JPH0768686A - Laminated nonwoven structure - Google Patents

Laminated nonwoven structure

Info

Publication number
JPH0768686A
JPH0768686A JP5240547A JP24054793A JPH0768686A JP H0768686 A JPH0768686 A JP H0768686A JP 5240547 A JP5240547 A JP 5240547A JP 24054793 A JP24054793 A JP 24054793A JP H0768686 A JPH0768686 A JP H0768686A
Authority
JP
Japan
Prior art keywords
fibers
laminated
nonwoven fabric
woven
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5240547A
Other languages
Japanese (ja)
Inventor
So Yamaguchi
創 山口
Shigemitsu Murase
繁満 村瀬
Yoshimoto Miyahara
芳基 宮原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP5240547A priority Critical patent/JPH0768686A/en
Publication of JPH0768686A publication Critical patent/JPH0768686A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a nonwoven structure enhanced in peel strength and flexibility and good in water absorbability, bacteria barrier properties and water resistance, in spotted fusion areas where extremely fine thermoplastic fibers and natural fibers are fused, by embedding the natural fibers positioned on at least the boundary surface of a nonwoven fabric layer in the molten parts of the extremely fine fibers to fix them. CONSTITUTION:A laminated nonwoven structure is formed by laminating a nonwoven fabric layer composed of extremely fine thermoplastic fibers with single fiber finness of 0.2 denier or less and a nonwoven fabric layer wherein natural fibers 2 are mechanically entangled each other and has spotted fusion areas where the extremely fine fibers and the natural fibers 2 are fused. The natural fibers 2 positioned on at least boundary surface of both nonwoven fabric layers are fixed in the spotted fusion areas in the state embedded in the molten parts 1 of the extremely fine fibers. Further, the areal ratio of all spotted fusion areas to the total surface area of the nonwoven structure is pref. set to 2-40% and the density of the spotted fusion areas is set to 7-80/cm<2> and the air permeability thereof is set to 50cc/cm<2>/sec or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,熱可塑性極細繊維不織
布層と天然繊維不織布層とが積層されてなる積層不織構
造体であって,剥離強力が高く,柔軟性が優れ,良好な
バクテリアバリア性と吸水性を有し,しかも耐水圧も高
く,医療・衛生材用,衣料用あるいは生活関連材用の素
材として好適な積層不織構造体に関するものである。
FIELD OF THE INVENTION The present invention relates to a laminated non-woven structure comprising a thermoplastic ultrafine fiber nonwoven fabric layer and a natural fiber nonwoven fabric layer laminated, which has high peel strength, excellent flexibility, and good bacteria. The present invention relates to a laminated non-woven structure having barrier properties and water absorbency, and having high water pressure resistance, which is suitable as a material for medical / sanitary materials, clothing, or life-related materials.

【0002】[0002]

【従来の技術】従来から,熱可塑性繊維不織布層と天然
繊維不織布層とが積層されてなる積層不織構造体が知ら
れている。例えば,特公昭54−24506号公報に
は,熱可塑性繊維不織布からなる通気性熱溶着層と天然
繊維等からなる通気性非熱溶着層とが積層され,非熱溶
着層上に熱溶着性物質が点在的に配置され,かつ熱溶着
性物質と熱溶着層との溶融部が非熱溶着層の両面から浸
透して前記非熱溶着層を接着挟持した構造を有する積層
不織構造体が提案されている。しかしながら,この積層
不織構造体は,天然繊維が積層されているため吸水性は
優れるものの,上述したように通気性の向上を目的とす
ることからも明らかなようにバクテリアバリア性を有し
ないものである。しかも,この積層不織構造体は,これ
を製造するに際して通気性熱溶着層と通気性非熱溶着層
とを積層する工程と,非熱溶着層上に含浸用熱溶着性シ
ート層を重合し,超音波融着処理により熱溶着性物質と
熱溶着層との溶融部が非熱溶着層の両面から浸透して前
記非熱溶着層を接着挟持した構造を発現する工程と,前
記含浸用熱溶着性シートをその溶融部を残して剥離する
工程とを必要とするなど製造技術の観点からすれば煩雑
で,経済性にも劣るものであった。
2. Description of the Related Art Conventionally, a laminated non-woven structure is known in which a thermoplastic fiber nonwoven fabric layer and a natural fiber nonwoven fabric layer are laminated. For example, in Japanese Examined Patent Publication No. 54-24506, a breathable heat-welding layer made of a thermoplastic fiber non-woven fabric and a breathable non-heat-welding layer made of natural fibers are laminated, and a heat-welding substance is formed on the non-heat-welding layer. A laminated non-woven structure having a structure in which the non-heat-welding material and the heat-welding layer penetrate into both sides of the non-heat-welding layer and the non-heat-welding layer is adhesively sandwiched. Proposed. However, although this laminated non-woven structure is excellent in water absorption because natural fibers are laminated, it does not have a bacterial barrier property, as is apparent from the purpose of improving air permeability as described above. Is. In addition, this laminated non-woven structure has a step of laminating a breathable heat-welding layer and a breathable non-heat-welding layer when manufacturing the same, and polymerizing an impregnating heat-welding sheet layer on the non-heat-welding layer. , A step of developing a structure in which the fused portion of the heat-welding substance and the heat-welding layer permeates from both sides of the non-heat-welding layer by ultrasonic fusion treatment to sandwich and sandwich the non-heat-welding layer, and the heat for impregnation From the viewpoint of manufacturing technology, such as requiring a step of peeling the weldable sheet leaving the melted portion, it is complicated and economically inferior.

【0003】[0003]

【発明が解決しようとする課題】本発明は,熱可塑性極
細繊維不織布層と天然繊維不織布層とが積層されてなる
積層不織構造体であって,剥離強力が高く,柔軟性が優
れ,吸水性を有し,しかも上述した従来の積層不織構造
体が有しない機能である良好なバクテリアバリア性と耐
水圧をも有し,医療・衛生材用,衣料用あるいは生活関
連材用の素材として好適な積層不織構造体を提供しよう
とするものである。
DISCLOSURE OF THE INVENTION The present invention is a laminated non-woven structure comprising a thermoplastic ultrafine fiber nonwoven fabric layer and a natural fiber nonwoven fabric layer laminated, which has high peel strength, excellent flexibility and water absorption. It also has good properties, and also has good bacterial barrier properties and water pressure resistance, which are features that conventional laminated non-woven structures do not have, and it is used as a material for medical and hygiene materials, clothing, and daily life related materials. The present invention seeks to provide a suitable laminated nonwoven structure.

【0004】[0004]

【課題を解決するための手段】本発明者らは,前記課題
を達成すべく鋭意検討の結果,本発明に到達した。すな
わち,本発明は,以下の構成をその要旨とするものであ
る。 1)単繊維繊度が0.2デニール以下の熱可塑性極細繊
維からなる不織布層と天然繊維同士が機械的に交絡して
なる不織布層とが積層され,かつ前記極細繊維と天然繊
維とが融着されてなる点状融着区域を有する積層不織構
造体であって,前記点状融着区域において前記両不織布
層の少なくとも境界面に位置する天然繊維が前記極細繊
維の融解部に埋設された状態で固定されることにより全
体として一体化されてなることを特徴とする積層不織構
造体。 2)不織構造体全表面積に対する全点状融着区域の面積
の比が2〜40%及び点状融着区域密度が7〜80点/
cm2 であることを特徴とする前記積層不織構造体。 3)通気度が50cc/cm2 /秒以下であることを特
徴とする前記積層不織構造体。
The inventors of the present invention have arrived at the present invention as a result of extensive studies to achieve the above object. That is, the present invention has the following configurations as its gist. 1) A non-woven fabric layer made of thermoplastic ultrafine fibers having a single fiber fineness of 0.2 denier or less and a nonwoven fabric layer made of mechanically entangled natural fibers are laminated, and the ultrafine fibers and natural fibers are fused. A laminated non-woven structure having spot-shaped fused areas, wherein natural fibers located at least at the boundary surface between the two non-woven fabric layers in the point-shaped fused areas are embedded in the fused portion of the ultrafine fibers. A laminated non-woven structure characterized by being integrated as a whole by being fixed in a state. 2) The ratio of the area of all dot-like fused areas to the total surface area of the non-woven structure is 2 to 40% and the dot-like fused area density is 7 to 80 points /
The laminated non-woven structure according to claim 1, wherein the laminated non-woven structure is cm 2 . 3) The laminated nonwoven structure, which has an air permeability of 50 cc / cm 2 / sec or less.

【0005】次に,本発明を詳細に説明する。まず,本
発明における熱可塑性極細繊維不織布層に関してである
が,この不織布層は,例えばポリオレフイン系重合体,
ポリエステル系重合体あるいはポリアミド系重合体等の
繊維形成性を有する熱可塑性合成重合体からなるもので
ある。ポリオレフイン系重合体としては,炭素原子数2
〜18の脂肪族α−モノオレフイン,例えばエチレン,
プロピレン,ブテン−1,ペンテン−1,3−メチルブ
テン−1,ヘキセン−1,オクテン−1,ドデセン−
1,オクタデセン−1からなるホモポリオレフイン重合
体が挙げられる。この脂肪族α−モノオレフインは,他
のエチレン系不飽和モノマ,例えばブタジエン,イソプ
レン,ペンタジエン−1・3,スチレン,α−メチルス
チレンのような類似のエチレン系不飽和モノマが共重合
されたポリオレフイン系共重合体であってもよい。ま
た,ポリエチレン系重合体の場合には,エチレンに対し
てプロピレン,ブテン−1,ヘキセン−1,オクテン−
1又は類似の高級α−オレフインが10重量%以下共重
合されたものであってもよく,ポリプロピレン系重合体
の場合には,プロピレンに対してエチレン又は類似の高
級α−オレフインが10重量%以下共重合されたもので
あってもよいが,前記これらの共重合物の共重合率が前
記重量%を超えると共重合体の融点が低下し,これら共
重合体の繊維からなる不織布を用いて得た積層不織構造
体を高温条件下で使用したとき,機械的特性や寸法安定
性が低下するので好ましくない。
Next, the present invention will be described in detail. First, regarding the thermoplastic ultrafine fiber nonwoven fabric layer in the present invention, this nonwoven fabric layer is made of, for example, a polyolefin-based polymer,
It is made of a thermoplastic synthetic polymer having a fiber-forming property such as a polyester polymer or a polyamide polymer. Polyolefin polymers have 2 carbon atoms
~ 18 aliphatic α-monoolefins such as ethylene,
Propylene, butene-1, pentene-1,3-methylbutene-1, hexene-1, octene-1, dodecene-
A homopolyolefin polymer composed of 1, octadecene-1 can be mentioned. This aliphatic α-monoolefin is a polyolefin in which other ethylenically unsaturated monomers are copolymerized with similar ethylenically unsaturated monomers such as butadiene, isoprene, pentadiene-1.3, styrene, and α-methylstyrene. It may be a system copolymer. Further, in the case of a polyethylene-based polymer, propylene, butene-1, hexene-1, octene-
1 or similar higher α-olefins may be copolymerized in an amount of 10% by weight or less. In the case of a polypropylene polymer, ethylene or a similar higher α-olefin is 10% by weight or less with respect to propylene. The copolymer may be copolymerized, but when the copolymerization rate of these copolymers exceeds the above-mentioned weight%, the melting point of the copolymer decreases, and a non-woven fabric made of fibers of these copolymers is used. When the obtained laminated non-woven structure is used under high temperature conditions, mechanical properties and dimensional stability deteriorate, which is not preferable.

【0006】ポリエステル系重合体としては,テレフタ
ル酸,イソフタル酸,ナフタリン−2・6−ジカルボン
酸等の芳香族ジカルボン酸あるいはアジピン酸,セバチ
ン酸等の脂肪族ジカルボン酸又はこれらのエステル類を
酸成分とし,かつエチレングリコール,ジエチレングリ
コール,1・4−ブタジオール,ネオペンチルグリコー
ル,シクロヘキサン−1・4−ジメタノール等のジオー
ル化合物をエステル成分とするホモポリエステル重合体
あるいは共重合体が挙げられる。なお,これらのポリエ
ステル系重合体には,パラオキシ安息香酸,5−ソジウ
ムスルホイソフタール酸,ポリアルキレングリコール,
ペンタエリスススリトール,ビスフエノールA等が添加
あるいは共重合されていてもよい。
As the polyester polymer, aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid and naphthalene-2,6-dicarboxylic acid, or aliphatic dicarboxylic acids such as adipic acid and sebacic acid or their esters are used as acid components. And a homopolyester polymer or copolymer containing a diol compound such as ethylene glycol, diethylene glycol, 1,4-butadiol, neopentyl glycol, cyclohexane-1,4-dimethanol as an ester component. In addition, these polyester-based polymers include paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol,
Pentaeryththritol, bisphenol A, etc. may be added or copolymerized.

