JPH10273870A - Composite non-woven fabric and its production - Google Patents

Composite non-woven fabric and its production

Info

Publication number
JPH10273870A
JPH10273870A JP9335295A JP33529597A JPH10273870A JP H10273870 A JPH10273870 A JP H10273870A JP 9335295 A JP9335295 A JP 9335295A JP 33529597 A JP33529597 A JP 33529597A JP H10273870 A JPH10273870 A JP H10273870A
Authority
JP
Japan
Prior art keywords
fiber web
short
fiber
polymer
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9335295A
Other languages
Japanese (ja)
Inventor
Koichi Nagaoka
孝一 長岡
Katsunori Suzuki
克昇 鈴木
Michiyo Kato
美智代 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP9335295A priority Critical patent/JPH10273870A/en
Publication of JPH10273870A publication Critical patent/JPH10273870A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject non-woven fabric, suitable for medical material, sanitary material, cloth or the like, by placing long-fiber webs, in which a low-melting and high-melting polymers are divided into extremely fine filaments, and short-fiber webs alternately to form a monolithic structure. SOLUTION: This non-woven fabric is composed of long-fiber and short-fiber webs placed alternately to form a monolithic structure. The long-fiber web is composed of a low-melting polymer and another type of polymer having a 30 to 180 deg.C higher melting point than the former, both being incompatible with each other and able to be formed into fibers, wherein these polymers form a continuous, single filament of divided type, two-component composite, which is further subdivided into extremely fine filaments. Examples of the combinations of these polymers include a polyolefin/polyamide. The long-fiber web is placed alternately with the short-fiber web containing potentially crinkling short fibers, to form the objective non-woven fabric of monolithic structure suitable for domestic and industrial goods, wherein the filaments are three- dimensionally entwined with those in the same web or other webs.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明が属する技術分野】本発明は、繊維形成性重合体
からなる長繊維ウエブと主として繊維形成性重合体から
なる短繊維ウエブとが積層一体化されてなる複合不織布
であって、層間剥離強力が高く、柔軟性に優れ、更に良
好なフイルタ−性能を有しており、医療・衛生材料、衣
料用、生活関連資材用、産業資材用と広範囲の用途に適
用できる複合不織布及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite nonwoven fabric obtained by laminating and integrating a long fiber web made of a fiber-forming polymer and a short fiber web mainly made of a fiber-forming polymer. Highly flexible, excellent in flexibility and having good filter performance and applicable to a wide range of applications including medical and hygiene materials, clothing, living related materials, industrial materials, and a method for producing the same. Things.

【0002】[0002]

【従来の技術】従来から、基布上に短繊維ウエブを積層
した種々の複合不織布が開示されている。例えば、特開
昭53−114975号公報や特開昭53−12460
1号公報には、織編物を基布としこの上に分割型二成分
系複合短繊維からなる不織ウエブあるいはメルトブロ−
ン法により得られる極細繊維ウエブを積層した複合不織
布が開示されている。しかしながら、これらの複合不織
布はその用途が合成皮革に限定されしかもコスト的に極
めて高価で経済的にも劣るものであった。更に、特開昭
63−211354号公報には、スパンボンド法によっ
て得られる長繊維不織布を基布としこの片面あるいは両
面に存在する長繊維を部分的に切断して繊維端を形成
し、この繊維端と基布上に短繊維ウエブを積層した繊維
とを絡合させた複合不織布が開示されている。しかしな
がら、この複合不織布は長繊維を部分的に切断するため
機械的特性が低下し、しかも長繊維不織布特有の表面平
滑性が損なわれるという問題を有している。又、特公昭
54−24506号公報には、熱可塑性繊維不織布から
なる通気性熱溶着層と天然繊維等からなる通気性非熱溶
着層とが積層され、非熱溶着層上に熱溶着性物質が点在
的に配置され、かつ熱溶着性物質と熱溶着層との溶融部
が非熱溶着層の両面から浸透して前記非熱溶着層を接着
狭持した構造を有する積層不織構造体が提案されてい
る。しかしながら、この積層不織構造体は、天然繊維が
積層されているため吸水性には優れるものの、通気性の
向上を目的とすることからも明らかなようにフイルター
性能を有しないものである。しかも、この積層不織構造
体は、これを製造するに際して通気性熱溶着層と通気性
非熱溶着層とを積層する工程と、非熱溶着層上に含浸用
熱溶着性シ−ト層を重合し超音波融着処理により熱溶着
性物質と熱溶着層との溶融部が非熱溶着層の両面から浸
透して前記非熱溶着層を接着狭持した構造を発現する工
程と、前記含浸用熱溶着性シートをその溶融部を残して
剥離する工程とを必要とするなど製造技術の観点からす
れば煩雑で経済的にも劣るものであった。
2. Description of the Related Art Conventionally, various composite nonwoven fabrics in which short fiber webs are laminated on a base fabric have been disclosed. For example, JP-A-53-114975 and JP-A-53-12460
No. 1 discloses a nonwoven web or a melt blown cloth comprising a woven or knitted fabric as a base and made of splittable bicomponent conjugate short fibers.
Discloses a composite nonwoven fabric obtained by laminating ultrafine fiber webs obtained by a spinning method. However, the use of these composite nonwoven fabrics is limited to synthetic leather, and is extremely cost-effective and economically inferior. Further, JP-A-63-21354 discloses that a long fiber nonwoven fabric obtained by a spunbond method is used as a base fabric, and a long fiber present on one side or both sides is partially cut to form a fiber end. A composite nonwoven fabric is disclosed in which an end and a fiber obtained by laminating a short fiber web on a base fabric are entangled. However, this composite nonwoven fabric has a problem that the mechanical properties are deteriorated because the long fibers are partially cut, and the surface smoothness peculiar to the long fiber nonwoven fabric is impaired. Japanese Patent Publication No. 54-24506 discloses that a gas-permeable heat-sealing layer made of a thermoplastic fiber non-woven fabric and a gas-permeable non-heat-welding layer made of natural fibers and the like are laminated, and a heat-welding material is formed on the non-heat-welding layer. Are disposed intermittently, and a fused portion of the heat-welding substance and the heat-welding layer penetrates from both sides of the non-heat-welding layer, and has a structure in which the non-heat-welding layer is adhered and sandwiched. Has been proposed. However, although this laminated nonwoven structure has excellent water absorbability because natural fibers are laminated, it does not have a filter performance as is apparent from the purpose of improving the air permeability. In addition, the laminated nonwoven structure has a step of laminating a gas-permeable heat-sealing layer and a gas-permeable non-heat-welding layer when manufacturing the same, and a heat-sealing sheet layer for impregnation on the non-heat-sealing layer. A step of superposing and melting the heat-weldable substance and the heat-weldable layer by ultrasonic welding so as to permeate from both sides of the non-heat-weldable layer to exhibit a structure in which the non-heat-welded layer is adhered and sandwiched; From the viewpoint of the production technology, it is complicated and economically inferior from the viewpoint of the production technology, for example, requiring a step of peeling off the heat-weldable sheet while leaving the fused portion.

【0003】[0003]

【発明が解決しょうとする課題】そこで、本発明は、2
種類の繊維形成性重合体から構成される極細割繊フイラ
メント郡より構成された不織布と主として繊維形成性重
合体からなる短繊維不織布とが積層されてなる複合不織
布であって、両不織布間の層間剥離強力が高く、柔軟性
に優れ、良好なフイルタ−特性を有する複合不織布と、
それを効率良く製造できる方法を提供しようとするもの
である。
Therefore, the present invention provides a
A composite non-woven fabric comprising a non-woven fabric composed of ultrafine split filaments composed of various types of fiber-forming polymers and a short-fiber non-woven fabric mainly composed of a fiber-forming polymer. A composite nonwoven fabric having high peel strength, excellent flexibility, and good filter properties;
An object of the present invention is to provide a method capable of efficiently manufacturing the same.

【0004】[0004]

【課題を解決するための手段】本発明者らは、前記課題
を達成すべく鋭意検討の結果、本発明に到達した。すな
わち、本発明は、以下の構成をその要旨とするものであ
る。
Means for Solving the Problems The present inventors have made intensive studies to achieve the above object, and as a result, have reached the present invention. That is, the present invention has the following configuration as its gist.

【0005】繊維形成性低融点重合体と前記低融点重合
体に対し非相溶性でかつ前記低融点重合体の融点より3
0〜180℃高い融点を有する繊維形成性高融点重合体
とからなる分割型二成分系複合連続単糸の分割により発
現した前記低融点重合体及び前記高融点重合体から構成
される極細割繊フイラメント群からなる長繊維ウエブ
と、主として繊維形成性重合体からなり、潜在捲縮能を
有してなる短繊維からなる短繊維ウエブとが積層されて
なり、かつ長繊維ウエブの構成繊維同士、長繊維ウエブ
と短繊維ウエブとの構成繊維同士及び短繊維ウエブの構
成繊維同士が三次元交絡により一体化してなることを特
徴とする複合不織布。
The fiber-forming low-melting polymer is incompatible with the low-melting polymer and has a melting point lower than the melting point of the low-melting polymer by 3%.
An ultrafine splitting fiber composed of the low-melting-point polymer and the high-melting-point polymer developed by dividing a split-type two-component composite continuous single yarn comprising a fiber-forming high-melting-point polymer having a high melting point of 0 to 180 ° C. A long fiber web composed of a filament group and a short fiber web mainly composed of a fiber-forming polymer and composed of short fibers having latent crimpability are laminated, and the constituent fibers of the long fiber web are A composite nonwoven fabric, wherein constituent fibers of a long fiber web and a short fiber web and constituent fibers of a short fiber web are integrated by three-dimensional entanglement.

【0006】繊維形成性低融点重合体と前記低融点重合
体に対し非相溶性でかつ前記低融点重合体の融点より3
0〜180℃高い融点を有する繊維形成性高融点重合体
とからなる分割型二成分系複合連続単糸の分割により発
現した前記低融点重合体と前記高融点重合体から構成さ
れる極細割繊フイラメント群からなる長繊維ウエブと、
繊維形成性重合体からなり潜在捲縮能を有してその潜在
捲縮が顕在化されてなる短繊維を主とする短繊維ウエブ
とが積層されてなり、長繊維ウエブの構成繊維同士、長
繊維ウエブと短繊維ウエブとの構成繊維同士及び短繊維
ウエブの構成繊維同士が三次元交絡により一体化してな
ることを特徴とする複合不織布。
The fiber-forming low-melting polymer is incompatible with the low-melting polymer and has a melting point lower than the melting point of the low-melting polymer by 3%.
An ultrafine splitting fiber composed of the low-melting polymer and the high-melting polymer developed by dividing a split type two-component composite continuous single yarn comprising a fiber-forming high-melting polymer having a high melting point of 0 to 180 ° C. A long fiber web consisting of a group of filaments,
A short fiber web mainly composed of short fibers, which is made of a fiber-forming polymer, has latent crimping ability, and the latent crimp is revealed, is laminated, and the constituent fibers of the long fiber web are combined with each other. A composite nonwoven fabric, wherein constituent fibers of a fiber web and a short fiber web and constituent fibers of a short fiber web are integrated by three-dimensional entanglement.

【0007】繊維形成性低融点重合体と前記低融点重合
体に対し非相溶性でかつ前記低融点重合体の融点より3
0〜180℃高い融点を有する繊維形成性高融点重合体
とからなる分割型二成分系複合連続単糸群を溶融紡糸
し、前記複合連続単糸群をエアーサッカーを用いて引取
り、スクリーンコンベア等の移動式捕集面上に開繊堆積
させて長繊維ウエブとし、前記長繊維ウエブを部分熱圧
着装置を用いて前記複合連続単糸群に部分的な熱圧着処
理を施して長繊維ウエブを得、前記長繊維ウエブの少な
くとも片面に主として繊維形成性重合体からなり、潜在
捲縮能を有してなる短繊維からなる短繊維ウエブを積層
し、次いで、前記積層体に高圧液体流処理を施し、長繊
維ウエブの構成繊維同士、長繊維ウエブと短繊維ウエブ
との構成繊維同士及び短繊維ウエブの構成繊維同士を三
次元的に交絡させることにより、積層体を一体化させて
複合不織布を得、複合不織布の構成繊維を形成する繊維
形成性重合体のうち最も低い融点を有する重合体の融点
より低い温度で熱処理を施し、短繊維の潜在捲縮を顕在
化させることを特徴とする複合不織布の製造方法。
The fiber-forming low-melting polymer is incompatible with the low-melting polymer and has a melting point lower than the melting point of the low-melting polymer by 3%.
Melt spinning of the split type two-component composite continuous single yarn group composed of a fiber-forming high melting point polymer having a high melting point of 0 to 180 ° C., and taking the composite continuous single yarn group using an air sucker, such as a screen conveyor Spread and deposited on the movable collecting surface to form a long fiber web, and the long fiber web is subjected to a partial thermocompression treatment on the composite continuous single yarn group using a partial thermocompression bonding apparatus to obtain a long fiber web, At least one surface of the long fiber web is mainly composed of a fiber-forming polymer, a short fiber web composed of short fibers having latent crimping ability is laminated, and then subjected to a high-pressure liquid flow treatment on the laminate, By making the constituent fibers of the long fiber web, the constituent fibers of the long fiber web and the short fiber web and the constituent fibers of the short fiber web three-dimensionally entangled, the laminate is integrated to obtain a composite nonwoven fabric, Duplicate Production of a composite nonwoven fabric characterized by performing a heat treatment at a temperature lower than the melting point of the polymer having the lowest melting point among the fiber-forming polymers that form the constituent fibers of the nonwoven fabric, so as to make latent crimps of the short fibers apparent. Method.

【0008】繊維形成性低融点重合体と前記低融点重合
体に対し非相溶性でかつ前記低融点重合体の融点より3
0〜180℃高い融点を有する繊維形成性高融点重合体
とからなる分割型二成分系複合連続単糸群を溶融紡糸
し、前記複合連続単糸群をエアーサッカーを用いて引取
り、スクリーンコンベア等の移動式捕集面上に開繊堆積
させて長繊維ウエブとし、前記長繊維ウエブを部分熱圧
着装置を用いて前記複合連続単糸群を部分的な熱圧着処
理を施して長繊維ウエブを得、前記長繊維ウエブの少な
くとも片面に、繊維形成性重合体からなり潜在捲縮能を
有してその潜在捲縮が顕在化されてなる短繊維を主とす
る短繊維ウエブを積層し、次いで、前記積層体に高圧液
体流処理を施し、長繊維ウエブの構成繊維同士、長繊維
ウエブと短繊維ウエブとの構成繊維同士及び短繊維ウエ
ブの構成繊維同士を三次元的に交絡させることにより、
積層体を一体化させることを特徴とする複合不織布の製
造方法。
The fiber-forming low-melting polymer is incompatible with the low-melting polymer and has a melting point lower than the melting point of the low-melting polymer by 3%.
Melt spinning of the split type two-component composite continuous single yarn group composed of a fiber-forming high melting point polymer having a high melting point of 0 to 180 ° C., and taking the composite continuous single yarn group using an air sucker, such as a screen conveyor Spreading and depositing on the movable collecting surface to form a long fiber web, and applying a partial thermocompression treatment to the composite continuous single yarn group using a partial thermocompression bonding device to obtain a long fiber web, On at least one surface of the long fiber web, a short fiber web mainly composed of short fibers, which is made of a fiber-forming polymer, has latent crimping ability, and the latent crimp is realized, and then, By subjecting the laminate to high-pressure liquid flow treatment, the constituent fibers of the long fiber web, the constituent fibers of the long fiber web and the short fiber web, and the constituent fibers of the short fiber web are three-dimensionally entangled,
A method for producing a composite nonwoven fabric, comprising integrating a laminate.

