JPH08109559A - Laminated nonwoven structure - Google Patents

Laminated nonwoven structure

Info

Publication number
JPH08109559A
JPH08109559A JP6261509A JP26150994A JPH08109559A JP H08109559 A JPH08109559 A JP H08109559A JP 6261509 A JP6261509 A JP 6261509A JP 26150994 A JP26150994 A JP 26150994A JP H08109559 A JPH08109559 A JP H08109559A
Authority
JP
Japan
Prior art keywords
fibers
polymer
fiber
laminated
woven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6261509A
Other languages
Japanese (ja)
Inventor
Chikayuki Fukushima
周之 福島
Fumio Matsuoka
文夫 松岡
Hiroshi Nishimura
弘 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP6261509A priority Critical patent/JPH08109559A/en
Publication of JPH08109559A publication Critical patent/JPH08109559A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE: To provide a laminated nonwoven structure having high tensile strength and delamination strength, excellent softness, dyeability, water absorptivity, oil-absorptivity, lint-freeness and excellent bacteria barrierness. CONSTITUTION: This laminated nonwoven structure is a laminate of a nonwoven cloth composed of mechanically interlocked natural fibers and a nonwoven cloth composed of fibers having three-dimensional network structure, partially bonded with each other by heat-bonding and containing fibrillated fibers made of a polyolefinic polymer and fibrillated fibers made of a polyester polymer as main components. The nonwoven structure has sporadically fused regions where the network structure fibers 1 and the natural fibers 2 are fused with each other. The natural fibers positioned at least on the boundary of both nonwoven layers in the sporadically fused region are fixed in a state embedded in the fused part of the network-structure fibers. The nonwoven structure is suitable as a raw material for medical and sanitary materials, clothes, daily necessities or industrial materials.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,ポリオレフイン系重合
体とポリエステル系重合体とからなる網状構造繊維不織
布と天然繊維不織布とが積層されてなる積層不織構造体
であって,引張り強力と層間の剥離強力が高く,柔軟性
が優れ,可染性を有し,吸水性と吸油性を併せて具備
し,またリントフリー性を備え,さらに優れたバクテリ
アバリア性を有し,医療・衛生材用,衣料用や生活関連
材用あるいは産業資材用の素材として好適な積層不織構
造体に関するものである。
FIELD OF THE INVENTION The present invention relates to a laminated non-woven structure obtained by laminating a reticulated fiber non-woven fabric comprising a polyolefin polymer and a polyester polymer and a natural fiber non-woven fabric. Has excellent peeling strength, flexibility, dyeability, water absorbency and oil absorbency, lint-free property, and excellent bacterial barrier property. The present invention relates to a laminated non-woven structure suitable as a raw material for clothing, clothing, daily life-related materials, or industrial materials.

【0002】[0002]

【従来の技術】従来から,熱可塑性合成繊維不織布と天
然繊維不織布とが積層されてなる積層不織構造体が知ら
れている。例えば,特公昭54−24506号公報に
は,熱可塑性合成繊維不織布からなる通気性熱溶着層と
天然繊維等からなる通気性非熱溶着層とが積層され,非
熱溶着層上に熱溶着性物質が点在的に配置され,かつ熱
溶着性物質と熱溶着層との溶融部が非熱溶着層の両面か
ら浸透して前記非熱溶着層を接着挟持した構造を有する
積層不織構造体が提案されている。しかしながら,この
積層不織構造体は,天然繊維が積層されているため吸水
性が優れ,かつ熱溶着層が熱溶着処理により非熱溶着層
すなわち天然繊維層に浸透しているため引張り強力と剥
離強力等の機械的性能は優れるものの,柔軟性等の風合
いが低下するという問題を有している。しかも,この積
層不織構造体は,これを製造するに際して通気性熱溶着
層と通気性非熱溶着層とを積層する工程と,非熱溶着層
上に含浸用熱溶着性シート層を積層し,超音波融着処理
により熱溶着性物質と熱溶着層との溶融部を非熱溶着層
の両面から浸透させて前記非熱溶着層を接着挟持した構
造を発現させる工程と,前記含浸用熱溶着性シートをそ
の溶融部を残して剥離する工程とを必要とするなど製造
技術の観点からすれば煩雑で,経済性にも劣るものであ
った。一方,前記積層不織構造体において,その柔軟性
を向上させ,併せてフイルタ特性を具備せしめることを
目的に,熱可塑性合成繊維不織布として相異なる二種の
重合体が海島型に配置された二成分系フイラメントを溶
融紡糸し一方の重合体を溶媒で除去して得た極細繊維か
らなる不織布,あるいは溶融重合体を紡糸孔から押し出
し高温空気流により高速で牽引するいわゆるメルトブロ
ーン法により得た極細繊維不織布を採用することが考え
られる。しかしながら,前者の二成分系フイラメントを
出発原料とする不織布は,これを製造するに際して重合
体を溶解除去するための種々の複雑な工程を要し,ま
た,後者の不織布は,その構成繊維は確かに極細繊維で
はあるものの,この繊維を製造するに際して吐出直後の
溶融状態のままで重合体を牽引・細化するため延伸配向
と結晶化が十分に進行せず,したがって得られた繊維の
強度が実用上十分な水準まで向上しない。
2. Description of the Related Art Conventionally, a laminated non-woven structure is known in which a thermoplastic synthetic fiber nonwoven fabric and a natural fiber nonwoven fabric are laminated. For example, in Japanese Examined Patent Publication No. 54-24506, a breathable heat-welding layer made of a thermoplastic synthetic fiber nonwoven fabric and a breathable non-heat-welding layer made of natural fibers are laminated, and the heat-welding property is formed on the non-heat-welding layer. A laminated non-woven structure having a structure in which substances are arranged in a scattered manner, and a fusion portion of a heat-welding substance and a heat-welding layer penetrates from both sides of the non-heat-welding layer to sandwich and sandwich the non-heat-welding layer. Is proposed. However, this laminated non-woven structure has excellent water absorbency due to the laminated natural fibers, and because the heat-welding layer penetrates into the non-heat-welding layer, that is, the natural fiber layer by the heat-welding treatment, it has good tensile strength and peeling. Although it has excellent mechanical properties such as strength, it has a problem that the texture such as flexibility deteriorates. In addition, this laminated non-woven structure has a step of laminating a breathable heat-welding layer and a breathable non-heat-welding layer, and a heat-sealing sheet layer for impregnation on the non-heat-welding layer. , A step of infiltrating the fused portion of the heat-welding substance and the heat-welding layer from both sides of the non-heat-welding layer by ultrasonic welding to develop a structure in which the non-heat-welding layer is adhesively sandwiched, From the viewpoint of manufacturing technology, such as requiring a step of peeling the weldable sheet leaving the melted portion, it is complicated and economically inferior. On the other hand, in the above-mentioned laminated non-woven structure, two different polymers are arranged in a sea-island type as a thermoplastic synthetic fiber non-woven fabric for the purpose of improving its flexibility and also having a filter property. Nonwoven fabric composed of ultrafine fibers obtained by melt spinning a component filament and removing one polymer with a solvent, or ultrafine fibers obtained by the so-called melt blown method in which a molten polymer is extruded from a spinning hole and pulled at high speed by a hot air flow It is conceivable to use a non-woven fabric. However, the former non-woven fabric starting from a two-component filament requires various complicated steps to dissolve and remove the polymer when it is produced, and the latter non-woven fabric has certain constituent fibers. Although it is an ultrafine fiber, the stretch orientation and crystallization do not proceed sufficiently because the polymer is pulled / thinned in the molten state immediately after discharge during the production of this fiber. Therefore, the strength of the obtained fiber is It does not improve to a practically sufficient level.

【0003】[0003]

【発明が解決しようとする課題】本発明は,前記問題を
解決し,ポリオレフイン系重合体とポリエステル系重合
体とからなる網状構造繊維不織布と天然繊維不織布とが
積層されてなる積層不織構造体であって,引張り強力と
層間の剥離強力が高く,柔軟性が優れ,可染性を有し,
吸水性と吸油性を併せて具備し,またリントフリー性を
備え,さらに優れたバクテリアバリア性を有し,医療・
衛生材用,衣料用や生活関連材用あるいは産業資材用の
素材として好適な積層不織構造体を提供しようとするも
のである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and provides a laminated non-woven structure in which a reticulated fiber nonwoven fabric composed of a polyolefin polymer and a polyester polymer and a natural fiber nonwoven fabric are laminated. And has high tensile strength and peel strength between layers, excellent flexibility, dyeability,
It has both water absorption and oil absorption, has lint-free property, and has excellent bacterial barrier property.
An object of the present invention is to provide a laminated non-woven structure suitable as a material for sanitary materials, clothing, daily life-related materials, or industrial materials.

【0004】[0004]

【課題を解決するための手段】本発明者らは,前記問題
を解決すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は,以下の構成をその要旨とするものであ
る。ポリオレフイン系重合体からなるフイブリル繊維と
ポリエステル系重合体からなるフイブリル繊維とを主構
成要素とする三次元的網状構造繊維から構成され,かつ
構成繊維間が部分的に熱接着されてなる網状構造繊維不
織布と,天然繊維同士が機械的に交絡してなる不織布と
が積層され,前記網状構造繊維と天然繊維とが融着され
てなる点状融着区域を有し,かつその点状融着区域にお
いて両不織布層の少なくとも境界面に位置する天然繊維
が前記網状構造繊維の融解部に埋設された状態で固定さ
れることにより全体として一体化されてなることを特徴
とする積層不織構造体。
The present inventors have arrived at the present invention as a result of extensive studies to solve the above problems. That is, the present invention has the following configuration as its gist. Network-structured fibers composed of three-dimensional network-structured fibers whose main constituents are fibril fibers composed of a polyolefin-based polymer and fibril fibers composed of a polyester-based polymer, and the constituent fibers are partially heat-bonded A non-woven fabric and a non-woven fabric in which natural fibers are mechanically entangled with each other are laminated, and there is a point-like fused area formed by fusing the reticulated structure fiber and the natural fiber, and the point-like fused area In the laminated non-woven structure, the natural fibers located at least at the boundary surface of both the non-woven fabric layers are integrally fixed by being fixed in a state of being embedded in the melted portion of the network structure fibers.

【0005】次に,本発明を詳細に説明する。まず,本
発明における網状構造繊維から構成される不織布に関し
てであるが,この不織布は,いずれも繊維形成性を有す
るものの,相互に非相溶性の2種の重合体からなるフイ
ブリル繊維,すなわちポリオレフイン系重合体のフイブ
リル繊維とポリエステル系重合体のフイブリル繊維とを
主構成要素とし,かつこれらが混在してなるものであ
る。本発明における網状構造繊維の一構成要素であるポ
リオレフイン系重合体は,繊維形成性を有する低密度ポ
リエチレン,線状低密度ポリエチレン,中密度ポリエチ
レン,高密度ポリエチレンあるいはエチレンを主体とし
これに他の成分が共重合された共重合ポリエチレン,結
晶性ポリプロピレンあるいはプロピレンを主体としこれ
に他の成分が共重合された共重合ポリプロピレン等であ
る。これらの重合体は,その密度が高いほどフイブリル
繊維としたときそのモジユラスが向上し,あるいはフイ
ブリル繊維のヌメリ感や粘着性が減少して不織布とした
ときに風合いが向上するので好ましい。前記ポリエチレ
ン系重合体としては,ASTM−D−1238(E)に
記載の方法により測定されるメルトインデツクスが0.
3〜30g/10分のものを,また,前記ポリプロピレ
ン系重合体としては,ASTM−D−1238(L)に
記載の方法により測定されるメルトフローレート値が1
〜40g/10分以下のものを用いることが好ましい。
ポリエチレン系重合体のメルトインデツクスが0.3g
/10分未満,ポリプロピレン系重合体のメルトフロー
レート値が1g/10分未満であると,重合体を溶媒に
溶解して得た溶液の溶融粘度が著しく高くなって極細の
フイブリル繊維を得ることが困難となるため好ましくな
い。一方,ポリエチレン系重合体のメルトインデツクス
が30g/10分を超え,ポリプロピレン系重合体のメ
ルトフローレート値が40g/10分を超えると,重合
度が低過ぎてフラツシユ紡糸時の紡糸速度に追随でき
ず,紡出された繊維が短繊維状あるいは略粉体状の形態
を有するものとなり,仮に極細のフイブリル繊維を得る
ことができたとしてもその強度が向上せず,また,フイ
ブリル繊維においてヌメリ感や粘着性が増大して不織布
としたときに風合いが低下したり,粘着性の増大により
ハンドリング性が低下したりするため好ましくない。
Next, the present invention will be described in detail. First, the present invention relates to a non-woven fabric composed of network-structured fibers. The non-woven fabrics have fiber-forming properties, but they are fibril fibers composed of two kinds of polymers that are incompatible with each other, that is, polyolefin fibers. The polymer fibril fibers and the polyester polymer fibril fibers are the main constituent elements, and they are mixed. The polyolefin-based polymer, which is one of the constituent elements of the reticulated structure fiber in the present invention, is mainly composed of fiber-forming low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene or ethylene. Is a copolymerized polyethylene, a crystalline polypropylene, or a copolymerized polypropylene in which other components are copolymerized mainly with propylene. The higher the density of these polymers, the better the modulus of the fibril fiber when it is made into fibril fibers, or the feel of the fibril fiber when it is made into a non-woven fabric due to the reduced slimy feel and tackiness, which is preferable. As the polyethylene polymer, the melt index measured by the method described in ASTM-D-1238 (E) is 0.
3 to 30 g / 10 minutes, and the polypropylene-based polymer has a melt flow rate value of 1 as measured by the method described in ASTM-D-1238 (L).
It is preferable to use one having a content of 40 g / 10 minutes or less.
0.3 g of polyethylene polymer melt index
If it is less than / 10 minutes and the melt flow rate value of the polypropylene-based polymer is less than 1 g / 10 minutes, the melt viscosity of the solution obtained by dissolving the polymer in a solvent is remarkably increased and an ultrafine fibril fiber is obtained. Is difficult to do, which is not preferable. On the other hand, when the melt index of the polyethylene-based polymer exceeds 30 g / 10 minutes and the melt flow rate of the polypropylene-based polymer exceeds 40 g / 10 minutes, the degree of polymerization is too low to follow the spinning speed during flash spinning. However, the spun fiber has a short fiber shape or a substantially powdery shape, and even if an ultrafine fibril fiber could be obtained, its strength is not improved, and the fibril fiber has a slimy shape. It is not preferable because the feeling and tackiness are increased and the texture is deteriorated when it is made into a non-woven fabric, and the handling property is deteriorated due to the increase in tackiness.