【0007】ポリアミド系重合体としては,ポリイミノ
−1−オキソテトラメチレン(ナイロン4),ポリテト
ラメチレンアジパミド(ナイロン46),ポリカプラミ
ド(ナイロン6),ポリヘキサメチレンアジパミド(ナ
イロン66),ポリウンデカナミド(ナイロン11),
ポリラウロラクタミド(ナイロン12),ポリメタキシ
レンアジパミド,ポリパラキシリレンデカナミド,ポリ
ビスシクロヘキシルメタンデカナミド又はこれらのモノ
マを構成単位とするポリアミド系共重合体が挙げられ
る。特に,ポリテトラメチレンアジパミドの場合,ポリ
テトラメチレンアジパミドにポリカプラミドやポリヘキ
サメチレンアジパミド,ポリウンデカメチレンテレフタ
ラミド等の他のポリアミド成分が30モル%以下共重合
されたポリテトラメチレンアジパミド系共重合体であっ
てもよい。前記他のポリアミド成分の共重合率が30モ
ル%を超えると共重合体の融点が低下し,これら共重合
体の繊維からなる不織布を用いて得た積層不織構造体を
高温条件下で使用したとき,機械的特性や寸法安定性が
低下するので好ましくない。なお,本発明において,前
記繊維形成性を有する熱可塑性重合体には,必要に応じ
て,例えば艶消し剤,顔料,消臭剤,光安定剤,熱安定
剤,酸化防止剤等の各種添加剤を本発明の効果を損なわ
ない範囲内で添加することができる。
Polyamide polymers include polyimino-1-oxotetramethylene (nylon 4), polytetramethylene adipamide (nylon 46), polycapramide (nylon 6), polyhexamethylene adipamide (nylon 66), Polyundecanamid (nylon 11),
Examples thereof include polylaurolactamide (nylon 12), polymethaxylene adipamide, polyparaxylylene decanamide, polybiscyclohexylmethane decanamide, or a polyamide-based copolymer having these monomers as a constituent unit. Particularly, in the case of polytetramethylene adipamide, polytetramethylene adipamide is a polycapramide, polyhexamethylene adipamide, polyundecamethylene terephthalamide, or other polyamidopolyamide copolymerized by 30 mol% or less. It may be a tetramethylene adipamide-based copolymer. When the copolymerization rate of the other polyamide component exceeds 30 mol%, the melting point of the copolymer is lowered, and the laminated non-woven structure obtained by using the non-woven fabric made of fibers of these copolymers is used under high temperature conditions. If so, mechanical properties and dimensional stability will be reduced, which is not preferable. In the present invention, various additives such as matting agents, pigments, deodorants, light stabilizers, heat stabilizers, antioxidants, etc. may be added to the fiber-forming thermoplastic polymer, if necessary. The agent can be added within a range that does not impair the effects of the present invention.

【0008】本発明における熱可塑性極細繊維不織布層
は,前記重合体からなり,かつ単繊維繊度が0.2デニ
ール以下の繊維から構成されるメルトブローン不織布あ
るいはスパンボンド不織布である。この極細繊維は,前
記重合体単独からなるものの他に前記重合体の中から選
択された2種以上の相異なる重合体が各々溶融紡糸性を
損なわない範囲内でブレンドされたブレンド物からなる
ものであってもよく,例えばポリエステル系重合体とポ
リオレフイン系重合体とがブレンドされたものや,2種
の相異なるポリアミド系重合体がブレンドされたものが
挙げられる。また,この極細繊維の形態は,前記重合体
の中から選択された2種の相異なる重合体が芯鞘型ある
いは並列型に配されたものであってもよい。
The thermoplastic ultrafine fiber nonwoven fabric layer in the present invention is a meltblown nonwoven fabric or a spunbonded nonwoven fabric composed of the above-mentioned polymer and composed of fibers having a single fiber fineness of 0.2 denier or less. The ultrafine fibers are composed of a blend of the above-mentioned polymers alone, and a blend of two or more different polymers selected from the above-mentioned polymers within a range that does not impair the melt spinnability. Examples thereof include a blend of a polyester polymer and a polyolefin polymer, and a blend of two different polyamide polymers. Further, the morphology of the ultrafine fibers may be one in which two different polymers selected from the above polymers are arranged in a core-sheath type or a parallel type.

【0009】メルトブローン不織布は,前述した重合体
を重合体を単独で,あるいは前記重合体の中から選択さ
れた2種以上の相異なる重合体がブレンドされたブレン
ド物を,あるいは前記重合体の中から選択された2種の
相異なる重合体を芯鞘型あるいは並列型に配するように
していわゆるメルトブローン法で溶融紡出し,すなわち
紡糸口金に配設された孔径0.1〜1.0mm程度の紡
糸孔から吐出し,吐出された溶融重合体流を溶融温度よ
り20〜50℃高い温度で幅0.1〜0.5mm程度の
スリツト状ノズルから噴出される高圧気体流により牽引
・細化し,冷却した後,移動する捕集面上に捕集・堆積
させることによって,容易に単繊維繊度が0.2デニー
ル以下の繊維から構成される不織ウエブを得ることがで
きる。メルトブローン法で溶融紡出するに際し,紡糸温
度は用いる重合体の溶融特性に応じて適宜選択するが,
通常は290〜350℃とするのが好ましく,紡糸温度
が290℃未満であると溶融重合体を紡糸孔から吐出す
ることが困難となって吐出溶融重合体流が途切れ易くな
り,一方,紡糸温度が350℃を超えると重合体が熱分
解を生じ,いずれも好ましくない。また,吐出された溶
融重合体流を牽引・細化する高圧気体流は,その温度を
重合体流の溶融温度より20〜50℃高い温度とし,こ
の温度が重合体流の溶融温度より+20℃未満であると
製糸性が低下して極細繊維の形成が困難となり,一方,
この温度が重合体流の溶融温度より+50℃を超えると
重合体の熱分解により紡糸口金の吐出孔が経時的に汚れ
て操業性が低下し,いずれも好ましくない。さらに,高
圧気体流の流速は,通常は80〜300m/秒程度と
し,その噴出方向は,紡糸線方向に対して5〜45度の
角度をなす方向とするのが好ましい。
The melt blown non-woven fabric is the above-mentioned polymer alone, or a blended product of two or more different polymers selected from the above-mentioned polymers, or among the above-mentioned polymers. Two different polymers selected from the above are melt-spun by a so-called melt blown method such that they are arranged in a core-sheath type or a parallel type, that is, a hole diameter of about 0.1 to 1.0 mm arranged in a spinneret. The molten polymer flow discharged from the spinning hole is drawn and thinned by a high-pressure gas flow ejected from a slit nozzle having a width of 0.1 to 0.5 mm at a temperature 20 to 50 ° C. higher than the melting temperature, After cooling, by collecting and depositing on the moving collecting surface, it is possible to easily obtain a nonwoven web composed of fibers having a single fiber fineness of 0.2 denier or less. When melt spinning by the melt blown method, the spinning temperature is appropriately selected according to the melting characteristics of the polymer to be used.
Usually, the temperature is preferably 290 to 350 ° C. When the spinning temperature is lower than 290 ° C, it is difficult to discharge the molten polymer from the spinning hole, and the discharged molten polymer flow is apt to be interrupted. When the temperature exceeds 350 ° C, the polymer undergoes thermal decomposition, which is not preferable. In addition, the temperature of the high-pressure gas flow for drawing and thinning the discharged molten polymer flow is set to a temperature 20 to 50 ° C. higher than the melting temperature of the polymer flow, and this temperature is + 20 ° C. higher than the melting temperature of the polymer flow. If it is less than 1, the spinnability deteriorates and it becomes difficult to form ultrafine fibers.
If this temperature exceeds + 50 ° C. above the melting temperature of the polymer stream, the thermal decomposition of the polymer causes the ejection holes of the spinneret to become dirty over time, resulting in poor operability. Further, it is preferable that the flow rate of the high-pressure gas flow is usually about 80 to 300 m / sec, and the jetting direction is a direction forming an angle of 5 to 45 degrees with respect to the spinning line direction.

【0010】スパンボンド不織布は,前述した重合体を
単独で,あるいは前記重合体の中から選択された2種以
上の相異なる重合体がブレンドされたブレンド物を,あ
るいは前記重合体の中から選択された2種の相異なる重
合体を芯鞘型あるいは並列型に配するようにしていわゆ
るスパンボンド法で溶融紡出し,すなわち紡糸口金から
溶融紡出・冷却し,エアーサツカ等の引き取り手段を用
い引取り速度を3000〜6000m/分として牽引・
細化した後,開繊器を用いて開繊し,移動する捕集面上
に捕集・堆積させることによって,単繊維繊度が0.2
デニール以下の繊維から構成される不織ウエブを得るこ
とができる。この場合,前述した重合体から選択された
非相溶性の2種以上の重合体を用いて複合紡出し,前述
したと同様にして不織ウエブを作成し,得られた不織ウ
エブに機械的割繊処理を施して各重合体単独からなる割
繊繊維とする方法を採用すると,より容易に前記単繊維
繊度の不織ウエブを得ることができる。なお,この非相
溶性の2種以上の重合体としては,ほぼ同等の融点を有
するものであってもよいが,相互に融点を少なくとも2
0℃異にする重合体を選択することもできる。スパンボ
ンド法で溶融紡出するに際しては,その引取り速度を3
000〜6000m/分とするのがよい。引取り速度が
3000m/分未満であると紡出繊維の分子配向度が十
分に増大しないため得られるウエブの機械的特性や寸法
安定性が向上せず,一方,引取り速度が6000m/分
を超えると溶融紡糸時の製糸性が低下し,いずれも好ま
しくない。
The spunbonded non-woven fabric is selected from the above-mentioned polymers alone, a blended product of two or more different polymers selected from the above-mentioned polymers, or selected from the above-mentioned polymers. The two different polymers thus prepared are melt-spun by the so-called spunbond method so as to be arranged in a core-sheath type or a parallel type, that is, melt-spun and cooled from a spinneret, and drawn by using a take-up means such as an air sucker. Traction with a speed of 3000-6000 m / min.
After the fiber is thinned, it is opened using a fiber opener and collected and deposited on the moving collection surface, resulting in a single fiber fineness of 0.2.
Nonwoven webs composed of fibers below denier can be obtained. In this case, composite spinning was performed using two or more incompatible polymers selected from the above polymers, a nonwoven web was prepared in the same manner as described above, and the resulting nonwoven web was mechanically By adopting a method of splitting fibers into split fibers composed of each polymer alone, a nonwoven web having the single fiber fineness can be obtained more easily. The two or more incompatible polymers may have almost the same melting point, but they have melting points of at least 2
It is also possible to select polymers that differ by 0 ° C. When melt-spun by the spunbond method, the take-up speed is 3
000 to 6000 m / min is preferable. If the take-up speed is less than 3000 m / min, the degree of molecular orientation of the spun fiber does not increase sufficiently, so that the mechanical properties and dimensional stability of the obtained web are not improved, while the take-up speed is less than 6000 m / min. If it exceeds the above range, the spinnability at the time of melt spinning is deteriorated, which is not preferable.

【0011】本発明における熱可塑性極細繊維不織布層
は,前述したように単繊維繊度が0.2デニール以下の
繊維から構成されるものである。単繊維繊度が0.2デ
ニールを超えると,得られる不織布の風合いが硬くなっ
て柔軟性に富む積層不織構造体を得ることができず,し
かも不織布表面のポアサイズが大きくなって十分なバク
テリアバリア性が発現せず,好ましくない。
The thermoplastic ultrafine fiber nonwoven fabric layer in the present invention is composed of fibers having a single fiber fineness of 0.2 denier or less as described above. When the monofilament fineness exceeds 0.2 denier, the texture of the obtained non-woven fabric becomes hard and a laminated non-woven structure having a high flexibility cannot be obtained, and the pore size of the non-woven fabric surface becomes large, resulting in a sufficient bacterial barrier. It is not preferable because it does not develop the sex.

