JPH06212338A - Al-zn-mg alloy hollow shape excellent in strength and formability and its production - Google Patents

Al-zn-mg alloy hollow shape excellent in strength and formability and its production

Info

Publication number
JPH06212338A
JPH06212338A JP1935593A JP1935593A JPH06212338A JP H06212338 A JPH06212338 A JP H06212338A JP 1935593 A JP1935593 A JP 1935593A JP 1935593 A JP1935593 A JP 1935593A JP H06212338 A JPH06212338 A JP H06212338A
Authority
JP
Japan
Prior art keywords
strength
formability
alloy
extrusion
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1935593A
Other languages
Japanese (ja)
Inventor
Akira Ichinose
晃 市之瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP1935593A priority Critical patent/JPH06212338A/en
Publication of JPH06212338A publication Critical patent/JPH06212338A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an Al-Zn-Mg alloy hollow shape excellent in strength, bendability, SCC resistance, and corrosion resistance by forming the whole metallic structure into a structure in a state of fibers parallel to the direction of extrusion. CONSTITUTION:An ingot of an Al-Zn-Mg alloy, which has a composition consisting of, by weight, 5.0-6.0% Zn, 1.2-1.8% Mg, 0.20-0.50% Cu, 0.10-0.50% Zr, Fe and Si by the amounts in the ranges where (Fe+Si) and (Fe/Si) are regulated to 0.10-0.60wt.% and >=1.5, respectively, further 0.01-0.10% Mn and/or 0.01-0.10% Cr, and the balance essentially Al, is subjected to homogenizing treatment at 420-520 deg.C for 2-24hr, extruded at 430-520 deg.C, cooled down to room temp., and then subjected, as artificial ageing treatment, to first-stage heat treatment at 90-110 deg.C for 2-12hr and to second-stage heat treatment at 120-170 deg.C for 5-24hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は強度と成形性に優れたA
l−Zn−Mg系合金中空形材およびその製造方法に関
するものであり、詳しくは、自動車のバンパーリィンホ
ースメント等に適した、押出加工が可能で、強度、成形
性、耐応力腐食割れ性、耐食性を要求される中空形材お
よびその製造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to A which is excellent in strength and moldability.
The present invention relates to an l-Zn-Mg-based alloy hollow shape member and a method for manufacturing the same, and more specifically, it is suitable for automobile bumper reinforcements and the like and can be extruded and has strength, formability, stress corrosion cracking resistance, The present invention relates to a hollow shape member required to have corrosion resistance and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、地球環境に対する配慮や、省エネ
ルギーの観点から、自動車の各種部材に対する軽量化の
要求が高まっている。その代表的な例が板材であるボデ
ィシート材で、一部アルミ化が実現されている。一方、
バンパーリィンホースメントやドアビーム等の形材はア
ルミ化して軽量化すると、その軽量効果が大きいことは
もちろん、その付随効果として、バンパーリィンホース
メントを軽量化すると車両のヨーイングモーメントを低
減させることができ、操縦安定性が向上すること、ドア
ビームをアルミ化すると素材自体が軽量であるため、車
種に応じた形状設計が可能となることなどが考えられる
ため、アルミ化が強く要望されている。
2. Description of the Related Art In recent years, there has been an increasing demand for weight reduction of various parts of automobiles from the viewpoint of consideration for the global environment and energy saving. A typical example is a body sheet material, which is a plate material, and is partially made of aluminum. on the other hand,
If the weight of the bumper line hosement, door beam, etc. is made aluminum to reduce the weight, the weight reduction effect will be great. However, there is a strong demand for aluminum because the steering stability is improved and the material of the door beam is made of aluminum because the material itself is lightweight, which makes it possible to design the shape according to the vehicle type.

【0003】[0003]

【発明が解決しようとする課題】ところでバンパーリィ
ンホースメントやドアビーム等の自動車用部材には、強
度、曲げ加工性等の成形性、耐応力腐食割れ性(以下、
耐SCC性という)、耐食性が優れていることが要求さ
れる。また、バンパーリィンホースメントやドアビーム
等の自動車用部材は複雑な形状の中空形材で、さらに軽
量化を図るため薄肉とする必要がある。したがって、こ
れらの部材に用いる材料に対しては大型の形材はもちろ
ん、押出比の大きい小型薄肉の中空形材の押出加工が可
能であることが要求される。従来、押出比の大きい小型
薄肉の中空形材には、JIS 6000系合金が用いら
れているが、バンパーリィンホースメントやドアビーム
等の自動車用部材としては強度が不足していた。また、
強度、耐食性が要求される押出形材にはJIS 7N0
1合金やJIS 7003合金が用いられているが、J
IS 7N01合金は成形性、耐SCC性が劣り、JI
S 7003合金は強度が十分とはいえない。
By the way, automotive parts such as bumper reinforcements and door beams have strength, formability such as bending workability, stress corrosion cracking resistance (hereinafter
It is required to have excellent SCC resistance) and corrosion resistance. Further, automobile members such as bumper reinforcements and door beams are hollow members having a complicated shape, and it is necessary to make them thin in order to further reduce the weight. Therefore, the materials used for these members are required to be capable of extruding not only large-sized profiles, but also small-sized thin hollow profiles with a large extrusion ratio. Conventionally, JIS 6000 series alloys have been used for small-sized, thin-walled hollow members having a large extrusion ratio, but their strength was insufficient for automobile members such as bumper reinforcements and door beams. Also,
JIS 7N0 is used for extruded profiles that require strength and corrosion resistance.
1 alloy and JIS 7003 alloy are used.
IS 7N01 alloy is inferior in formability and SCC resistance.
S7003 alloy does not have sufficient strength.