【0006】本発明における網状構造繊維の他の構成要
素であるポリエステル系重合体は,ポリエチレンテレフ
タレート,ポリブチレンテレフタレート,あるいはこれ
らを主成分としフタル酸,イソフタル酸,グルタール
酸,アジピン酸,スルホイソフタル酸等の酸成分,ジエ
チレングリコール,プロピレングリコール,1,4−ブ
タンジオール,2,2−ビス(4−ヒドロキシエートキ
シフエニル)プロパン,ビスフエノールA,ポリアルキ
レングリコール等のジオール成分が15モル%までの範
囲で共重合されたポリエステル系共重合体である。この
重合体としては,繊維形成性を有しテトラクロールエタ
ンとフエノールとの等重量混合液を溶媒として重合体濃
度0.5重量%かつ温度20℃で測定したときの相対粘
度が1.3〜1.6のものから,固相重合により作成さ
れ相対粘度が1.7程度の高粘度のものまで用いること
ができる。しかしながら,重合体が相対粘度1.3未満
の低粘度のものであると,重合度が低過ぎてフラツシユ
紡糸時の紡糸速度に追随できず,紡出された繊維が短繊
維状あるいは略粉体状の形態を有するものとなるため好
ましくない。なお,本発明においては,前記いずれの重
合体にも,あるいは重合体を溶媒に溶解して作成した紡
糸液中には,通常,繊維に用いられる艶消し剤,耐光
剤,耐熱剤,顔料,開繊剤,紫外線吸収剤,畜熱剤,安
定剤等を本発明の効果を損なわない範囲内であれば添加
することができる。
The polyester polymer, which is another constituent of the reticulated fiber in the present invention, is polyethylene terephthalate, polybutylene terephthalate, or phthalic acid, isophthalic acid, glutaric acid, adipic acid, sulfoisophthalic acid containing these as the main components. Up to 15 mol% of acid components such as diethylene glycol, propylene glycol, 1,4-butanediol, 2,2-bis (4-hydroxyateoxyphenyl) propane, bisphenol A and polyalkylene glycol. It is a polyester-based copolymer copolymerized in the range. This polymer has a fiber-forming property and a relative viscosity of 1.3-0.5 when measured at a polymer concentration of 0.5% by weight and a temperature of 20 ° C. using an equal weight mixture of tetrachloroethane and phenol as a solvent. From 1.6 to a high-viscosity one prepared by solid-state polymerization and having a relative viscosity of about 1.7 can be used. However, if the polymer has a low viscosity of less than 1.3, the polymerization degree is too low to keep up with the spinning speed during flash spinning, and the spun fibers are in the form of short fibers or almost powder. It is not preferable because it has a morphological shape. In the present invention, in any of the above-mentioned polymers, or in a spinning solution prepared by dissolving the polymer in a solvent, a matting agent, a light-proofing agent, a heat-resistant agent, a pigment usually used for fibers, A fiber-opening agent, an ultraviolet absorber, a heat storage agent, a stabilizer and the like can be added as long as the effects of the present invention are not impaired.

【0007】本発明における前記網状構造繊維は,上述
したように,ポリオレフイン系重合体のフイブリル繊維
とポリエステル系重合体のフイブリル繊維とを主構成要
素とし,かつ両重合体の存在比(重量比)を5〜95/
95〜5として混在してなるものである。この網状構造
繊維において,ポリオレフイン系重合体とポリエステル
系重合体の全重量に対するポリオレフイン系重合体の比
率すなわち存在比率が5重量%未満であると(ポリエス
テル系重合体が95重量%を超える。),得られた網状
構造繊維の強度とモジユラスが低下し,したがって不織
布自体の強度が低下し,また軽量性も劣り,一方,存在
比率が95重量%を超えると(ポリエステル系重合体が
5重量%未満である。),得られた網状構造繊維のモジ
ユラスが低下し,したがって不織布自体が繊維の低モジ
ユラス化により腰が弱くかつ着用感が乏しいものとな
り,しかもポリオレフインリツチのためヌメリ感が発現
したり,染色性が低下したりするので,いずれも好まし
くない。したがって本発明では,前記ポリオレフイン系
重合体とポリエステル系重合体の存在比(重量比)を5
〜95/95〜5とし,好ましくは15〜85/85〜
15とする。
As described above, the reticulated structure fiber in the present invention comprises, as main components, the fibril fibers of the polyolefin polymer and the fibril fibers of the polyester polymer, and the abundance ratio (weight ratio) of both polymers. 5 to 95 /
95 to 5 are mixed. In this network fiber, when the ratio of the polyolefin polymer to the total weight of the polyolefin polymer and the polyester polymer, that is, the abundance ratio is less than 5% by weight (the polyester polymer exceeds 95% by weight), The strength and modulus of the obtained reticulated structure fiber are reduced, thus the strength of the non-woven fabric itself is reduced, and the lightness is also poor. On the other hand, when the existence ratio exceeds 95% by weight (the polyester-based polymer is less than 5% by weight). ), The modulus of the obtained reticulated structure fiber is reduced, and therefore the nonwoven fabric itself has a low stiffness and a poor feeling of wearing due to the low modulus of the fiber, and a slimy feeling is exhibited due to the polyolefin fluff. Both are not preferable because the dyeability may be reduced. Therefore, in the present invention, the abundance ratio (weight ratio) of the polyolefin polymer and the polyester polymer is 5%.
-95 / 95-5, preferably 15-85 / 85
Set to 15.

【0008】本発明における前記網状構造繊維は,0.
01〜10μm相当径のフイブリル繊維が連続しながら
集合し,三次元的な網状構造を呈するごとく網状にかつ
長手方向にエンドレスに広がった構造を有するものであ
る。一般に,相互に非相溶性の重合体の混合物からなる
繊維は,物理的な力により個々の成分に分離され易いこ
とが知られている。本発明における前記網状構造繊維
は,上述したように2種のフイブリル繊維が三次元的網
状構造を具備してなるものであるが,これらのフイブリ
ル繊維は相互に非相溶性のポリオレフイン系重合体とポ
リエステル系重合体との混合物がフラツシユ紡糸時に個
々の重合体成分に分離・フイブリル化して形成されたも
のであるので,極めて微細なフイブリル繊維から構成さ
れることになる。したがって,得られた網状構造繊維を
用いて不織布としたときは,緻密な構造を有するものの
柔軟性が向上し,透湿性が十分に保持されたままバクテ
リアバリア性が向上することになる。本発明における前
記網状構造繊維は,上述したとおり前記2種のフイブリ
ル繊維を主構成要素とするものであるが,この網状構造
繊維では,これら主構成要素の他に,ポリオレフイン系
重合体とポリエステル系重合体とが複合されてなるフイ
ブリル繊維や,これら2種の重合体の混合物からなるフ
イブリル繊維も一部存在する。本発明では,このフイブ
リル繊維の相当径としては,0.01〜10μmである
のが好ましく,特に緻密性や柔軟性あるいは高透湿性・
高フイルタ性を要する場合には,0.01〜0.1μm
とするのがよい。
In the present invention, the reticulated structure fibers are 0.
The fibril fibers having an equivalent diameter of 01 to 10 μm are continuously aggregated to form a three-dimensional network structure, which has a structure in which the fibers are endlessly spread in a longitudinal direction. It is generally known that fibers made of a mixture of mutually incompatible polymers are easily separated into individual components by physical force. The network fiber in the present invention is composed of two kinds of fibril fibers having a three-dimensional network structure as described above. These fibril fibers are mutually incompatible with polyolefin polymer. Since the mixture with the polyester polymer is formed by separating and fibrillating the individual polymer components during flash spinning, it is composed of extremely fine fibril fibers. Therefore, when a non-woven fabric is formed using the obtained network-structured fibers, it has a dense structure, but the flexibility is improved, and the bacterial barrier property is improved while the moisture permeability is sufficiently retained. As described above, the reticulated structure fiber in the present invention has the above-mentioned two types of fibril fibers as main constituent elements. In the reticulated structure fiber, in addition to these main constituent elements, a polyolefin polymer and a polyester-based polymer are used. There are some fibril fibers composed of a polymer and a fibril fiber composed of a mixture of these two kinds of polymers. In the present invention, the equivalent diameter of the fibril fiber is preferably 0.01 to 10 μm, and particularly, denseness, flexibility or high moisture permeability
If high filterability is required, 0.01-0.1 μm
It is good to do.

【0009】本発明における前記網状構造繊維からなる
不織布は,その目付けが20〜200g/m2 のもので
あるのが好ましい。目付けが20g/m2 未満である
と,網状構造繊維不織布と天然繊維不織布とを積層一体
化してなる積層不織構造体の接着強力が低くなり,一
方,目付けが200g/m2 を超えると,得られる積層
不織構造体を例えば柔軟性が特に要求されるような分野
に適用することが困難となったり,あるいはこの不織布
に天然繊維不織布を積層した後,超音波融着装置を用い
融着処理を施して一体化するに際し,加工速度を遅くし
たりあるいは多大の超音波エネルギを供給する必要が生
じたりして,いずれも好ましくない。したがって,本発
明では,この網状構造繊維不織布の目付けを20〜20
0g/m2 とし,好ましくは50〜150g/m2 とす
る。
The non-woven fabric comprising the above-mentioned network fibers in the present invention preferably has a basis weight of 20 to 200 g / m 2 . When the basis weight is less than 20 g / m 2 , the adhesive strength of the laminated non-woven structure obtained by laminating and integrating the network structure nonwoven fabric and the natural fiber nonwoven fabric becomes low, while when the basis weight exceeds 200 g / m 2 , For example, it becomes difficult to apply the obtained laminated non-woven structure to a field where flexibility is particularly required, or after laminating a natural fiber non-woven fabric on this non-woven fabric, it is fused using an ultrasonic fusing device. Both are not preferable because the processing speed is slowed down or a large amount of ultrasonic energy needs to be supplied when the treatment is integrated. Therefore, in the present invention, the basis weight of this network structure nonwoven fabric is 20 to 20.
And 0 g / m 2, preferably between 50 to 150 g / m 2.

【0010】本発明における前記網状構造繊維からなる
不織布は,例えば米国特許第3227794号公報に記
載されたようないわゆるフラツシユ紡糸法により効率良
く製造することができる。すなわち,前記ポリオレフイ
ン系重合体とポリエステル系重合体とを同一浴の溶媒に
高温高圧下で溶解して得た溶液を紡糸液として用い,こ
れを自生圧以上にさらに加圧しながら圧力降下室を有す
る紡糸孔を通して大気中に紡出し,紡出直後に溶媒を瞬
間的に気化させて網状の繊維構造を形成するのである。
溶液を作成するに際し用いる溶媒としては,ベンゼン,
トルエン等の芳香族炭化水素,ブタン,ぺンタン,ヘキ
サン,ヘプタン,オクタン又はこれらの異性体や同族体
等の脂肪族炭化水素,シクロヘキサン等の脂環族炭化水
素,塩化メチレン,四塩化炭素,クロロホルム,1,1
−ジクロル−2,2ジフルオロエタン,1,2−ジクロ
ル−1,1ジフルオロエタン,塩化メチル,塩化エチ
ル,フルオロカーボン等のハロゲン化炭化水素,アルコ
ール,エステル,エーテル,ケトン,ニトリル,アミ
ド,二酸化硫黄,二硫化炭素,ニトロメタン等の不飽和
炭化水素,あるいは上述した溶媒の混合物を用いること
ができる。溶媒として塩化メチレン,1,1−ジクロル
−2,2ジフルオロエタン,1,2−ジクロル−1,1
ジフルオロエタンを用いると,従来のフロンを溶媒とし
て用いる場合にみられたような地球環境を害するという
ことがなくて好ましい。
The non-woven fabric composed of the network-structured fibers in the present invention can be efficiently produced by the so-called flash spinning method as described in, for example, US Pat. No. 3,227,794. That is, a solution obtained by dissolving the polyolefin polymer and the polyester polymer in a solvent of the same bath under high temperature and high pressure is used as a spinning solution, and a pressure drop chamber is provided while further pressurizing the solution above the autogenous pressure. It is spun into the atmosphere through the spinning holes and the solvent is instantly vaporized immediately after spinning to form a reticulated fiber structure.
As a solvent used for preparing a solution, benzene,
Aromatic hydrocarbons such as toluene, butane, pentane, hexane, heptane, octane or aliphatic hydrocarbons such as isomers or homologs thereof, alicyclic hydrocarbons such as cyclohexane, methylene chloride, carbon tetrachloride, chloroform , 1, 1
-Dichloro-2,2 difluoroethane, 1,2-dichloro-1,1 difluoroethane, methyl chloride, ethyl chloride, halogenated hydrocarbon such as fluorocarbon, alcohol, ester, ether, ketone, nitrile, amide, sulfur dioxide, disulfide Carbon, unsaturated hydrocarbons such as nitromethane, or mixtures of the solvents mentioned above can be used. Methylene chloride, 1,1-dichloro-2,2 difluoroethane, 1,2-dichloro-1,1 as a solvent
The use of difluoroethane is preferable because it does not harm the global environment as has been observed when conventional freon is used as a solvent.