【0012】本発明における熱可塑性極細繊維不織布層
は,その目付けが10〜120g/m2 のものであるの
が好ましい。目付けが10g/m2 未満であると,繊維
同士の緻密な重なりの程度が低く,この不織布に天然繊
維不織布を積層・一体化して得られる積層不織構造体の
地合いが低下するため,好ましくない。一方,目付けが
120g/m2 を超えると,バクテリアバリア性は向上
するものの厚みが大きくなり過ぎるため,得られる積層
不織構造体を例えば柔軟性が要求されるような分野に適
用することが困難となり,しかもこの不織布に天然繊維
不織布を積層した後,超音波融着装置を用い融着処理を
施して一体化するに際し,加工速度を遅くしたりあるい
は多大の超音波エネルギを供給するなどの必要が生じ,
好ましくない。したがって,本発明では,この極細繊維
不織布層の目付けを10〜120g/m2 ,好ましくは
20〜100g/m2 とする。
The thermoplastic ultrafine fiber nonwoven fabric layer in the present invention preferably has a basis weight of 10 to 120 g / m 2 . When the basis weight is less than 10 g / m 2 , the degree of dense overlap between fibers is low, and the texture of a laminated non-woven structure obtained by laminating and integrating a natural fiber nonwoven fabric with this nonwoven fabric is not preferable, which is not preferable. . On the other hand, when the basis weight exceeds 120 g / m 2 , the bacterial barrier property is improved but the thickness becomes too large, so that it is difficult to apply the obtained laminated non-woven structure to, for example, a field requiring flexibility. Moreover, after laminating a natural fiber non-woven fabric on this non-woven fabric, it is necessary to slow down the processing speed or supply a large amount of ultrasonic energy when performing a fusion process using an ultrasonic fusion device to integrate them. Occurs,
Not preferable. Therefore, in the present invention, the basis weight of this ultrafine fiber nonwoven fabric layer is set to 10 to 120 g / m 2 , and preferably 20 to 100 g / m 2 .

【0013】次に,本発明における天然繊維同士が機械
的に交絡してなる不織布層に関してであるが,この不織
布層を構成する天然繊維とは,木綿繊維や麻繊維等のセ
ルロース系繊維の他に,ラミー等の動物繊維,絹短繊
維,天然パルプ,レーヨンに代表される各種再生短繊維
をも包含するものである。本発明では,この不織布層の
出発原料として,晒し加工の施されていないコーマ糸,
晒し加工された晒し綿,あるいは織物・編物から得られ
る各種反毛を用いることもできる。出発原料として反毛
を用いる場合,効果的に用い得る反毛機としては,ラツ
グマシン,ノツトブレーカ,ガーネツトマシン,廻切機
が挙げられる。用いる反毛機の種類と組み合わせは,反
毛される織物・編物等の布帛形状や構成する糸の太さあ
るいは撚りの強さにもよるが,同一の反毛機を複数台直
列に連結したり,2種以上の反毛機を組み合わせて使用
したりするとより効果的である。この反毛機による解繊
率(%)は30〜95%の範囲であるのが好ましい。こ
の解繊率が30%未満であると,カードウエブ中に未解
繊繊維が存在するため不織布表面にザラツキが生じるの
みでなく,例えば高圧液体柱状流処理により天然繊維同
士を三次元的機械的交絡を施すに際して未解繊繊維部分
を高圧液体柱状流が十分貫通せず,一方,解繊率が95
%を超えると,前記熱可塑性極細繊維不織布と積層・一
体化して得られる積層不織構造体において,十分な表面
摩擦強度が得られず,いずれも好ましくない。なお,こ
こでいう解繊率(%)とは,下記式(1)により求めら
れるものである。 解繊率(%)=(被反毛重量−糸状物重量)×100/被反毛重量・・(1)
Next, regarding the non-woven fabric layer in which the natural fibers are mechanically entangled with each other in the present invention, the natural fibers constituting the non-woven fabric layer include cellulosic fibers such as cotton fiber and hemp fiber. It also includes animal fibers such as ramie, silk staple fibers, natural pulp, and various recycled staple fibers represented by rayon. In the present invention, as a starting material for this non-woven fabric layer, combed yarn that has not been subjected to bleaching processing,
Bleached cotton that has been bleached or various fluff obtained from woven or knitted fabric can also be used. When using fluff as the starting material, the fluff machine that can be effectively used includes a ratchet machine, a notch breaker, a garnet machine, and a cutting machine. The type and combination of anti-fluffing machines used depend on the shape of the woven or knitted fabric to be fluffed and the thickness or twisting strength of the constituent threads, but multiple identical anti-fluffing machines are connected in series. It is more effective to use two or more types of anti-hairbrushing machine in combination. The defibration rate (%) by the fluffing machine is preferably in the range of 30 to 95%. When the defibration rate is less than 30%, unwoven fibers are present in the card web, so that not only the surface of the non-woven fabric is rough but also natural fibers are three-dimensionally mechanically processed by the high pressure liquid columnar flow treatment. When the entanglement is performed, the high-pressure liquid columnar flow does not sufficiently penetrate the undisentangled fiber portion, while the disentanglement rate is 95%.
If it exceeds 0.1%, the laminated non-woven structure obtained by laminating and integrating with the thermoplastic ultrafine fiber nonwoven fabric cannot obtain sufficient surface friction strength, which is not preferable. The defibration rate (%) here is determined by the following equation (1). Disentanglement rate (%) = (weight of woven fabric-weight of filamentous material) x 100 / weight of woven fabric ... (1)

【0014】本発明における天然繊維不織布層は,前記
天然繊維からなり,かつ繊維同士が機械的に交絡してな
るものである。すなわち,天然繊維同士が,高圧液体柱
状流処理あるいはニードルパンチング処理により機械的
に交絡したものであり,特に前者の場合,繊維同士が三
次元的に交絡して不織布の嵩高性が向上すると共に柔軟
性も向上するため,例えば前記熱可塑性極細繊維不織布
と積層・一体化して得られる積層不織構造体を衛生材用
あるいは生活関連材用の素材として用いる上で好まし
い。この不織布層は,前記天然繊維素材の中から選択さ
れた単一素材あるいは複数種の素材が混合されてなるも
のを出発原料とし,カード機を用いて所定目付けのカー
ドウエブを作成し,次いで得られたウエブに高圧液体柱
状流処理あるいはニードルパンチング処理により繊維間
に機械的交絡を施すことにより容易に得ることができ
る。このカードウエブは,構成繊維の配列度合によって
種々選択することができ,例えばカード機の進行方向に
配列したパラレルウエブ,パラレルウエブがクロスレイ
ドされたウエブ,ランダムに配列したランダムウエブあ
るいは両者の中程度に配列したセミランダムウエブ等が
挙げられる。また,衣料用素材としての展開を図りたい
場合には,不織布強力の縦/横比が概ね1/1となるカ
ードウエブを使用するのが好ましい。
The natural fiber non-woven fabric layer in the present invention is made of the above-mentioned natural fibers, and the fibers are mechanically entangled with each other. That is, the natural fibers are mechanically entangled by the high-pressure liquid columnar flow treatment or the needle punching treatment. Especially in the former case, the fibers are entangled three-dimensionally and the bulkiness of the nonwoven fabric is improved and the softness is increased. Since the property is also improved, for example, a laminated non-woven structure obtained by laminating and integrating with the thermoplastic ultrafine fiber nonwoven fabric is preferable for use as a material for sanitary materials or life-related materials. This non-woven fabric layer is made of a single material or a mixture of a plurality of materials selected from the above natural fiber materials as a starting material. It can be easily obtained by subjecting the obtained web to mechanical entanglement between fibers by high pressure liquid columnar flow treatment or needle punching treatment. The card web can be variously selected according to the degree of arrangement of the constituent fibers. For example, a parallel web arranged in the traveling direction of the card machine, a web in which parallel webs are crosslaid, a random web arranged in random, or a medium degree of both. Examples thereof include a semi-random web and the like. Further, when it is desired to develop it as a material for clothing, it is preferable to use a card web in which the aspect ratio of the strength of the nonwoven fabric is about 1/1.

【0015】高圧液体柱状流処理の場合,例えば孔径が
0.05〜1.5mm特に0.1〜0.4mmの噴射孔
を孔間隔を0.05〜5mmで1列あるいは複数列に多
数配列した装置を用い,噴射圧力が5〜150kg/c
2 Gの高圧液体を前記噴射孔から噴射し,多孔性支持
部材上に載置したカードウエブに衝突させることにより
繊維間に三次元的交絡を付与する方法を採用する。噴射
孔の配列は,このカードウエブの進行方向と直交する方
向に列状に配列する。高圧液体としては,常温の水ある
いは温水を用いることができる。噴射孔とウエブとの間
の距離は,1〜15cmとするのがよい。この距離が1
cm未満であるとこの処理により得られる複合不織布の
地合いが乱れ,一方,この距離が15cmを超えると液
体流が積層物に衝突したときの衝撃力が低下して三次元
的な交絡が十分に施されず,いずれも好ましくない。こ
の高圧液体柱状流による処理は,少なくとも2段階に別
けて施とよい。すなわち,第1段階の処理として圧力が
5〜40kg/cm2 Gの高圧液体流を噴出し前記ウエ
ブに衝突させ,ウエブの構成繊維同士を予備的に交絡さ
せる。この第1段階の処理において,液体流の圧力が5
kg/cm2 G未満であるとウエブの構成繊維同士を予
備的に交絡させることができず,一方,液体流の圧力が
40kg/cm2 Gを超えるとウエブに高圧液体流を噴
出し衝突させたときウエブの構成繊維が液体流の作用に
よって乱れ,ウエブに地合いの乱れや目付け斑が生じる
ため,いずれも好ましくない。引き続き,第2段階の処
理として圧力が50〜150kg/cm2 Gの高圧液体
流を噴出し前記ウエブに衝突させ,ウエブの構成繊維同
士を三次元的に交絡させて全体として緻密に一体化させ
る。この第2段階の処理において,液体流の圧力が50
kg/cm2 G未満であると,上述したような繊維間の
三次元的交絡を十分に形成することができず,一方,液
体流の圧力が150kg/cm2 Gを超えると,得られ
る不織布の嵩高性と柔軟性が向上せず,いずれも好まし
くない。なお,ウエブの目付けによっては,第2段階の
処理に引き続き第3段階の処理として,第2段階の処理
側と逆の側から第2段階の処理と同様の条件にて再度処
理を施すことにより,表裏共に緻密に繊維同士が交絡し
た不織布を得ることができる。高圧液体柱状流処理を施
すに際して用いる前記ウエブを担持する多孔性支持部材
としては,例えば20〜100メツシユの金網製あるい
は合成樹脂製等のメツシユスクリーンや有孔板など,高
圧液体流がウエブを貫通し得るものであれば特に限定さ
れない。また,多孔性支持部材のメツシユ構成は20本
/25mm〜200本/25mmの範囲であるのが好ま
しく,20本/25mm未満であると,高圧液体柱状流
がウエブに衝突した際に繊維が柱状流と共にメツシユス
クリーンを通過して繊維の脱落が発生し,一方,200
本/25mmを超えると,高圧液体柱状流がウエブとメ
ツシユスクリーンとを通過するに要するエネルギー量が
多大になって生産コストが上昇し,いずれも好ましくな
い。高圧液体流処理を施した後,処理後の前記ウエブか
ら過剰水分を除去する。この過剰水分を除去するに際し
ては,公知の方法を採用することができる。例えばマン
グルロール等の絞り装置を用いて過剰水分をある程度機
械的に除去し,引き続きサクシヨンバンド方式の熱風循
環式乾燥機等の乾燥装置を用いて残余の水分を除去して
不織布を得ることができる。
In the case of the high-pressure liquid columnar flow treatment, for example, a large number of injection holes having a hole diameter of 0.05 to 1.5 mm, particularly 0.1 to 0.4 mm are arranged in one row or a plurality of rows with a hole interval of 0.05 to 5 mm. The injection pressure is 5 to 150 kg / c
A method of injecting a high-pressure liquid of m 2 G from the injection hole and colliding with a card web placed on the porous support member to give a three-dimensional entanglement between the fibers is adopted. The ejection holes are arranged in rows in a direction orthogonal to the traveling direction of the card web. As the high-pressure liquid, room temperature water or warm water can be used. The distance between the injection hole and the web is preferably 1 to 15 cm. This distance is 1
If the distance is less than 15 cm, the texture of the composite non-woven fabric obtained by this treatment is disturbed. On the other hand, if the distance exceeds 15 cm, the impact force when the liquid flow collides with the laminate is reduced and the three-dimensional entanglement becomes sufficient. Not applied and neither is preferred. This high pressure liquid columnar flow treatment may be performed in at least two stages. That is, in the first-stage treatment, a high-pressure liquid flow having a pressure of 5 to 40 kg / cm 2 G is jetted to collide with the web to preliminarily entangle the constituent fibers of the web. In this first stage treatment, the liquid stream pressure is 5
If the pressure is less than kg / cm 2 G, the constituent fibers of the web cannot be pre-entangled with each other. On the other hand, if the pressure of the liquid flow exceeds 40 kg / cm 2 G, a high-pressure liquid flow is jetted onto the web to cause collision. At that time, the constituent fibers of the web are disturbed by the action of the liquid flow, and the texture of the web is disturbed and the basis weight is uneven. Subsequently, in the second step, a high-pressure liquid flow having a pressure of 50 to 150 kg / cm 2 G is jetted to collide with the web, and the fibers constituting the web are three-dimensionally entangled with each other so as to be densely integrated as a whole. . In this second stage treatment, the pressure of the liquid stream is 50
If it is less than kg / cm 2 G, the above-mentioned three-dimensional entanglement between fibers cannot be sufficiently formed, while if the pressure of the liquid flow exceeds 150 kg / cm 2 G, the resulting nonwoven fabric is obtained. The bulkiness and flexibility are not improved, and both are not preferable. Depending on the basis weight of the web, as a third stage process following the second stage process, the second side process is performed again from the side opposite to the second stage process side under the same conditions as the second stage process. It is possible to obtain a non-woven fabric in which fibers are closely entangled with each other on the front and back. As the porous supporting member for carrying the web used for performing the high-pressure liquid columnar flow treatment, for example, a mesh screen or a perforated plate made of a wire mesh or synthetic resin of 20 to 100 mesh is used as the high-pressure liquid stream. It is not particularly limited as long as it can penetrate. The mesh structure of the porous support member is preferably in the range of 20 fibers / 25 mm to 200 fibers / 25 mm. When it is less than 20 fibers / 25 mm, the fibers become columnar when the high pressure liquid columnar flow collides with the web. As the flow passes through the mesh screen, fibers drop out, while
When the number exceeds 25 mm / column, the amount of energy required for the high-pressure liquid columnar flow to pass through the web and the mesh screen increases and the production cost increases, which is not preferable. After performing the high pressure liquid flow treatment, excess moisture is removed from the treated web. A known method can be adopted for removing the excess water. For example, a nonwoven fabric can be obtained by mechanically removing excess moisture to some extent using a squeezing device such as a mangle roll, and then using a drying device such as a hot band circulation dryer of the saxion band system to remove residual moisture. it can.