【0004】このようにバンパーリィンホースメントや
ドアビームのような自動車用部材に要求される特性をバ
ランス良く満たすアルミニウム合金が従来はなかったた
め、これらの部材のアルミ化は進まず、依然として高張
力鋼板等が用いられている。そこで本発明は、強度、成
形性、耐SCC性、耐食性が要求される複雑形状の薄肉
中空部材に適した、強度と成形性に優れたAl−Zn−
Mg系合金中空形材およびその製造方法を提供すること
を目的とする。
As described above, since no aluminum alloy has hitherto been available which satisfies the properties required for automobile members such as bumper reinforcements and door beams in a well-balanced manner, the aluminization of these members has not progressed, and high-tensile steel plates and the like have not been developed. Is used. Therefore, the present invention is suitable for a thin hollow member having a complicated shape that requires strength, formability, SCC resistance, and corrosion resistance, and is excellent in strength and formability.
An object is to provide a hollow Mg-based alloy material and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】本発明者は、時効処理後
の金属組織がすべて押出方向に沿った繊維状組織となっ
ていれば、上記の目的を達成できることを知見し、Al
−Zn−Mg系合金の組成を限定し、またその製造方法
として、均質化処理、押出加工、人工時効処理の条件を
限定したものである。
The present inventor has found that the above object can be achieved if the metal structure after aging treatment is a fibrous structure along the extrusion direction.
The composition of the —Zn—Mg-based alloy is limited, and the conditions for homogenization treatment, extrusion processing, and artificial aging treatment are limited as a manufacturing method thereof.

【0006】すなわち本発明は、Zn 5.0〜 6.0wt%、
Mg 1.2〜 1.8wt%、Cu0.20〜0.50wt%、Zr0.10〜
0.50wt%、Fe+Siを0.10〜0.60wt%かつFe/Si
が 1.5以上となるように含有し、さらにMn0.01〜0.10
wt%、Cr0.01〜0.10wt%の1種または2種を含有し、
その他の不純物はそれぞれ0.05wt%以下、かつ合計で0.
15wt%以下、残部がアルミニウムからなるAl−Zn−
Mg系合金の中空形材であって、前記中空形材の金属組
織がすべて押出方向に沿った繊維状組織となっているこ
とを特徴とする、強度と成形性に優れたAl−Zn−M
g系合金中空形材およびその製造方法として、前記Al
−Zn−Mg系合金鋳塊を、 420〜 520℃で 2〜24時間
の条件で均質化処理し、その後 430〜 520℃で押出加工
を行い、室温まで冷却後、人工時効処理として一段目を
90〜 110℃で 2〜12時間、二段目を 120〜 170℃で 5〜
24時間の条件で熱処理を行うことを特徴とする、強度と
成形性に優れたAl−Zn−Mg系合金中空形材の製造
方法を提供するものである。
That is, according to the present invention, Zn 5.0 to 6.0 wt%,
Mg 1.2-1.8 wt%, Cu 0.20-0.50 wt%, Zr0.10-
0.50wt%, Fe + Si 0.10-0.60wt% and Fe / Si
Content of 1.5 or more, and Mn of 0.01 to 0.10
wt%, Cr 0.01-0.10 wt% containing one or two,
Other impurities are 0.05 wt% or less, respectively, and 0 in total.
Al-Zn- with 15 wt% or less, balance aluminum
Al-Zn-M excellent in strength and formability, characterized in that it is a hollow section of an Mg-based alloy, and the metal structure of the hollow section is a fibrous structure along the extrusion direction.
The g-based alloy hollow shape and its manufacturing method are
-Zn-Mg alloy ingot is homogenized at 420 to 520 ° C for 2 to 24 hours, then extruded at 430 to 520 ° C, cooled to room temperature, and then the first step as artificial aging treatment.
90 ~ 110 ℃ 2 ~ 12 hours, the second stage 120 ~ 170 ℃ 5 ~
It is intended to provide a method for producing an Al—Zn—Mg-based alloy hollow profile excellent in strength and formability, which is characterized by performing heat treatment under a condition of 24 hours.