【0009】前記複合不織布の製造方法において、長繊
維ウエブとして、部分的に熱圧着した長繊維ウエブを座
屈処理にて熱圧着されていない部位に存在する前記複合
連続単糸を分割割繊させて、低融点重合体又は高融点重
合体から構成される極細割繊フイラメント群を少なくと
も一部発現させ、かつ極細割繊フイラメント群は非交絡
状態とした長繊維ウエブを用いることを特徴とする複合
不織布の製造方法。
In the method for producing a composite nonwoven fabric, as the long fiber web, the composite continuous single yarn present in a portion which is not thermocompression-bonded by the buckling treatment of the partially fiber-bonded long fiber web is divided and split. The composite characterized in that at least a part of the ultrafine split filament group composed of a low melting polymer or a high melting polymer is expressed, and the ultrafine split filament group uses a non-entangled long fiber web. Manufacturing method of nonwoven fabric.

【0010】前記複合不織布の製造方法において、長繊
維ウエブとして、部分的に熱圧着した長繊維ウエブに高
圧液体流処理を施して熱圧着されていない部位に存在す
る前記複合連続単糸を分割させて、低融点重合体又は高
融点重合体から構成される極細割繊フイラメント群を少
なくとも一部発現させ、かつ極細割繊フイラメント群同
士を三次元的に交絡させた長繊維ウエブを用いることを
特徴とする複合不織布の製造方法。
In the method for producing a composite nonwoven fabric, as the long fiber web, a partially thermocompressed long fiber web is subjected to a high-pressure liquid flow treatment to divide the composite continuous single yarn present in a portion not thermocompressed. Characterized in that at least a part of the group of ultrafine split filaments composed of a low-melting polymer or a high-melting polymer is expressed, and that a long fiber web in which the group of ultrafine split filaments are three-dimensionally entangled is used. A method for producing a composite nonwoven fabric.

【0011】[0011]

【発明の実施の形態】次に、本発明を詳細に説明する。
まず、本発明に使用する分割型二成分系複合連続単糸よ
り構成された長繊維ウエブについて説明する。該分割型
二成分系複合連続単糸は、繊維形成性低融点重合体と、
該低融点重合体に対し非相溶性の繊維形成性高融点重合
体とからなるものである。該低融点重合体と該高融点重
合体とが互いに非相溶性であるのは、単糸に衝撃を与え
たときに分割しやすいようにするためである。
Next, the present invention will be described in detail.
First, a long fiber web composed of a split type two-component composite continuous single yarn used in the present invention will be described. The split type two-component composite continuous single yarn, a fiber-forming low-melting polymer,
A fiber-forming high-melting polymer that is incompatible with the low-melting polymer. The reason that the low-melting polymer and the high-melting polymer are incompatible with each other is that the single yarn is easily split when subjected to impact.

【0012】分割型二成分系複合連続単糸の繊維形成性
高融点重合体の融点は繊維形成性低融点重合体の融点よ
り30〜180℃高くなければならない。両者の融点差
が30℃未満であると、部分熱圧着装置を用いて熱圧着
処理する際に、低融点重合体のみでなく高融点重合体も
軟化溶融することとなり、柔軟性を有する複合不織布が
得られないこと及び後の分割割繊工程において両成分が
分割割繊しにくくなり、目標の複合不織布が得られない
こととなる。逆に融点差が180℃を超えると、両重合
体を溶融複合紡糸する際に低融点重合体が熱劣化を起こ
しやすく、現実的に複合連続単糸を製造しにくくなるた
め、好ましくない。
The melting point of the fiber-forming high melting point polymer of the split type two-component composite continuous single yarn must be 30 to 180 ° C. higher than the melting point of the fiber-forming low melting point polymer. If the difference in melting point between the two is less than 30 ° C, not only the low-melting polymer but also the high-melting polymer will be softened and melted during thermocompression bonding using a partial thermocompression bonding apparatus, and the composite nonwoven fabric having flexibility Is not obtained, and in the subsequent split splitting step, both components are hardly split and split, and a target composite nonwoven fabric cannot be obtained. Conversely, if the difference in melting point exceeds 180 ° C., the low-melting-point polymer tends to undergo thermal deterioration when melt-spinning both polymers, which makes it difficult to produce a composite continuous single yarn, which is not preferable.

【0013】分割型二成分系複合連続単糸の具体例とし
ては、図1〜図4に示した如き横断面を持つものが好ま
しい。これらは、繊維形成性低融点重合体及び繊維形成
性高融点重合体の両成分が共に繊維の表面に露出してお
り、かつ繊維の断面内において、一方の成分が他方の成
分により分割割繊可能な形に仕切られているものであ
る。
As a specific example of the split type two-component composite continuous single yarn, one having a cross section as shown in FIGS. 1 to 4 is preferable. In these, both components of the fiber-forming low-melting polymer and the fiber-forming high-melting polymer are both exposed on the surface of the fiber, and within the cross section of the fiber, one component is split by the other component. It is divided into possible forms.

【0014】分割型二成分系複合連続単糸の単糸繊度
は、1〜12デニールであることが好ましい。単糸繊度
が1デニール未満になると、溶融紡糸する際の紡糸口金
の単孔当たりの吐出量が低下し、生産量が低下する傾向
にあり、また、生産量を向上させるために、紡糸口金の
孔数を増加させると、紡糸工程が不安定になる。一方、
単糸繊度が12デニールを超えると、溶融紡糸された糸
条の冷却やエアーサッカーによる引き取りが困難になる
傾向にあり、また、糸条の冷却を促進させるため、紡糸
口金の孔数を減らすと、生産量が低下する。
The single-filament fineness of the split type two-component composite continuous single yarn is preferably 1 to 12 denier. When the single-fiber fineness is less than 1 denier, the discharge amount per single hole of the spinneret during melt spinning decreases, and the production amount tends to decrease. Increasing the number of holes makes the spinning process unstable. on the other hand,
If the single yarn fineness exceeds 12 denier, it tends to be difficult to cool the melt-spun yarn or take it off by air soccer, and to reduce the number of holes in the spinneret to promote cooling of the yarn. , The production volume decreases.

【0015】分割型二成分系複合連続単糸は、後の分割
割繊処理により、低融点重合体と高融点重合体との境界
で分割され、低融点重合体からなる割繊フイラメント及
び高融点重合体からなる割繊フイラメントが少なくとも
一部発現する。本発明において、少なくとも一部発現す
る割繊フイラメントの単糸繊度は、0.8デニール以下
が好ましく、より好ましくは0.05〜0.8デニー
ル、さらに好ましくは0.1〜0.5デニールである。
単糸繊度が0.05デニール未満であると、現実的に紡
糸が困難となり分割型二成分系複合連続単糸が安価で合
理的に得られにくい。また、十分に分割割繊を行うこと
が困難となる傾向にある。一方、0.8デニールを超え
ると、得られた複合不織布は柔軟性に劣り粗硬感が発生
する傾向にあり、また、短繊維ウエブとの交絡性が弱く
なるため複合不織布の層間剥離強力に劣る傾向になる。
The split type two-component composite continuous single yarn is split at the boundary between the low-melting polymer and the high-melting polymer by the split splitting process, and the split filament made of the low-melting polymer and the high-melting polymer are separated. The split filament composed of a polymer is at least partially expressed. In the present invention, the single fiber fineness of the split filament that is expressed at least partially is preferably 0.8 denier or less, more preferably 0.05 to 0.8 denier, and still more preferably 0.1 to 0.5 denier. is there.
When the single yarn fineness is less than 0.05 denier, spinning is difficult in practice, and it is difficult to obtain a split type two-component composite continuous single yarn at low cost and rationally. In addition, there is a tendency that it is difficult to sufficiently perform split splitting. On the other hand, if it exceeds 0.8 denier, the obtained composite nonwoven fabric is inferior in flexibility and tends to have a rough and hard feeling, and the entanglement with the short fiber web is weakened, so that the delamination strength of the composite nonwoven fabric is increased. It tends to be inferior.

【0016】本発明において、分割型二成分系複合連続
単糸を構成する低融点重合体と高融点重合体との組み合
わせとしては、ポリオレフイン/ポリアミド、ポリオレ
フイン/ポリエステル、ポリアミド/ポリエステル等が
挙げられるが、これらは代表例であって他の各種の組み
合わせも任意に採用される。
In the present invention, examples of the combination of the low melting point polymer and the high melting point polymer constituting the split type two-component composite continuous single yarn include polyolefin / polyamide, polyolefin / polyester and polyamide / polyester. These are representative examples, and other various combinations may be arbitrarily adopted.

【0017】本発明に使用しうる繊維形成性ポリオレフ
イン系重合体の例としては、炭素原子数が2〜16の脂
肪族α−モノオレフイン、例えばエチレン、プロピレ
ン、1−ブテン、1−ペンテン,3−メチル1−ブテ
ン、1−ヘキセン、1−オクテン、1−ドデセン、1−
オクタデセンのホモポリオレフイン又は共重合ポリオレ
フインがある。脂肪族α−モノオレフインは他のオレフ
イン及び/又は少量(重合体重量の約10重量%まで)
の他のエチレン系不飽和モノマー、例えばブタジエン、
イソプレン、1,3−ペンタジエン、スチレン、α−メ
チルスチレンの如き類似のエチレン系不飽和モノマーと
共重合されていてもよい。特にポリエチレンの場合、重
合体重量の約10重量%までのプロピレン、1−ブテ
ン、1−ヘキセン、1−オクテン又は類似の高級α−オ
レフインと共重合させたものが製糸性がよくなるため好
ましい。
Examples of the fiber-forming polyolefin polymer which can be used in the present invention include aliphatic α-monoolefins having 2 to 16 carbon atoms, for example, ethylene, propylene, 1-butene, 1-pentene, 3 -Methyl 1-butene, 1-hexene, 1-octene, 1-dodecene, 1-
There is a homopolyolefin or a copolymerized polyolefin of octadecene. Aliphatic α-monoolefins may contain other olefins and / or small amounts (up to about 10% by weight of polymer weight)
Other ethylenically unsaturated monomers, such as butadiene,
It may be copolymerized with similar ethylenically unsaturated monomers such as isoprene, 1,3-pentadiene, styrene, α-methylstyrene. Particularly, in the case of polyethylene, a copolymer obtained by copolymerizing propylene, 1-butene, 1-hexene, 1-octene or a similar higher α-olefin with up to about 10% by weight of the polymer weight is preferred because the fiber-forming property is improved.

【0018】本発明に使用しうる繊維形成性ポリアミド
系重合体の例としては、ナイロン−4、ナイロン−4
6、ナイロン−6、ナイロン−66、ナイロン−61
0、ナイロン−11、ナイロン−12やポリメタキシレ
ンアジパミド(MXD−6)、ポリパラキシレンデカン
アミド(PXD−12)、ポリビスシクロヘキシルメタ
ンデカンアミド(PCM−12)又はこれらのモノマー
を構成単位とする共重合ポリアミドがある。本発明に使
用しうる繊維形成性ポリエステル系重合体の例として
は、酸成分としてテレフタル酸、イソフタル酸、フタル
酸、2,6−ナフタレンジカルボン酸等の芳香族ジカル
ボン酸もしくはアジピン酸、セバシン酸などの脂肪族ジ
カルボン酸又はこれらのエステル類と、アルコール成分
としてエチレングリコール、ジエチレングリコール、
1,4−ブタンジオール、ネオペンチルグリコール、
1,4−シクロヘキサンジメタノ−ル等のジオール化合
物とから合成されるホモポリエステルないしは共重合ポ
リエステルであり、上記ポリエステルにパラオキシ安息
香酸、5−ナトリウムスルフォイソフタール酸、ポリア
ルキレングリコール、ペンタエリスリトール、ビスフェ
ノールA等が添加あるいは共重合されていてもよい。
Examples of the fiber-forming polyamide polymer usable in the present invention include nylon-4 and nylon-4.
6, Nylon-6, Nylon-66, Nylon-61
0, nylon-11, nylon-12, polymetaxylene adipamide (MXD-6), polyparaxylenedecaneamide (PXD-12), polybiscyclohexylmethanedecaneamide (PCM-12) or a monomer of these There is a copolyamide as a unit. Examples of fiber-forming polyester polymers that can be used in the present invention include terephthalic acid, isophthalic acid, phthalic acid, aromatic dicarboxylic acids such as 2,6-naphthalenedicarboxylic acid or adipic acid, sebacic acid and the like as an acid component. Aliphatic dicarboxylic acids or esters thereof, as the alcohol component ethylene glycol, diethylene glycol,
1,4-butanediol, neopentyl glycol,
It is a homopolyester or a copolyester synthesized from a diol compound such as 1,4-cyclohexanedimethanol, and the above-mentioned polyesters include paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol, pentaerythritol, Bisphenol A or the like may be added or copolymerized.

【0019】その他の繊維形成性重合体の例としては、
例えばビニル系重合体が用いられ、具体的にはポリビニ
ルアルコール、ポリ酢酸ビニル、ポリアクリル酸エステ
ル、エチレン酢酸ビニル共重合体、ポリ塩化ビニル、ポ
リ塩化ビニリデン、又は、これらの共重合体が用いられ
る。また、ポリフェニレン系重合体又はその共重合体を
使用することもできる。
Examples of other fiber-forming polymers include:
For example, a vinyl polymer is used, and specifically, polyvinyl alcohol, polyvinyl acetate, polyacrylate, ethylene vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, or a copolymer thereof is used. . Further, a polyphenylene-based polymer or a copolymer thereof can also be used.

【0020】なお、繊維形成性低融点重合体、繊維形成
性高融点重合体には、本発明の目的を達成しうる範囲内
で、艶消し剤、顔料、防炎剤、消臭剤、帯電防止剤、酸
化防止剤、紫外線吸収剤、抗菌剤等の任意の添加物が添
加されていてもよい。
The fiber-forming low-melting polymer and the fiber-forming high-melting polymer include a matting agent, a pigment, a flameproofing agent, a deodorant, and a charging agent as long as the object of the present invention can be achieved. Optional additives such as an inhibitor, an antioxidant, an ultraviolet absorber, and an antibacterial agent may be added.

【0021】本発明で用いる分割型二成分系複合連続単
糸からなる長繊維ウエブは、一般に以下の如き方法で製
造される。即ち、従来公知の溶融複合紡糸法で紡糸さ
れ、横吹付や環状吹付等の従来公知の冷却装置を用い
て、吹付風により冷却された後、一般的にエアーサッカ
ーを用いて、目標繊度となるように牽引細化されて引き
取られる。牽引速度は3000m/分以上、特に、40
00m/分以上が不織布の寸法安定性が向上するため更
に好適である。エアーサッカーから排出される分割型二
成分系複合連続単糸は、一般的には、高圧電場中のコロ
ナ放電域か、又は、摩擦衝突帯域を通過せしめて帯電開
繊させた後、スクリーンからなるコンベアーの如き移動
堆積装置上に開繊集積させて長繊維ウエブを得ることが
できる。
The long fiber web composed of the split type bicomponent composite continuous single yarn used in the present invention is generally produced by the following method. That is, spun by a conventionally known melt composite spinning method, using a conventionally known cooling device such as horizontal spraying or annular spraying, and cooled by spraying wind, and then generally using air soccer to reach a target fineness. As if towed and taken off. The towing speed is over 3000 m / min, especially 40
More than 00 m / min is more preferable because the dimensional stability of the nonwoven fabric is improved. The split-type two-component composite continuous single yarn discharged from air soccer generally consists of a screen after passing through a corona discharge area in a high-voltage field or through a frictional collision zone to be charged and spread. It is possible to obtain a long fiber web by spreading and accumulating on a moving deposition device such as a conveyor.