【0011】ここで,前記ポリオレフイン系重合体とし
てポリエチレン系重合体を用いる場合には,上述したと
ころのASTM−D−1238(E)に記載の方法によ
り測定されるメルトインデツクスが0.3〜30g/1
0分のものを,また,前記ポリプロピレン系重合体を用
いる場合には,上述したところのASTM−D−123
8(L)に記載の方法により測定されるメルトフローレ
ート値が1〜40g/10分以下のものを用いることが
好ましい。さらに,前記ポリエステル系重合体として
は,テトラクロールエタンとフエノールとの等重量混合
液を溶媒として重合体濃度0.5重量%かつ温度20℃
で測定したときの相対粘度が1.3以上高重合度のもの
を用いることが好ましい。
When a polyethylene polymer is used as the polyolefin polymer, the melt index measured by the method described in ASTM-D-1238 (E) is 0.3 to. 30 g / 1
When the polypropylene-based polymer is used for 0 minutes, the above-mentioned ASTM-D-123 is used.
It is preferable to use one having a melt flow rate value of 1 to 40 g / 10 minutes or less measured by the method described in 8 (L). Further, as the polyester-based polymer, a polymer concentration of 0.5% by weight and a temperature of 20 ° C. are obtained by using an equal weight mixture of tetrachlorethane and phenol as a solvent.
It is preferable to use a polymer having a relative degree of polymerization of 1.3 or more and a high degree of polymerization as measured by.

【0012】この紡糸液を用いてフラツシユ紡糸するに
際しての紡出性と得られた網状構造繊維の特性を勘案す
ると,これらがこの紡糸液における重合体の重合度や溶
媒の温度に対する自生圧力あるいは窒素の加圧状態等に
より左右されるため,前記ポリオレフイン系重合体とポ
リエステル系重合体との濃度を一概に特定することは困
難であるが,これを敢えて特定すれば,全重合体を5〜
30重量%,溶媒を95〜70重量%とするのが好まし
い。この全重合体の濃度が5重量%未満であると,フイ
ブリル繊維が連続した構造の網状構造繊維を得ることが
困難となり,一方,重合体の濃度が30重量%を超える
と,重合体の濃度が高過ぎて溶解が不均一となるため極
細のフイブリル繊維を得ることができず,しかも紡出さ
れた繊維はそのフイブリル繊維がその側面で相互に接合
し,かつ内部に空洞を有する中空構造の繊維となって高
強度のフイブリル繊維からなる網状構造繊維を得ること
ができず,いずれも好ましくない。紡糸液を作成するに
際して,前記全重合体を溶質とし,これらを溶媒と共に
溶解装置に充填し昇温・混練しながら溶液を作成し,得
られた溶液を紡糸液として用いる。溶解装置としては,
従来から最も広範に用いられているオートクレーブや,
例えばエクストルーダとこれに連続して配設された混練
装置とからなる連続溶解装置等を用いることができる。
Taking into consideration the spinnability in flash-spinning using this spinning solution and the properties of the obtained network-structured fibers, these are the autogenous pressure or nitrogen for the degree of polymerization of the polymer in this spinning solution and the temperature of the solvent. It is difficult to unconditionally specify the concentrations of the polyolefin-based polymer and the polyester-based polymer because it depends on the pressurization state of 1.
It is preferable to use 30% by weight and 95 to 70% by weight of solvent. When the concentration of the total polymer is less than 5% by weight, it is difficult to obtain a network fiber having a continuous structure of fibril fibers, while when the concentration of the polymer exceeds 30% by weight, the concentration of the polymer is increased. Since it is too high and the dissolution becomes non-uniform, it is not possible to obtain ultrafine fibril fibers, and the spun fibers have a hollow structure in which the fibril fibers are joined to each other on their sides and have cavities inside. Since it is not possible to obtain a reticulated structure fiber composed of high-strength fibril fiber as a fiber, neither is preferable. When preparing a spinning solution, all the above-mentioned polymers are used as solutes, these are filled with a solvent in a dissolution apparatus, a solution is prepared while heating and kneading, and the obtained solution is used as a spinning solution. As a melting device,
The most widely used autoclave,
For example, it is possible to use a continuous melting device including an extruder and a kneading device which is arranged continuously from the extruder.

【0013】溶解装置内でこの紡糸液を昇温・混練を行
うに際しては,その純度が99重量%以上の酸素を含有
しない窒素あるいは二酸化炭素といった不活性気体によ
る加圧下で行うと,紡糸圧力をなお一層高めることがで
きて好ましい。窒素あるいは二酸化炭素の気体はいわゆ
る不活性気体であって,本発明で用いる紡糸液中に殆ど
溶解せず重合体に対して悪影響を及ぼさないため,紡糸
液に対して実質的な圧力を印加することができる。
When the spinning solution is heated and kneaded in the dissolution apparatus, the spinning pressure is increased by applying an inert gas such as nitrogen or carbon dioxide having a purity of 99% by weight or more and containing no oxygen. It is preferable because it can be further increased. The gas of nitrogen or carbon dioxide is a so-called inert gas, which is hardly dissolved in the spinning solution used in the present invention and does not adversely affect the polymer, so that a substantial pressure is applied to the spinning solution. be able to.

【0014】また,溶解装置内でこの紡糸液を作成する
に際して,液中にノニオン系の表面活性剤を,例えばラ
ウリン酸,ステアリン酸,オレイン酸等の各モノエステ
ル,ラウリルアルコール,ステアリルアルコール,オレ
イルアルコール等のポリオキシエチレン付加物などの表
面活性剤を添加することもできる。この表面活性剤を添
加することにより,紡糸液を乳化状態に安定して保つこ
とができる。
When the spinning solution is prepared in the dissolving apparatus, a nonionic surface active agent is added to the solution, for example, monoesters of lauric acid, stearic acid, oleic acid, etc., lauryl alcohol, stearyl alcohol and oleyl. Surface active agents such as polyoxyethylene adducts such as alcohols can also be added. By adding this surfactant, the spinning solution can be stably maintained in an emulsified state.

【0015】溶解装置内で前記全重合体を溶媒に溶解す
るに際しての溶解時間は,5〜90分とするのが好まし
い。溶解するに際しての溶解時間が90分を超えると,
紡糸液中のポリエステル系重合体の熱分解が激しくなっ
てフイブリル繊維の強度が向上せず,一方,この溶解時
間が5分未満であると,全重合体の溶解が不十分となっ
て均一なフイブリル繊維からなる網状構造繊維を得るこ
とが困難となったり,あるいは紡糸時にフイルタの目詰
まりを生じたりするため,いずれも好ましくない。
The dissolution time for dissolving all the polymers in the solvent in the dissolution apparatus is preferably 5 to 90 minutes. If the dissolution time for dissolution exceeds 90 minutes,
The thermal decomposition of the polyester-based polymer in the spinning solution is so severe that the strength of the fibril fiber is not improved. On the other hand, if the dissolution time is less than 5 minutes, the dissolution of all the polymers is insufficient and uniform Both are not preferable because it becomes difficult to obtain a reticulated structure fiber made of fibril fiber or the filter is clogged during spinning.

【0016】紡糸液を溶解するに際しての温度すなわち
溶解温度とフラツシユ紡糸するに際しての温度すなわち
紡糸温度は,いずれも全重合体が溶媒に十分に溶解しか
つ紡糸液をフラツシユ紡糸して極細のフイブリル繊維が
集合し三次元的に網状に広がった構造を有する繊維を得
ることができるような温度であれば特に限定されるもの
ではないが,敢えて特定すれば,170〜230℃とす
るのが好ましい。この溶解温度や紡糸温度が170℃未
満であると,全重合体が溶媒に均一に溶解しないため極
細のフイブリル繊維を得ることができず,一方,この溶
解温度や紡糸温度が230℃を超えると,ポリオレフイ
ン系重合体とポリエステル系重合体の熱分解が生じて得
られたフイブリル繊維の強度が向上せず,また強度は保
持していても着色が生じたりし,いずれも好ましくな
い。
The temperature at which the spinning solution is dissolved, that is, the melting temperature, and the temperature at which the spinning is performed, that is, the spinning temperature, are all such that all the polymer is sufficiently dissolved in the solvent and the spinning solution is flash-spun to produce fine fiber fibers. The temperature is not particularly limited as long as it is a temperature at which the fibers can be aggregated and a fiber having a three-dimensionally reticulated structure can be obtained, but if specified intentionally, the temperature is preferably 170 to 230 ° C. If the melting temperature or the spinning temperature is less than 170 ° C, it is not possible to obtain ultrafine fibril fibers because all the polymers are not uniformly dissolved in the solvent. On the other hand, if the melting temperature or the spinning temperature exceeds 230 ° C, However, the thermal decomposition of the polyolefin-based polymer and the polyester-based polymer does not improve the strength of the obtained fibril fiber, and coloring occurs even if the strength is maintained, both of which are not preferable.

【0017】紡糸液をフラツシユ紡糸するに際しての圧
力は,全重合体の濃度と溶媒量そして窒素の注入量等に
より左右されるため一概に限定されないが,通常,40
〜120kg/cm2 とするのが好ましい。繊維の強度
は重合体の分子鎖自体が十分に延伸・配向されることに
より発現されるのであり,フラツシユ紡糸法すなわち前
記紡糸液を圧力降下室を有する紡糸孔を通して紡出し,
紡出直後に溶媒を瞬間的に気化させて網状の繊維構造を
形成する方法においては,この延伸・配向を紡出直後の
瞬間的な溶媒の気化に伴う爆発力によって行う。この爆
発力とは,溶媒が瞬間的に気化する際の気化力であり,
通常,0.1秒以下の時間で溶媒が一気に気化するとき
の力を意味する。したがって,この紡糸圧力は40kg
/cm2以上とするのが好ましく,紡糸圧力が40kg
/cm2 未満であると,紡糸液を用いてフラツシユ紡糸
するに際しての爆発力が低下しフイブリル繊維の配向が
不十分となってその強度が向上せず,また紡出状態が不
均一なものとなって高度にフイブリル化した網状構造繊
維を安定して得ることが困難となり,一方,圧力が12
0kg/cm2 を超えると,紡糸液中のポリエステル系
重合体の粘度が低下してフイブリル繊維の強度が十分に
向上せず,いずれも好ましくない。
The pressure for flash-spinning the spinning solution depends on the concentration of all polymers, the amount of solvent, the amount of nitrogen injected, etc., but is not limited to any particular value.
It is preferably set to 120 kg / cm 2 . The strength of the fiber is expressed by the fact that the polymer molecular chain itself is sufficiently stretched and oriented. Therefore, the flash spinning method, that is, the spinning solution is spun through a spinning hole having a pressure drop chamber,
In the method of instantaneously vaporizing the solvent immediately after spinning to form a reticulated fiber structure, this stretching / orientation is performed by the explosive force that accompanies the instantaneous vaporization of the solvent immediately after spinning. This explosive force is the vaporization force when the solvent is instantaneously vaporized,
Usually, it means the force at which the solvent evaporates at once in 0.1 second or less. Therefore, this spinning pressure is 40 kg
/ Cm 2 or more, spinning pressure is 40 kg
If it is less than / cm 2 , the explosive force at the time of flash-spinning using a spinning solution is reduced, the orientation of the fibril fibers is insufficient, the strength is not improved, and the spinning state is not uniform. It becomes difficult to stably obtain highly fibrillated reticulated structure fibers, while the pressure is 12
When it exceeds 0 kg / cm 2 , the viscosity of the polyester-based polymer in the spinning solution is lowered and the strength of the fibril fiber is not sufficiently improved, either of which is not preferable.

【0018】本発明では,前記のようにして得られた網
状構造繊維からなる不織ウエブに対し,部分熱接着処理
を施して形態を保持させる。この部分熱接着処理を施す
に際しては公知の方法を採用することができる。例え
ば,得られた不織ウエブを加熱されたエンボスローラと
表面が平滑な金属ローラ等とからなる両ローラ間に通す
方法あるいは超音波融着装置を用いる方法である。この
部分熱接着処理法を採用するに際しては,網状構造繊維
不織布と天然繊維不織布との積層後に施す融着処理を効
果的ならしめるため,軽度の処理条件を採用するのが好
ましい。例えば,加熱されたエンボスローラを用いる場
合,ロールの表面温度を網状構造繊維中最も低い融点を
有する重合体の融点より5〜40℃低い温度とし,かつ
ロールの線圧を0.5〜50kg/cmとして軽度の擬
似的な部分的熱接着領域を形成するのが好ましい。この
温度と前記重合体の融点との差が40℃を超えかつ線圧
が0.5kg/cm未満であると,熱接着処理効果が乏
しく,得られた不織布の形態保持性が向上せず,したが
ってこの不織布自体の強力が向上せず,一方,この温度
と前記重合体の融点との差が5℃未満あるいは重合体の
融点を超えかつ線圧が50kg/cmを超えると,部分
熱接着処理効果が大きくなり過ぎるため,網状構造繊維
が部分的熱接着点以外の領域で融着したり,あるいは極
端なときには不織布に穿孔が生じたりするため,いずれ
も好ましくない。超音波融着装置を用いるに際しては,
公知の装置すなわち周波数が約20KHzの通常ホーン
と呼称される超音波発振器と,円周上に点状又は帯状に
凸状突起部を具備するパターンロールとからなる装置を
用い,被処理物を超音波発振器とパターンロールとの間
に通すことによって可能となる。そして,熱エンボスロ
ーラを用いる場合のエンボスパターンあるいは超音波融
着装置を用いる場合のパターンロールのパターンは,圧
接面積率が4〜50%の範囲内であれば特に限定される
ものではなく,丸型,楕円型,菱型,三角型,T字型,
井型等任意の形状でよい。なお,この熱エンボスローラ
あるいは超音波融着装置を用いる部分熱接着処理は,連
続工程あるいは別工程のいずれであってもよい。
In the present invention, the non-woven web made of the network-structured fibers obtained as described above is partially heat-bonded to maintain its shape. A publicly known method can be adopted when performing the partial heat-bonding treatment. For example, there is a method in which the obtained nonwoven web is passed between both rollers consisting of a heated embossing roller and a metal roller having a smooth surface, or a method using an ultrasonic fusing device. When adopting this partial heat-bonding treatment method, it is preferable to employ a mild treatment condition in order to effectively make the fusion-bonding treatment performed after the lamination of the network-structured fiber nonwoven fabric and the natural-fiber nonwoven fabric. For example, when a heated embossing roller is used, the surface temperature of the roll is 5 to 40 ° C. lower than the melting point of the polymer having the lowest melting point in the network fiber, and the linear pressure of the roll is 0.5 to 50 kg / It is preferred to form a mild pseudo partial thermal bond area as cm. When the difference between this temperature and the melting point of the polymer is more than 40 ° C. and the linear pressure is less than 0.5 kg / cm, the heat-bonding treatment effect is poor and the shape retention of the obtained nonwoven fabric is not improved. Therefore, the strength of the non-woven fabric itself is not improved. On the other hand, when the difference between this temperature and the melting point of the polymer is less than 5 ° C or exceeds the melting point of the polymer and the linear pressure exceeds 50 kg / cm, the partial thermal bonding treatment is performed. Since the effect becomes too large, the reticulated structure fibers are fused in the region other than the partial heat-bonding points, or in the extreme case, the nonwoven fabric is perforated, which is not preferable. When using the ultrasonic fusing device,
A known device, that is, an ultrasonic oscillator generally called a horn having a frequency of about 20 KHz and a pattern roll having convex projections in the form of dots or strips on the circumference is used to measure an object to be processed. It is possible by passing it between the sonic oscillator and the pattern roll. The embossing pattern when using the hot embossing roller or the pattern of the pattern roll when using the ultrasonic fusing device is not particularly limited as long as the pressure contact area ratio is in the range of 4 to 50%, Type, elliptical type, rhombus type, triangular type, T type,
Any shape such as a well shape may be used. The partial heat-bonding process using the hot embossing roller or the ultrasonic fusing device may be a continuous process or a separate process.