【0007】[0007]

【作用】本発明において、再結晶を防ぎ、金属組織をす
べて微細な押出方向に沿った繊維状組織とすることによ
り、強度が高く、曲げ等の成形性に優れ、また、曲げ等
の加工後のオレンジピールを防止し、耐食性を改善する
ことができる。ここで本発明におけるAl−Zn−Mg
合金の添加元素の添加理由および添加量の限定理由を説
明する。Znは機械的性質を向上する効果がある。その
添加量が 5.0wt%未満ではその効果が少なく、一方 6.0
wt%を超えて添加すると耐SCC性、耐食性および成形
性が劣化する。したがって本発明ではZnの添加量を
5.0〜 6.0wt%と限定した。
In the present invention, recrystallization is prevented, and the metal structure has a fibrous structure along the fine extrusion direction, so that the strength is high and the formability such as bending is excellent. It can prevent the orange peel and improve the corrosion resistance. Here, Al-Zn-Mg in the present invention
The reason for adding the additional element of the alloy and the reason for limiting the addition amount will be described. Zn has the effect of improving mechanical properties. If the addition amount is less than 5.0 wt%, the effect is small, while 6.0
If added in excess of wt%, SCC resistance, corrosion resistance and moldability deteriorate. Therefore, in the present invention, the amount of Zn added is
Limited to 5.0-6.0wt%.

【0008】Mgも機械的性質を向上する元素である
が、その添加量が 1.2wt%未満ではその効果が少なく、
一方 1.8wt%を超えて添加すると耐SCC性、成形性お
よび押出加工性が劣化、生産性も低下する。したがって
本発明ではMgの添加量を 1.2〜 1.8wt%と限定した。
Mg is also an element for improving mechanical properties, but if its addition amount is less than 1.2 wt%, its effect is small,
On the other hand, if added in excess of 1.8 wt%, SCC resistance, moldability and extrusion processability deteriorate, and productivity also decreases. Therefore, in the present invention, the addition amount of Mg is limited to 1.2 to 1.8 wt%.

【0009】Cuは機械的性質を向上するとともに、耐
SCC性を向上する効果がある。その添加量が0.20wt%
未満ではその効果がなく、一方0.50wt%を超えて添加す
ると耐食性に害を及ぼす。したがって本発明ではCuの
添加量を0.20〜0.50wt%と限定した。
Cu has the effect of improving the SCC resistance as well as improving the mechanical properties. The amount added is 0.20 wt%
If it is less than 0.50% by weight, it is not effective. If it is added in excess of 0.50% by weight, the corrosion resistance is adversely affected. Therefore, in the present invention, the amount of Cu added is limited to 0.20 to 0.50 wt%.

【0010】Zrは合金中の再結晶粒の粗大化を抑制
し、結晶粒を繊維状組織として組織の安定化を図るとと
もに曲げ等の成形性を改善する効果がある。その添加量
が0.10wt%未満ではその効果が少なく、一方0.50wt%を
超えて添加すると粗大なAl−Zr系金属間化合物が生
成して靱性等を劣化する。したがって本発明ではZrの
添加量を0.10〜0.50wt%と限定した。
Zr has the effects of suppressing the coarsening of recrystallized grains in the alloy, stabilizing the structure by using the crystal grains as a fibrous structure, and improving the formability such as bending. If the addition amount is less than 0.10 wt%, the effect is small, while if it is added over 0.50 wt%, a coarse Al—Zr intermetallic compound is formed and the toughness and the like are deteriorated. Therefore, in the present invention, the added amount of Zr is limited to 0.10 to 0.50 wt%.

【0011】MnおよびCrはその共存状態でアルミニ
ウム素地中に微細に分散して繊維状組織の再結晶化を防
止して組織を安定化し、曲げ加工等の成形加工後の押出
材の表面にオレンジピール状の肌あれが発生することを
防ぐ効果がある。その添加量がそれぞれ0.01wt%未満で
はその効果が少なく、逆にそれぞれ0.10wt%を超えて添
加するとその効果が飽和する一方で粗大な金属間化合物
を生成したり、焼き入れ感受性が増大したりするほか
に、強度および押出加工性にも悪影響を及ぼす。したが
って本発明ではMnおよびCrの添加量をそれぞれ0.01
〜0.10wt%と限定した。
Mn and Cr, in the coexisting state, are finely dispersed in the aluminum matrix to prevent recrystallization of the fibrous structure and stabilize the structure, and orange is formed on the surface of the extruded material after forming such as bending. It is effective in preventing peel-like rough skin. If the addition amount is less than 0.01 wt% each, the effect is small. Conversely, if the addition amount exceeds 0.10 wt%, the effect is saturated, while coarse intermetallic compounds are generated and quenching sensitivity increases. In addition, it adversely affects strength and extrudability. Therefore, in the present invention, the addition amounts of Mn and Cr are each 0.01
Limited to ~ 0.10wt%.