【0016】本発明における天然繊維不織布層は,その
目付けが30〜200g/m2 のものであるのが好まし
い。目付けが30g/m2 未満であると,天然繊維の単
位面積当たりの存在量が小さ過ぎて本発明が目的とする
吸水性が十分に具備されず,一方,目付けが200g/
2 を超えると,前記熱可塑性極細繊維不織布との積層
後に超音波融着装置を用いて点状融着区域を形成するこ
とにより一体化して得られる積層不織構造体においてそ
の剥離強力が十分に向上せず,いずれも好ましくない。
したがって,本発明では,この天然繊維不織布の目付け
を30〜200g/m2 とし,好ましくは50〜150
g/m2 とする。
The natural fiber nonwoven fabric layer in the present invention preferably has a basis weight of 30 to 200 g / m 2 . When the basis weight is less than 30 g / m 2 , the abundance of natural fiber per unit area is too small to sufficiently provide the water absorption targeted by the present invention, while the basis weight is 200 g / m 2.
When it exceeds m 2 , the peeling strength is sufficiently high in the laminated non-woven structure obtained by laminating with the thermoplastic ultrafine fiber non-woven fabric and forming point-like fused regions by using an ultrasonic fusing device so as to be integrated. It does not improve, and neither is preferable.
Therefore, in the present invention, the basis weight of this natural fiber non-woven fabric is 30 to 200 g / m 2, and preferably 50 to 150 g.
g / m 2 .

【0017】次に,本発明の積層不織構造体に関して説
明する。本発明の積層不織構造体は,前記熱可塑性極細
繊維不織布層と天然繊維不織布層とが積層され,前記極
細繊維と天然繊維とが融着されてなる点状融着区域を有
し,かつ前記点状融着区域において前記両不織布層の少
なくとも境界面に位置する天然繊維が前記極細繊維の融
解部に埋設された状態で固定されることにより全体とし
て一体化されてなるものである。この点状融着区域と
は,周波数が19.15KHzの通常ホーンと呼称され
る超音波発振器と,円周上に点状又は帯状に凸状突起部
を具備するパターンロールとからなる超音波融着装置を
用いて形成され,前記凸状突起部に該当する部分に当接
する繊維同士を融着させたものである。さらに詳しく
は,この点状融着区域は,不織構造体全表面積に対して
特定の領域と特定の配置とを有し,個々の点状融着区域
は必ずしも円形の形状である必要はないが,不織構造体
全表面積に対する全点状融着区域の面積の比が2〜40
%,好ましくは4〜25%,同区域密度が7〜80点/
cm2 ,好ましくは8〜50点/cm2 であるものがよ
い。不織構造体全表面積に対する全点状融着区域の面積
の比が2%未満であると,前記熱可塑性極細繊維不織布
と天然繊維不織布との積層後に超音波融着装置を用いて
点状融着区域を形成することにより一体化して得られる
積層不織構造体においてその剥離強力が十分に向上せ
ず,一方,前記面積の比が40%を超えると,得られる
積層不織構造体の柔軟性と嵩高性が低下するため,いず
れも好ましくない。また,同区域密度が7点/cm2
満であると,得られる積層不織構造体の接着力すなわち
剥離強力に斑が生じるのみならずバクテリアバリア性が
低下し,一方,同区域密度が80点/cm2 を超える
と,得られる積層不織構造体の柔軟性と嵩高性が低下
し,いずれも好ましくない。
Next, the laminated nonwoven structure of the present invention will be described. The laminated non-woven structure of the present invention has a point-like fused area in which the thermoplastic ultrafine fiber nonwoven fabric layer and the natural fiber nonwoven fabric layer are laminated, and the ultrafine fiber and the natural fiber are fused together, and Natural fibers located at least at the boundary surface between the two non-woven fabric layers in the spot-shaped fusion-bonded area are fixed in a state of being embedded in the fusion portion of the ultrafine fibers, whereby they are integrated as a whole. This point-like fusion zone is an ultrasonic wave fusion consisting of an ultrasonic oscillator, which is usually called a horn, whose frequency is 19.15 KHz, and a pattern roll having convex protrusions in the form of dots or bands on the circumference. Fibers formed by using a bonding device and abutting on the portions corresponding to the convex protrusions are fused. More specifically, the spot-shaped fused areas have a specific area and a specific arrangement with respect to the total surface area of the non-woven structure, and the individual dotted-shaped fused areas do not necessarily have a circular shape. However, the ratio of the area of all the spot-shaped fused regions to the total surface area of the non-woven structure is 2 to 40.
%, Preferably 4 to 25%, the same area density is 7 to 80 points /
It is preferably cm 2 and preferably 8 to 50 points / cm 2 . When the ratio of the area of all the spot-shaped fused areas to the total surface area of the non-woven structure is less than 2%, the point-shaped fusion is performed using an ultrasonic fusion device after the thermoplastic ultrafine fiber nonwoven fabric and the natural fiber nonwoven fabric are laminated. In the laminated non-woven structure integrally obtained by forming the attachment area, the peel strength is not sufficiently improved, while when the area ratio exceeds 40%, the flexibility of the obtained laminated non-woven structure is increased. Both of these properties are not preferable because they deteriorate the bulkiness and bulkiness. Further, when the area density is less than 7 points / cm 2 , not only the adhesive strength, that is, peeling strength, of the obtained laminated nonwoven structure is uneven, but also the bacterial barrier property is deteriorated, while the area density is 80% or less. When it exceeds the point / cm 2 , the flexibility and bulkiness of the obtained laminated non-woven structure are deteriorated, both of which are not preferable.

【0018】本発明において用い得る超音波融着装置と
は,公知の装置すなわち周波数が19.15KHzの通
常ホーンと呼称される超音波発振器と,円周上に点状又
は帯状に凸状突起部を具備するパターンロールとからな
る装置である。前記超音波発振器の下部に前記パターン
ロールが配設され,被処理物は超音波発振器とパターン
ロールとの間に通される。このパターンロールに配設さ
れる凸状突起部は1列あるいは複数列であってもよく,
また,その配設が複数列の場合には,並列あるいは千鳥
型のいずれの配列でもよい。融着処理に際しては,ホー
ンに空気圧を印加して加圧する。ホーンとパターンロー
ル間の線圧は,通常1〜10kg/cmとし,線圧が1
kg/cm未満であると,前記熱可塑性極細繊維不織布
層と天然繊維不織布層との積層物に対する押し圧が不足
して融着が生じなく,一方,線圧が10kg/cmを超
えると,点状融着区域に対する押し圧が高過ぎて融着区
域に相当する前記熱可塑性極細繊維不織布層が熱分解し
たり,あるいは極端な場合には穿孔が生じたりして得ら
れる積層不織構造体の接着力が低下し,いずれも好まし
くない。本発明の積層不織構造体は,前記熱可塑性極細
繊維不織布と天然繊維不織布との積層物に前述した超音
波融着装置を用いて融着処理を施すことにより,点状融
着区域において,前記両不織布層の少なくとも境界面に
位置する天然繊維が前記極細繊維の融解部に埋設された
状態で固定され全体として一体化されたものである。図
1は,本発明の積層不織構造体における前記点状融着区
域の断面を示す模式図である。図において,1は点状融
着区域において融解した熱可塑性極細繊維層,2は天然
繊維で,同図から明らかなように点状融着区域において
両不織布層の少なくとも境界面に位置する天然繊維2
は,熱可塑性極細繊維が融解した融解部すなわち1に埋
設された状態で固定されており,両不織布層が点状融着
区域において,このような接着構造を有するため,剥離
強力の高い積層不織構造体となる。
The ultrasonic fusing device that can be used in the present invention is a known device, namely, an ultrasonic oscillator generally called a horn having a frequency of 19.15 KHz, and a convex protrusion in the shape of a dot or a strip on the circumference. And a pattern roll provided with. The pattern roll is disposed below the ultrasonic oscillator, and the object to be processed is passed between the ultrasonic oscillator and the pattern roll. The convex protrusions arranged on this pattern roll may be one row or a plurality of rows,
Further, when the arrangement is a plurality of rows, either parallel or staggered arrangement may be used. During the fusion treatment, air pressure is applied to the horn to apply pressure. The linear pressure between the horn and the pattern roll is usually 1 to 10 kg / cm, and the linear pressure is 1
If it is less than kg / cm, the pressing force against the laminate of the thermoplastic ultrafine fiber nonwoven fabric layer and the natural fiber nonwoven fabric layer is insufficient to prevent fusion, while if the linear pressure exceeds 10 kg / cm, Of the laminated non-woven structure obtained when the pressing force against the heat-bonded area is too high and the thermoplastic ultrafine fiber nonwoven fabric layer corresponding to the heat-bonded area is thermally decomposed or, in extreme cases, perforated. Adhesive strength is reduced and neither is preferable. The laminated non-woven structure of the present invention, in the point fusion area, by subjecting the laminate of the thermoplastic ultrafine fiber nonwoven fabric and the natural fiber nonwoven fabric to a fusion treatment using the above-mentioned ultrasonic fusion device, Natural fibers located at least at the boundary surface of both the nonwoven fabric layers are fixed in a state of being embedded in the fusion portion of the ultrafine fibers and integrated as a whole. FIG. 1 is a schematic view showing a cross section of the spot-shaped fused area in the laminated nonwoven structure of the present invention. In the figure, 1 is a thermoplastic ultrafine fiber layer melted in a point fusion area, 2 is a natural fiber, and as is clear from the figure, a natural fiber located at least at the boundary surface of both non-woven fabric layers in the point fusion area Two
Is fixed in a state where it is embedded in the melting portion where the thermoplastic ultrafine fibers are melted, that is, 1 and both non-woven fabric layers have such an adhesive structure in the point fusion area, so that the lamination strength with high peeling strength is high. It becomes a woven structure.

