JPH08120388A - Aluminum alloy hollow shape excellent in bendability and production of the shape - Google Patents

Aluminum alloy hollow shape excellent in bendability and production of the shape

Info

Publication number
JPH08120388A
JPH08120388A JP28455194A JP28455194A JPH08120388A JP H08120388 A JPH08120388 A JP H08120388A JP 28455194 A JP28455194 A JP 28455194A JP 28455194 A JP28455194 A JP 28455194A JP H08120388 A JPH08120388 A JP H08120388A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
shape
thickness
alloy hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28455194A
Other languages
Japanese (ja)
Other versions
JP3618807B2 (en
Inventor
Koichi Ohori
紘一 大堀
Masahiko Miyazaki
雅彦 宮崎
Nariyuki Nakagawa
成幸 中川
Kenji Kanamori
謙二 金森
Masato Katsukura
誠人 勝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Nissan Motor Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP28455194A priority Critical patent/JP3618807B2/en
Publication of JPH08120388A publication Critical patent/JPH08120388A/en
Application granted granted Critical
Publication of JP3618807B2 publication Critical patent/JP3618807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To improve the bendability by specifying the internal structure of an Al alloy hollow shape where the amount of Zn and Mg is specified, and suppressing the thickness of the recrystallized layer of the surface layer part. CONSTITUTION: The Al alloy hollow shape has the composition consisting of, by weight, >6.5-8.0% Zn, 0.45-0.70% Mg, 0.2-0.5% Mn, 0.15-0.25% Zr, 0.40-0.65% (Mn+Zr), <=0.20% Fe, <=0.15% Si, and the balance Al with inevitable impurities. The inner structure of this shape is of fiber structure over the whole length, and the thickness of the recrystallized part of the surface layer part of the shape is suppressed below 50μm. This Al alloy has the composition consisting of 0.05-0.25% Cu, and one or two kinds of 0.001-0.05% Ti, and 0.0001-0.01% B. This Al alloy hollow shape is obtained by extruding the Al alloy ingot of the composition after the materialization, and by bringing the liquid nitrogen into contact therewith to suppress the thickness of the recrystallized structure formed on the surface layer part.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、押出加工性、機械的性
質及び曲げ加工性に優れ、かつ耐応力腐食割れ性が良好
で、自動車のメンバー材やバンパーレインフォースメン
ト等に好適なアルミニウム合金中空形材およびその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is an aluminum alloy which is excellent in extrusion processability, mechanical properties and bending processability and has good resistance to stress corrosion cracking, and is suitable for automobile member materials, bumper reinforcement, etc. The present invention relates to a hollow shape member and a manufacturing method thereof.

【0002】[0002]

【従来の技術】Al−Zn−Mg系合金は、押出加工性
に優れていることから薄肉中空形材の製造が容易であ
り、また焼入感受性が鈍く、熱間押出しでのプレス焼入
れも空冷でよく、かつ耐力300MPa程度の高強度を
有し、溶接性も良好であるため、オートバイフレームや
自動車のバンパーレインフォースメント等に広く使用さ
れている。これらの代表的な合金としては、Zn:5.
0〜6.5%、Mg:0.50〜1.0%、Zr:0.
05〜0.25%を含有し、残部がAlおよび不可避不
純物からなる組成のJIS 7003合金を挙げること
ができる。
2. Description of the Related Art Al-Zn-Mg type alloys are excellent in extrudability, so that they can be easily manufactured into thin-walled hollow profiles, and they have low quenching susceptibility, and they are air-cooled during press quenching in hot extrusion. It has a high strength with a yield strength of about 300 MPa and good weldability, and is therefore widely used for motorcycle frames, automobile bumper reinforcement, and the like. A typical alloy of these is Zn: 5.
0-6.5%, Mg: 0.50-1.0%, Zr: 0.
A JIS 7003 alloy having a composition containing 05 to 0.25% and the balance being Al and inevitable impurities can be mentioned.

【0003】[0003]

【発明が解決しようとする問題点】一方、近年、排ガス
や燃費等に対する社会的な要求から自動車の軽量化が一
層強く求められており、これにともない従来の鋼板車体
の構造体メンバー材やフレーム部材へのアルミニウム合
金形材の適用が検討されている。しかしながら、これら
自動車用メンバー材やフレーム部材は、エンジンやシャ
シー部品との干渉を避けつつ構造材としての性能を満足
するように設計されるため、比較的、曲げ加工部の曲率
半径が小さく、しかも複数の曲げ部が近接した複雑な部
品形状となる場合が多い。
On the other hand, in recent years, there has been a strong demand for weight reduction of automobiles due to social demands for exhaust gas, fuel consumption, etc., and along with this, the structure member materials and frames of conventional steel sheet bodies have been demanded. The application of aluminum alloy profiles to members is being studied. However, since these member members and frame members for automobiles are designed to satisfy the performance as structural materials while avoiding interference with the engine and chassis parts, the radius of curvature of the bent portion is relatively small, and In many cases, a plurality of bent portions are close to each other to form a complicated part shape.