【0012】FeおよびSiは靱性、機械的性質を向上
する効果があるが、その添加量がFe+Siで0.10wt%
未満であるとその効果がなく、逆に0.60wt%を超えて含
有すると粗大な金属間化合物が生成するため、本発明で
はFe+Siの含有量を0.10〜0.06wt%と限定した。ま
た、Fe/Siが 1.5未満であると鋳造後の鋳塊割れ
や、結晶粒の粗大化を防止できないため、Fe/Siは
1.5以上とする。
Fe and Si have the effect of improving the toughness and mechanical properties, but the addition amount of Fe + Si is 0.10 wt%.
If it is less than 0.6%, the effect is not exerted. On the contrary, if the content exceeds 0.60% by weight, a coarse intermetallic compound is formed. Therefore, in the present invention, the content of Fe + Si is limited to 0.10 to 0.06% by weight. If Fe / Si is less than 1.5, ingot cracking after casting and coarsening of crystal grains cannot be prevented.
Set to 1.5 or more.

【0013】また、Ti、Ni、Bi等の不純物につい
てはそれぞれが0.05wt%以下、かつ合計で0.15wt%以下
であれば本発明の効果に悪影響を及ぼさないので含有し
ていても差し支えない。
Impurities such as Ti, Ni and Bi may be contained if they are 0.05 wt% or less and 0.15 wt% or less in total, since they do not adversely affect the effects of the present invention.

【0014】ところでAl−Zn−Mg系合金の形材は
一般に、均質化処理した鋳塊を熱間押出加工して、プレ
ス焼入れし、その後人工時効処理するという方法で製造
される。本発明は、前記の合金を用いて、この製造の各
段階での温度条件や処理時間条件を限定することにより
目的を達成するものである。次にこの製造条件について
説明する。
By the way, the profile of the Al--Zn--Mg alloy is generally manufactured by a method in which a homogenized ingot is hot extruded, press-hardened, and then artificially aged. The present invention achieves the object by using the above alloy and limiting the temperature conditions and the treatment time conditions at each stage of the production. Next, the manufacturing conditions will be described.

【0015】まず前記合金の鋳塊に均質化処理を施す。
均質化処理は、Zr、Mn、Cr等の化合物を微細均一
に分散させるために比較的高温で行う。ただし 520℃を
超える温度や24時間を超えて処理すると、析出物が粗大
化して押出性、焼き入れ感受性等の特性が悪化する。一
方 420℃未満や2時間未満の処理では均質化が不十分で
ある。したがって本発明において均質化処理は 420〜 5
20℃× 2〜24時間の条件でおこなう。
First, the ingot of the alloy is homogenized.
The homogenization treatment is performed at a relatively high temperature in order to finely and uniformly disperse compounds such as Zr, Mn, and Cr. However, if the temperature is higher than 520 ° C or if the treatment is performed for more than 24 hours, the precipitates are coarsened and the properties such as extrudability and quenching sensitivity are deteriorated. On the other hand, homogenization is inadequate in treatments at less than 420 ° C or less than 2 hours. Therefore, in the present invention, the homogenization treatment is 420 to 5
Perform at 20 ℃ x 2-24 hours.

【0016】次に鋳塊を押出温度まで加熱して熱間押出
加工を行い、その直後に空冷または水冷によりプレス焼
入れをする。押出温度については、押出加工が困難な押
出比の大きい薄肉の中空形材をも加工できるように 430
℃以上の高温で行う。従来の合金をこのような高温で押
出加工すると、再結晶が進行し、粗大な再結晶粒が生成
するため耐SCC性が著しく低下し、また粗大な金属間
化合物が生成するため、押出加工性、成形性、耐食性等
が悪化する。しかしながら本発明に係わる組成の合金に
おいては、Zr添加で再結晶粒のない繊維状組織とする
こと、MnとCrを微細に分散させることにより再結晶
の進行を抑制し、また、Fe、Siの含有量を限定した
ことにより粗大金属間化合物の生成を抑え、さらにCu
添加で耐SCC性を大幅に向上することにより、高温で
の押出加工を可能としている。また、高温で押出加工す
ることにより、プレス焼入れが十分に行われるため、人
工時効処理により強度が大幅に上昇する。ただし、 520
℃を超える温度で押出加工を行うと、再結晶や粗大金属
間化合物の生成が進行し、各特性が劣化する。したがっ
て本発明においては、押出加工の温度は 430〜 520℃の
温度範囲に限定した。
Next, the ingot is heated to the extrusion temperature for hot extrusion, and immediately after that, press quenching is performed by air cooling or water cooling. Regarding the extrusion temperature, it is possible to process thin hollow sections with a large extrusion ratio, which are difficult to extrude.
Perform at a high temperature above ℃. When a conventional alloy is extruded at such a high temperature, recrystallization progresses and coarse recrystallized grains are generated, so that the SCC resistance is remarkably lowered, and a coarse intermetallic compound is formed, and thus extrudability is improved. , Moldability, corrosion resistance, etc. deteriorate. However, in the alloy of the composition according to the present invention, the addition of Zr results in a fibrous structure without recrystallized grains, and Mn and Cr are finely dispersed to suppress the progress of recrystallization. By limiting the content, the formation of coarse intermetallic compounds is suppressed, and further Cu
Addition significantly improves SCC resistance, enabling extrusion at high temperatures. In addition, since extrusion hardening is performed at a high temperature, press quenching is sufficiently performed, so that the artificial aging treatment significantly increases the strength. However, 520
If the extrusion process is performed at a temperature higher than 0 ° C, recrystallization and formation of coarse intermetallic compounds proceed, and each property deteriorates. Therefore, in the present invention, the extrusion temperature is limited to the temperature range of 430 to 520 ° C.