【0019】次に,本発明における天然繊維同士が機械
的に交絡してなる不織布に関してであるが,この不織布
を構成する天然繊維とは,木綿繊維や麻繊維等のセルロ
ース系繊維の他に,ラミー等の動物繊維,絹短繊維,天
然パルプ,レーヨンに代表される各種再生短繊維をも包
含するものである。本発明では,この天然繊維からなる
不織布の出発原料として,晒し加工の施されていないコ
ーマ糸,晒し加工された晒し綿,あるいは織物・編物か
ら得られる各種反毛を用いることもできる。出発原料と
して反毛を用いる場合,効果的に用い得る反毛機として
は,ラツグマシン,ノツトブレーカ,ガーネツトマシ
ン,廻切機が挙げられる。用いる反毛機の種類と組み合
わせは,反毛される織物・編物等の布帛形状や構成する
糸の太さあるいは撚りの強さにもよるが,同一の反毛機
を複数台直列に連結したり,2種以上の反毛機を組み合
わせて使用したりするとより効果的である。この反毛機
による解繊率(%)は30〜95%の範囲であるのが好
ましい。この解繊率が30%未満であると,カードウエ
ブ中に未解繊繊維が存在するため不織布表面にザラツキ
が生じるのみでなく,例えば高圧液体柱状流処理により
天然繊維同士を三次元的機械的交絡を施すに際して未解
繊繊維部分を高圧液体柱状流が十分貫通せず,一方,解
繊率が95%を超えると,前記極細繊維不織布と積層・
一体化して得られる積層不織構造体にて十分な表面摩擦
強度が得られず,いずれも好ましくない。なお,ここで
いう解繊率(%)とは,下記式(1)により求められる
ものである。 解繊率(%)=(被反毛重量−糸状物重量)×100/被反毛重量・・(1)
Next, regarding the non-woven fabric in which the natural fibers are mechanically entangled with each other in the present invention, the natural fibers constituting the non-woven fabric include, in addition to cellulosic fibers such as cotton fiber and hemp fiber, It also includes animal fibers such as ramie, silk staple fibers, natural pulp, and various recycled staple fibers represented by rayon. In the present invention, as a starting material for the non-woven fabric made of the natural fiber, it is possible to use combed yarn that has not been subjected to bleaching, bleached cotton that has been bleached, or various fluff obtained from a woven or knitted fabric. When using fluff as the starting material, the fluff machine that can be effectively used includes a ratchet machine, a notch breaker, a garnet machine, and a cutting machine. The type and combination of anti-fluffing machines used depend on the shape of the woven or knitted fabric to be fluffed and the thickness or twisting strength of the constituent threads, but multiple identical anti-fluffing machines are connected in series. It is more effective to use two or more types of anti-hairbrushing machine in combination. The defibration rate (%) by the fluffing machine is preferably in the range of 30 to 95%. When the defibration rate is less than 30%, unwoven fibers are present in the card web, so that not only the surface of the non-woven fabric is rough but also natural fibers are three-dimensionally mechanically processed by the high pressure liquid columnar flow treatment. When the entanglement is performed, the high-pressure liquid columnar flow does not sufficiently penetrate the undefibrated fiber portion, and when the defibration rate exceeds 95%, it is laminated with the ultrafine fiber nonwoven fabric.
The laminated non-woven structure obtained by being integrated cannot obtain sufficient surface friction strength, which is not preferable. The defibration rate (%) here is determined by the following equation (1). Disentanglement rate (%) = (weight of woven fabric-weight of filamentous material) x 100 / weight of woven fabric ... (1)

【0020】本発明における天然繊維不織布は,前記天
然繊維からなり,かつ繊維同士が機械的に交絡してなる
ものである。すなわち,天然繊維同士が,高圧液体柱状
流処理あるいはニードルパンチング処理により機械的に
交絡したものであり,特に前者の場合,繊維同士が三次
元的に交絡して不織布の嵩高性が向上すると共に柔軟性
も向上するため,例えば前記網状構造繊維不織布と積層
・一体化して得られる積層不織構造体を衛生材用あるい
は生活関連材用の素材として用いる上でより好ましい。
The natural fiber non-woven fabric in the present invention is made of the above-mentioned natural fibers, and the fibers are mechanically entangled with each other. That is, the natural fibers are mechanically entangled by the high-pressure liquid columnar flow treatment or the needle punching treatment. Especially in the former case, the fibers are entangled three-dimensionally and the bulkiness of the non-woven fabric is improved and the flexibility is high. Since the property is also improved, it is more preferable to use, for example, a laminated non-woven structure obtained by laminating and integrating with the above-mentioned network structure nonwoven fabric as a material for sanitary materials or life-related materials.

【0021】この不織布は,前記天然繊維素材の中から
選択された単一素材あるいは複数種の素材が混合されて
なるものを出発原料とし,カード機を用いて所定目付け
のカードウエブを作成し,次いで得られたウエブに高圧
液体柱状流処理あるいはニードルパンチング処理により
繊維間に機械的交絡を施すことにより容易に得ることが
できる。このカードウエブは,構成繊維の配列度合によ
って種々選択することができ,例えばカード機の進行方
向に配列したパラレルウエブ,パラレルウエブがクロス
レイドされたウエブ,ランダムに配列したランダムウエ
ブあるいは両者の中程度に配列したセミランダムウエブ
等が挙げられる。また,衣料用素材としての展開を図り
たい場合には,不織布強力の縦/横比が概ね1/1とな
るカードウエブを使用するのが好ましい。
This non-woven fabric is made of a single material selected from the above-mentioned natural fiber materials or a mixture of plural kinds of materials as a starting material, and a card web having a predetermined weight is prepared by using a card machine. Then, the obtained web can be easily obtained by subjecting the fibers to mechanical entanglement by high pressure liquid columnar flow treatment or needle punching treatment. The card web can be variously selected according to the degree of arrangement of the constituent fibers. For example, a parallel web arranged in the traveling direction of the card machine, a web in which parallel webs are crosslaid, a random web arranged in random, or a medium degree of both. Examples thereof include a semi-random web and the like. Further, when it is desired to develop it as a material for clothing, it is preferable to use a card web in which the aspect ratio of the strength of the nonwoven fabric is about 1/1.

【0022】高圧液体柱状流処理の場合,例えば孔径が
0.05〜1.5mm特に0.1〜0.4mmの噴射孔
を孔間隔を0.05〜5mmで1列あるいは複数列に多
数配列した装置を用い,噴射圧力が5〜150kg/c
2 Gの高圧液体を前記噴射孔から噴射し,多孔性支持
部材上に載置したカードウエブに衝突させることにより
繊維間に三次元的交絡を付与する方法を採用する。噴射
孔の配列は,このカードウエブの進行方向と直交する方
向に列状に配列する。高圧液体としては,常温の水ある
いは温水を用いることができる。噴射孔とウエブとの間
の距離は,1〜15cmとするのがよい。この距離が1
cm未満であるとこの処理により得られる不織布の地合
いが乱れ,一方,この距離が15cmを超えると液体流
が積層物に衝突したときの衝撃力が低下して三次元的な
交絡が十分に施されず,いずれも好ましくない。この高
圧液体柱状流による処理は,少なくとも2段階に別けて
施すとよい。すなわち,第1段階の処理として圧力が5
〜40kg/cm2 Gの高圧液体流を噴出し前記ウエブ
に衝突させ,ウエブの構成繊維同士を予備的に交絡させ
る。この第1段階の処理において,液体流の圧力が5k
g/cm2 G未満であるとウエブの構成繊維同士を予備
的に交絡させることができず,一方,液体流の圧力が4
0kg/cm2 Gを超えるとウエブに高圧液体流を噴出
し衝突させたときウエブの構成繊維が液体流の作用によ
って乱れ,ウエブに地合いの乱れや目付け斑が生じるた
め,いずれも好ましくない。引き続き,第2段階の処理
として圧力が50〜150kg/cm2 Gの高圧液体流
を噴出し前記ウエブに衝突させ,ウエブの構成繊維同士
を三次元的に交絡させて全体として緻密に一体化させ
る。この第2段階の処理において,液体流の圧力が50
kg/cm2 G未満であると,上述したような繊維間の
三次元的交絡を十分に形成することができず,一方,液
体流の圧力が150kg/cm2 Gを超えると,得られ
る不織布の嵩高性と柔軟性が向上せず,いずれも好まし
くない。なお,ウエブの目付けによっては,第2段階の
処理に引き続き第3段階の処理として,第2段階の処理
側と逆の側から第2段階の処理と同様の条件にて再度処
理を施すことにより,表裏共に緻密に繊維同士が交絡し
た不織布を得ることができる。高圧液体柱状流処理を施
すに際して用いる前記ウエブを担持する多孔性支持部材
としては,例えば20〜100メツシユの金網製あるい
は合成樹脂製等のメツシユスクリーンや有孔板など,高
圧液体流がウエブを貫通し得るものであれば特に限定さ
れない。また,多孔性支持部材のメツシユ構成は20本
/25mm〜200本/25mmの範囲であるのが好ま
しく,20本/25mm未満であると,高圧液体柱状流
がウエブに衝突した際に繊維が柱状流と共にメツシユス
クリーンを通過して繊維の脱落が発生し,一方,200
本/25mmを超えると,高圧液体柱状流がウエブとメ
ツシユスクリーンとを通過するに要するエネルギー量が
多大になって生産コストが上昇し,いずれも好ましくな
い。高圧液体流処理を施した後,処理後の前記ウエブか
ら過剰水分を除去する。この過剰水分を除去するに際し
ては,公知の方法を採用することができる。例えばマン
グルロール等の絞り装置を用いて過剰水分をある程度機
械的に除去し,引き続きサクシヨンバンド方式の熱風循
環式乾燥機等の乾燥装置を用いて残余の水分を除去して
不織布を得ることができる。
In the case of high-pressure liquid columnar flow treatment, for example, a large number of injection holes having a hole diameter of 0.05 to 1.5 mm, particularly 0.1 to 0.4 mm, are arranged in one row or a plurality of rows with a hole interval of 0.05 to 5 mm. The injection pressure is 5 to 150 kg / c
A method of injecting a high-pressure liquid of m 2 G from the injection hole and colliding with a card web placed on the porous support member to give a three-dimensional entanglement between the fibers is adopted. The ejection holes are arranged in rows in a direction orthogonal to the traveling direction of the card web. As the high-pressure liquid, room temperature water or warm water can be used. The distance between the injection hole and the web is preferably 1 to 15 cm. This distance is 1
When the distance is less than 15 cm, the texture of the nonwoven fabric obtained by this treatment is disturbed, while when the distance exceeds 15 cm, the impact force when the liquid flow collides with the laminate is reduced and the three-dimensional entanglement is sufficiently performed. No, neither is preferable. This high pressure liquid columnar flow treatment may be performed in at least two stages. That is, the pressure is 5
A high-pressure liquid flow of -40 kg / cm 2 G is jetted to collide with the web to pre-entangle the constituent fibers of the web. In this first stage treatment, the pressure of the liquid flow is 5k
If it is less than g / cm 2 G, the constituent fibers of the web cannot be pre-entangled with each other, while the pressure of the liquid flow is 4
When the pressure exceeds 0 kg / cm 2 G, when the high-pressure liquid flow is jetted and collided with the web, the constituent fibers of the web are disturbed by the action of the liquid flow, and the web is disturbed in texture and is unsatisfactory. Subsequently, in the second step, a high-pressure liquid flow having a pressure of 50 to 150 kg / cm 2 G is jetted to collide with the web, and the fibers constituting the web are three-dimensionally entangled with each other so as to be densely integrated as a whole. . In this second stage treatment, the pressure of the liquid stream is 50
If it is less than kg / cm 2 G, the above-mentioned three-dimensional entanglement between fibers cannot be sufficiently formed, while if the pressure of the liquid flow exceeds 150 kg / cm 2 G, the resulting nonwoven fabric is obtained. The bulkiness and flexibility are not improved, and both are not preferable. Depending on the basis weight of the web, as a third stage process following the second stage process, the second side process is performed again from the side opposite to the second stage process side under the same conditions as the second stage process. It is possible to obtain a non-woven fabric in which fibers are closely entangled with each other on the front and back. As the porous supporting member for carrying the web used for performing the high-pressure liquid columnar flow treatment, for example, a mesh screen or a perforated plate made of a wire mesh or synthetic resin of 20 to 100 mesh is used as the high-pressure liquid stream. It is not particularly limited as long as it can penetrate. The mesh structure of the porous support member is preferably in the range of 20 fibers / 25 mm to 200 fibers / 25 mm. When it is less than 20 fibers / 25 mm, the fibers become columnar when the high pressure liquid columnar flow collides with the web. As the flow passes through the mesh screen, fibers drop out, while
When the number exceeds 25 mm / column, the amount of energy required for the high-pressure liquid columnar flow to pass through the web and the mesh screen increases and the production cost increases, which is not preferable. After performing the high pressure liquid flow treatment, excess moisture is removed from the treated web. A known method can be adopted for removing the excess water. For example, a nonwoven fabric can be obtained by mechanically removing excess moisture to some extent using a squeezing device such as a mangle roll, and then using a drying device such as a hot band circulation dryer of the saxion band system to remove residual moisture. it can.