【0019】本発明の積層不織構造体は,通気度が50
cc/cm2 /秒以下のものであることが,例えば医療
・衛生材用の素材等のバクテリアバリア性が要求される
分野では好ましい。この積層不織構造体は,前述したよ
うに天然繊維不織布層に対して単繊維繊度が0.2デニ
ール以下の熱可塑性極細繊維からなる不織布層が積層さ
れているため不織布のポアサイズが小さく,したがって
バクテリアバリア性が向上するのである。
The laminated nonwoven structure of the present invention has an air permeability of 50.
It is preferably cc / cm 2 / sec or less in the field requiring bacterial barrier properties such as materials for medical and hygiene materials. This laminated non-woven structure has a small non-woven fabric pore size because a non-woven fabric layer made of thermoplastic ultrafine fibers having a single fiber fineness of 0.2 denier or less is laminated on the natural fiber non-woven fabric layer as described above. The bacterial barrier property is improved.

【0020】[0020]

【作用】本発明の積層不織構造体は,片面が単繊維繊度
が0.2デニール以下の熱可塑性極細繊維からなる不織
布層から構成されるため通気度が50cc/cm2 /秒
以下と低く,良好なバクテリアバリア性を有し,他面が
天然繊維同士が機械的に交絡してなる不織布層から構成
されるため吸水性を有する。また,天然繊維同士が三次
元的に交絡してなる場合,前記極細繊維と相乗して優れ
た柔軟性が具備される。さらに,前記極細繊維と天然繊
維とが融着されてなる点状融着区域において,前記両不
織布層の少なくとも境界面に位置する天然繊維が前記極
細繊維の融解部に埋設された状態で固定された接着構造
を有するため,剥離強力の高い積層不織構造体となる。
The laminated non-woven structure of the present invention has a low air permeability of 50 cc / cm 2 / sec or less because one side is composed of a nonwoven fabric layer made of thermoplastic ultrafine fibers having a single fiber fineness of 0.2 denier or less. , It has a good bacterial barrier property, and has water absorption because the other surface is composed of a non-woven fabric layer in which natural fibers are mechanically entangled with each other. In addition, when the natural fibers are entangled three-dimensionally, excellent flexibility is provided in synergy with the ultrafine fibers. Further, in the point-shaped fusion zone formed by fusing the ultrafine fibers and the natural fibers, the natural fibers located at least at the boundary surface between the two nonwoven fabric layers are fixed in a state of being embedded in the fusion part of the ultrafine fibers. Since it has an adhesive structure, it is a laminated non-woven structure with high peel strength.

【0021】[0021]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 メルトフローレート値(g/10分):ASTM−D−
1238(L)に記載の方法に準じて測定した。 相対粘度:フエノールと四塩化エタンの等重量混合溶液
を溶媒とし,試料濃度0.5g/100cc,温度20
℃の条件で測定した。 融点(℃):パーキンエルマ社製示差走査型熱量計DS
C−2型を用い,試料重量を5mg,昇温速度を20℃
/分として測定して得た融解吸熱曲線の最大極値を与え
る温度を融点(℃)とした。 目付け(g/m2 ):標準状態の試料から縦10cm×
横10cmの試料片計10点を作成し平衡水分に到らし
めた後,各試料片の重量(g)を秤量し,得られた値の
平均値を単位面積(m2 )当たりに換算し目付け(g/
2 )とした。 引張り強力(kg/5cm幅)及び引張り伸度(%):
JIS−L−1096Aに記載の方法に準じて測定し
た。すなわち,試料長が10cm,試料幅が5cmの試
料片計10点を作成し,各試料片毎に不織布の経及び緯
方向について,定速伸長型引張り試験機(東洋ボールド
ウイン社製テンシロンUTM−4−1−100)を用い
て引張り速度10cm/分で伸長し,得られた切断時荷
重値(kg/5cm幅)の平均値を引張り強力(kg/
5cm幅),切断時伸長率(%)の平均値を引張り伸度
(%)とした。 引裂き強力(kg):JIS−K−7311に記載のエ
ルメンドルフ型に準じて,不織布の経及び緯方向につい
て測定した。 層間剥離強力(g/5cm幅):試料長が10cm,試
料幅が5cmの試料片計10点を作成し,各試料片毎に
不織布の経方向について,定速伸長型引張り試験機(東
洋ボールドウイン社製テンシロンUTM−4−1−10
0)を用いて引張速度10cm/分で天然繊維不織布層
が極細繊維不織布層から積層構造体の端部から計って5
cmの位置まで強制的に剥離させ,得られた荷重値(g
/5cm幅)の平均値を層間剥離強力(g/5cm幅)
とした。 剛軟度(g):試料長が10cm,試料幅が5cmの試
料片計5点を作成し,各試料片毎に横方向に曲げて円筒
状物とし,各々その端部を接合したものを剛軟度測定試
料とした。次いで,各測定試料毎にその軸方向につい
て,定速伸長型引張り試験機(東洋ボールドウイン社製
テンシロンUTM−4−1−100)を用いて圧縮速度
5cm/分で圧縮し,得られた最大荷重値(g)の平均
値を剛軟度(g)とした。 通気度(cc/cm2 /秒):JIS−L−1096に
記載のフラジール法に準じて測定した。 耐水圧(mm水柱):JIS−L−1092Bに記載の
高水圧法に準じて測定した。 吸水性(mm):JIS−L−1096に記載のバイレ
ツク法に準じて測定した。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, each characteristic value was measured by the following method. Melt flow rate value (g / 10 minutes): ASTM-D-
It was measured according to the method described in 1238 (L). Relative viscosity: an equal weight mixed solution of phenol and ethane tetrachloride as a solvent, sample concentration 0.5 g / 100 cc, temperature 20
It was measured under the condition of ° C. Melting point (℃): Differential scanning calorimeter DS manufactured by Perkin Elma
Using C-2 type, sample weight 5 mg, temperature rising rate 20 ℃
The temperature that gives the maximum extremum of the melting endothermic curve obtained by measuring as / min was defined as the melting point (° C). Unit weight (g / m 2 ): 10 cm in length from standard state sample
After making 10 pieces of 10 cm wide sample piece to reach the equilibrium water content, weigh each sample piece (g) and calculate the average value of the obtained values per unit area (m 2 ). Unit weight (g /
m 2 ). Tensile strength (kg / 5cm width) and tensile elongation (%):
It was measured according to the method described in JIS-L-1096A. That is, a total of 10 sample pieces having a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Tensilon UTM-made by Toyo Baldwin Co., Ltd.) was used for each sample piece in the warp and weft directions of the nonwoven fabric. 4-1-100) was used for elongation at a tensile speed of 10 cm / min, and the average value of the load values during cutting (kg / 5 cm width) obtained was measured for tensile strength (kg / cm).
5 cm width), and the average value of the elongation rate (%) at break was taken as the tensile elongation (%). Tear strength (kg): The warp and weft directions of the nonwoven fabric were measured according to the Elmendorf type described in JIS-K-7331. Delamination strength (g / 5 cm width): A total of 10 sample pieces with a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Toyo Bold Win Tensilon UTM-4-1-10
0) with a tensile speed of 10 cm / min, and the natural fiber nonwoven fabric layer is 5 from the end of the laminated structure from the ultrafine fiber nonwoven fabric layer.
The load value (g
/ 5 cm width) delamination strength (g / 5 cm width)
And Bending resistance (g): A total of 5 sample pieces with a sample length of 10 cm and a sample width of 5 cm were created, and each sample piece was bent laterally into a cylindrical object, and the ends were joined together. The sample was measured for bending resistance. Then, for each measurement sample, the maximum obtained was obtained by compressing in the axial direction using a constant-speed extension type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.) at a compression rate of 5 cm / min. The average value of the load values (g) was defined as the bending resistance (g). Air permeability (cc / cm 2 / sec): Measured according to the Frazier method described in JIS-L-1096. Water pressure resistance (mm water column): Measured according to the high water pressure method described in JIS-L-1092B. Water absorption (mm): Measured according to the Bayrek method described in JIS-L-1096.

【0022】実施例1 まず,融点が155℃,メルトフローレート値が600
g/10分のポリプロピレンチツプを用い,ポリプロピ
レン極細繊維からなるメルトブローン不織布を作成し
た。すなわち,前記重合体チツプをエクストルーダ型溶
融押出し機を用いて溶融し,これを孔径0.15mmの
紡糸孔を200孔有する紡糸口金を通して紡糸温度を2
80℃かつ吐出量を30g/分として溶融吐出し,吐出
された溶融重合体流を溶融温度より30℃高い温度の高
圧空気流を速度170m/秒で紡糸線方向に対して25
度の角度をなす方向に噴出して牽引・細化し,冷却した
後,紡糸口金の下方10cmの位置に配設されたサクシ
ヨンドラム上に捕集・堆積させ,平均単繊維繊度が0.
1デニールで,目付けが20g/m2 のポリプロピレン
極細繊維メルトブローン不織布を得た。別途,平均単繊
維繊度が1.5デニールで,かつ平均繊維長が25mm
の木綿晒し綿を用い,木綿繊維同士が三次元的に交絡し
てなる不織布を作成した。すなわち,前記晒し綿を出発
原料とし,ランダムカード機により繊維配列がランダム
で目付けが45g/m2 のランダムカードウエブを作成
し,次いで得られたウエブを移動速度20m/分で移動
する70メツシユの金網上に載置して高圧液体流処理を
施した。高圧液体流処理は,孔径0.1mmの噴射孔が
孔間隔0.6mmで一列に配設された高圧柱状水流処理
装置を用い,ウエブの上方50mmの位置から2段階に
別けて柱状水流を作用させた。第1段階の処理では圧力
を30kg/cm2 Gとし,第2段階の処理では圧力を
70kg/cm2 Gとした。なお,第2段階の処理は,
ウエブの表裏から各々2回施した。次いで,得られた処
理物からマングルロールを用いて過剰水分を除去した
後,処理物に熱風乾燥機を用い温度10℃の条件で乾燥
処理を施し,木綿繊維同士が緻密に三次元的交絡をした
目付けが45g/m2 の不織布を得た。次いで,前記で
得られたポリプロピレン極細繊維メルトブローン不織布
と木綿繊維不織布とを積層し,周波数が19.15KH
zの超音波発振器と円周上に点状に凸状突起部が面積比
(ロール全表面積に対する全凸状突起部の面積の比)1
1%かつ密度18点/cm2 で配設されたパターンロー
ルとからなる超音波融着装置を用い,加工速度を30m
/分,線圧を2.5kg/cmとして超音波融着処理を
施して積層不織構造体を得た。得られた積層不織構造体
の特性を表1に示す。
Example 1 First, the melting point was 155 ° C. and the melt flow rate value was 600.
Using a polypropylene chip of g / 10 min, a meltblown nonwoven fabric made of polypropylene ultrafine fibers was prepared. That is, the polymer chip was melted using an extruder type melt extruder, and this was passed through a spinneret having 200 spinning holes with a pore diameter of 0.15 mm and a spinning temperature of 2
It is melt-discharged at 80 ° C. and a discharge rate of 30 g / min, and the discharged molten polymer flow is a high-pressure air flow having a temperature 30 ° C. higher than the melting temperature at a speed of 170 m / sec in the spinning line direction of 25.
After being ejected in a direction forming an angle of 10 degrees, drawn, thinned, cooled, and then collected and accumulated on a saxion drum arranged 10 cm below the spinneret, the average single fiber fineness is 0.
A polypropylene ultrafine fiber meltblown nonwoven fabric having a denier of 1 and a basis weight of 20 g / m 2 was obtained. Separately, the average single fiber fineness is 1.5 denier and the average fiber length is 25 mm
Using bleached cotton, we made a non-woven fabric in which cotton fibers are entangled three-dimensionally. That is, using the bleached cotton as a starting material, a random card web having a random fiber arrangement and a basis weight of 45 g / m 2 was prepared by a random card machine, and the obtained web was then moved at a moving speed of 20 m / min for 70 mesh. It was placed on a wire mesh and subjected to high pressure liquid flow treatment. In the high-pressure liquid flow treatment, a high-pressure columnar water flow treatment device in which injection holes with a hole diameter of 0.1 mm are arranged in a row with a hole interval of 0.6 mm is used, and the columnar water flow is applied in two stages from a position 50 mm above the web. Let The pressure was set to 30 kg / cm 2 G in the first stage treatment, and the pressure was set to 70 kg / cm 2 G in the second stage treatment. The process of the second stage is
It was applied twice from the front and back of the web. Then, after removing excess water from the obtained treated product with a mangle roll, the treated product is dried with a hot air dryer at a temperature of 10 ° C., so that the cotton fibers are densely three-dimensionally entangled. A nonwoven fabric having a basis weight of 45 g / m 2 was obtained. Next, the polypropylene ultrafine fiber meltblown nonwoven fabric and the cotton fiber nonwoven fabric obtained above are laminated, and the frequency is 19.15 KH.
The area ratio of the z-shaped ultrasonic oscillator and the convex protrusions in a dot shape on the circumference (ratio of the area of all convex protrusions to the total surface area of the roll)
Using an ultrasonic fusing device consisting of a pattern roll arranged at 1% and a density of 18 points / cm 2 , the processing speed was 30 m.
/ Min, the linear pressure was 2.5 kg / cm, and ultrasonic fusion treatment was performed to obtain a laminated nonwoven structure. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0023】実施例2 相対粘度が1.36のポリエチレンテレフタレートチツ
プを用い,紡糸温度を350℃とした以外は実施例1と
同様にして,ポリエチレンテレフタレート極細繊維から
なるメルトブローン不織布を得た。次いで,実施例1と
同様にして,積層不織構造体を得た。得られた積層不織
構造体の特性を表1に示す。
Example 2 A meltblown nonwoven fabric made of ultrafine polyethylene terephthalate fiber was obtained in the same manner as in Example 1 except that a polyethylene terephthalate chip having a relative viscosity of 1.36 was used and the spinning temperature was 350 ° C. Then, in the same manner as in Example 1, a laminated nonwoven structure was obtained. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0024】実施例3〜6 超音波融着装置におけるパターンロールの凸状突起部面
積比を5%(実施例3),16%(実施例4),20%
(実施例5)及び33%(実施例6)とした以外は実施
例1と同様にして,積層不織構造体を得た。得られた積
層不織構造体の特性を表2に示す。
Examples 3 to 6 The area ratio of the convex protrusions of the pattern roll in the ultrasonic fusing device was 5% (Example 3), 16% (Example 4), and 20%.
A laminated nonwoven structure was obtained in the same manner as in Example 1 except that (Example 5) and 33% (Example 6) were used. The properties of the resulting laminated nonwoven structure are shown in Table 2.

