microorganism;有効微生物群)を試
験管の中に約2mL接種した。その後、37℃の恒温水槽の
中に約16時間放置した。
【0038】
【表2】
【0039】人工排水の供給はマイクロチューブポンプ
により3回/日(7時間毎)、1時間かけて30mL供給し
た。サンプリングは1回/日実施し、運転は7日間継続
し、人工排水の分析を行った。分析項目は、グルコース
分解率、タンパク質分解率、アンモニア除去率、燐酸除
去率である。
【0040】分析項目の中で、グルコース分解率は95%
となった。またタンパク質分解率は55%であった。次に
示す比較例1に比べて本発明の活性炭被覆セラミックス
多孔体が良好な性能を有していることは明かである。セ
ラミックス多孔体へのタンパク質吸着量を測定したら、
本発明の活性炭被覆セラミックス多孔体は4.8mgタン
パク質/g担体で菌体を保持する性能に優れていること
が立証された。
【0041】比較例1 一方、市販品の多孔質ガラス固定化用担体((株)東京理
化製、商品名シラン)を本発明の活性炭被覆セラミック
ス多孔体と同じ量だけ試験管に充填し、同じ条件で並立
して運転を7日間継続した。その結果、グルコース分解
率は80%、タンパク質分解率は45%であった。この
多孔質ガラス固定化用担体への菌体タンパク質吸着量を
測定したら2.3mgタンパク質/g担体であった。
【0042】実施例5 実施例4と同じように、活性炭被覆セラミックス多孔体
に固定化する微生物としてロドバクタースファロイデス
(Rhodobacter Sphaeroides 発酵研菌株12203号)
を使用した。培地としては表3に示す組成のものを作成
した。
【0043】
【表3】
【0044】実施例6 実施例4と同じように30mL入り試験管を準備し、本
発明の活性炭被覆セラミックス多孔体を6g入れた。表
3の培地を試験管に充填し、前培養したロドバクタース
ファロイデスを2mL接種した。その後、30℃に設定した
恒温振蕩水槽で約36時間振蕩させた。培地の供給はマイ
クロチューブポンプで行い3回/日(7時間毎)、1時間
かけて30mL供給した。処理装置は培地供給ビン、恒温振
蕩水槽、試験管、処理液溜ビン、タイマーからなり、培
地供給から処理部分、処理液溜はマイクロチューブで接
続している。前述したように恒温振蕩水槽で約36時間振
蕩させた後、試験管に培地を供給し約1時間運転し、活
性炭被覆セラミックス多孔体に固定しなかったロドバク
タースファロイデスを洗い流した。1回/日サンプリン
グを実施し、COD除去率、燐酸除去率、硝酸態窒素除
去率、亜硝酸態窒素除去率、亜硝酸態窒素除去率を測定
した。結果を表4に示す。
【0045】
【表4】
【0046】本発明の活性炭被覆セラミックス多孔体は
COD除去性能、燐酸除去性能、脱窒性能が優れている
ことが分かった。
【0047】実施例7 実施例4において、活性炭被覆セラミックス多孔体を微
生物で固定化していないこと以外は同じ操作をした。結
果を表5に示す。
【0048】
【表5】
【0049】比較例2 実施例4において、活性炭被覆セラミックス多孔体の代
わりに多孔質ガラス固定化用担体(シラン)を使用した以
外は同じ操作をした。その結果を表6に示す。
【0050】
【表6】
【0051】比較例3 比較例2において、多孔質ガラス固定化用担体に微生物
を固定化していないこと以外は同じ操作をした。その結
果を表7に示す。
【0052】
【表7】
【0053】比較例4 実験の方法は実施例4と同じ内容である。試験管に充填
する担体としてアンスラサイトを使用し実施例4と同様
に7日間運転した。処理液の分析は、グルコース分解
率、タンパク質分解率、燐酸除去率、アンモニア除去率
についてチェックした。その結果、グルコース分解率は
30%、タンパク質分解率は20%、燐酸除去率は15%、ア
ンモニア除去率は25%であった。これらの数値はとても
生物用担体としての性能を有しているとはいえない。菌
体タンパク質吸着量を測定すると0.3mgタンパク質/g担
体であった。
【0054】比較例5 実験の方法は実施例4と同じ内容である。試験管に充填
する担体として直径が15mmのプラスチック球形物(表面
に500μmの孔が出来ているが、連通構造ではない)を使
用し、7日間運転した。処理液の分析は、グルコース分
解率、タンパク質分解率、燐酸除去率、アンモニア除去
率についてチェックした。その結果、グルコース分解率
は35%、タンパク質分解率は25%、燐酸除去率は10%、
アンモニア除去率は30%であった。菌体タンパク質吸着
量を測定すると、0.25mgタンパク質/g担体であった。
【0055】
【発明の効果】本発明は、上記の構成を採用することに
より、孔の性質である寸法、形状、大小などの組み合わ
せ、ならびに多孔体の特質である一定体積中の孔の数、
見かけ密度、孔の配列分布の組み合わせが自由にかつ簡
単容易にでき、セラミックス原料と球状熱可塑性樹脂を
混合する際、球状熱可塑性樹脂にセラミックス原料をま
ぶすようにすれば、空隙率70%以上90%にも達するよう
な高度な多孔質でかさ比重0.4以下の多孔材料を押し出
し法で成形や鋳込み成形ができる。さらに、球状熱可塑
性樹脂または粘結剤の働きで形成される孔が焼成によっ
て閉塞されることなく連通孔を持ったセラミックス多孔
体を得ることができる。
【0056】このセラミックス多孔体は生物脱臭処理、
嫌気性排水処理、好気性排水処理、食品発酵を効率的に
するための固定床型バイオリアクターの微生物固定担
体、有用物質を生産するための酵素固定担体として有効
である。