【0004】このため、従来、比較的曲げ加工性が良好
であるとして、オートバイフレームや自動車のバンパー
レインフォースメント等に用いられているJIS 70
03合金等の材料でも、加工度の高い曲げ加工が要求さ
れる上記自動車用メンバー材やフレーム部材としては曲
げ加工性が不十分であり、これら用途へのアルミニウム
合金形材の適用は困難であった。本発明は以上の事情を
背景としてなされたものであり、曲げ加工性を向上させ
ることにより、自動車のメンバー材やフレーム材等への
適用を可能にして、自動車等の軽量化に寄与できるアル
ミニウム合金中空形材およびその製造方法を提供するこ
とを目的とするものである。
Therefore, conventionally, JIS 70 has been used for a motorcycle frame, a bumper reinforcement of an automobile, etc. because of its relatively good bending workability.
Even materials such as 03 alloy have insufficient bending workability as the above-mentioned automobile member materials and frame members that require bending with a high degree of workability, and it is difficult to apply aluminum alloy profiles to these applications. It was The present invention has been made in view of the above circumstances, and by improving bending workability, it can be applied to member materials of automobiles, frame materials, etc., and can contribute to weight reduction of automobiles, etc. It is an object of the present invention to provide a hollow shape member and a manufacturing method thereof.

【0005】[0005]

【問題を解決するための手段】本発明者等は前述の目的
を達成すべく鋭意検討を重ねた結果、Al−Zn−Mg
系合金において、Zn、Mg量を、耐力280MPa程
度が得られ、かつ応力腐食割れが実用上問題のない範囲
に制御するとともに、Mn、Zr量およびそれらの総量
を適切な範囲に制御し、さらに押出加工直後に押出材表
面に低温液体を吹付けるなどして、形材表面に不可避的
に生成される再結晶層の厚さを抑制することによって、
曲げ加工性が向上することを見い出し、本発明をなすに
至ったものである。
Means for Solving the Problems As a result of intensive investigations by the present inventors in order to achieve the above-mentioned object, Al-Zn-Mg
In the system alloy, the Zn and Mg contents are controlled within a range where a proof stress of about 280 MPa is obtained and stress corrosion cracking is practically no problem, and the Mn and Zr contents and their total amount are controlled within an appropriate range. By suppressing the thickness of the recrystallized layer inevitably generated on the surface of the profile, such as by spraying a low temperature liquid onto the surface of the extruded material immediately after extrusion processing,
The inventors have found that bending workability is improved and have completed the present invention.

【0006】すなわち、本発明のうち第1の発明は、重
量%で、Zn:6.5超〜8.0%、Mg:0.45〜
0.70%、Mn:0.2〜0.5%、Zr:0.15
〜0.25%、但し(Mn+Zr):0.40〜0.6
5%、Fe:0.20%以下、Si:0.15%以下
で、残部がAl及び不可避不純物からなる組成のアルミ
ニウム合金中空形材であって、該形材の全長に渡って内
部組織が主として繊維状組織であり、形材表層部の再結
晶組織は、厚さが50μm未満であることを特徴とす
る。第2の発明は、第1の発明において、アルミニウム
合金組成として、さらに重量%で、Cu:0.05〜
0.25%を含有することを特徴とする。第3の発明
は、第1または第2の発明において、アルミニウム合金
組成として、さらに重量%で、Ti:0.001〜0.
05%及びB:0.0001〜0.01%の1種又は2
種を含有することを特徴とする。第4の発明は、第1〜
3の発明のいずれかに記載された組成のアルミニウム合
金鋳塊を420〜520℃の温度で4〜16時間保持す
る均質化処理を施した後、450〜520℃の温度で押
出加工して中空形材に成形し、さらに、押出直後の高温
の中空形材の表面に液体窒素を短時間接触させて、表層
部に形成される再結晶組織の厚さを50μm未満にする
ことを特徴とする。
That is, the first aspect of the present invention is such that, by weight, Zn: more than 6.5 to 8.0% and Mg: 0.45 to 0.45.
0.70%, Mn: 0.2 to 0.5%, Zr: 0.15
~ 0.25%, but (Mn + Zr): 0.40-0.6
An aluminum alloy hollow profile having a composition of 5%, Fe: 0.20% or less, Si: 0.15% or less, and the balance of Al and unavoidable impurities, the internal structure of which is the entire length of the profile. It is mainly a fibrous structure, and the recrystallized structure of the surface layer portion of the profile is characterized by having a thickness of less than 50 μm. A second invention is the aluminum alloy composition according to the first invention, further containing Cu:
It is characterized by containing 0.25%. A third aspect of the present invention is the aluminum alloy composition according to the first or second aspect, further containing Ti: 0.001 to 0.
05% and B: 0.0001 to 0.01% of one or two
It is characterized by containing a seed. The fourth invention is,
The aluminum alloy ingot having the composition described in any one of the inventions of 3 is subjected to a homogenizing treatment for holding at a temperature of 420 to 520 ° C. for 4 to 16 hours, and then extruded at a temperature of 450 to 520 ° C. to be hollow. It is characterized in that it is formed into a shape, and further, the surface of the high-temperature hollow shape immediately after extrusion is brought into contact with liquid nitrogen for a short time so that the thickness of the recrystallized structure formed in the surface layer portion is less than 50 μm. .