【0025】実施例7〜9 超音波融着装置におけるパターンロールの凸状突起部配
設密度を9点/cm2(実施例7),36点/cm
2 (実施例8)及び72点/cm2 (実施例9)とした
以外は実施例1と同様にして,積層不織構造体を得た。
得られた積層不織構造体の特性を表2に示す。
Examples 7 to 9 The density of the convex projections on the pattern roll in the ultrasonic fusing device was 9 points / cm 2 (Example 7), 36 points / cm.
A laminated nonwoven structure was obtained in the same manner as in Example 1 except that 2 (Example 8) and 72 points / cm 2 (Example 9) were used.
The properties of the resulting laminated nonwoven structure are shown in Table 2.

【0026】比較例1 融点が156℃,メルトフローレート値が56g/10
分のポリプロピレンチツプを用い,ポリプロピレン長繊
維からなるスパンボンド不織布を作成した。すなわち,
前記重合体チツプをエクストルーダ型溶融押出し機を用
いて溶融し,これを紡糸口金を通して紡糸温度を250
℃として溶融紡出・冷却し,エアーサツカを用い引取り
速度を4000m/分として牽引・細化した後,開繊器
を用いて開繊し,移動する捕集面上に捕集・堆積させて
ウエブとし,得られたウエブに先端部面積が0.6mm
2 の突起状彫刻模様部が圧接面積率12%かつ密度18
点/cm2 で配設された熱エンボスローラと表面平滑な
金属ローラとを用い,処理温度を125℃,かつ線圧を
50kg/cmとして加工速度10m/分で部分熱圧着
処理を施し,単繊維繊度が3.0デニールで,目付けが
20g/m2 のポリプロピレン長繊維スパンボンド不織
布を得た。次いで,実施例1で作成したポリプロピレン
極細繊維メルトブローン不織布と前記で得られたポリプ
ロピレン長繊維スパンボンド不織布とを積層し,以降は
実施例1と同様にして超音波融着処理を施して積層不織
構造体を得た。得られた積層不織構造体の特性を表1に
示す。
Comparative Example 1 Melting point: 156 ° C. Melt flow rate: 56 g / 10
We made a spunbonded non-woven fabric made of polypropylene filaments by using a polypropylene chip. That is,
The polymer chip was melted using an extruder type melt extruder, and this was passed through a spinneret at a spinning temperature of 250.
After melt-spinning and cooling at ℃, pulling and thinning with an air blower at a take-up speed of 4000 m / min, open with a fiber opener, collect and deposit on the moving collecting surface. The web has a tip area of 0.6 mm.
2 12% projecting engraved pattern portion is pressed against the area ratio and density 18
Using a hot embossing roller arranged at a point / cm 2 and a metal roller with a smooth surface, a partial thermocompression bonding treatment was performed at a processing temperature of 125 ° C. and a linear pressure of 50 kg / cm at a processing speed of 10 m / min. A polypropylene continuous fiber spunbonded nonwoven fabric having a fiber fineness of 3.0 denier and a basis weight of 20 g / m 2 was obtained. Next, the polypropylene ultrafine fiber meltblown non-woven fabric prepared in Example 1 and the polypropylene long-fiber spunbonded non-woven fabric obtained above are laminated, and thereafter, ultrasonic fusion treatment is performed in the same manner as in Example 1 to form a laminated non-woven fabric. The structure was obtained. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0027】比較例2 比較例1で作成したポリプロピレン長繊維スパンボンド
不織布と実施例1で作成した木綿繊維不織布とを積層
し,以降は実施例1と同様にして超音波融着処理を施し
て積層不織構造体を得た。得られた積層不織構造体の特
性を表1に示す。
Comparative Example 2 The polypropylene long-fiber spunbonded non-woven fabric prepared in Comparative Example 1 and the cotton fiber non-woven fabric prepared in Example 1 were laminated, and thereafter ultrasonically fused in the same manner as in Example 1. A laminated nonwoven structure was obtained. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0028】比較例3 超音波融着処理に代わり圧接面積率が12%の熱エンボ
スローラと表面平滑な金属ローラとを用い,処理温度を
140℃,かつ線圧を100kg/cmとして加工速度
10m/分で部分熱圧着処理を施した以外は実施例1と
同様にして,積層不織構造体を得た。得られた積層不織
構造体の特性を表1に示す。
Comparative Example 3 Instead of the ultrasonic fusion treatment, a hot embossing roller having a pressing area ratio of 12% and a metal roller having a smooth surface were used, the processing temperature was 140 ° C., the linear pressure was 100 kg / cm, and the processing speed was 10 m. A laminated non-woven structure was obtained in the same manner as in Example 1 except that the partial thermocompression treatment was performed at a rate of 1 / min. The properties of the resulting laminated nonwoven structure are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【表2】 [Table 2]

【0031】実施例1,4,5,8及び9で得られた積
層不織構造体は,表1及び2から明らかなように剥離強
力が高く,柔軟性が優れ,良好なバクテリアバリア性と
吸水性を有するものであった。実施例2で得られた積層
不織構造体は,実施例1のポリプロピレン極細繊維メル
トブローン不織布に代わりポリエチレンテレフタレート
極細繊維メルトブローン不織布を用いたものであり,実
施例1に比べると若干剥離強力が低いものの柔軟性が優
れ,良好なバクテリアバリア性と吸水性を有するもので
あった。実施例3で得られた積層不織構造体は,超音波
融着装置におけるパターンロールの凸状突起部面積比が
5%で,不織構造体全表面積に対する全点状融着区域の
面積の比が低目であるため,剥離強力が実施例1に比べ
ると若干低いものであり,実施例6で得られた積層不織
構造体は,同面積比が33%で,不織構造体全表面積に
対する全点状融着区域の面積の比が高目であるため,剥
離強力は優れるものの柔軟性が実施例1に比べるとやや
劣るものであった。また,実施例7で得られた積層不織
構造体は,凸状突起部配設密度が9点/cm2 で,不織
構造体における点状融着区域の密度が低目であるため,
剥離強力に斑を有するものであった。これに対し,比較
例1で得られた積層不織構造体は,天然繊維を含有して
いないため,表1から明らかなように吸水性の低いもの
であった。比較例2で得られた積層不織構造体は,単繊
維繊度の高いポリプロピレン長繊維スパンボンド不織布
が積層されているため,通気度が高く,耐水圧が低く,
バクテリアバリア性を有しないものであった。比較例3
で得られた積層不織構造体は,熱エンボスローラを用い
た部分熱圧着処理が施されたものであるため,剥離強力
が極めて低いものであった。
The laminated non-woven structures obtained in Examples 1, 4, 5, 8 and 9 have high peel strength, excellent flexibility and good bacterial barrier properties, as shown in Tables 1 and 2. It had water absorbency. The laminated non-woven structure obtained in Example 2 uses polyethylene terephthalate ultrafine fiber meltblown nonwoven fabric instead of the polypropylene ultrafine fiber meltblown nonwoven fabric of Example 1, and has slightly lower peel strength than that of Example 1. It had excellent flexibility, good bacterial barrier properties and good water absorption. The laminated non-woven structure obtained in Example 3 had an area ratio of the convex protrusions of the pattern roll in the ultrasonic fusing device of 5%, and the area of all the spot-shaped fused areas relative to the total surface area of the non-woven structure. Since the ratio is low, the peel strength is slightly lower than that in Example 1. The laminated non-woven structure obtained in Example 6 has the same area ratio of 33% and the whole non-woven structure. Since the ratio of the area of all the spot-shaped fused regions to the surface area was high, the peel strength was excellent, but the flexibility was a little inferior to that of Example 1. Further, in the laminated nonwoven structure obtained in Example 7, the density of the convex protrusions arranged was 9 points / cm 2 , and the density of the dot-like fused areas in the nonwoven structure was low,
The peeling had strong spots. On the other hand, the laminated non-woven structure obtained in Comparative Example 1 contained no natural fibers, and thus had a low water absorbability as is apparent from Table 1. The laminated non-woven structure obtained in Comparative Example 2 has a high air permeability and a low water pressure resistance because the polypropylene long fiber spunbonded nonwoven fabric having a high single fiber fineness is laminated.
It did not have a bacterial barrier property. Comparative Example 3
Since the laminated non-woven structure obtained in step 1 was subjected to partial thermocompression bonding treatment using a hot embossing roller, the peel strength was extremely low.

【0032】[0032]

【発明の効果】本発明の積層不織構造体は,前記特定の
熱可塑性極細繊維不織布層と天然繊維同士が機械的に交
絡してなる不織布層とが積層され,前記極細繊維と天然
繊維とが融着されてなる点状融着区域とを有し,前記点
状融着区域において前記両不織布層の少なくとも境界面
に位置する天然繊維が前記極細繊維の融解部に埋設され
た状態で固定されることにより全体として一体化されて
なるものであって,剥離強力が高く,柔軟性が優れ,良
好なバクテリアバリア性と吸水性を有し,しかも耐水圧
も高く,医療・衛生材用,衣料用あるいは生活関連材用
の素材として好適である。
The laminated non-woven structure of the present invention comprises the above-mentioned specific thermoplastic ultrafine fiber nonwoven fabric layer and a nonwoven fabric layer in which natural fibers are mechanically entangled with each other. Fixed in a state in which the natural fibers located in at least the boundary surface of the two non-woven fabric layers are embedded in the fusion part of the ultrafine fibers. As a result, it is integrated as a whole, has high peeling strength, excellent flexibility, good bacterial barrier properties and water absorbency, and high water pressure resistance. It is suitable as a material for clothing or life related materials.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の積層不織構造体における点状融着区域
の断面を示す模式図である。
FIG. 1 is a schematic view showing a cross section of a dot-like fused area in a laminated nonwoven structure of the present invention.