【0023】本発明における天然繊維不織布は,その目
付けが30〜200g/m2 のものであるのが好まし
い。目付けが30g/m2 未満であると,天然繊維の単
位面積当たりの存在量が小さ過ぎて本発明が目的の一つ
とする吸水性が十分に具備されず,一方,目付けが20
0g/m2 を超えると,前記網状構造繊維不織布との積
層の後に超音波融着装置を用いて点状融着区域を形成す
ることにより一体化して得られる積層不織構造体におい
て,その剥離強力が十分に向上せず,いずれも好ましく
ない。したがって,本発明では,この天然繊維不織布の
目付けを30〜200g/m2 とし,好ましくは50〜
150g/m2 とする。
The natural fiber nonwoven fabric of the present invention preferably has a basis weight of 30 to 200 g / m 2 . When the basis weight is less than 30 g / m 2 , the amount of natural fiber present per unit area is too small to provide sufficient water absorption, which is one of the objects of the present invention.
When it exceeds 0 g / m 2 , in a laminated non-woven structure obtained by integrating by laminating with the above-mentioned non-woven fabric of network structure and forming point-like fused areas by using an ultrasonic fusing device, peeling thereof Strength is not sufficiently improved, neither of which is preferable. Therefore, in the present invention, the basis weight of this natural fiber nonwoven fabric is set to 30 to 200 g / m 2, and preferably 50 to
It is set to 150 g / m 2 .

【0024】次に,本発明の積層不織構造体に関して説
明する。本発明の積層不織構造体は,前記網状構造繊維
不織布と天然繊維不織布とが積層され,前記網状構造繊
維と天然繊維とが融着されてなる点状融着区域を有し,
かつ前記点状融着区域において前記両不織布層の少なく
とも境界面に位置する天然繊維が前記網状構造繊維の融
解部に埋設された状態で固定されることにより全体とし
て一体化されてなるものである。この点状融着区域と
は,周波数が約20KHzの通常ホーンと呼称される超
音波発振器と,円周上に点状又は帯状に凸状突起部を具
備するパターンロールとからなる超音波融着装置を用い
て形成され,前記凸状突起部に該当する部分に当接する
繊維同士を融着させたものである。本発明の積層不織構
造体は,不織構造体全表面積に対して特定の領域と特定
の配置の点状融着区域を有する。個々の点状融着区域は
必ずしも円形の形状である必要はなく,円形の他に例え
ば十字形,−形,菱形,T字形,□形,△形等いずれの
形状であってもよいが,不織構造体全表面積に対する全
点状融着区域の面積の比(%)が4〜50の範囲を満足
することが好ましい。この不織構造体全表面積に対する
全点状融着区域の面積の比が4%未満であると,前記網
状構造繊維不織布と天然繊維不織布との積層後に超音波
融着装置を用いて点状融着区域を形成することにより一
体化して得られる積層不織構造体においてその剥離強力
が十分に向上せず,一方,前記面積の比が50%を超え
ると,得られる積層不織構造体の柔軟性と嵩高性が低下
し,いずれも好ましくない。したがって,本発明では,
前記面積の比(%)を4〜50,好ましくは8〜25と
するのがよい。また,前記点状融着区域は,その点状融
着区域の配設密度(点/cm2 )が7〜80であるのが
好ましい。この点状融着区域の配設密度が7点/cm2
未満であると,得られる積層不織構造体の接着力すなわ
ち剥離強力が低下するのみならず強力に斑が生じ,一
方,同区域密度が80点/cm2 を超えると,得られる
積層不織構造体の柔軟性と嵩高性が低下し,いずれも好
ましくない。したがって,本発明では,前記区域密度
(点/cm2 )を7〜80,好ましくは8〜50とする
のがよい。
Next, the laminated nonwoven structure of the present invention will be described. The laminated non-woven structure of the present invention has a point-like fused area formed by laminating the reticulated structure nonwoven fabric and the natural fiber nonwoven fabric, and fusing the reticulated structure fiber and the natural fiber together,
In addition, the natural fibers located at least at the boundary surface of the two nonwoven fabric layers in the point fusion area are integrated as a whole by being fixed in a state of being embedded in the melting portion of the network structure fiber. . This point-like fusion zone is an ultrasonic fusion zone consisting of an ultrasonic oscillator with a frequency of about 20 KHz, which is usually called a horn, and a pattern roll having convex protrusions in the form of dots or bands on the circumference. Fibers formed by using an apparatus and abutting on the portions corresponding to the convex protrusions are fused to each other. The laminated nonwoven structure of the present invention has a specific area and a specific arrangement of spot-shaped fused areas with respect to the total surface area of the nonwoven structure. Each dot-shaped fused area does not necessarily have to have a circular shape, and may have any shape such as a cross, −, rhombus, T-shape, □ shape, and Δ shape in addition to the circular shape. It is preferable that the ratio (%) of the area of all the dot-like fused regions to the total surface area of the non-woven structure satisfies the range of 4 to 50. When the ratio of the area of all the spot-shaped fused areas to the total surface area of the non-woven structure is less than 4%, the point-shaped fused area is formed by using an ultrasonic fusion device after laminating the reticulated structure fiber nonwoven fabric and the natural fiber nonwoven fabric. In the laminated non-woven structure integrally obtained by forming the attachment area, the peeling strength thereof is not sufficiently improved, while when the area ratio exceeds 50%, the flexibility of the obtained non-woven structure is obtained. And the bulkiness are reduced, both of which are not preferable. Therefore, in the present invention,
The area ratio (%) is 4 to 50, preferably 8 to 25. In addition, it is preferable that the dot-shaped fusion-bonding area has an arrangement density (dots / cm 2 ) of 7-80. The arrangement density of the dot-like fused areas is 7 points / cm 2
If it is less than 1, the adhesive strength, that is, the peel strength of the obtained laminated non-woven structure is deteriorated, and also the spots are strongly generated. On the other hand, if the area density exceeds 80 points / cm 2 , the obtained laminated non-woven structure is obtained. The flexibility and bulkiness of the structure are reduced, and both are not preferable. Therefore, in the present invention, the area density (points / cm 2 ) is set to 7 to 80, preferably 8 to 50.

【0025】本発明において用い得る超音波融着装置
は,上述したような公知の装置すなわち周波数が約20
KHzの通常ホーンと呼称される超音波発振器と,円周
上に点状又は帯状に凸状突起部を具備するパターンロー
ルとからなる装置である。前記超音波発振器の下部に前
記パターンロールが配設され,被処理物は超音波発振器
とパターンロールとの間に通される。このパターンロー
ルに配設される凸状突起部は1列あるいは複数列であっ
てもよく,また,その配設が複数列の場合には,並列あ
るいは千鳥型のいずれの配列でもよい。融着処理に際し
ては,ホーンに空気圧を印加して加圧する。ホーンとパ
ターンロール間の線圧は,通常1〜10kg/cmと
し,線圧が1kg/cm未満であると,前記網状構造繊
維不織布と天然繊維不織布との積層物に対する押し圧が
不足して融着が生じなく,一方,線圧が10kg/cm
を超えると,点状融着区域に対する押し圧が高過ぎて融
着区域に相当する前記網状構造繊維不織布が熱分解した
り,あるいは極端な場合には穿孔が生じたりして得られ
る積層不織構造体の接着力が低下し,いずれも好ましく
ない。本発明の積層不織構造体は,前記網状構造繊維不
織布と天然繊維不織布との積層物に前述した超音波融着
装置を用いて融着処理を施すことにより,点状融着区域
において,前記両不織布層の少なくとも境界面に位置す
る天然繊維が前記網状構造繊維の融解部に埋設された状
態で固定され全体として一体化されたものである。図1
は,本発明の積層不織構造体における前記点状融着区域
の断面を示す模式図である。図において,1は点状融着
区域において融解した網状構造繊維層,2は天然繊維
で,同図から明らかなように点状融着区域において両不
織布層の少なくとも境界面に位置する天然繊維2は,網
状構造繊維が融解した融解部すなわち1に埋設された状
態で固定されており,両不織布層が点状融着区域におい
てこのような接着構造を有するため,引張り強力のみな
らず層間剥離強力の高い積層不織構造体が形成される。
The ultrasonic fusing device which can be used in the present invention is a known device as described above, that is, a frequency of about 20.
The apparatus is composed of an ultrasonic oscillator, which is usually called a KHz horn, and a pattern roll having a convex projection in a dot shape or a band shape on the circumference. The pattern roll is disposed below the ultrasonic oscillator, and the object to be processed is passed between the ultrasonic oscillator and the pattern roll. The convex protrusions arranged on the pattern roll may be arranged in one row or a plurality of rows, and when the arrangement is a plurality of rows, they may be arranged in parallel or in a staggered arrangement. During the fusion treatment, air pressure is applied to the horn to apply pressure. The linear pressure between the horn and the pattern roll is usually 1 to 10 kg / cm, and when the linear pressure is less than 1 kg / cm, the pressing force against the laminate of the network structure nonwoven fabric and the natural fiber nonwoven fabric is insufficient and melts. No wear occurs, while linear pressure is 10 kg / cm
If the value exceeds the range, the pressure applied to the spot-shaped fused area is too high, and the non-woven fabric having the reticulated structure corresponding to the fused area is thermally decomposed or, in extreme cases, perforated, resulting in a laminated non-woven fabric. The adhesive strength of the structure is reduced, which is not preferable. The laminated non-woven structure of the present invention is obtained by subjecting a laminate of the reticulated structural fiber nonwoven fabric and the natural fiber nonwoven fabric to a fusion treatment using the ultrasonic fusion device described above, thereby forming the Natural fibers located at least at the boundary surface of both non-woven fabric layers are fixed in a state of being embedded in the melted portion of the reticulated structure fiber and integrated as a whole. FIG.
[Fig. 3] is a schematic view showing a cross section of the dot-like fused area in the laminated nonwoven structure of the present invention. In the figure, 1 is a network-structured fiber layer melted in a point fusion area, 2 is a natural fiber, and as is clear from the figure, a natural fiber 2 located at least at the boundary surface of both non-woven fabric layers in the point fusion area 2 Is fixed in a state in which the reticulated structure fibers are melted and embedded in the melted portion, that is, in the state of being embedded in 1. Since both non-woven fabric layers have such an adhesive structure in the dot-shaped fusion zone, not only tensile strength but also delamination strength A high laminated non-woven structure is formed.

【0026】[0026]

【作用】本発明の積層不織構造体は,片面ではポリオレ
フイン系重合体からなるフイブリル繊維とポリエステル
系重合体からなるフイブリル繊維とを主構成要素とする
三次元的網状構造繊維からなる不織布から構成されるた
め柔軟性が優れ,微細なフイブリル繊維の存在による吸
水性と優れたバクテリアバリア性とを呈し,ポリエステ
ル系重合体の存在による吸油性と可染性を呈し,前記網
状構造繊維間が部分的に熱接着されているためリントフ
リー性を有し,他面では天然繊維同士が機械的に交絡し
てなる不織布から構成されるため吸水性と可染性を呈す
る。また,前記極細の網状構造繊維と天然繊維同士の三
次元的交絡との相乗効果により一層,吸水性が向上す
る。さらに,前記網状構造繊維と天然繊維とが融着され
てなる点状融着区域において前記両不織布層の少なくと
も境界面に位置する天然繊維が前記網状構造繊維の融解
部に埋設された状態で固定された接着構造を有するた
め,層間剥離強力の高い積層不織構造体となる。
The laminated non-woven structure of the present invention comprises, on one side, a non-woven fabric composed of a three-dimensional reticulated fiber whose main constituents are fibril fibers made of a polyolefin polymer and fibril fibers made of a polyester polymer. Therefore, it exhibits excellent flexibility, exhibits water absorbency due to the presence of fine fibril fibers and excellent bacterial barrier properties, exhibits oil absorbency and dyeability due to the presence of polyester polymer, and has a partial gap between the reticulated structure fibers. It has a lint-free property because it is heat-bonded, and on the other side it exhibits water absorbability and dyeability because it is composed of a non-woven fabric in which natural fibers are mechanically entangled with each other. In addition, the water absorption is further improved by the synergistic effect of the ultrafine net-structured fibers and the three-dimensional entanglement of the natural fibers. Further, in the point-like fused area formed by fusing the network-structured fibers and the natural fibers, the natural fibers located at least at the boundary surface between the two non-woven fabric layers are fixed in a state of being embedded in the melting portion of the network-structured fibers. Since it has a bonded structure, it is a laminated non-woven structure with high delamination strength.