【0022】次に、該長繊維ウエブを部分熱圧着装置を
用いて処理し部分的に熱圧着する。部分的な熱圧着と
は、例えば繊維形成性低融点重合体の融点以下の温度で
加熱され表面に彫刻模様が刻印された金属ロールすなわ
ちエンボスロールと、加熱され表面が平滑な金属ロール
との間に、長繊維ウエブを通すことによって、いわゆる
熱エンボスロールを用いて、また超音波融着機を用い
て、前記彫刻模様に当接する長繊維ウエブ同士を熱的に
圧着せしめることをいう。
Next, the long fiber web is treated using a partial thermocompression bonding apparatus and partially thermocompression bonded. Partial thermocompression bonding means, for example, between a metal roll or embossing roll heated at a temperature equal to or lower than the melting point of the fiber-forming low-melting polymer and having an engraved pattern engraved on the surface, and a heated metal roll having a smooth surface. Means that the long fiber webs that are in contact with the engraved pattern are thermally pressed by using a so-called hot embossing roll or by using an ultrasonic fusing machine.

【0023】個々の熱圧着形状は、円形である必要は無
く、菱形、三角形、T形等任意の形状を適宜選択すれば
よい。個々の熱圧着部の面積は、0.1〜1.0mm2
の範囲で、その密度すなわち圧接点密度が4〜80点/
cm2 のものであるのがよい。また、長繊維ウエブの全
表面積に対する全圧接領域の面積の比すなわち圧接面積
率は5〜30%が好ましく、さらには5〜20%が好ま
しい。圧接面積率が5%未満であると、複合不織布の機
械的特性及び寸法安定性が劣る傾向にある。逆に30%
を超えると、短繊維ウエブを積層し液体流処理にて交絡
処理を施す際に、交絡部分の減少により両ウエブ層の層
間剥離強力が低下する傾向にある。
Each thermocompression bonding shape does not need to be circular, and any shape such as a rhombus, a triangle, and a T-shape may be appropriately selected. The area of each thermocompression bonding part is 0.1 to 1.0 mm 2
In the range of 4 to 80 points /
cm 2 is good. Further, the ratio of the area of the entire press contact area to the total surface area of the long fiber web, that is, the press contact area ratio is preferably 5 to 30%, and more preferably 5 to 20%. If the pressed area ratio is less than 5%, the mechanical properties and dimensional stability of the composite nonwoven fabric tend to be poor. 30% conversely
When it exceeds, when laminating short fiber webs and performing entanglement treatment by liquid flow treatment, the delamination strength of both web layers tends to decrease due to a decrease in entangled portions.

【0024】熱圧着処理における熱圧着温度(エンボス
ロール温度)は、繊維形成性低融点重合体の融点以下の
温度、好ましくは繊維形成性低融点重合体の融点より5
〜30℃低い温度とする。例えば、融点より高い温度で
加工を行うと、熱圧着装置に長繊維ウエブが固着し著し
く操業性を悪化させることとなる。熱圧着温度が繊維形
成性低融点重合体の融点に近い温度であると、熱圧着は
強固なものとなるため、長繊維ウエブの寸法安定性は優
れ、また、後の高圧液体流処理において、複合連続単糸
の分割割繊及び交絡一体化の際に、部分的熱圧着部は残
存し、非熱圧着部に存在する極細割繊フイラメント群が
三次元的に交絡する。よって、得られる複合不織布は、
縦・横の破断伸度が高く寸法安定性に優れ、機械的強力
が高いものとなる。一方、熱圧着温度が繊維形成性低融
点重合体の融点に遠い温度であると、部分的熱圧着部は
繊維形態を残した仮熱圧着の状態となり、後の高圧液体
流処理において、複合連続単糸の分割割繊及び交絡一体
化の際に、部分的熱圧着部は剥離されて繊維状となり、
複合連続単糸群や極細割繊フイラメント群は自由に運動
することができ、よりランダムに三次元的に交絡する。
よって、得られる複合不織布は、柔軟性に優れ、層間剥
離強力の高いものとなる。
The thermocompression bonding temperature (embossing roll temperature) in the thermocompression treatment is not higher than the melting point of the fiber-forming low-melting polymer, preferably 5 to the melting point of the fiber-forming low-melting polymer.
-30 ° C lower temperature. For example, if the processing is performed at a temperature higher than the melting point, the long fiber web sticks to the thermocompression bonding apparatus and the operability is remarkably deteriorated. When the thermocompression bonding temperature is a temperature close to the melting point of the fiber-forming low-melting polymer, thermocompression bonding becomes strong, so that the dimensional stability of the long fiber web is excellent, and in the subsequent high-pressure liquid flow treatment, During split splitting and entanglement integration of the composite continuous single yarn, the partial thermocompression bonding portion remains, and the ultrafine splitting filament group present in the non-thermocompression bonding portion is three-dimensionally entangled. Therefore, the obtained composite nonwoven fabric is
High elongation at break in the vertical and horizontal directions, excellent dimensional stability, and high mechanical strength. On the other hand, if the thermocompression bonding temperature is a temperature far from the melting point of the fiber-forming low-melting polymer, the partial thermocompression bonding section will be in a state of temporary thermocompression bonding in which the fiber form is left. At the time of split splitting and entanglement integration of single yarn, the partial thermocompression bonding part is peeled off and becomes fibrous,
The composite continuous single yarn group and the ultrafine split filament group can move freely and are more randomly three-dimensionally entangled.
Therefore, the obtained composite nonwoven fabric is excellent in flexibility and has high delamination strength.

【0025】長繊維ウエブの目付は100g/m2 程度
以下が好ましい。目付が100g/m2 を超えると、後
の分割割繊処理において、実質上、長繊維ウエブの全厚
みを通じて、十分に分割型二成分系複合連続単糸が割繊
されない傾向となる。即ち、長繊維ウエブの厚みの中心
部に未割繊の分割型二成分系複合連続単糸が残存する傾
向となる。しかし、このような場合であっても、本発明
の実施態様の一つであることには変わりない。長繊維ウ
エブの目付の下限については、特に限定されないが、得
られる複合不織布の地合い等を考慮すると10g/m2
程度までが好ましい。
The basis weight of the long fiber web is preferably about 100 g / m 2 or less. If the basis weight exceeds 100 g / m 2 , in the subsequent split splitting treatment, the split type two-component composite continuous single yarn tends to not be split sufficiently throughout the entire thickness of the long fiber web. That is, the split-type two-component composite continuous single yarn of the undivided fiber tends to remain at the center of the thickness of the long fiber web. However, even in such a case, it is still one of the embodiments of the present invention. Although the lower limit of the basis weight of the long fiber web is not particularly limited, it is 10 g / m 2 in consideration of the formation of the obtained composite nonwoven fabric.
Up to a degree is preferred.

【0026】本発明は、前記長繊維ウエブの少なくとも
片面に短繊維ウエブが積層されて構成繊維同士が交絡一
体化したものであるが、短繊維ウエブを積層する長繊維
ウエブとしては、分割型二成分系複合連続単糸からなる
部分的に熱圧着された長繊維ウエブであっても、予め単
糸を形成する二成分を分割割繊させて極細割繊フイラメ
ント群を少なくとも一部発現させた長繊維ウエブであっ
てもよい。
In the present invention, the short fiber web is laminated on at least one surface of the long fiber web and the constituent fibers are entangled and integrated. The long fiber web for laminating the short fiber web is a split-type web. Even in the case of a long fiber web which is partially thermocompressed and made of a component-based composite continuous single yarn, a length in which the two components forming the single yarn are split in advance and at least a part of the ultrafine split filament group is developed. It may be a fiber web.

【0027】部分的に熱圧着された長繊維ウエブを予め
単糸を形成する二成分を分割割繊させて極細割繊フイラ
メント群を少なくとも一部発現させる方法として、長繊
維ウエブを機械的に揉み加工(座屈処理)して分割割繊
する方法、長繊維ウエブに高圧液体流処理を施し衝撃を
与えて分割割繊する方法が適用される。
As a method of splitting the two components forming a single yarn in advance on a partially fibrous web that has been partially thermocompression-bonded, and mechanically kneading the long fiber web, at least partially expressing a group of ultrafine split filaments. A method of processing (buckling treatment) to split the fibers and a method of applying a high-pressure liquid flow treatment to the long fiber web to give an impact and split the fibers are applied.

【0028】機械的な揉み加工(座屈処理)にて分割割
繊する方法としては、例えば、座屈加工機すなわち一対
のロールを通じて長繊維ウエブを押し込み式クリンパー
内へ押し込み、揉み加工により分割割繊する方法、長繊
維ウエブを一対のギアロールに通して座屈させることに
より分割割繊する方法、長繊維ウエブを複数のガイド間
に通し擦過屈曲させて分割割繊する方法、長繊維ウエブ
を液体中に浸漬して液流により分割割繊する方法等が挙
げられる。
As a method of splitting by mechanical kneading (buckling), for example, a long fiber web is pushed into a push-type crimper through a buckling machine, that is, a pair of rolls, and splitting is performed by kneading. Fiber splitting, splitting by buckling the long fiber web through a pair of gear rolls, splitting the fiber by rubbing and bending the long fiber web between multiple guides, liquid splitting the long fiber web And a method of splitting the fiber by liquid flow.

【0029】高圧液体流処理を施し衝撃を与えて分割割
繊する方法とは、後の本発明の長繊維ウエブと短繊維ウ
エブとを交絡一体化させる際に用いる水流と同様で、水
を噴射孔から高圧力で噴射させて得られる水流(高圧液
体流)により長繊維ウエブを分割割繊することをいう。
The method of splitting by applying a high-pressure liquid flow treatment and giving an impact is the same as the water flow used when the long fiber web and the short fiber web of the present invention are entangled and integrated, and water is jetted. This refers to splitting and splitting the long fiber web by a water flow (high-pressure liquid flow) obtained by jetting the high-pressure liquid from the holes.

【0030】予め分割割繊処理を施すことにより、後の
短繊維ウエブとの積層一体化交絡処理において、低い高
圧液体流のエネルギーで構成繊維同士の交絡一体化を行
うことができる。よって、予め施す分割割繊処理での割
繊率が高い程、低い高圧液体流のエネルギーで構成繊維
同士の交絡一体化を行うことができる。ここでいう割繊
率とは、次の方法により求められる。すなわち、長繊維
ウエブの任意の10個所を選び、その断面を100倍に
拡大して断面写真を撮影する。1枚の断面写真からラン
ダムに30本のフイラメントを選び、下記式により割繊
率を求める。同様の操作を10枚の断面写真について行
い、得られた値の平均値をその長繊維ウエブの割繊率と
する。 割繊率(%)=(30/X)×100 上式において、Xは完全に割繊されたと仮定したときの
低融点重合体からなるフイラメント及び高融点重合体か
らなるフイラメントの全フイラメントの総数である。
By preliminarily performing the split splitting treatment, in the subsequent lamination and integration entanglement treatment with the short fiber web, entanglement and integration of the constituent fibers can be performed with low energy of the high-pressure liquid flow. Therefore, the higher the splitting rate in the split splitting process to be performed in advance, the lower the energy of the high-pressure liquid flow can be to perform the confounding integration of the constituent fibers. Here, the splitting rate is determined by the following method. That is, any ten locations of the long fiber web are selected, and the cross section is magnified 100 times and a cross-sectional photograph is taken. Thirty filaments are randomly selected from one cross-sectional photograph, and the splitting rate is determined by the following equation. The same operation is performed for ten cross-sectional photographs, and the average value of the obtained values is defined as the splitting rate of the long fiber web. Splitting rate (%) = (30 / X) × 100 In the above formula, X is the total number of filaments composed of a low-melting-point polymer and a filament composed of a high-melting-point polymer, assuming that the splitting is complete. It is.

【0031】特に、本発明においては、後の構成繊維同
士の交絡一体化処理を効率的に行えて、層間剥離強力に
優れた複合不織布を得るには、割繊率は60%以上が好
ましく、より好ましくは80%以上、さらに好ましくは
90%以上である。
In particular, in the present invention, the splitting rate is preferably 60% or more in order to efficiently perform the subsequent entanglement and integration processing of the constituent fibers and obtain a composite nonwoven fabric having excellent delamination strength. It is more preferably at least 80%, further preferably at least 90%.

【0032】本発明において、短繊維ウエブを積層する
長繊維ウエブは、後の積層一体化交絡処理での高圧液体
流エネルギ−の仕様及び複合不織布の要求性能等に応じ
て、予め割繊処理を施していない長繊維ウエブや前記種
々の方法により予め割繊処理を施した長繊維ウエブを適
宜選択すればよい。
In the present invention, the long-fiber web on which the short-fiber web is laminated is subjected to splitting in advance in accordance with the specification of the high-pressure liquid flow energy in the subsequent lamination and confounding and the required performance of the composite nonwoven fabric. A long fiber web that has not been subjected to the treatment or a long fiber web that has been subjected to the splitting treatment in advance by the above various methods may be appropriately selected.

【0033】機械的な揉み加工(座屈処理)にて分割割
繊する方法により、予め極細割繊フイラメント群を発現
させた長繊維ウエブは、極細割繊フイラメント群が非交
絡状態であるのでフイラメントの自由度が大きく、また
フイラメント間の空隙が大きいので、後の短繊維ウエブ
との積層一体化交絡処理において、極細割繊フイラメン
ト群の間に短繊維ウエブの構成繊維が制限されることな
く入り込み、絡みやすい。したがって、高圧液体流によ
る積層交絡一体化を低い液体流エネルギーで行うことが
でき、得られる複合不織布は柔軟性に優れる上、層間剥
離強力に優れたものとなる。
A long fiber web in which a group of ultrafine splitting filaments is developed in advance by a method of splitting and splitting by mechanical kneading (buckling) is used because the group of ultrafine splitting filaments is in an unentangled state. The degree of freedom of the filament is large, and the gap between the filaments is large, so that in the subsequent lamination and integration entanglement with the short fiber web, the constituent fibers of the short fiber web enter the group of ultrafine split filaments without restriction. Easy to get entangled. Therefore, lamination and entanglement integration by high-pressure liquid flow can be performed with low liquid flow energy, and the resulting composite nonwoven fabric has excellent flexibility and excellent delamination strength.

【0034】高圧液体流を施し衝撃を与えて分割割繊す
る方法により、予め極細割繊フイラメント群を発現させ
た長繊維ウエブは、分割型二成分系複合連続単糸の殆ど
が割繊されて交絡状態の極細割繊フイラメント群を発現
している。よって、後の短繊維ウエブとの積層一体化交
絡処理において、構成繊維同士の交絡一体化のみの目的
で高圧液体流処理を施せばよい。
By the method of splitting by applying a high-pressure liquid flow and giving an impact, a long fiber web in which a group of ultra-fine splitting filaments is developed in advance has almost all split-type two-component composite continuous single yarn split. An ultra-fine split filament group in a confounding state is exhibited. Therefore, in the subsequent lamination and integration entanglement with the short fiber web, the high-pressure liquid flow treatment may be performed only for the purpose of entanglement and integration of the constituent fibers.

【0035】予め割繊処理を施していない長繊維ウエブ
では、後の短繊維ウエブとの積層一体化交絡処理におい
て、分割型二成分系複合連続単糸の分割割繊する作用と
発現した極細割繊フイラメント群同士又は割繊フイラメ
ント群と短繊維又は短繊維同士とが三次元的に交絡一体
化させる作用と同時に行われる。よって予め極細割繊フ
イラメント群を発現させた長繊維ウエブを用いる方法と
比較して交絡一体化処理における高圧液体流のエネルギ
ーが高く、又、得られた複合不織布は柔軟性にやや劣る
ものの、生産工程が簡略化される。また、得られる複合
不織布は緻密に交絡一体化したフイルター性能に優れた
ものとなる。
In the case of the long fiber web which has not been subjected to the splitting treatment in advance, in the subsequent lamination and integration entanglement with the short fiber web, the action of splitting and splitting of the split type two-component composite continuous single yarn has been demonstrated. This is performed simultaneously with the action of three-dimensionally confounding and integrating the fine filament groups or the split filament group with the short fibers or short fibers. Therefore, the energy of the high-pressure liquid flow in the confounding integration process is higher than the method using a long fiber web in which a group of ultrafine splitting filaments is expressed in advance, and the obtained composite nonwoven fabric is slightly inflexible. The process is simplified. In addition, the obtained composite nonwoven fabric has excellent filter performance that is densely entangled and integrated.