【0017】プレス焼入れ後、常温まで冷却された押出
材に、人工時効処理を施す。人工時効処理は二段時効と
し、一段目でMgZn2 の微細析出物を均一に分散させ、二
段目の高温時効で粗大なGPゾーンあるいは中間相へと
成長させる。一段目の時効処理は、析出物の粗大化を防
ぎつつ、微細な析出物を十分に均一に分散析出させるた
め、90〜 110℃で 2〜12時間の条件で行う。二段目の時
効処理は、一段目より高温で行うが、 170℃を超える温
度で処理を行うとMgZn2 が粗大に析出し、成形性、耐食
性を劣化させたり、比熱にばらつきが生じたりする。一
方、 120℃未満の温度で処理を行うとGPゾーンあるい
は中間相への成長が不十分となり、強度が不足する。さ
らに生産性を考慮して、本発明においては二段目の時効
処理は 120〜 170℃で 5〜24時間の条件で行う。
After press hardening, the extruded material cooled to room temperature is subjected to artificial aging treatment. The artificial aging treatment is a two-step aging, in which the fine precipitates of MgZn 2 are uniformly dispersed in the first step, and the high-temperature aging in the second step grows into a coarse GP zone or an intermediate phase. The first stage aging treatment is performed at 90 to 110 ° C for 2 to 12 hours in order to disperse fine precipitates sufficiently uniformly while preventing coarsening of the precipitates. The second-stage aging treatment is performed at a higher temperature than the first-stage treatment, but if the treatment is performed at a temperature higher than 170 ° C, MgZn 2 will be coarsely precipitated, resulting in deterioration of formability and corrosion resistance, and variation in specific heat. . On the other hand, if the treatment is carried out at a temperature lower than 120 ° C., the growth in the GP zone or the intermediate phase becomes insufficient and the strength becomes insufficient. Further, in consideration of productivity, in the present invention, the second aging treatment is performed at 120 to 170 ° C. for 5 to 24 hours.

【0018】以上説明したような本発明の製造方法によ
るAl−Zn−Mg系合金中空形材の金属組織はすべて
押出方向に沿った繊維状組織となっている。なお、特に
過酷な条件での曲げ等の成形加工を必要とする場合等
は、人工時効処理を、プレス焼入れ(T4処理)後、曲
げ等の成形加工を施した後に行ってもよい。この場合も
人工時効処理は上記の処理条件にて行えばよい。
The metallic structure of the Al-Zn-Mg-based alloy hollow profile produced by the manufacturing method of the present invention as described above has a fibrous structure along the extrusion direction. When a forming process such as bending under particularly severe conditions is required, the artificial aging treatment may be performed after press hardening (T4 treatment) and after forming process such as bending. Also in this case, the artificial aging treatment may be performed under the above treatment conditions.

【0019】[0019]

【実施例】次に本発明を実施例に基づいて説明する。表
1に示す組成の本発明例(No1〜4)、従来例(No5〜
8)、比較例(No9、10)の合金をDC鋳造によりφ 3
45mmの押出用鋳塊に鋳造し、均質化処理をそれぞれ表1
に示す条件で行った。その後表1に示す押出温度までそ
れぞれを再加熱し、ホロー角管形状の肉厚 2mmのモデル
型で押出加工した。その際、形材をファン空冷すること
により、プレス焼入れを行った。次いでそれぞれ表1に
示す条件で二段の時効処理を行った。
EXAMPLES Next, the present invention will be explained based on examples. Inventive examples (No. 1 to 4) and conventional examples (No. 5 to 5) having the compositions shown in Table 1
8), the alloys of Comparative Examples (No. 9 and 10) were φ 3 by DC casting.
It was cast into a 45 mm ingot for extrusion, and homogenized, respectively.
It carried out on the conditions shown in. After that, each was reheated to the extrusion temperature shown in Table 1 and extruded with a model die having a hollow square tube shape and a wall thickness of 2 mm. At that time, press hardening was performed by air-cooling the shape member with a fan. Then, two-step aging treatment was performed under the conditions shown in Table 1, respectively.