【符号の説明】[Explanation of symbols]

1:融解した熱可塑性極細繊維層 2:天然繊維 1: Molten thermoplastic ultrafine fiber layer 2: Natural fiber

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月17日[Submission date] June 17, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】削除[Correction method] Delete

【提出日】平成6年6月17日[Submission date] June 17, 1994

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0017】次に,本発明の積層不織構造体に関して説
明する。本発明の積層不織構造体は,前記熱可塑性極細
繊維不織布層と天然繊維不織布層とが積層され,前記極
細繊維と天然繊維とが融着されてなる点状融着区域を有
し,かつ前記点状融着区域において前記両不織布層の少
なくとも境界面に位置する天然繊維が前記極細繊維の融
解部に埋設された状態で固定されることにより全体とし
て一体化されてなるものである。この点状融着区域と
は,周波数が約20KHz程度の通常ホーンと呼称され
る超音波発振器と,円周上に点状又は帯状に凸状突起部
を具備するパターンロールとからなる超音波融着装置を
用いて形成され,前記凸状突起部に該当する部分に当接
する繊維同士を融着させたものである。さらに詳しく
は,この点状融着区域は,不織構造体全表面積に対して
特定の領域と特定の配置とを有し,個々の点状融着区域
は必ずしも円形の形状である必要はないが,不織構造体
全表面積に対する全点状融着区域の面積の比が2〜40
%,好ましくは4〜25%,同区域密度が7〜80点/
cm2 ,好ましくは8〜50点/cm2 であるものがよ
い。不織構造体全表面積に対する全点状融着区域の面積
の比が2%未満であると,前記熱可塑性極細繊維不織布
と天然繊維不織布との積層後に超音波融着装置を用いて
点状融着区域を形成することにより一体化して得られる
積層不織構造体においてその剥離強力が十分に向上せ
ず,一方,前記面積の比が40%を超えると,得られる
積層不織構造体の柔軟性と嵩高性が低下するため,いず
れも好ましくない。また,同区域密度が7点/cm2
満であると,得られる積層不織構造体の接着力すなわち
剥離強力に斑が生じるのみならずバクテリアバリア性が
低下し,一方,同区域密度が80点/cm2 を超える
と,得られる積層不織構造体の柔軟性と嵩高性が低下
し,いずれも好ましくない。
Next, the laminated nonwoven structure of the present invention will be described. The laminated non-woven structure of the present invention has a point-like fused area in which the thermoplastic ultrafine fiber nonwoven fabric layer and the natural fiber nonwoven fabric layer are laminated, and the ultrafine fiber and the natural fiber are fused together, and Natural fibers located at least at the boundary surface between the two non-woven fabric layers in the spot-shaped fusion-bonded area are fixed in a state of being embedded in the fusion portion of the ultrafine fibers, whereby they are integrated as a whole. And the point-like fused area, the ultrasonic waves consists of a ultrasonic oscillator frequency is commonly referred to as a horn of about 20 KHz, the pattern roll having a convex protrusion on point-like or band on the circumference Fibers formed by using a fusion device and abutting on the portions corresponding to the convex protrusions are fused. More specifically, the spot-shaped fused areas have a specific area and a specific arrangement with respect to the total surface area of the non-woven structure, and the individual dotted-shaped fused areas do not necessarily have a circular shape. However, the ratio of the area of all the spot-shaped fused regions to the total surface area of the non-woven structure is 2 to 40.
%, Preferably 4 to 25%, the same area density is 7 to 80 points /
It is preferably cm 2 and preferably 8 to 50 points / cm 2 . When the ratio of the area of all the spot-shaped fused areas to the total surface area of the non-woven structure is less than 2%, the point-shaped fusion is performed using an ultrasonic fusion device after the thermoplastic ultrafine fiber nonwoven fabric and the natural fiber nonwoven fabric are laminated. In the laminated non-woven structure integrally obtained by forming the attachment area, the peel strength is not sufficiently improved, while when the area ratio exceeds 40%, the flexibility of the obtained laminated non-woven structure is increased. Both of these properties are not preferable because they deteriorate the bulkiness and bulkiness. Further, when the area density is less than 7 points / cm 2 , not only the adhesive strength, that is, peeling strength, of the obtained laminated nonwoven structure is uneven, but also the bacterial barrier property is deteriorated, while the area density is 80% or less. When it exceeds the point / cm 2 , the flexibility and bulkiness of the obtained laminated non-woven structure are deteriorated, both of which are not preferable.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】本発明において用い得る超音波融着装置と
は,公知の装置すなわち周波数が約20KHz程度の通
常ホーンと呼称される超音波発振器と,円周上に点状又
は帯状に凸状突起部を具備するパターンロールとからな
る装置である。前記超音波発振器の下部に前記パターン
ロールが配設され,被処理物は超音波発振器とパターン
ロールとの間に通される。このパターンロールに配設さ
れる凸状突起部は1列あるいは複数列であってもよく,
また,その配設が複数列の場合には,並列あるいは千鳥
型のいずれの配列でもよい。融着処理に際しては,ホー
ンに空気圧を印加して加圧する。ホーンとパターンロー
ル間の線圧は,通常1〜10kg/cmとし,線圧が1
kg/cm未満であると,前記熱可塑性極細繊維不織布
層と天然繊維不織布層との積層物に対する押し圧が不足
して融着が生じなく,一方,線圧が10kg/cmを超
えると,点状融着区域に対する押し圧が高過ぎて融着区
域に相当する前記熱可塑性極細繊維不織布層が熱分解し
たり,あるいは極端な場合には穿孔が生じたりして得ら
れる積層不織構造体の接着力が低下し,いずれも好まし
くない。本発明の積層不織構造体は,前記熱可塑性極細
繊維不織布と天然繊維不織布との積層物に前述した超音
波融着装置を用いて融着処理を施すことにより,点状融
着区域において,前記両不織布層の少なくとも境界面に
位置する天然繊維が前記極細繊維の融解部に埋設された
状態で固定され全体として一体化されたものである。図
1は,本発明の積層不織構造体における前記点状融着区
域の断面を示す模式図である。図において,1は点状融
着区域において融解した熱可塑性極細繊維層,2は天然
繊維で,同図から明らかなように点状融着区域において
両不織布層の少なくとも境界面に位置する天然繊維2
は,熱可塑性極細繊維が融解した融解部すなわち1に埋
設された状態で固定されており,両不織布層が点状融着
区域において,このような接着構造を有するため,剥離
強力の高い積層不織構造体となる。
[0018] The ultrasonic welding apparatus which can be used in the present invention, the convex protrusion and the ultrasonic oscillator known devices or frequency is commonly referred to as a horn of about 20 KHz, the point-like or band on the circumference And a pattern roll having a section. The pattern roll is disposed below the ultrasonic oscillator, and the object to be processed is passed between the ultrasonic oscillator and the pattern roll. The convex protrusions arranged on this pattern roll may be one row or a plurality of rows,
Further, when the arrangement is a plurality of rows, either parallel or staggered arrangement may be used. During the fusion treatment, air pressure is applied to the horn to apply pressure. The linear pressure between the horn and the pattern roll is usually 1 to 10 kg / cm, and the linear pressure is 1
If it is less than kg / cm, the pressing force against the laminate of the thermoplastic ultrafine fiber nonwoven fabric layer and the natural fiber nonwoven fabric layer is insufficient to prevent fusion, while if the linear pressure exceeds 10 kg / cm, Of the laminated non-woven structure obtained when the pressing force against the heat-bonded area is too high and the thermoplastic ultrafine fiber nonwoven fabric layer corresponding to the heat-bonded area is thermally decomposed or, in extreme cases, perforated. Adhesive strength is reduced and neither is preferable. The laminated non-woven structure of the present invention, in the point fusion area, by subjecting the laminate of the thermoplastic ultrafine fiber nonwoven fabric and the natural fiber nonwoven fabric to a fusion treatment using the above-mentioned ultrasonic fusion device, Natural fibers located at least at the boundary surface of both the nonwoven fabric layers are fixed in a state of being embedded in the fusion portion of the ultrafine fibers and integrated as a whole. FIG. 1 is a schematic view showing a cross section of the spot-shaped fused area in the laminated nonwoven structure of the present invention. In the figure, 1 is a thermoplastic ultrafine fiber layer melted in a point fusion area, 2 is a natural fiber, and as is clear from the figure, a natural fiber located at least at the boundary surface of both non-woven fabric layers in the point fusion area Two
Is fixed in a state where it is embedded in the melting portion where the thermoplastic ultrafine fibers are melted, that is, 1 and both non-woven fabric layers have such an adhesive structure in the point fusion area, so that the lamination strength with high peeling strength is high. It becomes a woven structure.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0021[Correction target item name] 0021

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0021】[0021]

【実施例】次に,実施例に基づき本発明を具体的に説明
するが,本発明は,これらの実施例によって何ら限定さ
れるものではない。実施例において,各特性値の測定を
次の方法により実施した。 メルトフローレート値(g/10分):ASTM−D−
1238(L)に記載の方法に準じて測定した。 相対粘度:フエノールと四塩化エタンの等重量混合溶液
を溶媒とし,試料濃度0.5g/100cc,温度20
℃の条件で測定した。 融点(℃):パーキンエルマ社製示差走査型熱量計DS
C−2型を用い,試料重量を5mg,昇温速度を20℃
/分として測定して得た融解吸熱曲線の最大極値を与え
る温度を融点(℃)とした。 目付け(g/m2 ):標準状態の試料から縦10cm×
横10cmの試料片計10点を作成し平衡水分に到らし
めた後,各試料片の重量(g)を秤量し,得られた値の
平均値を単位面積(m2 )当たりに換算し目付け(g/
2 )とした。 引張り強力(kg/5cm幅)及び引張り伸度(%):
JIS−L−1096Aに記載の方法に準じて測定し
た。すなわち,試料長が10cm,試料幅が5cmの試
料片計10点を作成し,各試料片毎に不織布の経及び緯
方向について,定速伸長型引張り試験機(東洋ボールド
ウイン社製テンシロンUTM−4−1−100)を用い
て引張り速度10cm/分で伸長し,得られた切断時荷
重値(kg/5cm幅)の平均値を引張り強力(kg/
5cm幅),切断時伸長率(%)の平均値を引張り伸度
(%)とした。 引裂き強力(kg):JIS−K−7311に記載のエ
ルメンドルフ型に準じて,不織布の経及び緯方向につい
て測定した。 層間剥離強力(g/5cm幅):試料長が10cm,試
料幅が5cmの試料片計10点を作成し,各試料片毎に
不織布の経方向について,定速伸長型引張り試験機(東
洋ボールドウイン社製テンシロンUTM−4−1−10
0)を用いて引張速度10cm/分で天然繊維不織布層
が極細繊維不織布層から積層構造体の端部から計って5
cmの位置まで強制的に剥離させ,得られた荷重値(g
/5cm幅)の平均値を層間剥離強力(g/5cm幅)
とした。 剛軟度(g):試料長が10cm,試料幅が5cmの試
料片計5点を作成し,各試料片毎に横方向に曲げて円筒
状物とし,各々その端部を接合したものを剛軟度測定試
料とした。次いで,各測定試料毎にその軸方向につい
て,定速伸長型引張り試験機(東洋ボールドウイン社製
テンシロンUTM−4−1−100)を用いて圧縮速度
5cm/分で圧縮し,得られた最大荷重値(g)の平均
値を剛軟度(g)とした。 通気度(cc/cm2 /秒):JIS−L−1096に
記載のフラジール法に準じて測定した。 耐水圧(mm水柱):JIS−L−1092に記載の
水圧法に準じて測定した。 吸水性(mm):JIS−L−1096に記載のバイレ
ツク法に準じて測定した。
EXAMPLES Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In the examples, each characteristic value was measured by the following method. Melt flow rate value (g / 10 minutes): ASTM-D-
It was measured according to the method described in 1238 (L). Relative viscosity: an equal weight mixed solution of phenol and ethane tetrachloride as a solvent, sample concentration 0.5 g / 100 cc, temperature 20
It was measured under the condition of ° C. Melting point (℃): Differential scanning calorimeter DS manufactured by Perkin Elma
Using C-2 type, sample weight 5 mg, temperature rising rate 20 ℃
The temperature that gives the maximum extremum of the melting endothermic curve obtained by measuring as / min was defined as the melting point (° C). Unit weight (g / m 2 ): 10 cm in length from standard state sample
After making 10 pieces of 10 cm wide sample piece to reach the equilibrium water content, weigh each sample piece (g) and calculate the average value of the obtained values per unit area (m 2 ). Unit weight (g /
m 2 ). Tensile strength (kg / 5cm width) and tensile elongation (%):
It was measured according to the method described in JIS-L-1096A. That is, a total of 10 sample pieces having a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Tensilon UTM-made by Toyo Baldwin Co., Ltd.) was used for each sample piece in the warp and weft directions of the nonwoven fabric. 4-1-100) was used for elongation at a tensile speed of 10 cm / min, and the average value of the load values during cutting (kg / 5 cm width) obtained was measured for tensile strength (kg / cm).
5 cm width), and the average value of the elongation rate (%) at break was taken as the tensile elongation (%). Tear strength (kg): The warp and weft directions of the nonwoven fabric were measured according to the Elmendorf type described in JIS-K-7331. Delamination strength (g / 5 cm width): A total of 10 sample pieces with a sample length of 10 cm and a sample width of 5 cm were prepared, and a constant speed extension type tensile tester (Toyo Bold Win Tensilon UTM-4-1-10
0) with a tensile speed of 10 cm / min, and the natural fiber nonwoven fabric layer is 5 from the end of the laminated structure from the ultrafine fiber nonwoven fabric layer.
The load value (g
/ 5 cm width) delamination strength (g / 5 cm width)
And Bending resistance (g): A total of 5 sample pieces with a sample length of 10 cm and a sample width of 5 cm were created, and each sample piece was bent laterally into a cylindrical object, and the ends were joined together. The sample was measured for bending resistance. Then, for each measurement sample, the maximum obtained was obtained by compressing in the axial direction using a constant-speed extension type tensile tester (Tensilon UTM-4-1-100 manufactured by Toyo Baldwin Co., Ltd.) at a compression rate of 5 cm / min. The average value of the load values (g) was defined as the bending resistance (g). Air permeability (cc / cm 2 / sec): Measured according to the Frazier method described in JIS-L-1096. Water pressure (mm water column): according to JIS-L-1092 A
It measured according to the low water pressure method. Water absorption (mm): Measured according to the Bayrek method described in JIS-L-1096.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0022[Name of item to be corrected] 0022