【0036】次に、本発明に使用する繊維形成性重合体
からなり、潜在捲縮能を有する短繊維からなる短繊維ウ
エブの説明をする。本発明の潜在捲縮能を有する短繊維
とは、弛緩熱処理によってスパイラルクリンプを発現す
る繊維である。このような潜在捲縮能を有する短繊維と
しては、繊維の長さ方向に沿って熱収縮性の異なる繊維
形成性重合体を偏心的に配した複合繊維が挙げられる。
複合形態としては、繊維の長さ方向に沿って熱収縮性の
異なる重合体が並列型に配された並列型や、芯部分が偏
心された偏心芯鞘型等が挙げられる。捲縮発現性を考慮
すると並列型が好ましい。
Next, a short fiber web made of the fiber-forming polymer used in the present invention and made of short fibers having latent crimpability will be described. The short fiber having latent crimpability of the present invention is a fiber that develops a spiral crimp by relaxation heat treatment. Examples of such short fibers having latent crimping ability include conjugate fibers in which fiber-forming polymers having different heat shrinkages are eccentrically arranged along the length direction of the fibers.
Examples of the composite form include a side-by-side type in which polymers having different heat shrinkages are arranged in a side-by-side manner along the fiber length direction, and an eccentric core-sheath type in which a core portion is eccentric. Considering the crimp development, the parallel type is preferable.

【0037】また、糸断面においては、丸断面に限ら
ず、中空断面、扁平断面、異形断面、多葉断面等、要求
性能に応じて適宜採用すればよい。
The cross section of the yarn is not limited to a round cross section, but may be a hollow cross section, a flat cross section, an irregular cross section, a multi-leaf cross section, or the like, depending on the required performance.

【0038】並列型あるいは偏心芯鞘型二成分系複合短
繊維の横断面の具体例としては,図5〜図8に示すごと
き横断面をもつものがよい。
As a specific example of the cross section of the parallel type or the eccentric core / sheath type bicomponent conjugate short fiber, one having a cross section as shown in FIGS.

【0039】潜在捲縮能を有する短繊維を形成する熱収
縮性の異なる繊維形成性重合体は、いずれも通常の溶融
紡糸装置を用いて溶融紡出することができるものであれ
ばよい。熱収縮性の異なる繊維形成性重合体の組み合わ
せとしては、繊維断面形状が並列型二成分系複合短繊維
の場合には、2種の重合体は互いに相溶性である必要が
ある。すなわち非相溶性であると、紡糸工程あるいは延
伸工程において、該2成分間に層間剥離が生じ、操業性
を著しく損なうばかりか、潜在捲縮能をもたない短繊維
となる。
Any fiber-forming polymer having a different heat shrinkability for forming short fibers having latent crimping ability may be used as long as it can be melt-spun using an ordinary melt-spinning apparatus. As a combination of the fiber-forming polymers having different heat shrinkages, in the case of a parallel type bicomponent conjugate short fiber having a fiber cross-sectional shape, the two polymers need to be compatible with each other. That is, if they are incompatible, delamination occurs between the two components in the spinning step or the drawing step, resulting in not only impairing operability but also short fibers having no latent crimping ability.

【0040】並列型二成分系複合連続短繊維を構成する
2種の重合体の組合せとしては、相溶性であることが必
要であるので、同一重合体で異粘度の組合せ、あるいは
該重合体と該重合体の共重合物の組合せが代表的に適用
できる。
The combination of the two polymers constituting the parallel type bicomponent continuous short fibers must be compatible. Therefore, a combination of the same polymer but of different viscosities or a combination of the same polymer and the same polymer may be used. A combination of copolymers of the polymer can be typically applied.

【0041】例えば、異粘度の組合せの場合には、ポリ
オレフイン系であれば、MFR10程度のポリプロピレ
ンとMFR30程度のポリプロピレン、ポリエステル系
であれば、相対粘度1.5程度のポリエチレンテレフタ
レートと相対粘度1.3程度のポリエチレンテレフタレ
ートが代表的である。該重合体と該重合体の共重合物の
組合せの場合には、ポリオレフイン系であれば、ポリプ
ロピレンと、プロピレンとエチレンの共重合物、ポリエ
ステル系であれば、ポリエチレンテレフタレートと、エ
チレンテレフタレートとイソフタル酸との共重合物が代
表的であるが、捲縮機能を発現できるものであれば、い
かなる組合せでもよい。
For example, in the case of a combination of different viscosities, a polyolefin-based polypropylene and a polypropylene having an MFR of about MFR30 and 30, and a polyester-based polyethylene terephthalate having a relative viscosity of about 1.5 and a relative viscosity of 1. About 3 polyethylene terephthalates are typical. In the case of a combination of the polymer and a copolymer of the polymer, a polyolefin-based polypropylene and a propylene-ethylene copolymer, and a polyester-based polyethylene terephthalate, ethylene terephthalate and isophthalic acid Is typical, but any combination may be used as long as it can exhibit a crimping function.

【0042】一方、偏心芯鞘型二成分系複合短繊維の場
合には、2種の重合体は互いに相溶性であっても、非相
溶性であってもよい。すなわち,該2成分が非相溶性で
あっても、偏心はしているものの芯鞘形状であるので、
紡糸工程あるいは延伸工程において、層間剥離が生じる
等のトラブルは生じることはない。
On the other hand, in the case of the eccentric core / sheath type bicomponent conjugate short fiber, the two polymers may be compatible with each other or may be incompatible. That is, even if the two components are incompatible, they are eccentric but have a core-sheath shape,
Troubles such as delamination do not occur in the spinning step or the drawing step.

【0043】偏心芯鞘型二成分系複合連続短繊維を構成
する2種の重合体の組合せとしては、同一重合体で異粘
度の組合せ、あるいは該重合体と該重合体の共重合物の
組合せ、前述した分割型二成分系複合連続単糸で用いた
重合体が適用でき、捲縮機能を発現できるものであれ
ば、いかなる組合せでもよい。
As the combination of the two polymers constituting the eccentric core-sheath type bicomponent composite continuous short fiber, a combination of the same polymer having different viscosities or a combination of the polymer and a copolymer of the polymer is used. Any combination may be used as long as the polymer used in the above-described split type two-component composite continuous single yarn can be applied and a crimping function can be exhibited.

【0044】例えば、2種の重合体が相溶性である場合
は、前述の並列型の場合と同じ組合せのものを用いると
よい。2種の重合体が非相溶性である場合は、ポリエス
テル系とポリアミド系、ポリエステル系とポリオレフイ
ン系、ポリアミド系とポリオレフイン系等が挙げられ
る。このとき、鞘成分に低融点重合体を芯成分に高融点
重合体を位置せしめると本発明の複合不織布を熱処理加
工する際には良い。
For example, when two types of polymers are compatible, it is preferable to use the same combination as in the case of the parallel type described above. When the two types of polymers are incompatible, polyester-based and polyamide-based, polyester-based and polyolefin-based, polyamide-based and polyolefin-based, and the like can be mentioned. At this time, it is preferable to position the low melting point polymer as the sheath component and the high melting point polymer as the core component when heat treating the composite nonwoven fabric of the present invention.

【0045】本発明に使用し得る短繊維を形成する重合
体として、繊維形成性ポリオレフイン系重合体、繊維形
成性ポリアミド系重合体、繊維形成性ポリエステル系重
合体及びその他の繊維形成性重合体の例としては、前述
した分割型二成分系複合連続長繊維に適用した重合体を
用いることができる。
Examples of the polymer for forming short fibers that can be used in the present invention include fiber-forming polyolefin polymers, fiber-forming polyamide polymers, fiber-forming polyester polymers, and other fiber-forming polymers. As an example, the polymer applied to the split type bicomponent composite continuous continuous fiber described above can be used.

【0046】本発明で用いる並列型あるいは偏心芯鞘型
二成分系複合短繊維は、一般に以下のごとき方法で製造
される。すなわち、熱収縮性の異なる2種の重合体成分
を従来公知の溶融複合紡糸法で紡糸し、横吹付や環状吹
付等の従来公知の冷却装置を用いて吹付風により冷却し
た後、油剤を付与し、引取ローラーを介して未延伸糸と
して巻取機に巻き取る。引取ローラー速度は、500m
/分〜2000m/分である。巻き取った未延伸糸を複
数本引き揃え、公知の延伸機にて周速の異なるローラー
群間で延伸する。次いで、前記延伸トウを押込式捲縮付
与装置にて捲縮を付与した後、所定の繊維長に切断して
短繊維を得ることができる。なお、要求される用途によ
り、延伸トウに用いる重合体成分の融点以下の温度で熱
セットを行ってもよい。
The parallel type or eccentric core-sheath type bicomponent composite short fiber used in the present invention is generally produced by the following method. That is, two kinds of polymer components having different heat shrinkages are spun by a conventionally known melt composite spinning method, cooled by a conventionally known cooling device such as a horizontal spraying or an annular spraying by a blowing air, and then an oil agent is applied. Then, it is wound on a winder as an undrawn yarn via a take-up roller. Take-up roller speed is 500m
/ Min to 2000 m / min. A plurality of wound undrawn yarns are drawn and aligned, and drawn between a group of rollers having different peripheral speeds by a known drawing machine. Next, the drawn tow is crimped by a press-type crimping device, and then cut into a predetermined fiber length to obtain short fibers. The heat setting may be performed at a temperature equal to or lower than the melting point of the polymer component used for the stretched tow, depending on the required use.

【0047】上記の方法で得られた並列型あるいは偏心
芯鞘型二成分系複合短繊維は、熱処理することにより、
その繊維が有する潜在捲縮機能を顕在化し嵩高性、柔軟
性を発揮するものとなる。並列型あるいは偏心芯鞘型二
成分系複合短繊維を形成する重合体のうち低い融点を有
する重合体より低い温度、好ましくはその融点より10
℃以上低い温度で熱処理することが好ましい。このと
き、並列型あるいは偏心芯鞘型二成分系複合短繊維を形
成する重合体のうち低い融点を有する重合体の融点以上
の温度で熱処理を行うと、熱処理工程での操業性を著し
く損なうばかりか、得られる複合不織布は嵩高性、柔軟
性に極端に劣ることとなる。
The parallel type or eccentric core-sheath type bicomponent conjugate short fiber obtained by the above method is subjected to heat treatment,
The latent crimping function of the fiber is manifested to exhibit bulkiness and flexibility. Among the polymers forming the side-by-side or eccentric core-sheath type bicomponent conjugate short fibers, the temperature is lower than that of the polymer having a low melting point, preferably 10 degrees below the melting point.
The heat treatment is preferably performed at a temperature lower than or equal to ° C. At this time, if the heat treatment is performed at a temperature equal to or higher than the melting point of the polymer having a low melting point among the polymers forming the side-by-side or eccentric core-sheath type bicomponent conjugate short fibers, the operability in the heat treatment step is significantly impaired. Or, the obtained composite nonwoven fabric is extremely poor in bulkiness and flexibility.

【0048】繊維の有する潜在捲縮機能を顕在化するた
めの熱処理は、長繊維ウエブと複合化する前の短繊維ウ
エブの段階であっても、長繊維ウエブを複合一体化した
後でもどちらでもよい。ただし、本発明における複合不
織布は、潜在捲縮機能を有するものであって未だ十分な
捲縮の顕在化が行われていない短繊維を構成繊維とする
複合不織布も包含されることないうまでもない。
The heat treatment for realizing the latent crimping function of the fiber may be carried out at the stage of the short fiber web before compounding with the long fiber web, or after the compounding and integration of the long fiber web. Good. However, it goes without saying that the composite nonwoven fabric of the present invention has a latent crimping function, and also includes a composite nonwoven fabric having short fibers as constituent fibers that have not yet sufficiently manifested the crimp. .

【0049】用いる熱処理機としては、熱処理時に張力
がかからないシュリンクドライヤー(寿工業株式会社
製)等の機構を持つものが好ましいが、本発明の目的を
達するものあれば特に限定しない。
The heat treatment machine to be used is preferably a machine having a mechanism such as a shrink dryer (manufactured by Kotobuki Kogyo Co., Ltd.) that does not apply tension during heat treatment, but is not particularly limited as long as the object of the present invention is achieved.

【0050】本発明で用いる短繊維ウエブには、例え
ば、吸水性の付与あるいは高光沢性の付与等要求性能に
応じてコットン、ウ−ル、リネン、シルク等の天然繊維
及び/又はレ−ヨン等の再生短繊維からなる短繊維を、
30重量%未満の範囲で混綿してもよい。
The short fiber web used in the present invention may be made of natural fibers such as cotton, wool, linen, silk and / or rayon according to the required properties such as imparting water absorption or imparting high gloss. Short fibers composed of recycled short fibers such as
Cotton may be mixed in a range of less than 30% by weight.

【0051】短繊維ウエブの目付は100g/m2 程度
以下が好ましい。目付が100g/m2 を超えると、長
繊維ウエブと短繊維ウエブとの交絡処理において大きな
高圧液体流エネルギ−を要する。また、得られる複合不
織布の用途が限定されることとなる。目付の下限につい
ては特に限定されないが10g/m2 程度であればよ
い。
The basis weight of the short fiber web is preferably about 100 g / m 2 or less. If the basis weight exceeds 100 g / m 2 , a large high-pressure liquid flow energy is required in the entanglement treatment of the long fiber web and the short fiber web. Further, the use of the obtained composite nonwoven fabric is limited. The lower limit of the basis weight is not particularly limited, but may be about 10 g / m 2 .

【0052】短繊維ウエブは、カード法やエアレイ法等
を用いて所定の目付のウエブを作製することができる。
カード法ではカ−ド機を用いて、構成繊維の配列度合を
複合不織布の用途等に合わせて種々選択することができ
る。例えば、短繊維ウエブの構成繊維の配列パターンと
しては、構成繊維が一方向に配列したパラレルウエブ、
パラレルウエブがクロスレイドされたウエブ、構成繊維
がランダムに配列したランダムウエブあるいは両者の中
程度に配列したセミランダムウエブ等が挙げられる。
As the short fiber web, a web having a predetermined basis weight can be produced by using a card method, an air lay method or the like.
In the card method, a carding machine can be used to variously select the degree of arrangement of the constituent fibers according to the use of the composite nonwoven fabric. For example, as an arrangement pattern of the constituent fibers of the short fiber web, a parallel web in which the constituent fibers are arranged in one direction,
Examples of the web include a web in which parallel webs are cross-laid, a random web in which constituent fibers are randomly arranged, and a semi-random web in which both are moderately arranged.

【0053】本発明は、前記長繊維ウエブ(分割型二成
分系複合連続単糸からなる部分的に熱圧着された長繊維
ウエブ又は予め該単糸を形成する二成分を分割割繊させ
て極細割繊フイラメント群を少なくとも一部発現させた
長繊維ウエブ)の少なくとも片面に短繊維ウエブを積層
した積層体に高圧液体流処理を施し、長繊維ウエブの構
成繊維同士及び長繊維ウエブと短繊維ウエブとの構成繊
維同士及び短繊維ウエブの構成繊維同士を三次元的に交
絡一体化させた複合不織布である。ここで長繊維ウエブ
の構成繊維とは、分割型二成分系複合連続単糸及び該複
合連続単糸より発現した極細割繊フイラメント群をい
う。
According to the present invention, the long fiber web (partially thermocompressed long fiber web composed of a split type two-component composite continuous single yarn or a two-component forming the single yarn in advance is divided and split into ultrafine fibers. A high-pressure liquid flow treatment is applied to a laminate obtained by laminating a short fiber web on at least one surface of a long fiber web in which at least a part of a split filament group is expressed, and the constituent fibers of the long fiber web and the long fiber web and the short fiber web are processed. Is a composite nonwoven fabric in which the constituent fibers of the above and the constituent fibers of the short fiber web are three-dimensionally entangled and integrated. Here, the constituent fibers of the long fiber web refer to a split type two-component composite continuous single yarn and a group of ultrafine split filaments developed from the composite continuous single yarn.