【0007】本発明のアルミニウム中空形材は、好適に
は曲げ加工性に対する要求の高い自動車のメンバー材や
フレーム材等に使用されるが、本発明としては、特に用
途が限定されるものではない。また、形材の形状も特に
限定されるものではなく、完全な中空品(ホロー品)だ
けでなくセミホロー品も含まれる。また、本発明の製造
方法では、押出直後で高温の中空形材の表面に液体窒素
を接触させるが、その接触面は、中空材の外面側、内面
側の一方または両方でも良く、これら表面の一部(特に
曲げ予定部)に接触させるものであってもよい。なお、
液体窒素の接触方法としては、通常は吹き付けにより行
うが、これに限定されるものでもない。また、接触は短
時間で行われ、例えば、同一箇所に対し0.1〜1秒で
行うのが望ましい。
The aluminum hollow profile of the present invention is preferably used as a member material for automobiles, a frame material and the like which are highly required for bending workability, but the present invention is not particularly limited in its use. . Further, the shape of the shape is not particularly limited, and includes not only a completely hollow product (hollow product) but also a semi-hollow product. Further, in the production method of the present invention, liquid nitrogen is brought into contact with the surface of the high-temperature hollow material immediately after extrusion, but the contact surface may be one or both of the outer surface side and the inner surface side of the hollow material. You may make it contact a part (especially bending part). In addition,
The method of contacting liquid nitrogen is usually spraying, but is not limited to this. Further, the contact is carried out in a short time, and for example, it is desirable to carry out the same place in 0.1 to 1 second.

【0008】[0008]

【作用】以下に本発明における合金組成ならびに組織、
製造条件を限定した理由を、その作用とともに以下に説
明する。 a)Zn:6.5超〜8.0% Zn成分にはMgとの共存においてMgZn2を形成
し、形材の強度を向上させる作用があるが、その含有量
が6.5%以下では所望の高強度を確保することができ
ず、一方その含有量が8.0%を越えると応力腐食割れ
が発生し易くなるので上記範囲とする。 b)Mg:0.45〜0.70% Mg成分にはZnと同様、形材の強度を向上させる作用
があるが、その含有量が0.45%未満では所望の高強
度を確保することができず、一方その含有量が0.70
%を越えると押出加工性および曲げ加工性が低下するの
で上記範囲とする。
[Function] The alloy composition and structure in the present invention will be described below.
The reason why the manufacturing conditions are limited will be described below together with the action thereof. a) Zn: over 6.5 to 8.0% The Zn component has a function of forming MgZn 2 in the coexistence with Mg and improving the strength of the profile, but when the content thereof is 6.5% or less. The desired high strength cannot be ensured, and if the content exceeds 8.0%, stress corrosion cracking tends to occur, so the above range is made. b) Mg: 0.45 to 0.70% Similar to Zn, the Mg component acts to improve the strength of the profile, but if the content is less than 0.45%, the desired high strength is ensured. Is not possible, while the content is 0.70
If it exceeds%, the extrusion processability and bending processability are deteriorated, so the above range is set.