【0020】[0020]

【表1】 [Table 1]

【0021】上記の工程で加工した形材について、機械
的性質、靱性、押出性、成形性、耐食性および金属組織
を調べた。機械的性質は、JIS 5号引張試験片を押出長
手方向から採取し、引張試験を行い引張強さ、耐力、伸
びにより評価した。靱性は、JIS 3号試験片Uノッチに
よるシャルピー試験及びUPE引裂試験(以下、UPE
という)をJIS 標準試験片を用いてインストロン試験機
により吸収エネルギーを算出することにより評価した。
押出性は、限界ラム速度(ipm)から押出速度を換算する
とともに、最大押出圧力を測定した。成形性はバンパー
基本型ホロー角管(50mm×40mm、肉厚2mm)を、ドローベ
ンダーにより曲率半径 200mmに曲げ加工し、その変形
能、加工後のしわ、割れの発生状態から総合的に評価
し、◎は曲げ良好、○はしわ発生、△はしわ・変形大、
×は曲げ不能で表した。耐SCC性は、クロム酸促進液
による負荷応力95%のU字曲げにより試験し、○は変化
なし、△は剥離腐食状態、×は割れ発生で評価した。耐
食性は塩水噴霧試験で 500時間経過後の腐食による減量
で評価した。金属組織は再結晶組織が現れておらず、全
面繊維状組織となっているものを○、表層部が再結晶し
ているものを△、粗大再結晶組織が現れているものを×
で表した。これらの各特性の試験結果を表2に示す。
Mechanical properties, toughness, extrudability, moldability, corrosion resistance and metallographic structure of the profile processed in the above steps were examined. The mechanical properties were evaluated by taking a JIS No. 5 tensile test piece from the longitudinal direction of extrusion and performing a tensile test to determine tensile strength, proof stress, and elongation. The toughness is determined by the JIS No. 3 test piece U-notch Charpy test and UPE tear test (hereinafter referred to as UPE
Was evaluated by calculating the absorbed energy with an Instron tester using JIS standard test pieces.
For the extrudability, the maximum extrusion pressure was measured while converting the extrusion speed from the limiting ram speed (ipm). Formability is evaluated comprehensively by bending a bumper basic type hollow square tube (50 mm × 40 mm, wall thickness 2 mm) with a draw bender to a radius of curvature of 200 mm, its deformability, wrinkles after processing, and the state of cracking. , ◎ good bending, ○ wrinkle occurrence, △ wrinkle / deformation large,
× was not bendable. The SCC resistance was tested by U-bending under a load stress of 95% with a chromic acid accelerator, and ○ was evaluated as unchanged, Δ as peeling corrosion state, and × as cracking. The corrosion resistance was evaluated in the salt spray test by the weight loss due to corrosion after 500 hours. Regarding the metallographic structure, a recrystallized structure is not shown and the entire surface is a fibrous structure, ○, a recrystallized surface layer is △, and a coarse recrystallized structure is ×.
Expressed as Table 2 shows the test results for each of these characteristics.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から明らかなように本発明例No1〜4
は、従来のJIS 7N01合金よりも機械的性質、靱
性、成形性、耐食性が優れ、JIS 7003合金より
も大幅に機械的性質が向上している。さらに従来合金と
同等以上の押出性を持つ。一方、JIS 7N01合金
は特に成形性に問題があり、バンパーリィンホースメン
トのように押出加工後に曲げ加工を施すような用途には
適用できない。また、JIS 7003合金は靱性、押
出性、成形性、耐食性に優れているものの、機械的性質
が悪く、やはりバンパーリィンホースメントやドアビー
ム等の自動車用部材には適用できない。
As is clear from Table 2, the invention examples No. 1 to 4
Has better mechanical properties, toughness, formability, and corrosion resistance than the conventional JIS 7N01 alloy, and has significantly improved mechanical properties than the JIS 7003 alloy. Furthermore, it has the same or better extrudability as conventional alloys. On the other hand, JIS 7N01 alloy has a problem particularly in formability and cannot be applied to applications such as bumper reinforcements where bending is performed after extrusion. Further, although JIS 7003 alloy has excellent toughness, extrudability, formability, and corrosion resistance, it has poor mechanical properties and cannot be applied to automobile parts such as bumper reinforcements and door beams.