【0054】この積層体は、長繊維ウエブの少なくとも
片面に短繊維ウエブが積層されたものであり、長繊維ウ
エブの両面に短繊維ウエブを積層したものであっても、
短繊維ウエブの両面に長繊維ウエブを積層したものであ
ってもよく、複合不織布を用いる用途、性能に合わせて
適宜選択すればよい。
This laminated body is obtained by laminating a short fiber web on at least one surface of a long fiber web, and even when laminating a short fiber web on both surfaces of a long fiber web,
A long fiber web may be laminated on both sides of a short fiber web, and may be appropriately selected in accordance with the use and performance of the composite nonwoven fabric.

【0055】次に、高圧液体流処理方法を詳述する。高
圧液体流装置としては、例えば、孔径が0.05〜1.
5mm、特に0.1〜0.4mmの噴射孔を孔間隔0.
05〜5mmで一列あるいは複数列に多数配列した装置
を用いる。噴射孔から高圧力で噴射させて得られる水流
すなわち高圧液体流を噴射し、多孔性支持部材上に載置
した前記積層体に衝突させる。未分割の分割型二成分系
複合連続単糸は、高圧液体流による衝撃によって、極細
割繊フイラメントを発現し、分割により発現した極細割
繊フイラメント群は、極細割繊フイラメント群同士又は
極細割繊フイラメント群と短繊維又は短繊維同士が三次
元的に交絡一体化する。
Next, the high-pressure liquid flow processing method will be described in detail. As the high-pressure liquid flow device, for example, a hole diameter of 0.05 to 1.
Injection holes of 5 mm, especially 0.1 to 0.4 mm, having a hole interval of 0.
A large number of devices arranged in a single row or a plurality of rows with a size of 05 to 5 mm are used. A water stream, ie, a high-pressure liquid stream, obtained by jetting at a high pressure from the jet holes is jetted, and collides with the laminate placed on the porous support member. The undivided split-type bicomponent composite continuous yarn develops an ultrafine split filament by the impact of the high-pressure liquid flow, and the ultrafine split filaments group generated by the splitting is an ultrafine split filament group or ultrafine split filaments. The filament group and the short fibers or short fibers are three-dimensionally entangled and integrated.

【0056】噴射孔の配列は、前記積層体の進行方向と
直行する方向に列状に配列する。高圧液体流としては、
常温あるいは温水を用いることができる。噴射孔と前記
積層体との間の距離は、10〜150mmとするのが良
い。この距離が10mm未満であると、この処理により
得られる複合不織布の地合が乱れ、一方、この距離が1
50mmを超えると液体流が前記積層体に衝突したとき
の衝撃力が低下して分割割繊及び交絡一体化が十分に施
されない傾向にある。
The arrangement of the injection holes is arranged in a row in a direction perpendicular to the traveling direction of the laminate. As a high pressure liquid flow,
Room temperature or hot water can be used. The distance between the injection hole and the laminate is preferably 10 to 150 mm. If this distance is less than 10 mm, the formation of the composite nonwoven fabric obtained by this treatment is disturbed, while the distance is 1 mm.
If it exceeds 50 mm, the impact force when the liquid stream collides with the laminate tends to be low, so that split splitting and entanglement integration tend not to be sufficiently performed.

【0057】この高圧液体流の処理圧力は、製造方法及
び不織布の要求性能によって制御されるが、一般的に
は、20〜200kg/cm2 Gの高圧液体流を噴出す
るのが良い。なお、処理するウエブの目付等にも左右さ
れるが、前記処理圧力の範囲内において、処理圧力が低
いと嵩高で柔軟性に優れた複合不織布を得ることがで
き、処理圧力が高いと構成繊維同士の交絡が緻密で層間
剥離のないフイルター性能に優れた複合不織布を得るこ
とができる。高圧液体流の圧力が20kg/cm2G未
満であると、分割割繊及び交絡一体化が十分に施され
ず、得られる複合不織布は層間剥離強力に劣るものとな
り、目的の複合不織布を得ることができない。逆に、高
圧液体流の圧力が200kg/cm2 Gを超えると水圧
による打撃により、ひどい場合には、構成繊維が切断さ
れて得られる不織布は表面に毛羽を有するものとなる傾
向にあり好ましくない。
The processing pressure of the high-pressure liquid flow is controlled by the production method and the required performance of the nonwoven fabric, but generally, a high-pressure liquid flow of 20 to 200 kg / cm 2 G is preferably ejected. In addition, depending on the basis weight of the web to be processed, etc., within the range of the above-mentioned processing pressure, if the processing pressure is low, a composite nonwoven fabric which is bulky and excellent in flexibility can be obtained. It is possible to obtain a composite nonwoven fabric which is densely entangled and has excellent filter performance without delamination. If the pressure of the high-pressure liquid flow is less than 20 kg / cm 2 G, split splitting and entanglement unification are not sufficiently performed, and the obtained composite nonwoven fabric is inferior in delamination strength. Can not. Conversely, if the pressure of the high-pressure liquid stream exceeds 200 kg / cm 2 G, the non-woven fabric obtained by cutting the constituent fibers tends to have fluff on the surface in a severe case due to impact by water pressure, which is not preferable. .

【0058】高圧液体流処理を施すに際して用いる前記
積層体を担持する多孔性支持部材としては、例えば、2
0〜200メツシユの金網製あるいは合成樹脂製等のメ
ツシユスクリ−ンや有孔板など、高圧液体流が前記積層
体を貫通するものであれば特に限定されない。
As the porous support member for supporting the laminate used for performing the high-pressure liquid flow treatment, for example, 2
There is no particular limitation as long as the high-pressure liquid flow penetrates the laminate, such as a mesh screen or a perforated plate made of a wire mesh or a synthetic resin of 0 to 200 mesh.

【0059】なお、積層体の片面より高圧液体流処理を
施した後、引き続き交絡の施された積層体を反転して高
圧液体流処理を施すことにより、表裏共に緻密に交絡一
体化した複合不織布を得ることができるので、複合不織
布の用途に応じて、また、積層数の多いもの及び積層体
の目付の大きいもの等に適用すればよい。
After the high-pressure liquid flow treatment is performed from one side of the laminate, the entangled laminate is subsequently inverted and subjected to the high-pressure liquid flow treatment, whereby the composite nonwoven fabric which is densely entangled on both sides is integrated. Can be obtained depending on the use of the composite nonwoven fabric, and may be applied to those having a large number of laminations and those having a large basis weight of the laminate.

【0060】高圧液体流処理を施した後、処理後の前記
積層体から過剰水分を除去する。この過剰水分を除去す
るに際しては、公知の方法を採用することができる。例
えば、マングルロール等の絞り装置を用いて過剰水分を
ある程度機械的に除去し、引き続きサクシヨンバンド方
式の熱風循環式乾燥機等の乾燥装置を用いて残余の水分
を除去する。
After the high-pressure liquid flow treatment, excess moisture is removed from the laminated body after the treatment. When removing the excess moisture, a known method can be adopted. For example, the excess water is mechanically removed to some extent using a squeezing device such as a mangle roll, and the remaining water is subsequently removed using a drying device such as a suction band type hot air circulation dryer.

【0061】以上、詳述したように本発明の複合不織布
は、二成分系複合連続単糸よりなる長繊維ウエブと短繊
維ウエブとを積層し、高圧液体流処理装置を用い両ウエ
ブを緻密に交絡一体化した複合不織布である。二成分系
複合連続単糸は、分割して極細割繊フイラメント群を発
現するので、長繊維ウエブは、くさび状や薄片等の異形
断面や繊度の極めて小さい繊維を有することとなる。こ
の極細割繊フイラメント群の存在により、高圧液体流処
理での交絡性に優れ、その交絡は解舒しにくく安定した
複合不織布となり、また短繊維ウエブとの層間剥離強力
に優れたものとなる。
As described above in detail, the composite nonwoven fabric of the present invention is obtained by laminating a long fiber web and a short fiber web made of a two-component composite continuous single yarn, and using a high-pressure liquid flow treatment device to densely combine the two webs. It is a composite nonwoven fabric that is entangled and integrated. Since the two-component composite continuous single yarn is divided to exhibit a group of ultrafine splitting filaments, the long fiber web has an irregular cross-section such as a wedge or a flake, or a fiber having a very small fineness. Due to the presence of this group of ultrafine splitting filaments, the entanglement in high-pressure liquid flow treatment is excellent, the entanglement becomes a stable composite nonwoven fabric that is difficult to unwind, and the delamination strength with the short fiber web is excellent.

【0062】また、短繊維として潜在捲縮能を有する繊
維を用いており、この繊維は、捲縮顕在化の際に、スパ
イラル状の捲縮を発現するため嵩高性を発揮する。よっ
て潜在捲縮が顕在化した短繊維ウエブ側は、嵩高性に優
れたものとなり、厚み方向に大きな空隙を有するものと
なる。
In addition, a fiber having latent crimping ability is used as the short fiber, and this fiber exhibits a bulky property because it develops a spiral crimp when the crimp becomes apparent. Therefore, the short fiber web side on which the latent crimp has become apparent has excellent bulkiness and has a large void in the thickness direction.

【0063】本発明の複合不織布において、前記割繊率
が高いほど、複合不織布の柔軟性及び交絡性に優れ、層
間剥離強力に優れる傾向にある。複合不織布における割
繊率は、複合不織布を用いる用途に応じて適宜選択すれ
ばよい。例えば、工業用ワイパー等として用いるのであ
れば割繊率30%程度、家庭用ワイパーとして眼鏡や鏡
拭き用として用いるのであれば割繊率50%程度、濾過
布として用いるのであれば割繊率70%程度以上等が挙
げられる。
In the composite nonwoven fabric of the present invention, the higher the splitting ratio, the better the flexibility and the entanglement of the composite nonwoven fabric and the more excellent the delamination strength. The splitting rate in the composite nonwoven fabric may be appropriately selected according to the use of the composite nonwoven fabric. For example, when used as an industrial wiper or the like, the splitting rate is about 30%. When used as a household wiper for wiping glasses or mirrors, the splitting rate is about 50%. When used as a filter cloth, the splitting rate is about 70%. % Or more.

【0064】本発明の複合不織布は、医療・衛生材用、
衣料用、生活関連資材用、産業資材用等様々な分野にお
いて好適なものである。例えば、その一例として、ワイ
パー等の拭き取り用として使用するのに好適である。す
なわち、複合不織布の長繊維ウエブ面で拭き取り、汚れ
等は極細割繊フイラメント群の異形断面におけるシヤー
プなエツジ部分で拭き取り、水分等は毛細管現象により
複合不織布内に内包され、また短繊維ウエブ側の大きな
空隙内に水分や拭き取った塵等を多く内包できるものと
なる。
The composite nonwoven fabric of the present invention is used for medical and hygiene materials,
It is suitable for various fields such as clothing, living related materials, industrial materials and the like. For example, as an example, it is suitable to be used for wiping with a wiper or the like. That is, the composite nonwoven fabric is wiped off on the long fiber web surface, dirt and the like are wiped off at the sharp edge portion in the irregular cross section of the ultrafine split filament group, moisture is included in the composite nonwoven fabric by capillary action, and the short fiber web side A large void can contain a lot of moisture, wiped dust, and the like.

【0065】また、高圧液体流処理において、液体流の
圧力を適宜選択し、構成繊維同士が強固に緻密に絡み合
った本発明の複合不織布は、フイルター性能に優れるた
め、例えば、食品工業における濾過布、ケイ藻土濾過の
フイルター、井戸水等から除粒子、除鉄の際の濾過布等
の用途に好適に用いられる。すなわち、まず複合不織布
において繊維間空隙の大きい短繊維ウエブ側にて粗粒子
や粗塵を取り除き、次に短繊維ウエブ側にて濾過しきれ
なかった微粒子や微塵を繊維間空隙の小さい長繊維ウエ
ブ側にて取り除くことができる。よって、本発明の複合
不織布は一枚の不織布で、濾過対象物の大きさに応じた
分別収集が可能となることから、優れたフイルター性能
を長期に亘って維持でき、フイルター寿命の長い濾過布
として用いることができる。
In the high-pressure liquid flow treatment, the pressure of the liquid flow is appropriately selected, and the composite nonwoven fabric of the present invention in which the constituent fibers are tightly and tightly entangled has excellent filter performance. It is suitable for use as a filter for diatomaceous earth filtration, for removing particles from well water, and for filtering cloth for iron removal. That is, first, coarse particles and coarse dust are removed on the short fiber web side having a large inter-fiber void in the composite nonwoven fabric, and then fine particles and fine dust that cannot be completely filtered are removed on the short fiber web side by a long fiber web having a small inter-fiber void. Can be removed on the side. Therefore, the composite nonwoven fabric of the present invention is a single nonwoven fabric, and can be separately collected according to the size of the object to be filtered, so that excellent filter performance can be maintained over a long period of time, and a filter cloth having a long filter life can be maintained. Can be used as

【0066】[0066]

【実施例】 次に、実施例に基づき本発明をより具体的
に説明するが、本発明は、これらの実施例によって何ら
限定されるものではない。実施例において、各特性値の
測定を次の方法によって実施した。
EXAMPLES Next, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In the examples, the measurement of each characteristic value was performed by the following method.

【0067】(1)重合体の融点(℃):パ−キンエル
マ−社製DSC−2型の示差走査型熱量計を用い、昇温
速度20℃/分で測定した融解吸熱ピ−クの最大値を与
える温度を融点とした。
(1) Melting point of polymer (° C.): The maximum of the melting endothermic peak measured at a heating rate of 20 ° C./min using a DSC-2 type differential scanning calorimeter manufactured by PerkinElmer. The temperature giving the value was taken as the melting point.

【0068】(2)ポリエステルの相対粘度(イ):フ
エノ−ルとテトラクロロエタンの等重量混合液を溶媒と
し、この溶媒100ccに試料0.5gを溶解し温度2
0℃の条件で常法により求めた。
(2) Relative viscosity of polyester (a): A mixture of phenol and tetrachloroethane in an equal weight was used as a solvent, and 0.5 g of a sample was dissolved in 100 cc of the solvent.
It was determined by a conventional method at 0 ° C.

【0069】(3)長繊維ウエブ構成繊維の分割割繊後
の繊度(デニール):電子顕微鏡写真の形状寸法から断
面積を算出して、密度補正をして求めた。
(3) Fineness (denier) after splitting the fibers constituting the long fiber web: The cross-sectional area was calculated from the shape and dimensions of the electron micrograph, and the density was corrected.

【0070】(4)不織布の引張強力(kg/5cm
幅):JIS L−1096に記載のストリップ法に準
じ、幅5cm,長さ10cmの試験片から最大引張強力
を測定した。
(4) Tensile strength of nonwoven fabric (kg / 5cm
Width): The maximum tensile strength was measured from a test piece having a width of 5 cm and a length of 10 cm according to the strip method described in JIS L-1096.

【0071】(5)不織布の剛軟度(g):幅5cm,
長さ10cmの試験片を横方向の曲げて円筒状物とし、
各々その端部を接合したものを剛軟度測定試料とした。
試料の横方向について、定速伸張型引張試験機を用いて
圧縮速度5cm/分で圧縮し、得られた最大荷重値の平
均値を不織布の剛軟度とした。
(5) Softness (g) of nonwoven fabric: width 5 cm,
A test piece with a length of 10 cm is bent laterally into a cylindrical object,
Each of the joined ends was used as a bending resistance measurement sample.
The sample was compressed in the transverse direction at a compression rate of 5 cm / min using a constant-speed extension-type tensile tester, and the average of the obtained maximum load values was defined as the softness of the nonwoven fabric.