Claims (3)

    【特許請求の範囲】
  1. 【請求項1】 セラミックス原料の粉体に球状熱可塑性
    樹脂を混合し、水と粘結剤を加えて混練し所定形状に成
    形後、乾燥を行い、次いで焼成してなるセラミックス多
    孔体。
  2. 【請求項2】 セラミックス原料の粉体に球状熱可塑性
    樹脂を混合し、水と粘結剤を加えて混練し所定形状に成
    形後、乾燥を行い、次いで焼成して得られたセラミック
    ス多孔体の骨格に対して、有機系高分子樹脂溶液を含
    浸、乾燥し、これを還元雰囲気下で焼成、焼結、賦活し
    てなるセラミックス多孔体。
  3. 【請求項3】 請求項2記載のセラミックス多孔体をリ
    アクターに充填し、好気性微生物又は嫌気性微生物を該
    セラミックス多孔体に吸着又は固着させて水中に含まれ
    る有機物の分解を行うことを特徴とする排水処理方法。
JP29009094A 1994-11-24 1994-11-24 セラミックス多孔体及びそれを用いた排水処理方法 Pending JPH08141589A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29009094A JPH08141589A (ja) 1994-11-24 1994-11-24 セラミックス多孔体及びそれを用いた排水処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29009094A JPH08141589A (ja) 1994-11-24 1994-11-24 セラミックス多孔体及びそれを用いた排水処理方法

Publications (1)

Publication Number Publication Date
JPH08141589A true JPH08141589A (ja) 1996-06-04

Family

ID=17751676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29009094A Pending JPH08141589A (ja) 1994-11-24 1994-11-24 セラミックス多孔体及びそれを用いた排水処理方法

Country Status (1)