【0027】[0027]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 重合体の融点(℃):パーキンエルマ社製示差走査型熱
量計DSC−2型を用い,試料重量を5mg,昇温速度
を20℃/分として測定し,得られた融解吸熱曲線にお
いて最大極値を与える温度を融点(℃)とした。 メルトインデツクス(g/10分):ASTM−D−1
238(E) に記載の方法により測定した。 メルトフローレート値(g/10分):ASTM−D−
1238(L) に記載の方法により測定した。 相対粘度:フエノールと四塩化エタンとの等重量混合溶
液を溶媒とし,試料濃度が0.5g/100cc,温度
が20℃の条件で常法により測定した。 平均単繊維繊度(μm):試料の電子顕微鏡写真を撮影
し,得られた写真から平均単繊維径を求めた。 目付け(g/m2 ):標準状態の試料から縦10cm×
横10cmの試料片計10点を作成し平衡水分に到らし
めた後,各試料片の重量(g)を秤量し,得られた値の
平均値を単位面積(m2 )当たりに換算し目付け(g/
2 )とした。 引張り強力(kg/5cm幅)及び引張り伸度(%):
JIS−L−1096Aに記載の方法に準じて測定し
た。すなわち,試料長が10cm,試料幅が5cmの試
料片計10点を作成し,各試料片毎に不織布の経及び緯
方向について定速伸長型引張り試験機(東洋ボールドウ
イン社製テンシロンUTM−4−1−100)を用いて
引張り速度10cm/分で伸長し,得られた切断時荷重
値(kg/5cm幅)の平均値を目付け100g/m2
当りに換算して得た値を引張り強力(kg/5cm
幅),切断時伸長率(%)の平均値を引張り伸度(%)
とした。 層間剥離強力(g/5cm幅):試料長が10cm,試
料幅が5cmの試料片計10点を作成し,各試料片毎に
不織布の経方向について,定速伸長型引張り試験機(東
洋ボールドウイン社製テンシロンUTM−4−1−10
0)を用いて引張速度10cm/分で天然繊維不織布層
を網状構造繊維不織布層から積層構造体の端部から計っ
て5cmの位置まで強制的に剥離させ,得られた荷重値
(g/5cm幅)の平均値を層間剥離強力(g/5cm
幅)とした。 剛軟度(g):試料長が10cm,試料幅が5cmの試
料片計5点を作成し,各試料片毎に横方向に曲げて円筒
状物とし,各々その端部を接合したものを剛軟度測定試
料とした。次いで,各測定試料毎にその軸方向につい
て,定速伸長型引張り試験機(東洋ボールドウイン社製
テンシロンUTM−4−1−100)を用いて圧縮速度
5cm/分で圧縮し,得られた最大荷重値(g)の平均
値を剛軟度(g)とした。したがって,この剛軟度の値
が低いほど,柔軟な不織布であることを意味する。 透湿度(g/m2 /24時間):JIS−L−1099
A1に記載の方法に準じて温度40℃,湿度90%の条
件で測定した。 耐水圧(mm水柱):JIS−L−1092Bに記載の
高水圧法に準じて測定した。 吸水性(mm):JIS−L−1096に記載のバイレ
ツク法に準じて測定した。 染色性:不織布の試料片に下記の分散染色又カチオン染
色を施し,連続して下記の還元染色を施した。 分散染色:分散染料としてBlue E-FBL(住友化学社製)
1%owf,分散剤としてDisper- TL(明成化学社製)
1g/リツトル,助剤として蟻酸0.1g/リツトルを
それぞれ用い,浴比1:50,処理時間60分間の条件
でボイル染色を実施した。 カチオン染色:カチオン染料としてAstrazon Blue FFR
(バイエル社製)1%owf,均染剤としてミグレガー
ルWA−10(センカ社製)0.5g/リツトル,助剤とし
て硫酸ソーダ10%owfをそれぞれ用い,浴比1:5
0,処理時間60分間の条件でボイル染色を実施した。 還元染色:精練剤としてサンモールRL-100(日華化学社
製)1g/リツトル,ハイドロサルフアイト2g/リツ
トル,カセイソーダ1g/リツトルをそれぞれ用い,浴
比1:50,処理温度80℃,処理時間20分間の条件
で実施した。次いで,各試料片を水洗し乾燥した後,試
料片の染色性を下記の4段階で評価した。 ◎:極めて良好,○:良好,△:やや良好,×:不良
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, each characteristic value was measured by the following method. Melting point of polymer (° C.): measured by using a differential scanning calorimeter DSC-2 type manufactured by Perkin Elma Co., Ltd. with a sample weight of 5 mg and a temperature rising rate of 20 ° C./min. The temperature giving the value was defined as the melting point (° C). Melt index (g / 10 minutes): ASTM-D-1
It was measured by the method described in 238 (E). Melt flow rate value (g / 10 minutes): ASTM-D-
It was measured by the method described in 1238 (L). Relative viscosity: Measured by a conventional method under the conditions of a sample concentration of 0.5 g / 100 cc and a temperature of 20 ° C. using an equal weight mixed solution of phenol and ethane tetrachloride as a solvent. Average single fiber fineness (μm): An electron micrograph of the sample was taken, and the average single fiber diameter was determined from the obtained photo. Unit weight (g / m 2 ): 10 cm in length from standard state sample
After making 10 pieces of 10 cm wide sample piece to reach the equilibrium water content, weigh each sample piece (g) and calculate the average value of the obtained values per unit area (m 2 ). Unit weight (g /
m 2 ). Tensile strength (kg / 5cm width) and tensile elongation (%):
It was measured according to the method described in JIS-L-1096A. That is, a total of 10 sample pieces having a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Tensilon UTM-4 manufactured by Toyo Baldwin Co., Ltd.) was used for each sample piece in the warp and weft directions of the nonwoven fabric. -1-100) was used to stretch at a tensile speed of 10 cm / min, and the average value of the load values during cutting (kg / 5 cm width) obtained was 100 g / m 2
Tensile strength (kg / 5cm)
Width), elongation at break (%) is the average value of tensile elongation (%)
And Delamination strength (g / 5 cm width): A total of 10 sample pieces with a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Toyo Bold Win Tensilon UTM-4-1-10
0) was used to forcibly peel the natural fiber nonwoven fabric layer from the reticulated fiber nonwoven fabric layer to a position of 5 cm from the end of the laminated structure at a tensile speed of 10 cm / min, and the obtained load value (g / 5 cm) was obtained. The average value of the width is the delamination strength (g / 5 cm)
Width). Bending resistance (g): A total of 5 sample pieces with a sample length of 10 cm and a sample width of 5 cm were made, and each piece was bent laterally to form a cylindrical object, and the ends were joined together. The sample was measured for bending resistance. Then, for each measurement sample, the maximum obtained was obtained by compressing in the axial direction using a constant-speed extension type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.) at a compression rate of 5 cm / min. The average value of the load values (g) was defined as the bending resistance (g). Therefore, a lower value of this bending resistance means a softer nonwoven fabric. Moisture permeability (g / m 2/24 hours): JIS-L-1099
According to the method described in A1, the temperature was 40 ° C. and the humidity was 90%. Water pressure resistance (mm water column): Measured according to the high water pressure method described in JIS-L-1092B. Water absorption (mm): Measured according to the Bayrek method described in JIS-L-1096. Dyeability: Nonwoven fabric sample pieces were subjected to the following disperse dyeing or cation dyeing, and successively subjected to the following reducing dyeing. Disperse dye: Blue E-FBL (manufactured by Sumitomo Chemical Co., Ltd.) as a disperse dye
1% owf, Disper-TL (made by Meisei Chemical Co., Ltd.) as a dispersant
Boyle dyeing was performed under the conditions of a bath ratio of 1:50 and a treatment time of 60 minutes, using 1 g / liter and 0.1 g / liter of formic acid as an auxiliary agent, respectively. Cationic dyeing: Astrazon Blue FFR as cationic dye
(Bayer Co.) 1% owf, Migregar WA-10 (Senka Co.) 0.5 g / liter as leveling agent, sodium sulfate 10% owf as auxiliary agent, and bath ratio 1: 5.
Voile dyeing was carried out under conditions of 0 and a treatment time of 60 minutes. Reduction dyeing: 1 mol / liter of Sanmor RL-100 (manufactured by Nikka Kagaku Co., Ltd.), 2 g / liter of hydrosulfite, 1 g / liter of caustic soda as a refining agent, bath ratio 1:50, treatment temperature 80 ° C., treatment time It was carried out under the condition of 20 minutes. Next, each sample piece was washed with water and dried, and then the dyeability of the sample piece was evaluated according to the following four grades. ◎: Very good, ○: Good, △: Slightly good, ×: Poor

【0028】実施例1 まず,融点が132℃,密度が0.96g/cm3 でか
つメルトインデツクスが0.8g/10分の高密度ポリ
エチレン重合体1000gと,融点が256℃でかつ相
対粘度が1.4のポリエチレンテレフタレート重合体1
000gと〔高密度ポリエチレン重合体とポリエチレン
テレフタレート重合体の混合比(重量比)は50/5
0〕,塩化メチレン8000gと,表面活性剤としての
イソオクチルステアレートとイソステアリルエステルと
をオートクレーブに充填した。表面活性剤の添加量は,
前記溶液に対して各々0.2重量%とした。オートクレ
ーブを閉鎖し,引き続きオートクレーブの内圧が50k
g/cm2 Gになるまで窒素ガスを注入した後,この溶
液を適度な速度で攪拌しながら加熱した。このとき,オ
ートクレーブの内温が100℃から上昇し200℃に到
達するまでの昇温時間は30分間であった。次いで,こ
の溶液を温度200℃で10分間混練して均一な溶液を
得た。このとき,オートクレーブの内圧は106kg/
cm2 Gであった。引き続き,この内圧すなわち紡糸圧
力106kg/cm2 Gで直ちにオートクレーブのバル
ブを開放して圧力降下室を有する孔径0.75mmで孔
長/孔径の比が1の紡出孔より紡糸液を大気中に紡出
し,前記ポリエチレン重合体とポリエチレンテレフタレ
ート重合体とからなる網状構造繊維を紡出し,紡出繊維
群を回転板上に衝突させて開繊し,移動する移動する金
網製ベルト上に捕集・堆積して不織ウエブとした。な
お,このとき,圧力降下室の圧力は95kg/cm2
であった。次に,得られた不織ウエブを積層し,先端部
面積が0.6mm2 の突起状彫刻模様部が圧接面積率2
5%かつ密度60点/cm2 で配設された熱エンボスロ
ーラと表面平滑な金属ローラとを用いて,処理温度を1
25℃,かつ線圧を20kg/cmとして加工速度10
m/分で部分熱接着処理を施し,目付けが40g/m2
の不織布を得た。得られた不織布を構成する繊維の表面
を電子顕微鏡を用いて写真撮影し,その表面形態を観察
したところ,この繊維は,フイブリル径が略0.1〜
1.0μmのフイブリル繊維を主体とする多数のフイブ
リル繊維が集合し網状に広がった構造を有するものであ
った。
Example 1 First, 1000 g of a high-density polyethylene polymer having a melting point of 132 ° C., a density of 0.96 g / cm 3 and a melt index of 0.8 g / 10 min, and a melting point of 256 ° C. and a relative viscosity. Polyethylene terephthalate polymer 1 with 1.4
000 g and [mixing ratio (weight ratio) of high-density polyethylene polymer and polyethylene terephthalate polymer is 50/5.
0], 8000 g of methylene chloride, and isooctyl stearate and isostearyl ester as surfactants were charged in an autoclave. The amount of surfactant added is
Each was 0.2% by weight with respect to the solution. The autoclave was closed, and the internal pressure of the autoclave continued to be 50k.
After injecting nitrogen gas to g / cm 2 G, this solution was heated with stirring at an appropriate speed. At this time, the temperature rising time until the internal temperature of the autoclave increased from 100 ° C. to 200 ° C. was 30 minutes. Then, this solution was kneaded at a temperature of 200 ° C. for 10 minutes to obtain a uniform solution. At this time, the internal pressure of the autoclave is 106 kg /
It was cm 2 G. Subsequently, at this internal pressure, that is, the spinning pressure of 106 kg / cm 2 G, the valve of the autoclave was immediately opened, and the spinning solution was introduced into the atmosphere through the spinning hole having a pressure drop chamber and a hole diameter / hole diameter ratio of 1 and a hole diameter / pore ratio of 1. Spinning out, spinning out a network-structured fiber composed of the polyethylene polymer and polyethylene terephthalate polymer, colliding the spun fiber group on a rotating plate to open the fiber, and collecting it on a moving wire mesh belt. It was deposited into a non-woven web. At this time, the pressure in the pressure drop chamber is 95 kg / cm 2 G
Met. Next, the non-woven webs obtained were laminated, and the protrusion-shaped engraved pattern portion having a tip area of 0.6 mm 2 had a pressure contact area ratio of 2
Using a hot embossing roller arranged at a density of 5% and a density of 60 points / cm 2 and a metal roller having a smooth surface, the processing temperature is set to 1
Processing speed 10 at 25 ° C and linear pressure of 20 kg / cm
Partial heat-bonding treatment is applied at m / min, and basis weight is 40 g / m 2
A non-woven fabric was obtained. The surface of the fibers constituting the obtained non-woven fabric was photographed using an electron microscope, and the surface morphology was observed.
It had a structure in which a large number of fibril fibers mainly composed of 1.0 μm fibril fibers were aggregated and spread in a net shape.