【0024】[0024]

【発明の効果】このように本発明合金はバンパーリィン
ホースメントやドアビームといった自動車用中空部材に
要求される各種の特性にバランス良く優れているため、
これらの部材のアルミ化すなわち軽量化が可能となる。
また、薄肉の中空形材の押出も可能で、さらに製造条件
の規定により条件管理が確実かつ容易になるため、生産
性が高まる等、工業上顕著な効果を奏するものである。
As described above, the alloy of the present invention is excellent in a well-balanced manner in various properties required for hollow members for automobiles such as bumper reinforcements and door beams.
It is possible to make these members aluminum, that is, to reduce the weight.
Further, it is possible to extrude a thin hollow material, and the condition management can be surely and easily performed according to the regulation of the manufacturing condition, so that the productivity is enhanced and the industrially significant effect is exhibited.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Zn 5.0〜 6.0wt%、Mg 1.2〜 1.8wt
%、Cu0.20〜0.50wt%、Zr0.10〜0.50wt%、Fe+
Siを0.10〜0.60wt%かつFe/Siが 1.5以上となる
ように含有し、さらにMn0.01〜0.10wt%、Cr0.01〜
0.10wt%の1種または2種を含有し、その他の不純物は
それぞれ0.05wt%以下、かつ合計で0.15wt%以下、残部
がアルミニウムからなるAl−Zn−Mg系合金の中空
形材であって、前記中空形材の金属組織がすべて押出方
向に沿った繊維状組織となっていることを特徴とする、
強度と成形性に優れたAl−Zn−Mg系合金中空形
材。
1. Zn 5.0-6.0 wt%, Mg 1.2-1.8 wt
%, Cu 0.20 to 0.50 wt%, Zr 0.10 to 0.50 wt%, Fe +
Si is contained in an amount of 0.10 to 0.60 wt% and Fe / Si is 1.5 or more, and further, Mn 0.01 to 0.10 wt% and Cr 0.01 to
A hollow profile of an Al-Zn-Mg-based alloy containing 0.10 wt% of one or two kinds, other impurities of 0.05 wt% or less and a total of 0.15 wt% or less, and the balance being aluminum. , Characterized in that the metal structure of the hollow profile is a fibrous structure along the extrusion direction,
A hollow Al-Zn-Mg alloy material with excellent strength and formability.
【請求項2】 Zn 5.0〜 6.0wt%、Mg 1.2〜 1.8wt
%、Cu0.20〜0.50wt%、Zr0.10〜0.50wt%、Fe+
Siを0.10〜0.60wt%かつFe/Siが 1.5以上となる
ように含有し、さらにMn0.01〜0.10wt%、Cr0.01〜
0.10wt%の1種または2種を含有し、その他の不純物は
それぞれ0.05wt%以下、かつ合計で0.15wt%以下、残部
がアルミニウムからなるAl−Zn−Mg系合金鋳塊
を、 420〜 520℃で 2〜24時間の条件で均質化処理し、
その後 430〜 520℃で押出加工を行い、室温まで冷却
後、人工時効処理として一段目を90〜 110℃で 2〜12時
間、二段目を 120〜 170℃で 5〜24時間の条件で熱処理
を行うことを特徴とする、強度と成形性に優れたAl−
Zn−Mg系合金中空形材の製造方法。
2. Zn 5.0-6.0 wt%, Mg 1.2-1.8 wt%
%, Cu 0.20 to 0.50 wt%, Zr 0.10 to 0.50 wt%, Fe +
Si is contained in an amount of 0.10 to 0.60 wt% and Fe / Si is 1.5 or more, and further, Mn 0.01 to 0.10 wt% and Cr 0.01 to
An Al-Zn-Mg-based alloy ingot containing 0.10 wt% of one or two kinds, other impurities of 0.05 wt% or less, and a total of 0.15 wt% or less, and the balance of aluminum, 420 to 520 Homogenize at 2 ℃ for 2-24 hours,
After that, extrude at 430 to 520 ° C, cool to room temperature, and then heat-treat as artificial aging treatment at 90 to 110 ° C for 2 to 12 hours for the first step and 120 to 170 ° C for 5 to 24 hours for the second step. Which is excellent in strength and formability.
A method for producing a hollow Zn-Mg alloy material.
JP1935593A 1993-01-11 1993-01-11 Al-zn-mg alloy hollow shape excellent in strength and formability and its production Pending JPH06212338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1935593A JPH06212338A (en) 1993-01-11 1993-01-11 Al-zn-mg alloy hollow shape excellent in strength and formability and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1935593A JPH06212338A (en) 1993-01-11 1993-01-11 Al-zn-mg alloy hollow shape excellent in strength and formability and its production

Publications (1)

Publication Number Publication Date
JPH06212338A true JPH06212338A (en) 1994-08-02

Family

ID=11997075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1935593A Pending JPH06212338A (en) 1993-01-11 1993-01-11 Al-zn-mg alloy hollow shape excellent in strength and formability and its production

Country Status (1)