Country Link
JP (1) JPH08141589A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205288A (ja) * 2000-01-28 2001-07-31 Takeda Chem Ind Ltd 水処理用担体、水処理用担体の製造方法および水処理用装置
KR100478115B1 (ko) * 2002-04-22 2005-03-24 이정열 저층 바닥에 퇴적된 유기물을 쉽게 분해할 수 있는입상형태의 수질정화제의 개발
CN100351501C (zh) * 2002-02-19 2007-11-28 鯵坂泰雄 柴油机排出尾气净化过滤器
JP2010215420A (ja) * 2009-03-13 2010-09-30 Tohoku Univ ミクロ空洞構造体、ならびにこれを備える水素生成装置
JP2017176898A (ja) * 2016-03-28 2017-10-05 太平洋セメント株式会社 水処理材及びその製造方法
CN109475840A (zh) * 2016-05-06 2019-03-15 黄金企业公司 吸附剂组合物、其制备方法及其用途
CN110918059A (zh) * 2019-12-10 2020-03-27 辽宁大学 一种多孔炭陶瓷及其制备方法和应用
CN114516751A (zh) * 2022-02-28 2022-05-20 肇庆学院 一种利用固废制备网状多孔陶瓷材料的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001205288A (ja) * 2000-01-28 2001-07-31 Takeda Chem Ind Ltd 水処理用担体、水処理用担体の製造方法および水処理用装置
CN100351501C (zh) * 2002-02-19 2007-11-28 鯵坂泰雄 柴油机排出尾气净化过滤器
KR100478115B1 (ko) * 2002-04-22 2005-03-24 이정열 저층 바닥에 퇴적된 유기물을 쉽게 분해할 수 있는입상형태의 수질정화제의 개발
JP2010215420A (ja) * 2009-03-13 2010-09-30 Tohoku Univ ミクロ空洞構造体、ならびにこれを備える水素生成装置
JP2017176898A (ja) * 2016-03-28 2017-10-05 太平洋セメント株式会社 水処理材及びその製造方法
CN109475840A (zh) * 2016-05-06 2019-03-15 黄金企业公司 吸附剂组合物、其制备方法及其用途
CN110918059A (zh) * 2019-12-10 2020-03-27 辽宁大学 一种多孔炭陶瓷及其制备方法和应用
CN114516751A (zh) * 2022-02-28 2022-05-20 肇庆学院 一种利用固废制备网状多孔陶瓷材料的方法

Similar Documents

Publication Publication Date Title
JPH08141589A (ja) セラミックス多孔体及びそれを用いた排水処理方法
CN1321918C (zh) 固定化微生物悬浮陶瓷载体及其制备方法
JPH11123076A (ja) 生物処理用担体
KR101484478B1 (ko) 다공성 세라믹 담체 및 그 제조방법
CN103382098B (zh) 一种用于水处理的轻质生物载体及其制备方法和应用
CN107970881B (zh) 一种有机废水处理功能化填料及其制备方法
JPH0775711B2 (ja) 浮遊性造粒物とその製造方法
KR100310877B1 (ko) 세라믹담체및이의제조방법
KR100434613B1 (ko) 미생물 고정화용 다공성 세라믹 담체
CN115322008B (zh) 一种用于污染海水净化的多孔生物填料及其制备方法与应用
KR100517230B1 (ko) 황토, 점토, 백토 및 고령토로 이루어진 여재원료 및 음식물쓰레기, 유기성폐기물, 산업용폐기물로 이루어진 다공성 세라믹 제조방법
KR100583328B1 (ko) 탈취용 미생물 담체 및 이의 제조방법
KR100915710B1 (ko) 미생물 담지용 기포바이오세라믹 제조방법
KR20050020096A (ko) 오·폐수처리용 고 흡착능 및 고 미생물 담지능 다공성성형체 및 그 제조방법
KR102432539B1 (ko) 제올라이트를 이용한 수처리여재 및 그의 제조방법
KR100481973B1 (ko) 미생물 고정화 유·무기 복합 담체 및 제조방법
JPH10202283A (ja) 生物接触濾過用濾材
KR20030084809A (ko) 유-무기 hybrid형(activa) 다공체 제조 방법
KR101249545B1 (ko) 기포바이오세라믹 담체를 이용한 수질오염물질 제거장치
US7892800B2 (en) Composite support material for bacteria
KR100433031B1 (ko) 미생물 고정화용 다공성 세라믹 담체 및 그 제조 방법
JPH03208870A (ja) 多孔質セラミック体の製造方法
JPH10337469A (ja) 吸着性多孔質焼結体及びその製造方法
JP6507292B1 (ja) 汚水処理装置及びその製造方法
JP2542059B2 (ja) 生物学的汚水処理用担体

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040625

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040630

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051226