【0009】c)Mn:0.2〜0.5% Zr:0.15〜0.25% 但し(Mn+Zr):0.40〜0.65% これらの成分には、微細な金属間化合物として素地中に
分散し、押出加工時の再結晶を抑制し、内部を繊維状組
織とする作用があるが、これら元素の量が各々の下限値
より少ない場合はその効果が不十分で、また各々の上限
値より多い場合は粗大な金属間化合物が生成するように
なって曲げ加工性に悪化傾向が現れるようになる。さら
に、これらの元素は共存状態においてそれらの再結晶効
果が助長されるが、それらの総量が0.40%未満では
その効果が不十分で所望の厚さ以下に表面再結晶層を抑
制することができず、一方、その総量が0.65%を越
えると粗大な金属間化合物が生成するようになって曲げ
加工性が劣化するようになるので各含有量および合計量
を上記範囲とした。 d)Fe:0.2%以下 Si:0.15%以下 これらの元素は不純物として含有されるものであり、A
l−Fe−Si系化合物となって素地中に分散され、曲
げ加工性に悪影響を与える。したがって、これら元素の
量を制限し、実質的に悪影響がみられない上限値を設定
した。
C) Mn: 0.2 to 0.5% Zr: 0.15 to 0.25% (Mn + Zr): 0.40 to 0.65% These components include fine intermetallic compounds. Dispersed in the matrix, suppresses recrystallization during extrusion, and has the effect of forming a fibrous structure inside, but if the amount of these elements is less than the lower limit of each, the effect is insufficient, and each If it is more than the upper limit value, a coarse intermetallic compound is generated and bending workability tends to deteriorate. Further, these elements promote their recrystallization effect in the coexisting state, but if their total amount is less than 0.40%, their effect is insufficient and suppress the surface recrystallization layer to a desired thickness or less. On the other hand, if the total amount exceeds 0.65%, coarse intermetallic compounds are generated and the bending workability deteriorates. Therefore, the respective contents and the total amount are set to the above ranges. d) Fe: 0.2% or less Si: 0.15% or less These elements are contained as impurities.
It becomes an l-Fe-Si-based compound and is dispersed in the matrix, which adversely affects bending workability. Therefore, the amounts of these elements were limited, and the upper limit was set so that no substantial adverse effect was observed.

【0010】e)Cu::0.05〜0.25% Cu成分には形材の強度を向上させる作用があり、所望
により含有させるが、その含有量が0.05%未満では
その効果が少なく、一方その含有量が0.25%を越え
ると押出加工性および曲げ加工性が低下するので上記範
囲とする。 f)Ti:0.001〜0.05% B :0.0001〜0.01% これらの成分には鋳造組織を微細化し、鋳造割れ等の欠
陥が発生するのを防止する作用があり、必要に応じて含
有させる。これら元素の量が各々の下限値未満では所望
の効果が得られず、一方各々の上限値超では粗大な金属
間化合物が生成するようになって曲げ加工性が劣化する
ようになるので上記範囲とする。
E) Cu :: 0.05 to 0.25% The Cu component has the function of improving the strength of the profile, and is contained if desired, but if the content is less than 0.05%, its effect is obtained. On the other hand, if the content is less than 0.25%, the extrusion processability and bending processability will deteriorate, so the above range is made. f) Ti: 0.001 to 0.05% B: 0.0001 to 0.01% These components have the action of refining the cast structure and preventing the occurrence of defects such as casting cracks, and are necessary. It is contained according to. If the amount of these elements is less than the respective lower limit values, the desired effect cannot be obtained, while if the amount exceeds the respective upper limit values, coarse intermetallic compounds tend to be formed and bending workability deteriorates. And

【0011】次に本発明合金の製造方法について説明す
る。 A)均質化処理:420〜520℃×4〜16時間 処理温度が520℃を越えるとMnおよびZr系化合物
が粗大化し、一方、処理温度が420℃未満であった
り、処理時間が4時間未満であると、上述の化合物の析
出が不十分で、いずれの場合も繊維状組織が十分発達せ
ず、内部組織は主として再結晶組織となる。また、処理
時間を16時間を越えるものとしても処理効果は飽和す
るので、上記範囲とする。 B)押出加工:押出温度450〜520℃ 押出温度が520℃を越えると表面再結晶層の厚さが5
0μm以上となって曲げ加工性が十分に改善されず、一
方、押出温度が450℃未満であると、薄肉の中空形材
の押出加工において押出圧力が高くて押出速度を上げる
ことが出来ず、生産性の低下を招く。したがって押出温
度は上記範囲とする
Next, a method for producing the alloy of the present invention will be described. A) Homogenization treatment: 420 to 520 ° C. × 4 to 16 hours When the treatment temperature exceeds 520 ° C., Mn and Zr compounds are coarsened, while the treatment temperature is lower than 420 ° C. or the treatment time is shorter than 4 hours. In that case, the precipitation of the above-mentioned compound is insufficient, the fibrous structure is not sufficiently developed in any case, and the internal structure is mainly a recrystallized structure. Further, even if the processing time exceeds 16 hours, the processing effect is saturated, so the above range is set. B) Extrusion processing: Extrusion temperature 450 to 520 ° C. When the extrusion temperature exceeds 520 ° C., the thickness of the surface recrystallized layer is 5
When the extrusion temperature is less than 450 ° C, the extrusion pressure is high and the extrusion speed cannot be increased when the extrusion temperature is less than 450 ° C. This leads to a decrease in productivity. Therefore, the extrusion temperature should be in the above range.