【0029】別途,平均単繊維繊度が1.5デニール
で,かつ平均繊維長が25mmの木綿晒し綿を用い,木
綿繊維同士が三次元的に交絡してなる不織布を作成し
た。すなわち,前記晒し綿を出発原料とし,ランダムカ
ード機により繊維配列がランダムで目付けが40g/m
2 相当のランダムカードウエブを作成し,次いで得られ
たウエブを移動速度20m/分で移動する70メツシユ
の金網上に載置して高圧液体流処理を施した。高圧液体
流処理は,孔径0.1mmの噴射孔が孔間隔0.6mm
で一列に配設された高圧柱状水流処理装置を用い,ウエ
ブの上方50mmの位置から2段階に別けて柱状水流を
作用させた。第1段階の処理では圧力を30kg/cm
2 Gとし,第2段階の処理では圧力を70kg/cm2
Gとした。なお,第2段階の処理は,ウエブの表裏から
各々2回施した。次いで,得られた処理物からマングル
ロールを用いて過剰水分を除去した後,処理物に熱風乾
燥機を用いて温度100℃の条件で乾燥処理を施し,木
綿繊維同士が緻密に三次元的交絡をした目付けが40g
/m2 の不織布を得た。次いで,前記で得られた網状構
造繊維不織布と木綿繊維不織布とを積層し,周波数が1
9.5KHzの超音波発振器と円周上に点状に凸状突起
部が面積比(ロール全表面積に対する全凸状突起部の面
積の比)10%かつ密度18点/cm2で配設されたパ
ターンロールとからなる超音波融着装置を用いて,加工
速度を30m/分,線圧を1.5kg/cmとして超音
波融着処理を施して積層不織構造体を得た。得られた積
層不織構造体の特性を表1に示す。
Separately, a non-woven fabric having an average single fiber fineness of 1.5 denier and an average fiber length of 25 mm bleached with cotton was prepared by three-dimensionally entangled cotton fibers. That is, using the bleached cotton as a starting material, the fiber arrangement is random and the basis weight is 40 g / m 2 by a random card machine.
A random card web corresponding to 2 was prepared, and then the obtained web was placed on a wire mesh of 70 mesh which moved at a moving speed of 20 m / min and subjected to high-pressure liquid flow treatment. In high-pressure liquid flow processing, injection holes with a hole diameter of 0.1 mm have a hole spacing of 0.6 mm.
Using the high-pressure columnar water stream treatment device arranged in one row, the columnar water stream was made to act in two stages from the position 50 mm above the web. In the first stage treatment, the pressure is 30 kg / cm
2 G, the pressure was 70 kg / cm 2 in the second stage treatment.
G. The second stage treatment was performed twice from the front and back of the web. Then, after removing excess water from the treated product using a mangle roll, the treated product was dried using a hot air dryer at a temperature of 100 ° C., and the cotton fibers were densely three-dimensionally entangled. The weight is 40g
A nonwoven fabric of / m 2 was obtained. Then, the reticulated fiber nonwoven fabric obtained above and the cotton fiber nonwoven fabric are laminated, and the frequency is 1
An ultrasonic oscillator of 9.5 KHz and convex protrusions in a dot shape on the circumference were arranged at an area ratio (ratio of the area of all convex protrusions to the total surface area of the roll) of 10% and a density of 18 points / cm 2. Using an ultrasonic fusing device composed of a patterned roll, ultrasonic fusing treatment was performed at a processing speed of 30 m / min and a linear pressure of 1.5 kg / cm to obtain a laminated nonwoven structure. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0030】実施例2 高密度ポリエチレン重合体を100g,ポリエチレンテ
レフタレート重合体を1900g〔高密度ポリエチレン
重合体とポリエチレンテレフタレート重合体の混合比
(重量比)を5/95〕とした以外は実施例1と同様に
して不織ウエブを得,これに部分熱接着処理を施し,目
付けが40g/m2 の網状構造繊維不織布を得た。次い
で,前記で得られた極細繊維不織布を用い,以降は実施
例1と同様にして積層不織構造体を得た。得られた積層
不織構造体の特性を表1に示す。
Example 2 Example 1 except that the high-density polyethylene polymer was 100 g and the polyethylene terephthalate polymer was 1900 g [the mixing ratio (weight ratio) of the high-density polyethylene polymer and the polyethylene terephthalate polymer was 5/95]. A non-woven web was obtained in the same manner as above, and a partial heat-bonding treatment was applied to this to obtain a non-woven fabric having a network structure and a basis weight of 40 g / m 2 . Next, using the ultrafine fiber non-woven fabric obtained above, the laminated nonwoven structure was obtained in the same manner as in Example 1 thereafter. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0031】実施例3 高密度ポリエチレン重合体を300g,ポリエチレンテ
レフタレート重合体を1700g〔高密度ポリエチレン
重合体とポリエチレンテレフタレート重合体の混合比
(重量比)を15/85〕とした以外は実施例1と同様
にして不織ウエブを得,以降は実施例2と同様にして積
層不織構造体を得た。得られた積層不織構造体の特性を
表1に示す。
Example 3 Example 1 except that 300 g of high-density polyethylene polymer and 1700 g of polyethylene terephthalate polymer [mixing ratio (weight ratio) of high-density polyethylene polymer and polyethylene terephthalate polymer was 15/85] were used. A non-woven web was obtained in the same manner as in 1. and a laminated non-woven structure was obtained in the same manner as in Example 2. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0032】実施例4 高密度ポリエチレン重合体を1700g,ポリエチレン
テレフタレート重合体を300g〔高密度ポリエチレン
重合体とポリエチレンテレフタレート重合体の混合比
(重量比)を85/15〕とした以外は実施例1と同様
にして不織ウエブを得,以降は実施例2と同様にして積
層不織構造体を得た。得られた積層不織構造体の特性を
表1に示す。
Example 4 Example 1 except that the high density polyethylene polymer was 1700 g and the polyethylene terephthalate polymer was 300 g [the mixing ratio (weight ratio) of the high density polyethylene polymer and the polyethylene terephthalate polymer was 85/15]. A non-woven web was obtained in the same manner as in 1. and a laminated non-woven structure was obtained in the same manner as in Example 2. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0033】実施例5 高密度ポリエチレン重合体を1900g,ポリエチレン
テレフタレート重合体を100g〔高密度ポリエチレン
重合体とポリエチレンテレフタレート重合体の混合比
(重量比)を95/5〕とした以外は実施例1と同様に
して不織ウエブを得,以降は実施例2と同様にして積層
不織構造体を得た。得られた積層不織構造体の特性を表
1に示す。
Example 5 Example 1 was repeated except that the high-density polyethylene polymer was 1900 g and the polyethylene terephthalate polymer was 100 g [the mixing ratio (weight ratio) of the high-density polyethylene polymer and the polyethylene terephthalate polymer was 95/5]. A non-woven web was obtained in the same manner as in 1. and a laminated non-woven structure was obtained in the same manner as in Example 2. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0034】実施例6 高密度ポリエチレン重合体に代わり,融点が162℃,
密度が0.91g/cm3 でかつメルトフローレート値
が4.0g/10分の結晶性ポリプロピレン重合体を用
い,ポリプロピレン重合体とポリエチレンテレフタレー
ト重合体の混合比(重量比)を50/50とした以外は
実施例1と同様にして不織ウエブを得,以降は実施例2
と同様にして積層不織構造体を得た。得られた積層不織
構造体の特性を表1に示す。
Example 6 Instead of the high density polyethylene polymer, the melting point was 162 ° C.,
A crystalline polypropylene polymer having a density of 0.91 g / cm 3 and a melt flow rate value of 4.0 g / 10 min was used, and the mixing ratio (weight ratio) of the polypropylene polymer and the polyethylene terephthalate polymer was 50/50. A non-woven web was obtained in the same manner as in Example 1 except that the above was performed.
A laminated nonwoven structure was obtained in the same manner as in. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0035】実施例7 ポリエチレンテレフタレート重合体に代わり,エチレン
テレフタレートを主体としこれにスルホイソフタル酸が
5モル%共重合され,かつ融点が247℃,相対粘度が
1.3のポリエチレンテレフタレート共重合体を用い,
高密度ポリエチレン重合体とポリエチレンテレフタレー
ト共重合体の混合比(重量比)を50/50とした以外
は実施例1と同様にして不織ウエブを得,以降は実施例
2と同様にして積層不織構造体を得た。得られた積層不
織構造体の特性を表1に示す。
Example 7 In place of the polyethylene terephthalate polymer, a polyethylene terephthalate copolymer mainly composed of ethylene terephthalate was copolymerized with 5 mol% of sulfoisophthalic acid, and the melting point was 247 ° C. and the relative viscosity was 1.3. Used,
A nonwoven web was obtained in the same manner as in Example 1 except that the mixing ratio (weight ratio) of the high-density polyethylene polymer and the polyethylene terephthalate copolymer was 50/50. A woven structure was obtained. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0036】実施例8 ポリエチレンテレフタレート重合体に代わり,融点が2
28℃でかつ相対粘度が1.7のポリブチレンテレフタ
レート重合体を用い,高密度ポリエチレン重合体とポリ
ブチレンテレフタレート重合体の混合比(重量比)を5
0/50とした以外は実施例1と同様にして不織ウエブ
を得,以降は実施例2と同様にして積層不織構造体を得
た。得られた積層不織構造体の特性を表1に示す。
Example 8 Instead of the polyethylene terephthalate polymer, the melting point was 2
A polybutylene terephthalate polymer having a relative viscosity of 1.7 at 28 ° C. is used, and the mixing ratio (weight ratio) of the high-density polyethylene polymer and the polybutylene terephthalate polymer is 5
A non-woven web was obtained in the same manner as in Example 1 except that it was 0/50, and thereafter a laminated non-woven structure was obtained in the same manner as in Example 2. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0037】比較例1 高密度ポリエチレン重合体のみ2000g〔高密度ポリ
エチレン重合体とポリエチレンテレフタレート重合体の
混合比(重量比)は100/0〕を用いた以外は実施例
1と同様にして不織ウエブを得,以降は実施例1と同様
にして積層不織構造体を得た。得られた積層不織構造体
の特性を表2に示す。
Comparative Example 1 A non-woven fabric was prepared in the same manner as in Example 1 except that only 2000 g of high-density polyethylene polymer [mixing ratio (weight ratio) of high-density polyethylene polymer and polyethylene terephthalate polymer was 100/0] was used. A web was obtained, and thereafter, a laminated nonwoven structure was obtained in the same manner as in Example 1. The properties of the resulting laminated nonwoven structure are shown in Table 2.

【0038】比較例2 ポリエチレンテレフタレート重合体のみ2000g〔高
密度ポリエチレン重合体とポリエチレンテレフタレート
重合体の混合比(重量比)は0/100〕を用いた以外
は実施例1と同様にして不織ウエブを得,以降は実施例
1と同様にして積層不織構造体を得た。得られた積層不
織構造体の特性を表2に示す。
Comparative Example 2 A nonwoven web was prepared in the same manner as in Example 1 except that only 2000 g of polyethylene terephthalate polymer [mixing ratio (weight ratio) of high density polyethylene polymer and polyethylene terephthalate polymer was 0/100] was used. After that, a laminated non-woven structure was obtained in the same manner as in Example 1. The properties of the resulting laminated nonwoven structure are shown in Table 2.

【0039】比較例3 超音波融着装置に代わり圧接面積率が10%の熱エンボ
スロールと表面が平滑な熱金属ロールを用い,処理温度
を125℃,線圧を50kg/cm,かつ加工速度を1
0m/分として部分熱圧接処理を施した以外は実施例1
と同様にして,積層不織構造体を得た。得られた積層不
織構造体の特性を表2に示す。
Comparative Example 3 A hot embossing roll having a pressing area ratio of 10% and a hot metal roll having a smooth surface were used in place of the ultrasonic fusing device, the treatment temperature was 125 ° C., the linear pressure was 50 kg / cm, and the processing speed was. 1
Example 1 except that the partial hot-pressing treatment was performed at 0 m / min.
A laminated nonwoven structure was obtained in the same manner as in. The properties of the resulting laminated nonwoven structure are shown in Table 2.

【0040】比較例4 融点が161℃でフルトフローレート値が200g/1
0分の結晶性ポリプロピレン重合体を用い,メルトブロ
ーン法により不織布を製造した。すなわち,前記重合体
を溶融し,これを孔径0.15mmかつ孔数200の紡
糸口金を具備する紡糸装置から紡糸温度280℃,全吐
出量30g/分で紡出し,溶融紡出されたポリマ流を高
速空気流により牽引・細化した。この高速空気流とし
て,温度310℃,流速170m/秒の加熱空気を用い
た。牽引・細化に引き続き,ポリマ流を冷却し繊維に形
成した後,紡糸口金から10cm離れた位置に配設され
たサクシヨンドラム上に捕集・堆積して不織ウエブを
得,以降は実施例1と同様にしてこれに部分熱接着処理
を施し,目付けが40g/m2 のメルトブローン不織布
を得た。次いで,前記で得られたメルトブローン不織布
を用い,以降は実施例1と同様にして積層不織構造体を
得た。得られた積層不織構造体の特性を表2に示す。
Comparative Example 4 Melting point was 161 ° C. and Flute flow rate value was 200 g / 1.
A nonwoven fabric was produced by a melt blown method using a crystalline polypropylene polymer for 0 minutes. That is, the polymer is melted and spun at a spinning temperature of 280 ° C. and a total discharge rate of 30 g / min from a spinning device equipped with a spinneret having a pore diameter of 0.15 mm and a number of pores of 200, and melt-spun polymer stream. Was pulled and thinned by a high-speed air flow. As this high-speed air stream, heated air having a temperature of 310 ° C. and a flow rate of 170 m / sec was used. Following drawing and thinning, the polymer stream was cooled to form fibers, which were then collected and deposited on a saxion drum 10 cm away from the spinneret to obtain a nonwoven web. This was partially heat-bonded in the same manner as in Example 1 to obtain a meltblown nonwoven fabric having a basis weight of 40 g / m 2 . Then, the melt-blown nonwoven fabric obtained above was used to obtain a laminated nonwoven structure in the same manner as in Example 1 thereafter. The properties of the resulting laminated nonwoven structure are shown in Table 2.