Country Link
JP (1) JPH06212338A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231995B1 (en) * 1997-06-07 2001-05-15 Kabushiki Kaisha Kobe Seiko Sho Aluminum extruded door beam material
WO2008036760A2 (en) * 2006-09-19 2008-03-27 Automotive Casting Technology, Inc. High strength, high stress corrosion cracking resistant and castable al-zn-mg-cu zr alloy for shape cast products
JP2011144396A (en) * 2010-01-12 2011-07-28 Kobe Steel Ltd High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
US8105449B2 (en) * 2005-09-27 2012-01-31 Aisin Keikinzoku Co., Ltd. High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
JP2013100604A (en) * 2012-12-27 2013-05-23 Kobe Steel Ltd High strength aluminum alloy extruded material for bumper reinforcement having excellent stress corrosion cracking resistance
US9353430B2 (en) 2005-10-28 2016-05-31 Shipston Aluminum Technologies (Michigan), Inc. Lightweight, crash-sensitive automotive component
US10202671B2 (en) 2014-05-13 2019-02-12 Nippon Light Metal Company, Ltd. High proof stress Al—Zn aluminum alloy extrusion material superior in bendability
US10697047B2 (en) 2011-12-12 2020-06-30 Kobe Steel, Ltd. High strength aluminum alloy extruded material excellent in stress corrosion cracking resistance

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231995B1 (en) * 1997-06-07 2001-05-15 Kabushiki Kaisha Kobe Seiko Sho Aluminum extruded door beam material
US6338817B2 (en) 1997-06-07 2002-01-15 Kabushiki Kaisha Kobe Seiko Sho Aluminum extruded door beam material
US8105449B2 (en) * 2005-09-27 2012-01-31 Aisin Keikinzoku Co., Ltd. High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
US9353430B2 (en) 2005-10-28 2016-05-31 Shipston Aluminum Technologies (Michigan), Inc. Lightweight, crash-sensitive automotive component
WO2008036760A2 (en) * 2006-09-19 2008-03-27 Automotive Casting Technology, Inc. High strength, high stress corrosion cracking resistant and castable al-zn-mg-cu zr alloy for shape cast products
WO2008036760A3 (en) * 2006-09-19 2009-01-22 Automotive Casting Technology High strength, high stress corrosion cracking resistant and castable al-zn-mg-cu zr alloy for shape cast products
JP2011144396A (en) * 2010-01-12 2011-07-28 Kobe Steel Ltd High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
US10697047B2 (en) 2011-12-12 2020-06-30 Kobe Steel, Ltd. High strength aluminum alloy extruded material excellent in stress corrosion cracking resistance
JP2013100604A (en) * 2012-12-27 2013-05-23 Kobe Steel Ltd High strength aluminum alloy extruded material for bumper reinforcement having excellent stress corrosion cracking resistance
US10202671B2 (en) 2014-05-13 2019-02-12 Nippon Light Metal Company, Ltd. High proof stress Al—Zn aluminum alloy extrusion material superior in bendability

Similar Documents

Publication Publication Date Title
US8105449B2 (en) High-strength aluminum alloy extruded product with excellent impact absorption and stress corrosion cracking resistance and method of manufacturing the same
US4614552A (en) Aluminum alloy sheet product
JP3819263B2 (en) Aluminum alloy material with excellent room temperature aging control and low temperature age hardening
US20110017366A1 (en) 7000-series aluminum alloy extruded product and method of producing the same
JPH08144031A (en) Production of aluminum-zinc-magnesium alloy hollow shape excellent in strength and formability
US20220364213A1 (en) Method for Producing Aluminum Alloy Extrusion
JPH08225874A (en) Aluminum alloy extruded material for automobile structural member and its production
JP3833574B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JPH06212338A (en) Al-zn-mg alloy hollow shape excellent in strength and formability and its production
JP4117243B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP2023536096A (en) Novel 6xxx aluminum alloy and method of making same
JPH1030147A (en) Aluminum-zinc-magnesium alloy extruded material and its production
JP2008190022A (en) Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP2000239811A (en) Manufacture for aluminum alloy sheet excellent in formability
JP3749687B2 (en) Aluminum alloy plate and panel structure for bending
JP3618807B2 (en) Aluminum alloy hollow shape having excellent bending workability and method for producing the shape
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet
US11827967B2 (en) Method for producing aluminum alloy extruded material
JPH05171328A (en) Thin hollow shape of aluminum alloy excellent in bendability and its production
JP4694770B2 (en) Aluminum alloy plate with excellent bending workability
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability
JPH0247234A (en) High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture
JP2001254161A (en) METHOD OF MANUFACTURING HIGH STRENGTH Al-Cu-Mg ALLOY EXCELLENT IN WORKABILITY
JP2003247040A (en) Aluminum alloy sheet having excellent flat hem workability and production method thereof
WO2017164085A1 (en) Aluminum alloy sheet for molding