【0012】C)液体窒素の接触 押出ダイス通過直後に中空形材の表面に、液体窒素を吹
付け等によって短時間接触させることにより中空形材表
面部は急速冷却され、表面粗大再結晶層の生成が抑制さ
れる。また、接触時間は前述したように、同一箇所に対
し0.1〜1秒で行うのが望ましい。これは、0.1秒
未満では冷却が不十分で、再結晶の抑制が十分でなく、
また、1秒を越えてもその効果は飽和するので、上記接
触時間が望ましい。なお、上記液体窒素との接触に際し
ては、中空形材の表面は、400〜480℃に冷却する
のが望ましい。こうして得られた押出材は直ちに曲げ加
工を行うか、人工時効後曲げ加工を行うか、あるいはO
材処理後曲げ加工を行うか、いずれの方法を採ってもよ
い。人工時効処理は、押出後2日間以上室温時効させ、
その後80〜130℃×1〜24時間および140〜1
70℃×2〜24時間の1段ないし2段時効処理を行う
のが望ましい。
C) Contact with liquid nitrogen Immediately after passing through the extrusion die, liquid nitrogen is brought into contact with the surface of the hollow profile for a short time so that the surface of the hollow profile is rapidly cooled and the surface coarse recrystallized layer is formed. Generation is suppressed. As described above, the contact time is preferably 0.1 to 1 second at the same location. This is because if it is less than 0.1 seconds, the cooling is insufficient and the recrystallization is not sufficiently suppressed.
Further, the effect is saturated even if it exceeds 1 second, so the above contact time is desirable. When contacting with the liquid nitrogen, the surface of the hollow profile is preferably cooled to 400 to 480 ° C. The extruded material thus obtained is immediately bent, or after artificial aging, or
Any method may be adopted, such as bending after the material treatment. The artificial aging treatment is aged at room temperature for 2 days or more after extrusion,
Then 80-130 ° C x 1-24 hours and 140-1
It is desirable to perform a one-step or two-step aging treatment at 70 ° C. for 2 to 24 hours.

【0013】[0013]

【実施例】以下に、本発明を実施例により説明する。表
1に示す組成の204mm径の合金ビレットを常法によ
り溶製し、表2、表3に示す条件で均質化処理後、肉厚
2mm、断面60×80mm2の角パイプ形状に押出
し、押出加工直後に押出材表面に77°Kに冷却した液
体窒素を吹付けた。吹き付けは同一箇所に対し 約0.
5秒接触するように行った。なお、一部の押出材(比較
材21)では上記した液体窒素の吹き付けを行わなかっ
た。液体窒素の吹き付けにより、本発明材1〜8及び比
較材10〜20,23の押出材は、表面温度が約450
℃に冷却され、比較材22は、約500℃に冷却され
た。
EXAMPLES The present invention will be described below with reference to examples. Alloy billets having a diameter of 204 mm having the composition shown in Table 1 were melted by a conventional method, homogenized under the conditions shown in Tables 2 and 3, and extruded into a square pipe shape having a wall thickness of 2 mm and a cross section of 60 × 80 mm 2. Immediately after processing, liquid nitrogen cooled to 77 ° K was sprayed onto the surface of the extruded material. The spraying was about 0.
The contact was performed for 5 seconds. The liquid nitrogen was not sprayed on some extruded materials (Comparative Material 21). The surface temperature of the extruded materials of the invention materials 1 to 8 and the comparative materials 10 to 20 and 23 was about 450 by spraying liquid nitrogen.
C. and the comparative material 22 was cooled to about 500.degree.