【0041】実施例9〜14 超音波融着装置におけるパターンロール上の凸状突起部
面積比を2%(実施例9),4%(実施例10),16
%(実施例11),20%(実施例12),50%(実
施例13)及び55%(実施例14)とした以外は実施
例1と同様にして,積層不織構造体を得た。得られた積
層不織構造体の特性を表3に示す。
Examples 9 to 14 The area ratio of the convex projections on the pattern roll in the ultrasonic fusing device was 2% (Example 9), 4% (Example 10), 16
% (Example 11), 20% (Example 12), 50% (Example 13) and 55% (Example 14), except that the laminated nonwoven structure was obtained in the same manner as in Example 1. . The properties of the resulting laminated nonwoven structure are shown in Table 3.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】実施例1〜8及び10〜13でで得られた
積層不織構造体は,表1から明らかなように引張り強力
と層間剥離強力が高く,柔軟性が優れ,可染性を有し,
また吸水性と吸油性を併せて具備し,さらに優れたバク
テリアバリア性をも有するものであった。実施例5で得
られた積層不織構造体は,網状構造繊維においてポリエ
チレンテレフタレート重合体の含有比が低めであるた
め,やや染色性が低下した。また,実施例10で得られ
た積層不織構造体は,超音波融着装置におけるパターン
ロール上の凸状突起部面積比が4%であって不織構造体
全表面積に対する全点状融着区域の面積の比が低めであ
るため,層間剥離強力が実施例1に比べると若干低いも
のであり,実施例13で得られた積層不織構造体は,同
面積比が50%であって不織構造体全表面積に対する全
点状融着区域の面積の比が高めであるため層間剥離強力
は優れるものの,柔軟性が実施例1に比べるとやや劣る
ものであった。さらに,実施例9で得られた積層不織構
造体は,超音波融着装置におけるパターンロール上の凸
状突起部面積比が2%であって不織構造体全表面積に対
する全点状融着区域の面積の比が低過ぎるため,引張り
強力と層間剥離強力が共に低いものであった。実施例1
4で得られた積層不織構造体は,同面積比が55%であ
って不織構造体全表面積に対する全点状融着区域の面積
の比が高過ぎるため,引張り強力と層間剥離強力は高い
ものの剛軟度が高く,硬い風合いを有するものであっ
た。
The laminated non-woven structures obtained in Examples 1 to 8 and 10 to 13 have high tensile strength and high delamination strength as shown in Table 1, excellent flexibility and dyeability. Then
In addition, it possessed both water absorbency and oil absorbency, and also had excellent bacterial barrier properties. In the laminated non-woven structure obtained in Example 5, the content of the polyethylene terephthalate polymer in the reticulated structure fiber was low, and thus the dyeability was slightly deteriorated. The laminated non-woven structure obtained in Example 10 had an area ratio of the convex projections on the pattern roll of 4% in the ultrasonic fusing device, which was the total point fusion to the total surface area of the non-woven structure. Since the area ratio of the area is low, the delamination strength is slightly lower than that of Example 1, and the laminated nonwoven structure obtained in Example 13 has the same area ratio of 50%. The delamination strength was excellent, but the flexibility was slightly inferior to that of Example 1, because the ratio of the area of all the spot-shaped fused regions to the total surface area of the non-woven structure was high. Furthermore, in the laminated nonwoven structure obtained in Example 9, the area ratio of the convex protrusions on the pattern roll in the ultrasonic fusing device was 2%, and the total point fusion to the total surface area of the nonwoven structure was performed. The tensile strength and delamination strength were both low because the area ratio was too low. Example 1
The laminated non-woven structure obtained in No. 4 had the same area ratio of 55% and the ratio of the area of all spot-shaped fused areas to the total surface area of the non-woven structure was too high. Although it was high, it had a high bending resistance and a hard texture.

【0046】これに対し,比較例1で得られた積層不織
構造体は,網状構造繊維がポリエチレン重合体のみで構
成されるため,網状構造繊維不織布側の染色性が不良な
ものであった。比較例2で得られた積層不織構造体は,
網状構造繊維がポリエチレンテレフタレート重合体のみ
で構成されるため染色性は良好ではあるものの,網状構
造繊維のフイブリル化が不十分で,しかも引張り強力が
劣るものであった。また,比較例3で得られた積層不織
構造体は,超音波融着装置に代わり熱エンボスローラを
用いた部分熱圧着処理が施されたものであるため,層間
剥離強力が極めて低いものであった。さらに,比較例4
で得られた積層不織構造体は,網状構造繊維不織布に代
わりメルトブローン繊維不織布が積層されたものであ
り,透湿性は優れるものの,引張り強力と耐水圧が低い
ものであった。
On the other hand, in the laminated non-woven structure obtained in Comparative Example 1, since the reticulated structure fiber was composed of polyethylene polymer only, the dyeability on the reticulated structure fiber nonwoven fabric side was poor. . The laminated nonwoven structure obtained in Comparative Example 2 was
Although the dyeability was good because the network fibers consisted of polyethylene terephthalate polymer only, the fibrillation of the network fibers was insufficient and the tensile strength was poor. The laminated non-woven structure obtained in Comparative Example 3 was subjected to partial thermocompression treatment using a hot embossing roller instead of the ultrasonic fusing device, and therefore had extremely low delamination strength. there were. Furthermore, Comparative Example 4
The laminated non-woven structure obtained in the above step was one in which a melt-blown fiber non-woven fabric was laminated in place of the reticulated fiber non-woven fabric, and although it had excellent moisture permeability, it had low tensile strength and low water pressure resistance.

【0047】[0047]

【発明の効果】本発明の積層不織構造体は,ポリオレフ
イン系重合体からなるフイブリル繊維とポリエステル系
重合体からなるフイブリル繊維とを主構成要素とする三
次元的網状構造繊維から構成され,かつ構成繊維間が部
分的に熱接着されてなる網状構造繊維不織布と,天然繊
維同士が機械的に交絡してなる不織布とが積層され,前
記網状構造繊維と天然繊維とが融着されてなる点状融着
区域を有し,かつその点状融着区域において両不織布層
の少なくとも境界面に位置する天然繊維が前記網状構造
繊維の融解部に埋設された状態で固定されることにより
全体として一体化されてなるものであって,引張り強力
と層間剥離強力が高く,柔軟性が優れ,可染性を有し,
吸水性と吸油性を併せて具備し,またリントフリー性を
備え,さらに優れたバクテリアバリア性を有し,医療・
衛生材用,衣料用や生活関連材用あるいは産業資材用の
素材として好適である。
The laminated non-woven structure of the present invention is composed of a three-dimensional reticulated fiber having fibril fibers made of a polyolefin polymer and fibril fibers made of a polyester polymer as main constituent elements, and A point in which a network-structured fiber nonwoven fabric in which constituent fibers are partially heat-bonded and a non-woven fabric in which natural fibers are mechanically entangled with each other are laminated, and the network-structured fiber and the natural fiber are fused together. Has a fusing zone, and the natural fibers located at least at the boundary surface of both nonwoven fabric layers in the point fusing zone are fixed in such a state that they are embedded in the fused part of the reticulated structure fiber, thereby forming an integral body as a whole. It has high tensile strength and delamination strength, excellent flexibility, and has dyeability.
It has both water absorption and oil absorption, has lint-free property, and has excellent bacterial barrier property.
It is suitable as a material for sanitary materials, clothing, life-related materials, or industrial materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の積層不織構造体における点状融着区域
の断面を示す模式図である。
FIG. 1 is a schematic view showing a cross section of a dot-like fused area in a laminated nonwoven structure of the present invention.

【符号の説明】[Explanation of symbols]

1:点状融着区域において融解した網状構造繊維層 2:天然繊維 1: Network structure fiber layer melted in a dot-like fusion zone 2: Natural fiber

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ポリオレフイン系重合体からなるフイブ
リル繊維とポリエステル系重合体からなるフイブリル繊
維とを主構成要素とする三次元的網状構造繊維から構成
され,かつ構成繊維間が部分的に熱接着されてなる網状
構造繊維不織布と,天然繊維同士が機械的に交絡してな
る不織布とが積層され,前記網状構造繊維と天然繊維と
が融着されてなる点状融着区域を有し,かつその点状融
着区域において両不織布層の少なくとも境界面に位置す
る天然繊維が前記網状構造繊維の融解部に埋設された状
態で固定されることにより全体として一体化されてなる
ことを特徴とする積層不織構造体。
1. A three-dimensional reticulated fiber having fibril fibers made of a polyolefin polymer and fibril fibers made of a polyester polymer as main constituents, and the constituent fibers are partially heat-bonded to each other. And a non-woven fabric in which the natural fibers are mechanically entangled with each other are laminated to have a point-like fused area formed by fusing the network-structured fibers and the natural fibers, and Laminates characterized by being integrated as a whole by fixing the natural fibers located at least at the boundary surface of both non-woven fabric layers in the dotted fusion area in a state of being embedded in the fusion portion of the network structure fibers. Non-woven structure.
【請求項2】 ポリオレフイン系重合体が,ポリエチレ
ン系重合体又はその共重合体,ポリプロピレン系重合体
又はその共重合体のいずれか,あるいはこれら重合体の
混合物である請求項1記載の積層不織構造体。
2. The laminated nonwoven fabric according to claim 1, wherein the polyolefin polymer is any one of a polyethylene polymer or a copolymer thereof, a polypropylene polymer or a copolymer thereof, or a mixture of these polymers. Structure.
【請求項3】 ポリエステル系重合体が,ポリエチレン
テレフタレート系重合体又はその共重合体,ポリブチレ
ンテレフタレート系重合体又はその共重合体のいずれ
か,あるいはこれら重合体の混合物である請求項1又は
2記載の積層不織構造体。
3. The polyester polymer is any one of a polyethylene terephthalate polymer or a copolymer thereof, a polybutylene terephthalate polymer or a copolymer thereof, or a mixture of these polymers. The laminated nonwoven structure described.
【請求項4】 ポリオレフイン系重合体とポリエステル
系重合体との存在比(重量比)が,5〜95/95〜5
である請求項1,2又は3記載の積層不織構造体。
4. The abundance ratio (weight ratio) of the polyolefin polymer and the polyester polymer is 5 to 95/95 to 5.
The laminated non-woven structure according to claim 1, 2, or 3.
【請求項5】 網状構造繊維が,0.01〜10μm相
当径のフイブリル繊維から構成される請求項1,2,3
又は4記載の積層不織構造体。
5. The network-structured fiber is composed of a fibril fiber having a diameter equivalent to 0.01 to 10 μm.
Or the laminated nonwoven structure according to item 4.
【請求項6】 網状構造繊維と天然繊維とが融着されて
なる点状融着区域において,不織構造体全表面積に対す
る全点状融着区域の面積の比(%)が,4〜50である
請求項1,2,3,4又は5記載の積層不織構造体。
6. In a point-like fused area formed by fusing a network-structured fiber and a natural fiber, the ratio (%) of the area of all the point-like fused areas to the total surface area of the non-woven structure is 4 to 50. The laminated nonwoven structure according to claim 1, 2, 3, 4, or 5.
JP6261509A 1994-09-30 1994-09-30 Laminated nonwoven structure Pending JPH08109559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6261509A JPH08109559A (en) 1994-09-30 1994-09-30 Laminated nonwoven structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6261509A JPH08109559A (en) 1994-09-30 1994-09-30 Laminated nonwoven structure

Publications (1)

Publication Number Publication Date
JPH08109559A true JPH08109559A (en) 1996-04-30

Family

ID=17362898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6261509A Pending JPH08109559A (en) 1994-09-30 1994-09-30 Laminated nonwoven structure

Country Status (1)

Country Link
JP (1) JPH08109559A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087752A3 (en) * 2009-12-22 2011-11-17 3M Innovative Properties Company Bonded substrates and methods for bonding substrates
CN114687065A (en) * 2020-12-30 2022-07-01 无锡市正龙无纺布有限公司 Fireproof smoke exhaust ventilator filtering material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011087752A3 (en) * 2009-12-22 2011-11-17 3M Innovative Properties Company Bonded substrates and methods for bonding substrates
CN114687065A (en) * 2020-12-30 2022-07-01 无锡市正龙无纺布有限公司 Fireproof smoke exhaust ventilator filtering material

Similar Documents

Publication Publication Date Title
US20030203695A1 (en) Splittable multicomponent fiber and fabrics therefrom
EP0418493A1 (en) A nonwoven composite fabric combined by hydroentangling and a method of manufacturing the same
US20060030230A1 (en) Staple fiber non-woven fabric and process for producing the same
JP3550810B2 (en) Composite nonwoven fabric and method for producing the same
JP2002061060A (en) Nonwoven fabric and finished article of nonwoven fabric
JPH10331063A (en) Composite nonwoven fabric and its production
JPH08109559A (en) Laminated nonwoven structure
JPH08118526A (en) Laminated nonwoven structure
JP3145067B2 (en) Nonwoven fabric and method for producing the same
JPH08118525A (en) Laminated nonwoven structure
JPH08109560A (en) Laminated nonwoven structure
JPH10280262A (en) Nonwoven fabric and its production
JP3305453B2 (en) Laminated non-woven structure
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JPH07125128A (en) Biodegradable nonwoven laminate
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JPH08109567A (en) Laminated nonwoven structure and its production
JPH0768686A (en) Laminated nonwoven structure
JPH1096153A (en) Stretchable nonwoven fabric and its production
JPH1037055A (en) Composite nonwoven fabric
JPH10158968A (en) Nonwoven fabric and its production
JPH10273870A (en) Composite non-woven fabric and its production
JPH07266479A (en) Laminated nonwoven structure
JPH09195155A (en) Nonwoven fabric for hook-and-loop fastener and its production
JPH0931821A (en) Elastic conjugate nonwoven fabric and its production