【0072】(6)不織布の層間剥離強力(g/5cm
幅):幅5cm,長さ10cmの試験片を複合不織布の
縦方向について定速伸張型引張試験機を用いて、長繊維
ウエブ層と短繊維ウエブ層の端部を同試験機のチャック
に各々挟持させ引張速度10cm/分で剥離した時の荷
重値の平均値を不織布の層間剥離強力とした。
(6) Delamination strength of nonwoven fabric (g / 5 cm)
Width): A test piece having a width of 5 cm and a length of 10 cm was placed in the longitudinal direction of the composite nonwoven fabric using a constant-speed stretching type tensile testing machine, and the ends of the long fiber web layer and the short fiber web layer were respectively attached to the chucks of the testing machine. The average value of the load values when sandwiched and peeled at a pulling rate of 10 cm / min was defined as the delamination strength of the nonwoven fabric.

【0073】(7)不織布の吸水性(mm/10分):
JIS L−1096に記載のバイレック法に準じて測
定した。
(7) Water absorption (mm / 10 minutes) of nonwoven fabric:
The measurement was carried out according to the birec method described in JIS L-1096.

【0074】実施例1 長繊維ウエブを構成する繊維の繊維形成性低融点重合体
として、融点が128℃、ASTM−D−1238
(E)の方法で測定して得られるメルトインデックス値
が25g/10分のポリエチレン重合体を使用し、繊維
形成性高融点重合体として、融点が258℃、相対粘度
が1.38のポリエチレンテレフタレート重合体を使用
した。そして、糸断面が図1に示す複合形態でポリエチ
レン重合体が芯部を形成し全分割数が7個になる複合紡
糸口金を用い、ポリエチレン重合体とポリエチレンテレ
フタレート重合体の複合比を重量比で1:1とし、単孔
吐出量=1.2g/分で押し出した。紡出糸条を冷却し
た後、エアーサッカーにより4500m/分の速度で引
き取り、公知の開繊器にて開繊させ、移動する捕集面上
に捕集・堆積させて長繊維ウエブとし、該長繊維ウエブ
を熱エンボスローラーにてポイント柄、加工温度120
℃、圧接面積率10%の条件下で部分熱圧着を行ない、
目付けが30g/m2 の長繊維ウエブを得た。該繊維集
積体から採取した分割型二成分系複合連続単糸の繊度は
2.4デニ−ルであった。
Example 1 As a fiber-forming low-melting polymer of fibers constituting a long-fiber web, the melting point was 128 ° C. and ASTM-D-1238.
A polyethylene polymer having a melt index value of 25 g / 10 minutes obtained by the method (E) is used, and a polyethylene-terephthalate having a melting point of 258 ° C. and a relative viscosity of 1.38 as a fiber-forming high-melting polymer. A polymer was used. Then, using a composite spinneret in which the polyethylene cross-section has a total length of 7 with the polyethylene polymer forming the core in the composite form shown in FIG. 1, the composite ratio of the polyethylene polymer and the polyethylene terephthalate polymer is determined by weight. It was extruded at a discharge ratio of single hole = 1.2 g / min. After cooling the spun yarn, the yarn is taken out by air soccer at a speed of 4500 m / min, spread by a known spreader, collected and deposited on a moving collecting surface to form a long fiber web, Point pattern of long fiber web with hot embossing roller, processing temperature 120
Perform partial thermocompression bonding under the condition of ℃, pressure contact area ratio 10%,
A long fiber web having a basis weight of 30 g / m 2 was obtained. The fineness of the split type two-component composite continuous single yarn collected from the fiber assembly was 2.4 denier.

【0075】得られた該長繊維ウエブを座屈加工機(マ
イクレックス社製、マイクロクレーパー)を用いて、ポ
リエチレン重合体とポリエチレンテレフタレート重合体
との分割割繊処理を施した。割繊処理後の長繊維ウエブ
を顕微鏡にて観察したところポリエチレン重合体からな
る極細割繊フイラメント及びポリエチレンテレフタレー
ト重合体からなる極細割繊フイラメントはそれぞれ非交
絡状態であり、割繊率は92%であった。又、ポリエチ
レン重合体からなる極細割繊フイラメントの繊度は1.
2デニールでありポリエチレンテレフタレート重合体か
らなる極細割繊フイラメントの繊度は0.2デニールで
あった。
The obtained long fiber web was subjected to a splitting treatment of a polyethylene polymer and a polyethylene terephthalate polymer using a buckling machine (Microcreper, manufactured by Microx Corporation). When the long fiber web after the splitting treatment was observed with a microscope, the ultrafine splitting filament made of a polyethylene polymer and the ultrafine splitting filament made of a polyethylene terephthalate polymer were each in an unentangled state, and the splitting rate was 92%. there were. The fineness of the ultrafine split filament made of polyethylene polymer is 1.
The fineness of the ultrafine splitting filament which was 2 denier and was made of a polyethylene terephthalate polymer was 0.2 denier.

【0076】一方、短繊維ウエブとして、糸断面が図5
に示す複合形態でポリプロピレン重合体とポリプロピレ
ン共重合体との並列型二成分系複合短繊維を準備した。
即ち、融点162℃、ASTM D1238(L)で測
定したメルトフローレート値30g/10分のポリプロ
ピレン重合体と、融点138℃、ASTM D1238
(L)で測定したメルトフローレート値10g/10分
のプロピレン96重量%とエチレン4重量%とがランダ
ム共重合されたポリプロピレン共重合体とを用いて、図
5に示す如く並列型二成分系複合型紡糸口金より複合比
を重量比で1:1とし、単孔吐出量=0.56g/分で
押し出した。紡出糸条を冷却し仕上げ油剤を付与した
後、引き取り速度が1000m/分の引き取りロールを
介して、未延伸糸として捲き取った。次いで、得られた
未延伸糸を複数本引き揃えてトウとなし、公知の延伸機
を用いて延伸倍率が2.3で延伸を行った後、押し込み
式捲縮付与装置にて捲縮を付与し51mmの繊維長に切
断して2.4デニールの短繊維を得た。該短繊維を用い
ランダムカード機にて目付けが20g/m2 の短繊維ウ
エブを準備した。
On the other hand, as a short fiber web, the cross section of the yarn is shown in FIG.
A bicomponent short bicomponent fiber composed of a polypropylene polymer and a polypropylene copolymer was prepared in the composite form shown in (1).
That is, a polypropylene polymer having a melting point of 162 ° C. and a melt flow rate value of 30 g / 10 minutes measured by ASTM D1238 (L), and a melting point of 138 ° C. and ASTM D1238.
Using a polypropylene copolymer obtained by randomly copolymerizing 96% by weight of propylene and 4% by weight of ethylene with a melt flow rate value of 10 g / 10 measured in (L), as shown in FIG. From the composite spinneret, the composite ratio was extruded at a weight ratio of 1: 1 with a single hole discharge rate of 0.56 g / min. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn via a take-up roll having a take-up speed of 1000 m / min. Next, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow. After drawing at a draw ratio of 2.3 using a known drawing machine, crimping is performed by a press-in type crimping device. Then, the fiber was cut to a fiber length of 51 mm to obtain short fibers of 2.4 denier. A short fiber web having a basis weight of 20 g / m 2 was prepared using a random card machine using the short fibers.

【0077】次いで、予め分割割繊処理を施した長繊維
ウエブの片面に短繊維ウエブを積層し、50メッシュの
金網上に積載して高圧液体流処理を施した。高圧液体流
処理は、孔径0.12の噴射孔が孔面積0.62mmで
配置された高圧液体流処理装置を用い、前記積層体の上
方50mmの位置から液体流圧力を80kg/cm2
の条件下で短繊維ウエブ側より処理を施した。得られた
複合物より過剰水分の除去と乾燥処理を施して目付けが
50g/m2 の複合不織布を得た。
Next, a short fiber web was laminated on one surface of the long fiber web which had been subjected to the split splitting processing in advance, and was loaded on a 50-mesh wire net and subjected to a high-pressure liquid flow treatment. The high-pressure liquid flow treatment uses a high-pressure liquid flow treatment apparatus in which injection holes having a hole diameter of 0.12 are arranged with a hole area of 0.62 mm, and a liquid flow pressure of 80 kg / cm 2 G from a position 50 mm above the laminate.
Under the conditions described above, from the short fiber web side. The obtained composite was subjected to removal of excess moisture and drying treatment to obtain a composite nonwoven fabric having a basis weight of 50 g / m 2 .

【0078】得られた複合不織布をシュリンクドライヤ
−を用いて、処理温度115℃の条件下で熱処理を行っ
て短繊維ウエブの構成繊維の捲縮を発現させ、本発明の
複合不織布を得た。
The obtained composite nonwoven fabric was subjected to a heat treatment at a treatment temperature of 115 ° C. using a shrink dryer to express the crimps of the constituent fibers of the short fiber web, thereby obtaining the composite nonwoven fabric of the present invention.

【0079】実施例2 実施例1において、短繊維ウエブとして、実施例1と同
一のポリプロピレン重合体とポリプロピレン共重合体と
の並列型二成分系複合短繊維80重量%と、平均単繊維
繊度1.5デニール、平均繊維長25mmのコットン繊
維20重量%とを混綿し、ランダムカード機にて目付け
が20g/m2 の短繊維ウエブを用いたこと以外は、実
施例1と同様にして、目付けが50g/m2 の複合不織
布を得た。
Example 2 In Example 1, 80% by weight of a parallel type bicomponent conjugate short fiber of the same polypropylene polymer and polypropylene copolymer as in Example 1 was used as the short fiber web, and the average single fiber fineness was 1%. 0.5 denier, 20% by weight of a cotton fiber having an average fiber length of 25 mm was mixed, and the basis weight was adjusted in the same manner as in Example 1 except that a short fiber web having a basis weight of 20 g / m 2 was used with a random card machine. Of 50 g / m 2 was obtained.

【0080】実施例3 短繊維ウエブとして、糸断面が図7に示す複合形態でポ
リプロピレン重合体とポリプロピレン共重合体との偏心
芯鞘型二成分系複合短繊維を準備した。
Example 3 As a short fiber web, an eccentric core-sheath type bicomponent composite short fiber of a polypropylene polymer and a polypropylene copolymer was prepared in a composite form having a yarn cross section shown in FIG.

【0081】即ち、実施例1と同一のポリプロピレン重
合体とポリプロピレン共重合体とを用いて、図7に示す
如くポリプロピレン重合体を芯部にポリプロピレン共重
合体を鞘部に配置せしめるような偏心芯鞘型二成分系複
合型紡糸口金より複合比を重量比で1:1とし、単孔吐
出量=0.61g/分で押し出した。紡出糸条を冷却
し、仕上げ油剤を付与した後、引き取り速度が1000
m/分の引き取りロールを介して、未延伸糸として捲き
取った。次いで、得られた未延伸糸を複数本引き揃えて
トウとなし、公知の延伸機を用いて延伸倍率が2.5で
延伸を行った後、押し込み式捲縮付与装置にて捲縮を付
与し51mmの繊維長に切断して2.4デニールの短繊
維を得た。該短繊維を用いランダムカード機にて目付け
が20g/m2 の短繊維ウエブを準備した。
That is, using the same polypropylene polymer and polypropylene copolymer as in Example 1, an eccentric core such that the polypropylene polymer is disposed in the core and the polypropylene copolymer is disposed in the sheath as shown in FIG. The mixture was extruded from the sheath-type two-component composite spinneret at a composite ratio of 1: 1 by weight and a single hole discharge rate of 0.61 g / min. After cooling the spun yarn and applying the finishing oil, the take-up speed is 1000
It was wound up as an undrawn yarn via a take-up roll of m / min. Next, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow, and after drawing at a draw ratio of 2.5 using a known drawing machine, crimping is performed by a press-in type crimping device. Then, the fiber was cut to a fiber length of 51 mm to obtain short fibers of 2.4 denier. A short fiber web having a basis weight of 20 g / m 2 was prepared using a random card machine using the short fibers.

【0082】次いで、部分的に割繊した実施例1と同様
の長繊維ウエブの片面に短繊維ウエブを積層し、実施例
1と同一条件下で高圧液体流処理を施し、目付けが50
g/m2 の複合不織布を得た。得られた複合不織布に実
施例1と同一条件下で熱処理を施し、目付けが50g/
2 の複合不織布を得た。
Next, a short fiber web was laminated on one side of the long fiber web similar to that in Example 1 partially split, and subjected to a high-pressure liquid flow treatment under the same conditions as in Example 1 to give a basis weight of 50.
g / m 2 was obtained. The obtained composite nonwoven fabric was subjected to a heat treatment under the same conditions as in Example 1, and the basis weight was 50 g /
to obtain a composite nonwoven m 2.

【0083】実施例4 長繊維ウエブとして、実施例1と同一のポリエチレン重
合体とポリエチレンテレフタレート重合体を用い、糸断
面が図2に示す如き複合形態で全分割数が12個になる
複合紡糸口金を用い、ポリエチレン重合体とポリエチレ
ンテレフタレート重合体の複合比を重量比で1:1と
し、単孔吐出量=1.12g/分で押し出した。紡出糸
条を冷却した後、エアーサッカーにより4200m/分
の速度で引き取り、公知の開繊器にて開繊させ、移動す
る捕集面上に捕集・堆積させて長繊維ウエブとし、該長
繊維ウエブを熱エンボスローラーにてポイント柄、加工
温度120℃、圧接面積率10%の条件下で部分熱圧着
を行ない、目付けが30g/m2 の長繊維ウエブを得
た。該繊維集積体から採取した分割型二成分系複合連続
単糸の繊度は約2.4デニールであった。
Example 4 As the long fiber web, the same polyethylene polymer and polyethylene terephthalate polymer as in Example 1 were used, and the yarn cross section was as shown in FIG. And the composite ratio of the polyethylene polymer and the polyethylene terephthalate polymer was set to 1: 1 by weight and extruded at a single hole discharge rate of 1.12 g / min. After cooling the spun yarn, the yarn is taken out by air soccer at a speed of 4200 m / min, spread by a known spreader, collected and deposited on a moving collecting surface to form a long fiber web, The long fiber web was subjected to partial thermocompression bonding under the conditions of a point pattern, a processing temperature of 120 ° C., and a press contact area ratio of 10% using a hot emboss roller to obtain a long fiber web having a basis weight of 30 g / m 2 . The fineness of the split type two-component composite continuous single yarn collected from the fiber assembly was about 2.4 denier.

【0084】次いで、該長繊維ウエブを座屈加工機(マ
イクレックス社製、マイクロクレーパー)を用いて、ポ
リエチレン重合体とポリエチレンテレフタレ−ト重合体
との分割割繊処理を施した。割繊処理後の長繊維ウエブ
を顕微鏡にて観察したところポリエチレン重合体からな
る極細割繊フイラメント及びポリエチレンテレフタレ−
ト重合体からなる極細割繊フイラメントはそれぞれ非交
絡状態であり、割繊率は85%であった。又、ポリエチ
レン重合体からなる極細割繊フイラメント及びポリエチ
レンテレフタレ−ト重合体からなる極細割繊フイラメン
トの繊度各々0.2デニ−ルであった。
Next, the long fiber web was subjected to a splitting treatment of a polyethylene polymer and a polyethylene terephthalate polymer by using a buckling machine (Microcreper, manufactured by Microex Corporation). Observation of the long fiber web after splitting with a microscope revealed that it was an ultrafine splitting filament made of polyethylene polymer and polyethylene terephthalate.
Each of the ultrafine splitting filaments made of the terpolymer was in an unentangled state, and the splitting rate was 85%. The fineness of the ultrafine split filament made of a polyethylene polymer and that of the ultrafine split filament made of a polyethylene terephthalate polymer were each 0.2 denier.

【0085】一方、短繊維ウエブとして、実施例1と同
一のポリプロピレン重合体とポリプロピレン共重合体と
よりなる並列型二成分系複合短繊維からなる目付け20
g/m2 を準備した。
On the other hand, as a short fiber web, a basis weight of 20 parallel type bicomponent conjugate short fibers composed of the same polypropylene polymer and polypropylene copolymer as in Example 1 was used.
g / m 2 were prepared.