【0014】これらの形材(押出材)を室温放置3日
後、130℃×8hrの時効処理を施し、供試材とし、
機械的性質、表面再結晶層の厚さ、曲げ加工性、耐応力
腐食割れ性を評価する試験を行った。曲げ加工性は幅2
0mm、長さ150mmの短冊状試験片を用い、内側半
径2.0mmで180度曲げを行い、割れの発生がない
ものを○、肌荒れの生じたものを△、割れの発生したも
のを×として評価した。また、耐応力腐食割れ性は幅2
0mm、長さ100mmの短冊状試験片を用い、3点曲
げにて耐力の75%相当応力を負荷し、沸騰重クロム酸
促進液に3時間浸漬し、割れの発生しなかったものを
○、割れの生じたものを×で評価した。また、表面再結
晶層の厚さは光学顕微鏡で断面観察し、測定した。これ
らの測定結果は表2、3に示すとおりである。
These shaped materials (extruded materials) were allowed to stand at room temperature for 3 days and then subjected to an aging treatment at 130 ° C. for 8 hours to prepare test materials.
Tests were carried out to evaluate mechanical properties, surface recrystallization layer thickness, bending workability, and stress corrosion cracking resistance. Bendability is width 2
A strip-shaped test piece with a length of 0 mm and a length of 150 mm was bent 180 degrees with an inner radius of 2.0 mm, and no crack was generated as ○, rough skin was evaluated as △, and cracked was evaluated as ×. evaluated. In addition, the stress corrosion cracking resistance has a width of 2
Using a strip-shaped test piece of 0 mm and a length of 100 mm, a stress equivalent to 75% of proof stress was applied at three-point bending, and the test piece was immersed in a boiling dichromic acid accelerator for 3 hours. Those having cracks were evaluated by x. The thickness of the surface recrystallized layer was measured by observing a cross section with an optical microscope. The measurement results are shown in Tables 2 and 3.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【表3】 [Table 3]

【0018】表2、3から明らかなように、本発明の組
成を有し、かつ押出直後に液体窒素を吹き付けて再結晶
層厚さを制御した発明材は、全ての項目で優れた結果が
得られている。これに対し、比較材は、いずれかの項目
において劣っており、大部分のものは特に曲げ加工性で
劣っている。
As is clear from Tables 2 and 3, the invention materials having the composition of the present invention and controlling the thickness of the recrystallized layer by spraying liquid nitrogen immediately after extrusion show excellent results in all items. Has been obtained. On the other hand, the comparative materials are inferior in any of the items, and most of them are particularly inferior in bending workability.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、重
量%で、Zn:6.5超〜8.0%、Mg:0.45〜
0.70%、Mn:0.2〜0.5%、Zr:0.15
〜0.25%、但し、(Mn+Zr):0.40〜0.
65%、Fe:0.20%以下、Si:0.15%以下
を含有し、所望によりCu:0.05〜0.25%、T
i:0.001〜0.05%及びB:0.0001〜
0.01%の1種以上を含有するアルミニウム合金中空
形材の全長に渡って内部組織が主として繊維状組織であ
り、形材表層部の再結晶組織は、厚さが50μm未満で
あるので、曲げ加工性を大幅に向上させることができ、
また、その他の機械的性質や耐応力腐食割れ性では従来
材と同等の性能が得られ、曲げ加工性の要求が高い自動
車用メンバー材などにも適用することが可能になり、車
両の軽量化が容易になる。
As described above, according to the present invention, Zn: more than 6.5 to 8.0% and Mg: 0.45 to 0.45 by weight%.
0.70%, Mn: 0.2 to 0.5%, Zr: 0.15
~ 0.25%, provided that (Mn + Zr): 0.40-0.
65%, Fe: 0.20% or less, Si: 0.15% or less, optionally Cu: 0.05 to 0.25%, T
i: 0.001-0.05% and B: 0.0001-
Since the internal structure is mainly a fibrous structure over the entire length of the aluminum alloy hollow profile containing 0.01% or more of 0.01%, and the recrystallization structure of the profile surface layer part has a thickness of less than 50 μm, Bending workability can be greatly improved,
In addition, other mechanical properties and stress corrosion cracking resistance can achieve the same performance as conventional materials, and it can be applied to member materials for automobiles that have high demands for bending workability, reducing vehicle weight. Will be easier.