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0022】実施例1 まず,融点が155℃,メルトフローレート値が600
g/10分のポリプロピレンチツプを用い,ポリプロピ
レン極細繊維からなるメルトブローン不織布を作成し
た。すなわち,前記重合体チツプをエクストルーダ型溶
融押出し機を用いて溶融し,これを孔径0.15mmの
紡糸孔を200孔有する紡糸口金を通して紡糸温度を2
80℃かつ吐出量を30g/分として溶融吐出し,吐出
された溶融重合体流を溶融温度より30℃高い温度の高
圧空気流を速度170m/秒で紡糸線方向に対して25
度の角度をなす方向に噴出して牽引・細化し,冷却した
後,紡糸口金の下方10cmの位置に配設されたサクシ
ヨンドラム上に捕集・堆積させ,平均単繊維繊度が0.
1デニールで,目付けが20g/m2 のポリプロピレン
極細繊維メルトブローン不織布を得た。別途,平均単繊
維繊度が1.5デニールで,かつ平均繊維長が25mm
の木綿晒し綿を用い,木綿繊維同士が三次元的に交絡し
てなる不織布を作成した。すなわち,前記晒し綿を出発
原料とし,ランダムカード機により繊維配列がランダム
で目付けが45g/m2 のランダムカードウエブを作成
し,次いで得られたウエブを移動速度20m/分で移動
する70メツシユの金網上に載置して高圧液体流処理を
施した。高圧液体流処理は,孔径0.1mmの噴射孔が
孔間隔0.6mmで一列に配設された高圧柱状水流処理
装置を用い,ウエブの上方50mmの位置から2段階に
別けて柱状水流を作用させた。第1段階の処理では圧力
を30kg/cm2 Gとし,第2段階の処理では圧力を
70kg/cm2 Gとした。なお,第2段階の処理は,
ウエブの表裏から各々2回施した。次いで,得られた処
理物からマングルロールを用いて過剰水分を除去した
後,処理物に熱風乾燥機を用い温度10℃の条件で乾燥
処理を施し,木綿繊維同士が緻密に三次元的交絡をした
目付けが45g/m2 の不織布を得た。次いで,前記で
得られたポリプロピレン極細繊維メルトブローン不織布
と木綿繊維不織布とを積層し,周波数が19.5KHz
の超音波発振器と円周上に点状に凸状突起部が面積比
(ロール全表面積に対する全凸状突起部の面積の比)1
1%かつ密度18点/cm2 で配設されたパターンロー
ルとからなる超音波融着装置を用い,加工速度を30m
/分,線圧を2.5kg/cmとして超音波融着処理を
施して積層不織構造体を得た。得られた積層不織構造体
の特性を表1に示す。
Example 1 First, the melting point was 155 ° C. and the melt flow rate value was 600.
Using a polypropylene chip of g / 10 min, a meltblown nonwoven fabric made of polypropylene ultrafine fibers was prepared. That is, the polymer chip was melted using an extruder type melt extruder, and this was passed through a spinneret having 200 spinning holes with a pore diameter of 0.15 mm and a spinning temperature of 2
It is melt-discharged at 80 ° C. and a discharge rate of 30 g / min, and the discharged molten polymer flow is a high-pressure air flow having a temperature 30 ° C. higher than the melting temperature at a speed of 170 m / sec in the spinning line direction of 25.
After being ejected in a direction forming an angle of 10 degrees, drawn, thinned, cooled, and then collected and accumulated on a saxion drum arranged 10 cm below the spinneret, the average single fiber fineness is 0.
A polypropylene ultrafine fiber meltblown nonwoven fabric having a denier of 1 and a basis weight of 20 g / m 2 was obtained. Separately, the average single fiber fineness is 1.5 denier and the average fiber length is 25 mm
Using bleached cotton, we made a non-woven fabric in which cotton fibers are entangled three-dimensionally. That is, using the bleached cotton as a starting material, a random card web having a random fiber arrangement and a basis weight of 45 g / m 2 was prepared by a random card machine, and the obtained web was then moved at a moving speed of 20 m / min for 70 mesh. It was placed on a wire mesh and subjected to high pressure liquid flow treatment. In the high-pressure liquid flow treatment, a high-pressure columnar water flow treatment device in which injection holes with a hole diameter of 0.1 mm are arranged in a row with a hole interval of 0.6 mm is used, and the columnar water flow is applied in two stages from a position 50 mm above the web. Let The pressure was set to 30 kg / cm 2 G in the first stage treatment, and the pressure was set to 70 kg / cm 2 G in the second stage treatment. The process of the second stage is
It was applied twice from the front and back of the web. Then, after removing excess water from the obtained treated product with a mangle roll, the treated product is dried with a hot air dryer at a temperature of 10 ° C., so that the cotton fibers are densely three-dimensionally entangled. A nonwoven fabric having a basis weight of 45 g / m 2 was obtained. Next, the polypropylene ultrafine fiber meltblown nonwoven fabric and the cotton fiber nonwoven fabric obtained above were laminated, and the frequency was 19.5 KHz.
Area ratio of the ultrasonic oscillator and the convex projections on the circumference of the circle (ratio of the area of all convex projections to the total surface area of the roll) 1
Using an ultrasonic fusing device consisting of a pattern roll arranged at 1% and a density of 18 points / cm 2 , the processing speed was 30 m.
/ Min, the linear pressure was 2.5 kg / cm, and ultrasonic fusion treatment was performed to obtain a laminated nonwoven structure. The properties of the resulting laminated nonwoven structure are shown in Table 1.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 単繊維繊度が0.2デニール以下の熱可
塑性極細繊維からなる不織布層と天然繊維同士が機械的
に交絡してなる不織布層とが積層され,かつ前記極細繊
維と天然繊維とが融着されてなる点状融着区域を有する
積層不織構造体であって,前記点状融着区域において前
記両不織布層の少なくとも境界面に位置する天然繊維が
前記極細繊維の融解部に埋設された状態で固定されるこ
とにより全体として一体化されてなることを特徴とする
積層不織構造体。
1. A non-woven fabric layer made of thermoplastic ultrafine fibers having a monofilament fineness of 0.2 denier or less and a nonwoven fabric layer formed by mechanically entangled natural fibers are laminated, and the ultrafine fibers and the natural fibers are laminated. In the laminated non-woven structure having a point-like fused area formed by fusing, the natural fibers located at least at the boundary surface between the two non-woven fabric layers in the point-like fused area are present in the fused portion of the ultrafine fiber. A laminated non-woven structure characterized by being integrated as a whole by being fixed in a buried state.
【請求項2】 不織構造体全表面積に対する全点状融着
区域の面積の比が2〜40%及び点状融着区域密度が7
〜80点/cm2 であることを特徴とする請求項1記載
の積層不織構造体。
2. The ratio of the area of all dot-like fused areas to the total surface area of the non-woven structure is 2 to 40%, and the density of dot-like fused areas is 7.
The laminated non-woven structure according to claim 1, characterized in that the number is -80 points / cm 2 .
【請求項3】 通気度が50cc/cm2 /秒以下であ
ることを特徴とする請求項1又は2記載の積層不織構造
体。
3. The laminated nonwoven structure according to claim 1, which has an air permeability of 50 cc / cm 2 / sec or less.
JP5240547A 1993-08-31 1993-08-31 Laminated nonwoven structure Pending JPH0768686A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5240547A JPH0768686A (en) 1993-08-31 1993-08-31 Laminated nonwoven structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5240547A JPH0768686A (en) 1993-08-31 1993-08-31 Laminated nonwoven structure

Publications (1)

Publication Number Publication Date
JPH0768686A true JPH0768686A (en) 1995-03-14

Family

ID=17061155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5240547A Pending JPH0768686A (en) 1993-08-31 1993-08-31 Laminated nonwoven structure

Country Status (1)

Country Link
JP (1) JPH0768686A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768687A (en) * 1993-09-02 1995-03-14 Unitika Ltd Laminated nonwoven structure
JP2004323987A (en) * 2003-04-22 2004-11-18 Kuraray Co Ltd Water-resistant nonwoven sheet
US8415262B2 (en) 2003-10-22 2013-04-09 E I Du Pont De Nemours And Company Porous fibrous sheets of nanofibers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768687A (en) * 1993-09-02 1995-03-14 Unitika Ltd Laminated nonwoven structure
JP2004323987A (en) * 2003-04-22 2004-11-18 Kuraray Co Ltd Water-resistant nonwoven sheet
US8415262B2 (en) 2003-10-22 2013-04-09 E I Du Pont De Nemours And Company Porous fibrous sheets of nanofibers

Similar Documents

Publication Publication Date Title
JPH10219555A (en) Laminated nonwoven fabric and its production
JPH10331063A (en) Composite nonwoven fabric and its production
JP3201671B2 (en) Manufacturing method of composite nonwoven fabric
JP3305453B2 (en) Laminated non-woven structure
JPH0768686A (en) Laminated nonwoven structure
JP3905916B2 (en) Method for producing composite nonwoven fabric containing ultrafine fibers
JP3580626B2 (en) Nonwoven fabric for hook-and-loop fastener and method for producing the same
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JPH07125128A (en) Biodegradable nonwoven laminate
JP3262430B2 (en) Method for producing biodegradable laminated nonwoven structure
JPH08109567A (en) Laminated nonwoven structure and its production
JPH07227338A (en) Head rest cover
JPH07316968A (en) Composite non-woven fabric and its production
JP3784093B2 (en) Disposable handbag
JPH07238403A (en) Apron
JPH07266479A (en) Laminated nonwoven structure
JP3213460B2 (en) Method for producing biodegradable laminated nonwoven structure
JPH083855A (en) Laminated nonwoven structure
JPH07316969A (en) Laminated nonwoven structure
JPH0874162A (en) Laminated nonwoven structural material
JPH08118526A (en) Laminated nonwoven structure
JPH07238402A (en) Apron
JPH10273870A (en) Composite non-woven fabric and its production
JPH0730837U (en) Bedding sheets
JPH08150169A (en) Sack for disposable pocket heater