【0086】次いで、部分的に割繊した長繊維ウエブの
片面に短繊維ウエブを積層し、実施例1と同一条件下で
高圧液体流処理を施し、目付けが50g/m2 の複合不
織布を得た。更に、得られた複合不織布に実施例1と同
一条件下で熱処理を施して本発明の複合不織布を得た。
Next, a short fiber web was laminated on one side of the partially split long fiber web and subjected to high-pressure liquid flow treatment under the same conditions as in Example 1 to obtain a composite nonwoven fabric having a basis weight of 50 g / m 2. Was. Further, the obtained composite nonwoven fabric was subjected to a heat treatment under the same conditions as in Example 1 to obtain a composite nonwoven fabric of the present invention.

【0087】実施例5 実施例1において、部分熱圧着処理の施された長繊維ウ
エブに高圧液体流処理にてポリエチレン重合体とポリエ
チレンテレフタレート重合体とに割繊処理を行って得ら
れた長繊維ウエブを用いた以外は、実施例1と同様にし
て目付けが50g/m2 の複合不織布を得た。
Example 5 In Example 1, a long fiber obtained by subjecting a long fiber web subjected to a partial thermocompression bonding treatment to a polyethylene polymer and a polyethylene terephthalate polymer by a high-pressure liquid flow treatment to split the fiber. A composite nonwoven fabric having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1 except that the web was used.

【0088】すなわち、100メッシュの金網上に部分
熱圧着処理の施された長繊維ウエブを積載して、孔径
0.12の噴射孔が孔面積0.62mmで配置された高
圧液体流処理装置を用い、前記積層体の上方50mmの
位置から液体流圧力を50kg/cm2 Gの条件下で処
理を施した。割繊処理後の長繊維ウエブを顕微鏡にて観
察したところポリエチレン重合体からなる極細割繊フイ
ラメント同士及びポリエチレン重合体からなる極細割繊
フイラメントとポリエチレンテレフタレート重合体から
なる極細割繊フイラメント及びポリエチレンテレフタレ
ート重合体からなる極細割繊フイラメント同士は交絡状
態であり、割繊率は85%であった。短繊維ウエブ及び
高圧液体流処理条件、熱処理条件を実施例1と同一条件
下で目付けが50g/m2 の複合不織布を得た。
That is, a long-fiber web subjected to a partial thermocompression treatment is loaded on a 100-mesh wire net, and a high-pressure liquid flow treatment apparatus in which injection holes having a hole diameter of 0.12 are arranged with a hole area of 0.62 mm is provided. The treatment was performed under the conditions of a liquid flow pressure of 50 kg / cm 2 G from a position 50 mm above the laminate. When the long fiber web after the splitting treatment was observed with a microscope, the ultrafine splitting filaments composed of polyethylene polymer and the ultrafine splitting filament composed of polyethylene polymer and the ultrafine splitting filament composed of polyethylene terephthalate polymer and polyethylene terephthalate weight The ultrafine split filaments made of the union were in an entangled state, and the split rate was 85%. A composite nonwoven fabric having a basis weight of 50 g / m 2 was obtained under the same conditions as in Example 1 with the short fiber web, high-pressure liquid flow treatment conditions, and heat treatment conditions.

【0089】実施例6 実施例1において、長繊維ウエブとして、分割割繊処理
を行っていない部分熱圧着処理の施された長繊維ウエブ
を用いた以外は、実施例1と同様にして、目付けが50
g/m2 の複合不織布を得た。得られた複合不織布を顕
微鏡にて観察したところ、長繊維ウエブの割繊率は72
%であった。
Example 6 The basis weight was changed in the same manner as in Example 1 except that the long fiber web which had not been subjected to the split splitting treatment and had been subjected to the partial thermocompression bonding was used. Is 50
g / m 2 was obtained. When the obtained composite nonwoven fabric was observed with a microscope, the splitting rate of the long fiber web was 72.
%Met.

【0090】比較例 実施例1と同一のポリエチレンテレフタレートを使用
し、単相型連続繊維を準備した。すなわち、糸断面が丸
になる単相紡糸口金を用い、単孔吐出量=1.33g/
分で押し出した。紡出糸条を冷却した後、エアーサッカ
ーにより5000m/分の速度で引き取り、公知の開繊
器にて開繊させ、移動する捕集面上に捕集・堆積させて
長繊維ウエブとし、該長繊維ウエブを熱エンボスローラ
ーにてポイント柄、加工温度240℃、圧接面積率10
%の条件下で部分熱圧着を行ない、目付けが30g/m
2 の長繊維ウエブを得た。単相型連続繊維は2.4デニ
−ルであった。
Comparative Example A single-phase continuous fiber was prepared using the same polyethylene terephthalate as in Example 1. That is, a single-phase spinneret having a round yarn cross section was used, and the single-hole discharge amount was 1.33 g /
Extruded in minutes. After cooling the spun yarn, the yarn is taken out by air soccer at a speed of 5000 m / min, opened by a known opening device, collected and deposited on a moving collecting surface to form a long fiber web, Point pattern of long fiber web with hot emboss roller, processing temperature 240 ° C, pressure contact area ratio 10
% Thermocompression bonding under the condition of%, and the basis weight is 30 g / m.
Two long fiber webs were obtained. The single-phase continuous fiber was 2.4 denier.

【0091】一方、短繊維ウエブとして、糸断面が丸の
単相短繊維を準備した。即ち、実施例1に用いた同一の
ポリエチレンテレフタレ−トを用いて、糸断面が丸にな
る単相紡糸口金を用い、単孔吐出量=0.71g/分で
押し出した。紡出糸条を冷却し仕上げ油剤を付与した
後、引き取り速度が1000m/分の引き取りロ−ルを
介して、未延伸糸として捲き取った。次いで、得られた
未延伸糸を複数本引き揃えてトウとなし、公知の延伸機
を用いて延伸倍率が2.9で延伸を行った後、押し込み
式捲縮付与装置にて捲縮を付与し51mmの繊維長に切
断して2.4デニ−ルのポリエチレンテレフタレ−トの
短繊維を得た。該短繊維を用いランダムカ−ド機にて目
付けが20g/m2 の短繊維ウエブを準備した。次い
で、実施例1と同一の短繊維及び積層条件下で積層交絡
処理を行い、目付けが50g/m2 の複合不織布を得
た。複合不織布の物性を表1に示す。
On the other hand, as a short fiber web, single-phase short fibers having a round cross section were prepared. That is, using the same polyethylene terephthalate used in Example 1, a single-phase spinneret having a round yarn cross section was extruded at a single hole discharge rate of 0.71 g / min. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn via a take-up roll having a take-up speed of 1000 m / min. Subsequently, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow, and after drawing at a draw ratio of 2.9 using a known drawing machine, crimping is performed by a press-in type crimping device. The fiber was cut to a fiber length of 51 mm to obtain 2.4 denier polyethylene terephthalate short fibers. Using the short fibers, a short fiber web having a basis weight of 20 g / m2 was prepared using a random card machine. Next, a laminate entanglement treatment was performed under the same short fiber and lamination conditions as in Example 1 to obtain a composite nonwoven fabric having a basis weight of 50 g / m 2 . Table 1 shows the physical properties of the composite nonwoven fabric.

【0092】実施例1〜6及び比較例で得られた複合不
織布及び不織布の物性を測定し、表1に示した。
The physical properties of the composite nonwoven fabrics and nonwoven fabrics obtained in Examples 1 to 6 and Comparative Example were measured and are shown in Table 1.

【0093】[0093]

【表1】 [Table 1]

【0094】表1から明らかのように、実施例1は、ポ
リエチレン重合体とポリエチレンテレフタレート重合体
とよりなる二成分系複合連続単糸を予め座屈処理により
分割割繊した長繊維ウエブに短繊維ウエブを積層し、液
体流処理装置を用い交絡処理を行った複合不織布である
ので、引張強力、層間剥離強力、柔軟性のいずれにも優
れるものであった。
As is clear from Table 1, Example 1 shows that a two-component composite continuous single yarn composed of a polyethylene polymer and a polyethylene terephthalate polymer was divided into short fibers by a buckling treatment beforehand. Since it was a composite nonwoven fabric obtained by laminating webs and performing entanglement treatment using a liquid flow treatment device, it was excellent in all of tensile strength, delamination strength, and flexibility.

【0095】実施例2は、ポリエチレン重合体とポリエ
チレンテレフタレート重合体とよりなる二成分系複合連
続単糸を予め座屈処理により分割割繊した長繊維ウエブ
に、ポリプロピレン重合体とポリプロピレン共重合体と
の並列型二成分系複合短繊維とコットンとの混綿よりな
る短繊維ウエブを用いたので、引張り強力、剥離強力、
柔軟性に優れ、更に、吸湿性にも優れるものであった。
In Example 2, a two-component composite continuous single yarn comprising a polyethylene polymer and a polyethylene terephthalate polymer was split and split in advance by a buckling treatment. Since a short fiber web consisting of a blend of cotton with a parallel type bicomponent composite short fiber and cotton is used, tensile strength, peel strength,
It was excellent in flexibility and also excellent in hygroscopicity.

【0096】実施例3は、ポリエチレン重合体とポリエ
チレンテレフタレート重合体とよりなる二成分系複合連
続単糸を予め座屈処理により分割割繊した長繊維ウエブ
に、偏心芯鞘型二成分系複合短繊維ウエブを用いたの
で、引張り強力、剥離強力、柔軟性のいずれにも優れる
ものであった。
In Example 3, an eccentric core-sheath type two-component composite short yarn was added to a long fiber web obtained by splitting a two-component composite continuous single yarn composed of a polyethylene polymer and a polyethylene terephthalate polymer in advance by buckling. Since a fiber web was used, it was excellent in all of tensile strength, peel strength and flexibility.

【0097】実施例4は、実施例1よりポリエチレン重
合体よりなる割繊フイラメントの繊度を小さくした長繊
維ウエブを、予め座屈処理により分割割繊した長繊維ウ
エブに短繊維ウエブを積層し、液体流処理装置を用い交
絡処理を行った複合不織布であるので、引張強力、層間
剥離強力、柔軟性のいずれにも優れるものであった。
In Example 4, a short fiber web was laminated on a long fiber web in which the fineness of a splitting filament made of a polyethylene polymer was smaller than that in Example 1 and split by splitting in advance by buckling treatment. Since it was a composite nonwoven fabric subjected to entanglement treatment using a liquid flow treatment device, it was excellent in all of tensile strength, delamination strength and flexibility.

【0098】実施例5は、ポリエチレン重合体とポリエ
チレンテレフタレート重合体とよりなる二成分系複合連
続単糸を予め液体流処理により分割割繊した長繊維ウエ
ブに短繊維ウエブを積層し、液体流処理装置を用い液体
流低圧交絡処理を行った複合不織布であるので、引張強
力、層間剥離強力、柔軟性のいずれにも優れるものであ
った。
In Example 5, a short-fiber web was laminated on a long-fiber web in which a two-component composite continuous single yarn consisting of a polyethylene polymer and a polyethylene terephthalate polymer had been split beforehand by liquid flow treatment. Since the composite nonwoven fabric was subjected to liquid flow low-pressure entanglement using an apparatus, it was excellent in all of tensile strength, delamination strength, and flexibility.

【0099】実施例6は、ポリエチレン重合体とポリエ
チレンテレフタレート重合体とよりなる二成分系複合連
続単糸よりなる長繊維ウエブに短繊維ウエブを積層し、
液体流処理装置を用い割繊処理と交絡処理を同時に行っ
た複合不織布であるので、層間剥離強力、柔軟性にやや
優れ、引張強力に優れるものであった。
In Example 6, a short fiber web was laminated on a long fiber web composed of a two-component composite continuous single yarn composed of a polyethylene polymer and a polyethylene terephthalate polymer.
Since the composite nonwoven fabric was subjected to splitting and entanglement at the same time using a liquid flow treatment device, it was slightly superior in delamination strength, flexibility, and tensile strength.

【0100】これに対し、比較例は、ポリエチレンテレ
フタレート重合体で単相連続繊維よりなる長繊維ウエブ
に短繊維ウエブを積層し、液体流処理装置を用い交絡処
理を行った複合不織布であるので、剥離強力に著しく劣
るものであった。
On the other hand, the comparative example is a composite nonwoven fabric obtained by laminating a short fiber web on a long fiber web made of a single-phase continuous fiber of a polyethylene terephthalate polymer and performing an entanglement treatment using a liquid flow treatment device. The peel strength was extremely poor.

【0101】実施例7 実施例1において、高圧液体流処理装置により、液体流
圧力を30kg/cm2 Gとしたこと以外は、実施例1
と同一条件にて、目付が50g/m2 の複合不織布を得
た。得られた複合不織布の物性は、引張強力18kg/
5cm幅、圧縮剛軟度8g、剥離強力410gであっ
た。
Example 7 Example 1 was the same as Example 1 except that the liquid flow pressure was set to 30 kg / cm 2 G by the high-pressure liquid flow treatment device.
Under the same conditions as above, a composite nonwoven fabric having a basis weight of 50 g / m 2 was obtained. The physical properties of the obtained composite non-woven fabric were 18 kg / tensile strength.
The width was 5 cm, the compression hardness was 8 g, and the peel strength was 410 g.

【0102】座屈処理により予め極細割繊フイラメント
群を発現させた長繊維ウエブは、極細割繊フイラメント
群は非交絡状態であるため、フイラメントの自由度が大
きい上、フイラメント間の空隙が大きいため、短繊維ウ
エブの構成繊維が入り込み絡みやすい。したがって、積
層一体化における高圧液体流処理の水圧を低水圧とした
が、得られた実施例7の複合不織布は、層間剥離強力に
優れ、特に柔軟性に優れたものであった。
The long fiber web in which the group of ultrafine split filaments is developed in advance by the buckling treatment has a high degree of freedom of the filament and a large gap between the filaments because the group of ultrafine split filaments is in an unentangled state. In addition, the constituent fibers of the short fiber web easily enter and become entangled. Therefore, although the water pressure of the high-pressure liquid flow treatment in the lamination integration was set to a low water pressure, the obtained composite nonwoven fabric of Example 7 was excellent in delamination strength and particularly excellent in flexibility.

【0103】[0103]

【発明の効果】本発明の複合不織布は、二成分系分割型
複合連続繊維よりなる長繊維ウエブと二成分系並列型あ
るいは偏心芯鞘型複合短繊維よりなる短繊維ウエブとを
積層し、液体流処理装置を用い両ウエブを緻密に交絡一
体化し、更に、前記積層体を熱処理することにより短繊
維ウエブ層の捲縮を発現させた複合不織布であって、機
械的特性と剥離強力が高く、柔軟性に優れ、良好なフイ
ルタ−性能を有するものであり、医療・衛生材用、衣料
用、生活関連資材用、産業資材用として好適である。
The composite nonwoven fabric of the present invention is obtained by laminating a long fiber web composed of a two-component split type composite continuous fiber and a short fiber web composed of a two-component parallel type or eccentric core-sheath composite short fiber, Both webs are densely entangled and integrated using a flow treatment device, and further, a heat treatment of the laminate is a composite nonwoven fabric that expresses crimp of the short fiber web layer, and has high mechanical properties and peel strength, It has excellent flexibility and good filter performance, and is suitable for medical and hygiene materials, clothing, living related materials, and industrial materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いられる二成分系複合連続単糸の横
断面の一実施模式図である。
FIG. 1 is a schematic diagram showing one embodiment of a cross section of a two-component composite continuous single yarn used in the present invention.

【図2】本発明に用いられる二成分系複合連続単糸の横
断面の一実施模式図である。
FIG. 2 is a schematic diagram of one embodiment of a cross section of a two-component composite continuous single yarn used in the present invention.