【0020】また、本発明のアルミニウム合金中空形材
の製造方法によれば、上記組成の鋳塊を420〜520
℃の温度で4〜16時間保持する均質化処理を施した
後、450〜520℃の温度で押出加工して中空形材に
成形し、さらに、押出直後の高温の中空形材の表面に液
体窒素を短時間接触させて、表層部に形成される再結晶
組織の厚さを50μm未満にするので、曲げ加工性の良
好な形材が確実かつ容易に得られる。得られた形材では
上記形材の発明と同様の効果が得られる。
According to the method for producing an aluminum alloy hollow profile of the present invention, the ingot having the above composition is used in the range of 420 to 520.
After carrying out a homogenizing treatment at a temperature of ℃ for 4 to 16 hours, it is extruded at a temperature of 450 to 520 ℃ to be molded into a hollow shape member, and further, a liquid is formed on the surface of the high temperature hollow shape member immediately after extrusion. Since the thickness of the recrystallized structure formed in the surface layer portion is less than 50 μm by contacting with nitrogen for a short time, a profile having good bending workability can be obtained reliably and easily. With the obtained profile, the same effect as the invention of the above profile can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中川 成幸 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 金森 謙二 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 (72)発明者 勝倉 誠人 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naruyuki Nakagawa 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. (72) Kenji Kanamori 2 Takaracho, Kanagawa-ku, Yokohama, Kanagawa Nissan Motor Co., Ltd. ( 72) Inventor Masato Katsukura 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa Nissan Motor Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Zn:6.5超〜8.0%、
Mg:0.45〜0.70%、Mn:0.2〜0.5
%、Zr:0.15〜0.25%、但し、(Mn+Z
r):0.40〜0.65%、Fe:0.20%以下、
Si:0.15%以下で、残部がAl及び不可避不純物
からなる組成のアルミニウム合金中空形材であって、該
形材の全長に渡って内部組織が主として繊維状組織であ
り、さらに、形材表層部の再結晶組織は、厚さが50μ
m未満であることを特徴とする曲げ加工性に優れたアル
ミニウム合金中空形材
1. Zn: more than 6.5 to 8.0% by weight,
Mg: 0.45 to 0.70%, Mn: 0.2 to 0.5
%, Zr: 0.15-0.25%, provided that (Mn + Z
r): 0.40 to 0.65%, Fe: 0.20% or less,
Si: 0.15% or less, an aluminum alloy hollow profile having a composition comprising Al and unavoidable impurities in the balance, the internal structure being mainly a fibrous structure over the entire length of the profile, and the profile The recrystallized structure of the surface layer has a thickness of 50μ.
Aluminum alloy hollow profile excellent in bending workability characterized by being less than m
【請求項2】 アルミニウム合金組成として、さらに重
量%で、Cu:0.05〜0.25%を含有することを
特徴とする請求項1に記載の曲げ加工性に優れたアルミ
ニウム合金中空形材
2. The aluminum alloy hollow profile material having excellent bendability according to claim 1, further comprising Cu: 0.05 to 0.25% by weight as an aluminum alloy composition.
【請求項3】 アルミニウム合金組成として、さらに重
量%で、Ti:0.001〜0.05%及びB:0.0
001〜0.01%の1種又は2種を含有することを特
徴とする請求項1または2に記載の曲げ加工性に優れた
アルミニウム合金中空形材
3. As an aluminum alloy composition, Ti: 0.001% to 0.05% and B: 0.0% by weight.
001-0.01% of 1 type or 2 types is contained, The aluminum alloy hollow profile material excellent in bending workability of Claim 1 or 2 characterized by the above-mentioned.
【請求項4】 請求項1〜3のいずれかに記載された組
成のアルミニウム合金鋳塊を420〜520℃の温度で
4〜16時間保持する均質化処理を施した後、450〜
520℃の温度で押出加工して中空形材に成形し、さら
に、押出直後の高温の中空形材の表面に液体窒素を短時
間接触させて、表層部に形成される再結晶組織の厚さを
50μm未満にすることを特徴とする曲げ加工性に優れ
たアルミニウム合金中空形材の製造方法
4. The aluminum alloy ingot having the composition according to any one of claims 1 to 3 is subjected to a homogenizing treatment for holding at a temperature of 420 to 520 ° C. for 4 to 16 hours, and then 450 to
The thickness of the recrystallized structure formed in the surface layer portion by extruding at a temperature of 520 ° C. to form a hollow shape member, and further, contacting the surface of the high-temperature hollow shape member immediately after extrusion with liquid nitrogen for a short time. To less than 50 μm, a method for producing an aluminum alloy hollow profile excellent in bending workability
JP28455194A 1994-10-26 1994-10-26 Aluminum alloy hollow shape having excellent bending workability and method for producing the shape Expired - Fee Related JP3618807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28455194A JP3618807B2 (en) 1994-10-26 1994-10-26 Aluminum alloy hollow shape having excellent bending workability and method for producing the shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28455194A JP3618807B2 (en) 1994-10-26 1994-10-26 Aluminum alloy hollow shape having excellent bending workability and method for producing the shape

Publications (2)

Publication Number Publication Date
JPH08120388A true JPH08120388A (en) 1996-05-14
JP3618807B2 JP3618807B2 (en) 2005-02-09

Family

ID=17679921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28455194A Expired - Fee Related JP3618807B2 (en) 1994-10-26 1994-10-26 Aluminum alloy hollow shape having excellent bending workability and method for producing the shape

Country Status (1)