【図3】本発明に用いられる二成分系複合連続単糸の横
断面の一実施模式図である。
FIG. 3 is a schematic diagram showing one embodiment of a cross section of a two-component composite continuous single yarn used in the present invention.

【図4】本発明に用いられる二成分系複合連続単糸の横
断面の一実施模式図である。
FIG. 4 is a schematic diagram of one embodiment of a cross section of a two-component composite continuous single yarn used in the present invention.

【図5】本発明に用いられる並列型二成分系複合短繊維
の断面の一実施模式図である。
FIG. 5 is a schematic diagram of one embodiment of a cross section of a parallel type bicomponent conjugate short fiber used in the present invention.

【図6】本発明に用いられる並列型二成分系複合短繊維
の断面の一実施模式図である。
FIG. 6 is a schematic diagram showing one embodiment of a cross section of a parallel type bicomponent conjugate short fiber used in the present invention.

【図7】本発明に用いられる偏心芯鞘型二成分系複合短
繊維の横断面の一実施模式図である。
FIG. 7 is a schematic cross-sectional view of an eccentric core-sheath type bicomponent conjugate short fiber used in the present invention.

【図8】本発明に用いられる偏心芯鞘型二成分系複合短
繊維の横断面の一実施模式図である。
FIG. 8 is a schematic cross-sectional view of an eccentric core-sheath type bicomponent conjugate short fiber used in the present invention.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 繊維形成性低融点重合体と前記低融点重
合体に対し非相溶性でかつ前記低融点重合体の融点より
30〜180℃高い融点を有する繊維形成性高融点重合
体とからなる分割型二成分系複合連続単糸の分割により
発現した前記低融点重合体及び前記高融点重合体から構
成される極細割繊フイラメント群からなる長繊維ウエブ
と、主として下記短繊維からなる短繊維ウエブとが積層
されてなり、かつ長繊維ウエブの構成繊維同士、長繊維
ウエブと短繊維ウエブとの構成繊維同士及び短繊維ウエ
ブの構成繊維同士が三次元交絡により一体化してなるこ
とを特徴とする複合不織布。 記 短繊維:繊維形成性重合体からなり、潜在捲縮能を有し
てなる短繊維。
1. A fiber-forming low-melting polymer and a fiber-forming high-melting polymer incompatible with the low-melting polymer and having a melting point 30 to 180 ° C. higher than the melting point of the low-melting polymer. A long-fiber web composed of a group of ultrafine splitting filaments composed of the low-melting polymer and the high-melting polymer expressed by dividing a split-type two-component composite continuous single yarn, and short fibers mainly composed of the following short fibers The web is laminated, and the constituent fibers of the long fiber web, the constituent fibers of the long fiber web and the short fiber web, and the constituent fibers of the short fiber web are integrated by three-dimensional confounding. Composite nonwoven. Short fibers: short fibers made of a fiber-forming polymer and having latent crimping ability.
【請求項2】 短繊維ウエブが、主として繊維形成性重
合体からなり、潜在捲縮能を有してその潜在捲縮が顕在
化してなる短繊維からなることを特徴とする請求項1記
載の複合不織布。
2. The short-fiber web according to claim 1, wherein the short-fiber web is mainly composed of a fiber-forming polymer, has short crimping ability, and is composed of short fibers in which the latent crimp is manifested. Composite nonwoven.
【請求項3】 短繊維ウエブを構成する潜在捲縮能を有
してなる短繊維が主として下記短繊維のうちの一つであ
ることを特徴とする請求項1又は2のいずれか1項記載
の複合不織布。 記 短繊維:相互に熱収縮性の異なる2種の繊維形成性重合
体が繊維の長さ方向に沿って並列に配置された並列型二
成分系複合短繊維、前記2種の繊維形成性重合体からな
り芯部分が偏心して配置された偏心芯鞘型二成分系複合
短繊維。
3. The short fiber having latent crimping power constituting the short fiber web is mainly one of the following short fibers. Composite nonwoven fabric. Short fiber: a parallel type bicomponent conjugate short fiber in which two types of fiber-forming polymers having mutually different heat shrinkages are arranged in parallel along the length direction of the fiber, and the two types of fiber-forming weight. An eccentric core-sheath type bicomponent conjugate short fiber composed of a united core and an eccentric core portion.
【請求項4】 短繊維ウエブにおいて、天然繊維及び/
又は再生繊維からなる短繊維が30重量%未満混綿され
てなることを特徴とする請求項1〜3のいずれか1項記
載の複合不織布。
4. A staple fiber web comprising natural fibers and / or
The composite nonwoven fabric according to any one of claims 1 to 3, wherein a short fiber made of a regenerated fiber is mixed with less than 30% by weight.
【請求項5】 繊維形成性低融点重合体と前記低融点重
合体に対し非相溶性でかつ前記低融点重合体の融点より
30〜180℃高い融点を有する繊維形成性高融点重合
体とからなる分割型二成分系複合連続単糸群を溶融紡糸
し、前記複合連続単糸群をエアーサッカーを用いて引取
り、スクリーンコンベア等の移動式捕集面上に開繊堆積
させて長繊維ウエブとし、前記長繊維ウエブを部分熱圧
着装置を用いて前記複合連続単糸群に部分的な熱圧着処
理を施して長繊維ウエブを得、前記長繊維ウエブの少な
くとも片面に主として繊維形成性重合体からなり、潜在
捲縮能を有してなる短繊維からなる短繊維ウエブを積層
し、次いで、前記積層体に高圧液体流処理を施し、長繊
維ウエブの構成繊維同士、長繊維ウエブと短繊維ウエブ
との構成繊維同士及び短繊維ウエブの構成繊維同士を三
次元的に交絡させることにより、積層体を一体化させて
複合不織布を得、複合不織布の構成繊維を形成する繊維
形成性重合体のうち最も低い融点を有する重合体の融点
より低い温度で熱処理を施し、短繊維の潜在捲縮を顕在
化させることを特徴とする複合不織布の製造方法。
5. A fiber-forming low-melting polymer and a fiber-forming high-melting polymer incompatible with the low-melting polymer and having a melting point 30 to 180 ° C. higher than the melting point of the low-melting polymer. The split type two-component composite continuous single yarn group is melt-spun, and the composite continuous single yarn group is taken up using air soccer, spread and deposited on a movable collecting surface such as a screen conveyor to form a long fiber web, The long fiber web is subjected to a partial thermocompression treatment on the composite continuous single yarn group using a partial thermocompression bonding apparatus to obtain a long fiber web, and at least one surface of the long fiber web is mainly made of a fiber-forming polymer, A short fiber web made of short fibers having latent crimping ability is laminated, and then the laminate is subjected to a high-pressure liquid flow treatment, so that the constituent fibers of the long fiber web, the long fiber web and the short fiber web are combined. Constituent fibers The three-dimensionally entangled constituent fibers of the short fiber web integrate the laminate to obtain a composite nonwoven fabric, which has the lowest melting point among the fiber-forming polymers forming the constituent fibers of the composite nonwoven fabric. A method for producing a composite nonwoven fabric, wherein heat treatment is performed at a temperature lower than the melting point of a polymer to make latent crimp of short fibers apparent.
【請求項6】 繊維形成性低融点重合体と前記低融点重
合体に対し非相溶性でかつ前記低融点重合体の融点より
30〜180℃高い融点を有する繊維形成性高融点重合
体とからなる分割型二成分系複合連続単糸群を溶融紡糸
し、前記複合連続単糸群をエアーサッカーを用いて引取
り、スクリーンコンベア等の移動式捕集面上に開繊堆積
させて長繊維ウエブとし、前記長繊維ウエブを部分熱圧
着装置を用いて前記複合連続単糸群を部分的な熱圧着処
理を施して長繊維ウエブを得、前記長繊維ウエブの少な
くとも片面に主として下記短繊維からなる短繊維ウエブ
を積層し、次いで、前記積層体に高圧液体流処理を施
し、長繊維ウエブの構成繊維同士、長繊維ウエブと短繊
維ウエブとの構成繊維同士及び短繊維ウエブの構成繊維
同士を三次元的に交絡させることにより、積層体を一体
化させることを特徴とする複合不織布の製造方法。 記 短繊維:繊維形成性重合体からなり、潜在捲縮能を有し
てその潜在捲縮が顕在化してなる短繊維。
6. A fiber-forming low-melting polymer and a fiber-forming high-melting polymer which is incompatible with the low-melting polymer and has a melting point 30 to 180 ° C. higher than the melting point of the low-melting polymer. The split type two-component composite continuous single yarn group is melt-spun, and the composite continuous single yarn group is taken up using air soccer, spread and deposited on a movable collecting surface such as a screen conveyor to form a long fiber web, The long continuous web is subjected to a partial thermocompression treatment on the composite continuous single yarn group using a partial thermocompression bonding apparatus to obtain a long fiber web, and a short fiber web mainly comprising the following short fibers on at least one surface of the long fiber web. Then, the laminate is subjected to a high-pressure liquid flow treatment, and the constituent fibers of the long fiber web, the constituent fibers of the long fiber web and the short fiber web, and the constituent fibers of the short fiber web are three-dimensionally. Confounding A method for producing a composite nonwoven fabric, wherein the laminate is integrated. Short fibers: short fibers made of a fiber-forming polymer, having latent crimping ability, and having the latent crimps manifested.
【請求項7】 長繊維ウエブとして、部分的に熱圧着し
た長繊維ウエブを座屈処理にて熱圧着されていない部位
に存在する前記複合連続単糸を分割割繊させて、低融点
重合体又は高融点重合体から構成される極細割繊フイラ
メント群を少なくとも一部発現させ、かつ極細割繊フイ
ラメント群は非交絡状態とした長繊維ウエブを用いるこ
とを特徴とする請求項5又は6のいずれか1項記載の複
合不織布の製造方法。
7. A low-melting polymer obtained by splitting and splitting the composite continuous single yarn present in a portion of the long fiber web which has not been thermocompression-bonded by buckling treatment as a long fiber web. Alternatively, at least a part of a group of ultrafine splitting filaments composed of a high melting polymer is expressed, and the group of ultrafine splitting filaments uses a long fiber web in an unentangled state. 3. The method for producing a composite nonwoven fabric according to claim 1.
【請求項8】 長繊維ウエブとして、部分的に熱圧着し
た長繊維ウエブに高圧液体流を作用させることにより熱
圧着されていない部位に存在する前記複合連続単糸を分
割させて、低融点重合体又は高融点重合体から構成され
る極細割繊フイラメント群を少なくとも一部発現させ、
かつ極細割繊フイラメント群同士を三次元的に交絡させ
た長繊維ウエブを用いることを特徴とする請求項5又は
6のいずれか1項記載の複合不織布の製造方法。
8. The composite continuous single yarn present in a portion that is not thermocompression-bonded by applying a high-pressure liquid flow to a partially thermocompression-bonded long fiber web as a long fiber web, thereby obtaining a low melting point weight. Ultra-fine splitting filament group composed of coalesced or high melting point polymer at least partially expressed,
The method for producing a composite nonwoven fabric according to any one of claims 5 and 6, wherein a long fiber web in which ultrafine split filament groups are three-dimensionally entangled is used.
【請求項9】 短繊維ウエブを構成する潜在捲縮能を有
する短繊維が主として下記短繊維のうちの一つであるこ
とを特徴とする請求項5〜8までのいずれか1項記載の
複合不織布の製造方法。 記 短繊維:相互に熱収縮性の異なる2種の繊維形成性重合
体が繊維の長さ方向に沿って並列に配置された並列型二
成分系複合短繊維、前記2種の繊維形成性重合体からな
り芯部分が偏心して配置された偏心芯鞘型二成分系複合
短繊維。
9. The composite according to claim 5, wherein the short fibers having latent crimping power constituting the short fiber web are mainly one of the following short fibers. Manufacturing method of nonwoven fabric. Short fiber: a parallel type bicomponent conjugate short fiber in which two types of fiber-forming polymers having mutually different heat shrinkages are arranged in parallel along the length direction of the fiber, and the two types of fiber-forming weight. An eccentric core-sheath type bicomponent conjugate short fiber composed of a united core and an eccentric core portion.
【請求項10】 短繊維ウエブに、天然繊維及び/又は
再生繊維からなる短繊維を30重量%未満混綿すること
を特徴とする請求項5〜9までのいずれか1項記載の複
合不織布の製造方法。
10. The production of a composite nonwoven fabric according to any one of claims 5 to 9, wherein the short fiber web is blended with less than 30% by weight of short fibers composed of natural fibers and / or regenerated fibers. Method.
JP9335295A 1997-01-30 1997-12-05 Composite non-woven fabric and its production Pending JPH10273870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9335295A JPH10273870A (en) 1997-01-30 1997-12-05 Composite non-woven fabric and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1633097 1997-01-30
JP9-16330 1997-01-30
JP9335295A JPH10273870A (en) 1997-01-30 1997-12-05 Composite non-woven fabric and its production

Publications (1)

Publication Number Publication Date
JPH10273870A true JPH10273870A (en) 1998-10-13

Family

ID=26352658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9335295A Pending JPH10273870A (en) 1997-01-30 1997-12-05 Composite non-woven fabric and its production

Country Status (1)

Country Link
JP (1) JPH10273870A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5450055B2 (en) * 2007-03-26 2014-03-26 三井化学株式会社 Mixed long fiber nonwoven fabric and method for producing the same
KR20160068095A (en) * 2014-12-04 2016-06-15 주식회사 포스코 Apparatus for preventing arc of electro furnace roof
JP2017113653A (en) * 2015-12-21 2017-06-29 タイガースポリマー株式会社 Nonwoven fabric filter medium and air cleaner element

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5450055B2 (en) * 2007-03-26 2014-03-26 三井化学株式会社 Mixed long fiber nonwoven fabric and method for producing the same
KR20160068095A (en) * 2014-12-04 2016-06-15 주식회사 포스코 Apparatus for preventing arc of electro furnace roof
JP2017113653A (en) * 2015-12-21 2017-06-29 タイガースポリマー株式会社 Nonwoven fabric filter medium and air cleaner element
CN106955528A (en) * 2015-12-21 2017-07-18 泰贺斯聚合物股份有限公司 Nonwoven cloth filter and air cleaner cartridge
CN106955528B (en) * 2015-12-21 2020-10-09 泰贺斯聚合物股份有限公司 Non-woven fabric filter material and filter element of air filter

Similar Documents

Publication Publication Date Title
JPH11217757A (en) Staple fiber nonwoven fabric and its production
JPH10219555A (en) Laminated nonwoven fabric and its production
JPH10331063A (en) Composite nonwoven fabric and its production
JP3247177B2 (en) Biodegradable latently crimpable composite short fiber and nonwoven fabric thereof
JPH10273870A (en) Composite non-woven fabric and its production
JP4015831B2 (en) Ultrafine fiber nonwoven fabric and method for producing the same
JP3201671B2 (en) Manufacturing method of composite nonwoven fabric
JPH10280262A (en) Nonwoven fabric and its production
JP3145067B2 (en) Nonwoven fabric and method for producing the same
JPH10273864A (en) Composite nonwoven fabric and its production
JPH11158763A (en) Conjugate nonwoven cloth and its production
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP2000017558A (en) Ultrafine staple-containing composite nonwoven fabric and its production
JPH1121752A (en) Composite nonwoven fabric and its production
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP3259936B2 (en) Laminated nonwoven fabric and method for producing the same
JPH10273869A (en) Composite non-woven fabric and its production
JPH08109567A (en) Laminated nonwoven structure and its production
JPH10280258A (en) Nonwoven fabric and its production
JP2000136477A (en) Laminated nonwoven fabric and its production
JP3221200B2 (en) Laminated nonwoven fabric and method for producing the same
JPH10158970A (en) Composite nonwoven fabric and its production
JPH10131021A (en) Composite nonwoven fabric and its production
JPH09119055A (en) Heat-resistant composite nonwoven fabric and its production
JPH1161621A (en) Stretchable ultrafine fiber nonwoven fabric and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522