Country Link
JP (1) JP3618807B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882610B1 (en) * 1997-06-07 2003-11-05 Kabushiki Kaisha Kobe Seiko Sho Aluminium extruded door beam material
JP2006188730A (en) * 2005-01-05 2006-07-20 Furukawa Sky Kk SMALL STRUCTURAL PARTS WITH EXCELLENT IMPACT FORMABILITY USING Al-Mg-Zn-BASED ALLOY
JP2006316303A (en) * 2005-05-11 2006-11-24 Furukawa Sky Kk Aluminum alloy extruded material for high temperature forming, and high temperature formed product
CN103255326A (en) * 2012-02-16 2013-08-21 株式会社神户制钢所 Aluminum alloy extruded material for electro-magnetic forming
CN104174694A (en) * 2014-08-12 2014-12-03 山东裕航特种合金装备有限公司 Method for producing aluminum alloy square tubes of oversized building curtain wall with exceeding equipment capacity
US10202671B2 (en) 2014-05-13 2019-02-12 Nippon Light Metal Company, Ltd. High proof stress Al—Zn aluminum alloy extrusion material superior in bendability
CN110699619A (en) * 2019-11-12 2020-01-17 贵州工程应用技术学院 Cryogenic treatment process for hypereutectic aluminum-silicon alloy piston material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882610B1 (en) * 1997-06-07 2003-11-05 Kabushiki Kaisha Kobe Seiko Sho Aluminium extruded door beam material
JP2006188730A (en) * 2005-01-05 2006-07-20 Furukawa Sky Kk SMALL STRUCTURAL PARTS WITH EXCELLENT IMPACT FORMABILITY USING Al-Mg-Zn-BASED ALLOY
JP2006316303A (en) * 2005-05-11 2006-11-24 Furukawa Sky Kk Aluminum alloy extruded material for high temperature forming, and high temperature formed product
CN103255326A (en) * 2012-02-16 2013-08-21 株式会社神户制钢所 Aluminum alloy extruded material for electro-magnetic forming
CN103255326B (en) * 2012-02-16 2015-07-29 株式会社神户制钢所 Electromagnetic forming aluminium alloy hollow squeeze wood
US10202671B2 (en) 2014-05-13 2019-02-12 Nippon Light Metal Company, Ltd. High proof stress Al—Zn aluminum alloy extrusion material superior in bendability
CN104174694A (en) * 2014-08-12 2014-12-03 山东裕航特种合金装备有限公司 Method for producing aluminum alloy square tubes of oversized building curtain wall with exceeding equipment capacity
CN110699619A (en) * 2019-11-12 2020-01-17 贵州工程应用技术学院 Cryogenic treatment process for hypereutectic aluminum-silicon alloy piston material

Also Published As

Publication number Publication date
JP3618807B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
US8105449B2 (en) High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
US8168013B2 (en) Al-Mg-Si aluminum alloy extruded product exhibiting excellent fatigue strength and impact fracture resistance
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
JP2001131670A (en) Al-Mg-Si BASE Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH08295977A (en) High strength aluminum alloy extruded material excellent in fatigue strength and motorcycle front fork outer tube material
JP3681822B2 (en) Al-Zn-Mg alloy extruded material and method for producing the same
JPH08225874A (en) Aluminum alloy extruded material for automobile structural member and its production
JP2928445B2 (en) High-strength aluminum alloy extruded material and method for producing the same
JPH08120388A (en) Aluminum alloy hollow shape excellent in bendability and production of the shape
JP2001240930A (en) Al-Mg-Si BASED ALUMINUM ALLOY EXTRUDED MATERIAL FOR DOOR BEAM, AND DOOR BEAM
JP3691254B2 (en) Al-Mg-Si alloy extruded profile for side member and method for producing the same
JPH07150312A (en) Manufacture of aluminum alloy forged base stock
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet
JP2000054049A (en) Aluminum-magnesium-silicon alloy extruded shape material for side member excellent in collapse characteristic and its production
JPH06212338A (en) Al-zn-mg alloy hollow shape excellent in strength and formability and its production
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH10306338A (en) Hollow extruded material of al-cu-mg-si alloy, excellent in strength and corrosion resistance, and its manufacture
JP2003171726A (en) Aluminum alloy sheet having excellent bending workability and corrosion resistance, and production method therefor
JP2002356730A (en) Aluminum alloy sheet excellent in formability and hardenability during baking of coating and production method therefor
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
JPH06212336A (en) Al alloy extruded material excellent in strength and bendability
JPH09202933A (en) High strength aluminum alloy excellent in hardenability
JP2004068076A (en) Aluminum alloy forging material for structure having excellent corrosion resistance and method for producing the same
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JP3450209B2 (en) Method of manufacturing frame material for vehicle body

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20041109

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20041111

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081119

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091119

LAPS Cancellation because of no payment of annual fees